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Recently achieved chiral condensates open intriguing avenues for the study of the chiral properties induced
by current-density interactions. An attempt to include these features in a spinor system is presented, which gives
rise to a nonlinear, effective spin-orbit coupling that emerges from the differential orbital currents, along with
constraints in the conserved quantities due to the linear coupling between spin components. Chirality pervades
the resulting spectrum of stationary states and their dynamical stability, which are explored in plane waves,
dark and bright solitons, and Josephson vortices. Our analytical and numerical results reveal the destabilizing
role of polarization and Josephson currents and support the existence of stable nonlinear states built of linear
superpositions of plane waves.
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I. INTRODUCTION

Ultracold Bose-condensed gases of atomic species sub-
ject to interactions that are proportional to the local atomic
current-density have been recently achieved [1]. The road to
realization involves electrically neutral matter systems with
pseudo-spin-1/2 coupled to laser fields that give rise to syn-
thetic electromagnetism; the emergent gauge fields turn out
to be the effect of geometrical phases accumulated in the
adiabatic path of the optically dressed atomic states (see
Refs. [2,3] and references therein). The resulting systems
exhibit chiral properties [4] when they are restricted to their
lowest energy bands and are governed by an effective Hamil-
tonian that includes a current-density term and operates on a
scalar order parameter. The theoretical model can be mapped
into the one-dimensional reduction of a two-dimensional (2D)
topological gauge theory that breaks Galilean invariance and
was predicted to host the chiral solitons [5–7] that have been
observed in the experiment [1]. Further features of this chiral
scalar theory have been addressed in the past years [3,8–14].

In this work, we aim to implement a spinor system from
the effective chiral scalar condensate in order to explore a
long-Josephson bosonic junction with chiral properties. To
this end, we model an effective two-component spinor Bose-
Einstein condensate (BEC) as realized in regular extended
bosonic junctions [15,16]. In this setting, we study the Joseph-
son dynamics of extended chiral states as a generalization of
a chiral-point-like Josephson junction [8]. Although one can
still discuss the state properties with respect to the population
imbalance between components (or spin polarization), the
relative (or spin) current density Js emerges as a key quantity:
it is linked to the Josephson current that flips the (pseudo-)spin
through a continuity equation and causes distinct interaction
properties between particles with different spins. The spin

current replicates also the dynamical response of a supercon-
ducting chiral junction to the action of an external magnetic
field. Then, as in weak superconducting systems, Josephson
vortices (localized loop currents between spin components)
with cores at the junction are generated.

The paper is structured as follows. In Sec. II, we present the
equations of motion and relevant quantities, paying attention
to particular features of the ring geometry under considera-
tion, and classify the different types of stationary states that
can be found. In Sec. III, we analyze plane waves and their
superpositions, whereas Sec. IV focuses on solitonic states.
Finally, in Sec. V, we present our conclusions.

II. MODEL

We consider a linearly coupled, two-component (labeled ↑
and ↓) BEC in a rotating ring geometry of radius R and sub-
ject to the same (intracomponent) current-density interaction
of nondimensional strength κ↑ = κ↓ = κ . We assume κ > 0
without loss of generality. In order to see the effect of this
type of interaction more clearly, we also assume that there is
no contact interparticle interaction in the system, g↑↑ = g↓↓ =
g↑↓ = 0. The equation of motion is modeled by the mean-field
Gross-Pitaevskii-like (GP) equation for the pseudo-spin-1/2
wave function � = [ψ↑ ψ↓]T :

ih̄
∂�

∂t
=

⎛
⎜⎜⎝

�̂2

2M
+ κ h̄J↑ −ν

−ν
�̂2

2M
+ κ h̄J↓

⎞
⎟⎟⎠�, (1)

where M is the particle mass, �̂ = p̂ − M�R is the me-
chanical momentum operator in the frame rotating with the
angular velocity �, p̂ = −ih̄∂x is the canonical momentum
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operator, ν > 0 is the energy of the linear coupling, and Jσ =
h̄(ψ∗

σ ∂xψσ − ψσ∂xψ
∗
σ )/(i2M ) are the component current den-

sities measured with respect to the laboratory frame (with
σ =↑ and ↓).

Similarly to extended bosonic junctions [15–17], the sys-
tem models a limiting case of a two-component condensate
determined by a double-well potential along the transverse
direction to the chiral axis, such that the nonlinear terms
are prevented across the potential barrier and a linear cou-
pling is established between wells. In addition, since both
current-density and contact interactions are present in the
experimental realization [1], we expect our system to simulate
experimental regimes of dominant current-density interac-
tions.

The number of particles in each component is not con-
served due to the linear coupling, but the total number of
particles in the ring N = ∮

dx�†� = ∮
dx (n↑ + n↓), where

nσ = |ψσ |2, is a conserved quantity by means of the preserved
U(1) symmetry [18]. As a result, the system satisfies the
continuity equation

∂t n + ∂x(J − n�R) = 0, (2)

where n(x, t ) = n↑ + n↓ and J (x, t ) = J↑ + J↓ stand for the
total particle and current densities, respectively. In addition,
the local population imbalance between components or spin
density, ns(x, t ) = n↑ − n↓, fulfills a second continuity equa-
tion,

∂t ns + ∂x(Js − ns�R) = Iϕ, (3)

where Js = J↑ − J↓ is the spin current density, i.e., the
relative current between components. The source term in
the right-hand side of Eq. (3), Iϕ = (4ν/h̄)

√
n↑n↓ sin ϕ,

where ϕ = arg ψ↑ − arg ψ↓ is the relative phase, can be
identified as twice the Josephson current flowing between
components [19].

The stationary states �(x, t ) = �(x) exp(−iμ t/h̄), with
energy eigenvalue μ, satisfy the time-independent equa-
tion Ĥ� = μ�, where Ĥ is the nonlinear Hamiltonian matrix
in Eq. (1), and also the time-independent versions of Eqs. (2)
and (3). For them, J = J − n �R is always the constant total
current in the rotating frame while, from ∂x(Js − ns �R) = Iϕ ,
one can find a constant spin current density, Js = Js − ns �R,
only when ϕ = j π (for j integer).

As in the equivalent scalar condensate [20], one can define
a corresponding average energy,

E =
∮

dx

(∑
σ

ψ∗
σ �̂2ψσ

2M
− 2ν

√
n↑n↓ cos ϕ

)
, (4)

which does not explicitly depend on κ and includes
the Josephson (coupling) energy Eϕ = −2 ν Re(ψ∗

↑ψ↓) =
−2ν

√
n↑n↓ cos ϕ. However, differently to the particle num-

ber conservation, it turns out that E is not a conserved quantity
[21]. This can be seen from the Ehrenfest’s theorem applied
to the Hamiltonian matrix Ĥ in Eq. (1) [rewritten below in
Eq. (11)], which states the equality d/dt〈Ĥ〉 = 〈∂Ĥ/∂t〉 be-
tween expectation values and gives

d

dt
E + κ h̄

∮
dx (J↑ ∂t n↑ + J↓ ∂t n↓) = 0. (5)

The second term acts as an energy source and prevents E from
being, in general, a conserved quantity. Despite this fact, we
are able to find stationary states that are dynamically stable
against small perturbations. In this regard, the present system
is not dissimilar to other dissipative nonlinear systems, as,
for instance, long-lived Bose-Einstein condensates of exciton-
polaritons (see, e.g., Ref. [22] and references therein), where
the analysis focuses on the generation and stability of steady-
state configurations.

A. Linear excitations

The linear excitations of stationary states �(x, t ) can be ob-
tained by solving the Bogoliubov equations [23]. They result
from introducing the perturbed state

φσ (x, t )

= e−iμt/h̄

{
ψσ (x) +

∑
j

[u jσ (x) e−iω j t + v∗
jσ (x) eiω∗

j t ]

}
(6)

into the GP equation, Eq. (1), where j indexes the lin-
ear modes and σ the condensate component. The vector
of the excitation-mode amplitudes, δψ j = [u j↑ v j↑ u j↓ v j↓]T ,
solves the linear system of equations(

B̂↑ −ν σz

−ν σz B̂↓

)
δψ j = h̄ω j δψ j, (7)

with the 2 × 2 Bogoliubov operators,

B̂σ =
(

Ĥσ + h̄κ
2M ψσ C(ψ∗

σ , p̂) − h̄κ
2M ψσ C(ψσ , p̂)

− h̄κ
2M ψ∗

σ C(ψ∗
σ p̂) −Ĥ∗

σ + h̄κ
2M ψ∗

σC(ψσ p̂)

)
,

(8)
where Ĥσ = �̂2/2M + κ h̄Jσ − μ, and we have introduced
the operator C(ψσ , p̂) = ψσ p̂ − ( p̂ψσ ) for short notation.
Pure real modes δψ j are stable excitations, but complex
modes signal dynamical instabilities.

B. Constraint of the ring geometry

Both the ring geometry and the spinor nature introduce
some constraints in the theory of the system under considera-
tion that are worth emphasizing. It has been demonstrated that,
in open geometries, the scalar chiral model can be mapped
into a (reduced) topological gauge theory by means of the
nonlocal (Jordan-Wigner-like) transformation [5]

ψ ′(x, t ) = ψ (x, t ) exp

(
−i

κ

2

∫ x

x0

dy |ψ (y, t )|2
)

, (9)

by means of which the kinetic momentum acquires (in
addition to the canonical momentum) a density-dependent
contribution, pn = −h̄(κ/2)|ψ ′|2. The advantage of the re-
sulting theory resides in the existence of a local Lagrangian
and the subsequent definition of conserved quantities [6].
Unfortunately, the ring geometry can frustrate the mapping
between theories. Since the wave function is single valued in
both theories, and the density profile is preserved by Eq. (9),
the phase θ = arg ψ (and θ ′ = arg ψ ′) is restricted to jump
in integer multiples of 2π when it winds around the ring,
�θ = θ (2πR) − θ (0). Therefore, from Eq. (9), the mapping
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is possible only if �θ ′ = �θ + κN/2 = 2π j′, hence only if
κN/2 = 2π j, for j and j′ integers. In other words, the trans-
formation given by Eq. (9) is allowed in the ring only for
quantized values of the total number of particles,

N = 4π

κ
j. (10)

The lack of mapping has interesting consequences on the
scalar chiral systems. For instance, the transition between
ground states ψ ′

q′ = √
N/(2πR) exp(iq′x) with different wind-

ing numbers q′ found in Ref. [3] for varying number of
particles N is not seen within the theory with current-density
interactions. Here, q (then q = q′ + κN/2 when the mapping
exits) is just the wave number of the mechanical momentum,
independent of the number of particles, and ψ0 (with q = 0)
is always the ground state.

The spinor character of the system brings further con-
straints in the search of local Lagrangians and conserved
quantities, as reflected by Eq. (5). A mapping between spinor
systems equivalent to Eq. (9) would involve two parallel trans-
formations for the two spin components, in a way similar
to that in which Wigner-Jordan transformations operate in
discrete ladders (see, for example, Ref. [24]). But in this case,
new nonlocal phases are expected to emerge in the linear-
coupling term.

C. Types of solutions

It is useful to write the nonlinear Hamiltonian (1) in terms
of the Pauli matrices σ = (σx, σy, σz ) and the 2 × 2 identity
matrix I2 as

Ĥ =
(

�̂2

2M
+ κ h̄J

2

)
I2 + κ h̄Js

2
σz − ν σx. (11)

Hence, one can identify the effective spin-orbit-coupling term
(κ h̄Js/2) σz, which shifts the energies of the spin components
according to the axial (orbital) spin current Js. There are two
types of stationary states depending on the absence or pres-
ence of spin current. For the former type (Js = 0), the Pauli
matrix σx commutes with the Hamiltonian, so one can find
common eigenstates that satisfy ψ↓(x, t ) = ±ψ↑(x, t ), which
transforms the coupled equations (1) into the single equation

ih̄
∂ψ↑
∂t

=
(

�̂2

2M
+ κ h̄J↑ ∓ ν

)
ψ↑. (12)

In this case, one recovers all the stationary states known for a
single-component condensate [20]:

ψ↑(x, t ) =
√

α + β dn2(x/ξ,m) eiθ↑(x)−iμt/h̄, (13)

with phase

θ↑(x) = k�x + MξJ
2h̄(α + β )

�(η; x/ξ,m), (14)

where we have used the Jacobi dn function, with parameter
m ∈ [0, 1] and the characteristic length ξ = h̄/

√
Mκ h̄|�β|R,

and the incomplete elliptic integral of the third kind
�(η; x/ξ,m), with η = mβ/(α + β ) [25]. The real parame-
ters {m, α, β} are self-consistently determined for a particular

system with {R, N, �} (see Ref. [20] for details). The energy
eigenvalues are shifted by ∓ν with respect to the scalar case:

μ =
(
m − 2 − 3

α

β

)
h̄2

2Mξ 2
+ κ 〈̄ J

2
∓ ν. (15)

For states with Js �= 0, in the general case, one has to deal
with the two coupled equations (1), and a double degeneracy
in the energy eigenvalue is obtained for a given |Js| according
to the signs of the spin current. Still, in the limit of ν → 0, the
symmetry with σz (which results from [σz, Ĥ ] = 0) is slightly
broken by a tiny ν �= 0 and one could expect the stationary
states to approach the eigenstates of σz, with ψσ /ψσ̄ ≈ 0, thus
realizing a population self-trapping. As we discuss later, this is
indeed the scenario shown by our results, and the relevant pa-
rameter that controls these regimes is the ratio γ = 2ν/(κ h̄J )
between the linear coupling and the interaction.

From now on, we introduce the average number density
n0 = N/(2πR), the rotation wave number k� = M�R/h̄, and
the normalized interaction strength κ̃ = κN/(2π ). In addition,
we make use of the ring units {R, �−1

0 = MR2/h̄, h̄�0} as
length, time, and energy units to write nondimensional quan-
tities, which we denote by tildes, e.g., �̃ = �/�0.

III. PLANE-WAVE SPECTRUM

As in the corresponding scalar system, the equation of
motion (1) is translational invariant and can be solved by
plane-wave states

ψq(x, t ) =
( √

n0↑
±√

n0↓

)
ei(q x−μqt/h̄), (16)

where n0σ are constant densities and the ± sign accounts for
the relative phase between components, ϕ = 0 or π , respec-
tively. The common wave number q is quantized in the ring,
qR = 0,±1,±2, . . . , and the total and spin current densities
in the laboratory frame are Jq = h̄q n0/M and Jqs = h̄q n0s/M.

The absence (Jqs = 0) or presence (Jqs �= 0) of spin current
corresponds to the absence or presence, respectively, of local
population imbalance between components or polarization,
given by n0s. The first kind (n0s = 0) corresponds to equal spin
populations, n0↑ = n0↓ = n0/2, and has energy eigenvalues

μ(∓)
q = (h̄q − M�R)2

2M
+ κ

h̄Jq

2
∓ ν, (17)

which describe two separated branches of the dispersion.
These states are particular cases of the general solution (13)
when m = 0.

On the other hand, the polarized states (n0s �= 0) have spin
current Jqs = ±Jq

√
1 − γq

2, with γq = 2ν/(κ h̄Jq ), and give
rise to two overlapping energy branches for opposite signs
of Jqs:

μ(s)
q = (h̄q − M�R)2

2M
+ κ h̄Jq. (18)

However, this overlap is not trivial: positive-q (negative-
q) states exist only in the out-of-phase (in-phase)
branch of the dispersion relations. The parameter
|γq| = |4πMRν/(κNh̄2q)|, which reflects the ratio between
the linear coupling and the interaction energy terms in the
equation of motion, marks the transition between both types
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FIG. 1. Energy eigenvalue (top panels) and energy per particle
(bottom panels) of stationary plane waves with wave number q for
two values of the linear coupling ν at � = 0. The solid circles indi-
cate the bifurcation points of states with nonvanishing spin current
density Js (thick dot-dashed lines), so that they do not exist within
the region limited by the vertical dashed lines. In a ring trap of radius
R, only the states with qR = 0, ±1, ±2, . . . are allowed, and the
dispersion curves are restricted to a discrete set of points.

of plane waves. While the unpolarized states exist for arbitrary
values of γq, the polarized ones exist only for high interactions
|γq| < 1, thus for q �= 0 and |q| > |2Mν/(κ h̄2n0)|. They can
be thought of as nonlinear bifurcations of the unpolarized
states at |γq| = 1.

Figure 1 (top panels) show the energy eigenvalues μ(∓)
q

and μ(s)
q of plane waves in the absence of rotation, given

respectively by Eqs. (17) and (18). Despite the fact that the
eigenvalue of states with nonvanishing spin current density
μ(s)

q becomes the lowest (for negative wave numbers) when
ν < (κ h̄ n0)2/(2M ), the average energy (4),

E (∓)
q

N
= (h̄q − M�R)2

2M
∓ ν,

(19)
E (s)

q

N
= (h̄q − M�R)2

2M
∓ ν|γq|,

does not (see Fig. 1, bottom panels). Hence, the polarized
states, when they exist at |γq| < 1, are not the ground states
of the system according to the average energy, Eq. (4). In
contrast, spinor systems with contact interparticle interactions
present ground states with either balanced or imbalanced (i.e.,
spin polarized) populations according to the particular values
of the interaction strengths [26].

A. Dynamical stability of plane waves

For plane waves with wave number q in the absence of
spin currents (Js = 0 and n0↑ = n0↓ = n0/2), one can find
linear excitations with equal phase (or density modes), uj↑ =
u j↓ ≡ u j and v j↑ = v j↓ ≡ v j , and out-of-phase excitations (or
spin modes), u j↑ = −u j↓ ≡ u j and v j↑ = −v j↓ ≡ v j . Their
dispersion reads, respectively,

h̄ω(d)
k = h̄2k

M

(
q + κn0

4
− k� ± 1

2

√
k2 + Mωq

h̄

)
, (20)

h̄ω(s)
k = h̄2k

M

(
q + κn0

4
− k�

)

±
√√√√ h̄2k2

2M

(
h̄2k2

2M
+ h̄ωq

2
+ 4ν

)
+ 4ν2

(
1 + 1

γq

)
,

(21)

where we have introduced the energy term h̄ωq =
(h̄κn0)2/4M + 2κ h̄Jq. The dispersion of the density modes
ω(d)

k (20) does not depend explicitly on the coherent coupling
ν and reproduces the linear excitation of single-component
condensates [20]: for low wave numbers, ω(d)

k is linear in k
and tends to zero in the k → 0 limit. On the other hand, the
dispersion of spin modes ω(s)

k (21) shows an energy gap due
to the presence of the coherent coupling ν. The gap appears
(in general, not at k = 0, but) at the wave number that solves
∂kω

(s)
k = 0.

The spectrum associated with Eqs. (20) and (21) con-
tains unstable modes when ωq < 0 or γq < 0; both types
of instabilities appear only for negative wave numbers. The
condition ωq < 0, as in scalar condensates, produces mod-
ulation instabilities of the total density when q < −κn0/8.
On the other hand, the condition for spin-density instabil-
ities, γq < 0, is the same as for the existence of polarized
plane waves when |γq| < 1, whose bifurcation point occurs at
γq = −1. This value indicates also the first crossing of the two
dispersion branches [Eqs. (20) and (21)] at k = 0, whereas
further crossings take place in the dispersion of unstable states
(for γq > −1) at h̄k = ±√−2Mν (2ν + κ h̄Jq). The fact that
the emergence of spin-density instabilities is associated with
the existence of polarized plane waves seems to point to the
potential stability of the latter, which is an intriguing feature,
since, according to Eq. (4), these states have energy higher
than that of the unpolarized plane waves (see Fig. 1). As we
show later, although of different type, instabilities are also
present in polarized plane waves. Figure 2 shows the linear ex-
citations of unpolarized plane waves with qR = −1 and κ̃ = 1
for two values of the coherent coupling. At high coupling
ν̃ = 0.6 (top panel), the unstable spin modes are suppressed
(γq < −1), but there are unstable density modes (ωq < 0), as
indicated by the existence of complex frequencies Im[ω(d )] �=
0 (open circles). For ν̃ = 0.2 (bottom panel), both types of
instabilities occur, since γq = −0.4 and ωq = −1.75 h̄/(MR2)
(the same as for ν̃ = 0.6). Due to the constant energy term
(h̄κn0)2/4M in h̄ωq, high densities (i.e., large values of the in-
teraction strength κ̃) can suppress the unstable density modes.
This is shown in Fig. 3, which depicts the dispersion of plane
waves with qR = −1 and κ̃ = 10. However, unstable spin
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FIG. 2. Frequency of linear excitations of unpolarized plane
waves with wave number qR = −1 and interaction parameter κN =
2π (κ̃ = 1). Unstable density modes appear for any value of the
linear coupling. Spin instabilities appear also at low values of the
linear coupling (bottom panel), while they are suppressed at a higher
coupling (top panel).

modes can still appear if the coherent coupling is not high
enough, as shown in the bottom panel at ν̃ = 4.9.

States with spin currents (Js �= 0) present notable differ-
ences in the dispersion of linear excitations. Now, the splitting
between total-density and spin-density branches is not mean-
ingful in general cases. Yet, for negative wave numbers, low
number densities trigger instabilities that closely resemble
those of the total-density modes in unpolarized states (as in
Fig. 2), while those of the spin-density modes are suppressed.
The distinctive feature appears at higher densities, and it is
related to instabilities (for q < 0) produced by the collision
of excitation branches at k �= 0, as can be seen in Fig. 4. As
previously mentioned, density and spin excitations mix in po-
larized states, and the crossing of excitation energy branches
in the dispersion triggers instabilities that can be thought of as
resonance effects associated with different stability properties
of the involved modes [27].

B. Plane-wave superpositions at � = 0

Although Eq. (1) is a nonlinear equation, it becomes linear
if Jσ = 0, and then it admits the same solutions as the free
Schrödinger equation for a spinor; the usual standing waves
sin(qx) and cos(qx) fulfill this condition at � = 0. Thus, as
one can expect, linear superpositions of these waves with
real coefficients are also stationary states [20]. Interestingly,
complex superpositions with nonzero current,

ψαq =
( √

nα↑
±√

nα↓

)[
1 − α

2
e−iqx + 1 + α

2
ei(qx+φ)

]
e−iμαqt/h̄,

(22)

FIG. 3. Frequency of linear excitations of unpolarized plane
waves with wave number qR = −1 and interaction parameter κN =
20π (κ̃ = 10). The high density (i.e., large interaction parameter κ̃;
see Fig. 2 for comparison) suppresses the unstable density modes
(top panel), but unstable spin modes still appear at a low coupling
(bottom panel).

where α and φ are real numbers, solve Eq. (1) as well.
These superpositions have constant current densities Jσ =
αnασ h̄q/M and J = Jq 2α/(1 + α2); from normalization, one
finds nα = nα↑ + nα↓ = 2 n0/(1 + α2). As before, solutions

FIG. 4. Frequency of linear excitations of polarized plane waves
with wave number qR = −1 and interaction parameter κN = 20π

(κ̃ = 10). Both densitylike and spinlike modes are unstable for any
value of the linear coupling. However, the instabilities now arise from
the collision of different excitation branches.
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FIG. 5. Linear superpositions of plane waves (22) with linear
coupling ν̃ = 0.3 in the absence of rotation for an unpolarized state
with wave number qR = 1 and vanishing spin current Js = 0 (top
panels) and a polarized state with qR = 2 and Js �= 0 (bottom panels).

of the type of Eq. (22) with both Js = 0 and Js �= 0 are pos-
sible. In the former case, the energy eigenvalue and average
energy per particle read

μ(∓)
αq = h̄2q2

2M
+ α

1 + α2
κ h̄Jq ∓ ν, (23)

E (∓)
αq

N
= h̄2q2

2M
∓ 2 ν

1 + α2
, (24)

and there is no restriction for α other than normalization.
For Js �= 0, there exists a population imbalance given by

nαs = nα↑ − nα↓ = ±n0

√
[2/(1 + α2)]2 − (γq/α)2, which

constraints α �= 0 to be in the interval |α| ∈ [1 −√
1 − γq

2, 1 + √
1 − γq

2 ]/|γq|. The energy eigenvalue
and the average energy become

μ(s)
αq = h̄2q2

2M
+ 2α

1 + α2
κ h̄Jq, (25)

E (s)
αq

N
= h̄2q2

2M
∓ ν

|γq|
α

. (26)

Figure 5 shows two examples for the same linear cou-
pling ν̃ = 0.3 and the interaction parameter κN = 20π : an
in-phase, unpolarized state with α = 0.8, and a polarized state
with α = 6 and π relative phase. While the former is dynam-
ically stable against small perturbations, as its time evolution
(Fig. 6) shows, the latter is not.

FIG. 6. Real-time evolution of the unpolarized linear superposi-
tons shown in Fig. 5 (top panel), which is stable. We solve the
equation of motion (1) adding small-amplitude sinusoidal perturba-
tions to the initial state.

IV. SOLITONIC STATES

Apart from plane-wave superpositions, which present a
nonhomogeneous density profile and constant current densi-
ties, one can find generic nonlinear excited states (we refer
to them as solitonic states) that present both density and cur-
rent space-varying profiles. Among the simplest states of this
type, we already introduced Eq. (13), which replicates in the
spinor system the solutions of the scalar chiral system. This
is illustrated in Fig. 7(a) for unpolarized, out-of-phase (ψ↑ =
−ψ↓) dark solitons at � = 0.5 �0. The usual tanh(x/ξ ) func-
tional form of infinite systems transforms here, within a ring
trap, into the Jacobi sn(x/ξ,m) function, a particular case
of Eq. (13) [20]. The spinor system allows also for more
complex structures involving dark solitons. Figure 7(b) shows
two strongly polarized dark solitons at the rotation rate � =
�0. Interestingly, the minority component presents a highly
irregular density profile (see the inset) sustained by sudden π

jumps in the phase profile that produce alternate regions of ei-
ther in-phase ϕ = 0 or out-of-phase ϕ = π spin components.

More generally, as it happens in the presence of contact
interparticle interactions, one can distinguish two types of
solitonic states in spinor systems: regular (dark or bright) soli-
tons and Josephson vortices [28]. While the former solutions,
which do not have Josephson currents, are well known in
scalar condensates (see, e.g., Ref. [23]), the latter ones are
characterized by the presence of Josephson currents and are
only present in spinor systems [29–31]. For repulsive, contact
interparticle interactions, dark solitons and Josephson vortices
can be considered as domain walls of the total and relative
phase with corresponding healing lengths ξ = h̄2/(mμ) and
ξν = h̄2/(4m ν), respectively [18], and the interconversion
between them takes place at ξ = ξν [28,32]. For attractive in-
teractions, bright solitons can also support strongly localized
Josephson vortices [33]. As we show below, when current-
density interactions are acting, one can find all of these types
of stationary solitonic states. In general, however, their sta-
bility is diminished or lost in the presence of spin currents.
Starting with bright solitons, Fig. 8 shows our numerical re-
sults for three stationary states of this type with the rotation
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FIG. 7. Dark soliton states in chiral spinor condensates with in-
teraction parameter κN = 20π and linear coupling ν̃ = 0.5. (a) Dark
solitons with relative phase ϕ = π at �̃ = 0.5. (b) Two dark solitons
at �̃ = 1 in a highly imbalanced state with nonconstant relative
phase. The inset zooms in the density of the minority component.

rate �̃ = −0.1. Figure 8(a) illustrates, for fixed linear cou-
pling, the differences between unpolarized (left panels) and
polarized (right panels) solitons. While the former exhibits
a null relative phase, the latter presents tiny spin currents.
Such currents increase at higher linear coupling, as in the case
shown in Fig. 8(b) and, along with Josephson currents, give
rise to weak loop patterns centered in the junction between
spin components that are analogous to Josephson vortices in
systems with repulsive interactions [33]. The loop currents
within bright solitons can be compared with their counterpart
at �̃ > 0, when the current-density interaction is effectively
repulsive. Figure 9 depicts our numerical results for a sta-
tionary Josephson-vortex state in a chiral spinor system with
the same parameters as those for the dark soliton shown in
Fig. 7(a). Although the total-density profile resembles the
dark soliton, the 2π jump in the relative phase (middle panel)
stands out as its main signature, whereas the nonvanishing
Josephson current Iϕ (bottom panel) changes sign around the
vortex core, which is signaled by the density minimum. The
represented current densities are measured with respect to
the rotating frame Jσ = Jσ − nσ�R and show opposite direc-
tions as measured with respect to an average nonzero current.
An important difference with respect to regular (nonchiral)
static Josephson vortices, analytically described in Ref. [28]

FIG. 8. Spinor bright-soliton states in a system with interaction
parameter κN = 20π and rotation rate �̃ = −0.1. (a) Unpolarized
(left panels) and strongly polarized (right panels) solitons for the
same linear coupling ν̃ = 0.5. (b) Density (top panel) and current
(bottom panel) profiles of a polarized soliton at linear coupling
ν̃ = 1.75.

as ψ↑,↓ ∝ tanh(x/ξν ) ± iβ/ cosh(x/ξν ), resides in the uneven
spin-density profiles, which arise from differences in the ef-
fective interactions induced by the chiral currents and are
closer to those of regular moving Josephson vortices [30].

FIG. 9. Josephson-vortex state in a chiral spinor condensate.
Density profiles (top panel), phase profiles (middle panel), and
currents (bottom panel) are shown for a system with interaction
parameter κN = 20π , linear coupling ν̃ = 0.5, and rotation rate
�̃ = 0.5.

023316-7



MARIA ARAZO et al. PHYSICAL REVIEW A 110, 023316 (2024)

FIG. 10. Corotating Josephson vortices with interaction param-
eter κN = 20π at �̃ = 1 and ν̃ = 0.5. We show the density profile
(top panel), phase (middle panel), and currents in the rotating frame
(bottom panel). The presence of the Josephson vortices is signaled
by a nonzero density and a 2π -phase jump at the core of the vortices.
Note that the Josephson current Iϕ changes sign at the core of the
vortices and also at half distance between them.

As for multiple Josephson vortices, two configurations are
possible: corotating and counter-rotating vortices. Figure 10
illustrates the case of a state with two corotating Josephson
vortices, which are associated with corresponding smooth 2π

jumps in the relative phase (middle panel) and a neat nonvan-
ishing density at the vortex cores. Notice that these cores are

FIG. 11. Counter-rotating Josephson vortices with interaction
parameter κN = 20π at �̃ = 1 and ν̃ = 0.2. As in corotating Joseph-
son vortices, the component density (top panel) is nonzero and the
Josephson current (bottom panel) changes sign at the cores of the
vortices; the relative phase (middle panel), however, now shows π

jumps.

FIG. 12. Real-time evolution of the polarized (top panels) and
unpolarized (bottom panels) bright solitons shown in Fig. 8(a). The
latter states decay rapidly, while the former ones at least preserve for
a long time the strongly polarized features of their density profiles
due to the small coherent coupling considered.

located in the junction at the x position of the density min-
ima of both spin components and that the Josephson current
changes sign (vanishes) also at half distance between them.
The scenario is more involved for counter-rotating Josephson
vortices. As shown in Fig. 11, although one can identify the
sign change of Josephson currents around the vortex cores
(now signaled by minima in the total density), the relative
phase experiences just π (opposite) jumps across them. The
latter are caused by staggered dark-soliton-like phase profiles
in the spin components. These features are in sharp contrast
with the case of static counter-rotating Josephson vortices in
regular spinor condensates [34] and present common features
with other moving solitonic structures, like the staggered dark
solitons or Manakov solitons of Ref. [30]. To test the dy-
namical stability of these solitonic states, we have performed
numerical simulations of the Gross-Pitaevskii equation (1) to
obtain the real-time evolution after adding sinusoidal pertur-
bations of small amplitude on the stationary states (as we
did for plane-wave superpositions in Fig. 6). Figure 12 illus-
trates the case of polarized and unpolarized bright solitons,
and Fig. 13 shows the case of dark solitons and Josephson
vortices.
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FIG. 13. Real-time evolution of the dark solitons and Josephson
vortices shown in Figs. 7(a) and 11. The dark-soliton states are stable,
since they do not present Josephson currents. In Josephson-vortex
states, on the other hand, the presence of Josephson currents destabi-
lizes the system.

The time evolution of solitonic states shows, as a common
feature, the decay of states with nonzero Josephson currents
and, in general, of polarized states. However, polarized bright
solitons [see right panels of Fig. 8(a) and top panel of Fig. 12],
which have effective attractive interactions, are at least

structurally stable (maintaining their density profiles) at low
linear coupling.

V. DISCUSSION AND CONCLUSIONS

As a generalization of the recently realized scalar BECs
with current-density interactions, we have considered a spin-
1/2 condensate with intraspin current-density interactions. By
means of both analytical and numerical methods, within a
mean-field framework, we have explored the steady and sta-
bility properties of plane waves, bright and dark solitons, and
Josephson vortices. Our results show the manifest chiral dy-
namics of these states induced by the interactions. In addition,
the interplay between the spin current densities and the linear
coupling, which allows for spin flips, gives rise to an effec-
tive, nonlinear spin-orbit coupling that results in unexpected
features: neither the presence of population imbalance nor
the flow of Josephson current between the spin components,
which points to differences in the spin currents and thus in
the interactions, favors stability. Among the stable states, we
have found nonlinear waves made of linear superpositions that
replicate the spectrum of linear spinor systems. These findings
are clearly within reach of current experimental research.

Although, in order to focus on the effect of current-density
interactions, we have not considered additional contact in-
teractions, recent experiments do include both types of
interactions [1]. The emergence of our model from this sce-
nario, in a crossover with varying ratio between the strength of
both interactions, and from the direct 2D analysis of realistic
systems is left for a future work.
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Phys. 83, 1523 (2011).

[3] M. J. Edmonds, M. Valiente, G. Juzeliūnas, L. Santos, and P.
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