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We consider construction of effective Hamiltonians for periodically driven interacting systems in the case of
resonant driving. The standard high-frequency expansion is not expected to converge due to the resonant creation
of collective excitations, and one option is to resort to the application of degenerate perturbation theory (DPT) in
the Floquet-Hilbert space. We propose an extension of DPT whereby the degenerate subspace includes not only
the degenerate levels of interest but rather all levels in a Floquet zone. The resulting approach, which we call
extended DPT (EDPT), is shown to resemble a high-frequency expansion, provided the quasienergy matrix is
constructed such that each mth diagonal block contains energies reduced to the mth Floquet zone. The proposed
theory is applied to a driven Bose-Hubbard model and is shown to yield more accurate quasienergy spectra than
the conventional DPT. The computational complexity of EDPT is intermediate between DPT and the numerically
exact approach, thus providing a practical compromise between accuracy and efficiency.
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I. INTRODUCTION

Intriguing dynamical quantum many-body effects such
as prethermalization [1–6], localization [7–10], as well as
emergence of topological states [11–15] and discrete time
crystals [16–21] have been predicted and realized experi-
mentally in periodically driven quantum systems. From a
theoretical point of view, periodicity of the drive allows one
to employ the Floquet theory [22,23] and construct an effec-
tive time-independent Hamiltonian Ŵ that stroboscopically
characterizes dynamics of the system [24–26]. In practice,
calculation of effective Hamiltonians has to be carried out
perturbatively. Various high-frequency expansions have been
devised to that end [14,25,27–30], whereby Ŵ is constructed
as an expansion in powers of 1/ω, with ω the driving
frequency; the low-frequency limit ω → 0 has also been in-
vestigated [30]. The present work is devoted to the case of
resonant driving. Let us introduce the relevant formalism to
set the stage for the presentation of the problem.

Construction of effective Hamiltonians may be conve-
niently approached in the extended Floquet-Hilbert space,
where time-dependent operators become infinite matrices
that possess a block-banded structure. By Floquet theo-
rem, the Schrödinger equation i∂t |ψ (t )〉 = Ĥ (t )|ψ (t )〉 with
time-periodic Hamiltonian Ĥ (t + T ) = Ĥ (t ) has solutions
of the form |ψn(t )〉 = e−iεnt |un(t )〉, where εn are quasiener-
gies, while |un(t + T )〉 = |un(t )〉 are periodic functions called
Floquet modes (we set h̄ = 1). The evolution equation for
these functions takes the form Q̂|un(t )〉 = εn|un(t )〉, where
Q̂(t ) = Ĥ (t ) − i∂t is the quasienergy operator. The Floquet
modes |un(t )〉 of the Hilbert space can be regarded as the
elements of the composite Floquet-Hilbert space F defined
as the direct product of the Hilbert space and the space of
time-periodic functions. We adopt the notation |un〉〉 for the el-
ements of F , where the inner product is defined as 〈〈un|um〉〉 =
1
T

∫ T
0 〈un(t )|um(t )〉dt [22,23,28,30]. The basis spanning F is

given by |αm〉〉 ⇔ |α〉eimωt , with |α〉’s forming a basis in the

Hilbert space. The quasienergy operator then assumes a block-
banded form:

〈〈α′m′|Q̄|αm〉〉 = 〈α′|Ĥm′−m|α〉 + δm′mδα′αmω (1)

with the blocks containing the Fourier images Ĥm =
1
T

∫ T
0 Ĥ (t )eimωt dt . Hereafter we indicate the operators acting

in F by bars. The above equation can be illustrated by the
following matrix:

Q̄ =

⎛
⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

· · · Ĥ0 − Îω Ĥ−1 Ĥ−2 · · ·
· · · Ĥ1 Ĥ0 Ĥ−1 · · ·
· · · Ĥ2 Ĥ1 Ĥ0 + Îω · · ·
. .

. ...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠, (2)

where Î is the identity operator of the Hilbert space.
Finding a frame where the Hamiltonian is time-

independent is equivalent to block-diagonalizing Q̄ since
off-diagonal blocks account for the time dependence. The per-
turbative expansion of the transformed quasienergy operator is
given by

e−ḠQ̄eḠ = Q̄(0) + (
W̄ (1)

D + W̄ (1)
X

) + (
W̄ (2)

D + W̄ (2)
X

) + · · · .

(3)
Here Q̄(0) is the unperturbed part of Q̄, while indices “D” and
“X” refer to the block-diagonal and block-off-diagonal parts
of the given operator, respectively:

〈〈α′m′|ŌD|αm〉〉 = 〈〈α′m′|Ō|αm〉〉δm′m,

〈〈α′m′|ŌX |αm〉〉 = 〈〈α′m′|Ō|αm〉〉(1 − δm′m).
(4)

The goal is to find the unitary operator Ḡ = Ḡ(1) + Ḡ(2) +
· · · that sets the off-diagonal parts W̄ (n)

X to zero, up to a
given order. The remaining block-diagonal operator Q̄0 +
W̄ (1)

D + W̄ (2)
D + · · · will have the structure δm′m(〈α′|Ŵ [n]

D |α〉 +
δα′αmω), where Ŵ [n]

D ≡ Ŵ (1)
D + Ŵ (2)

D + · · · + Ŵ (n)
D is the ef-

fective Hamiltonian.
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Calculation of Ŵ [n]
D in the high-frequency limit relies

on the assumption that the energy spectrum of the unper-
turbed Hamiltonian is bounded and that its width is much
less than the driving frequency ω. In that case, the unper-
turbed quasienergy operator can be split as Q̄ = Q̄0 + H̄ with
−i∂t ⇔ Q̄0 = δm′mδα′αmω and Ĥ (t ) ⇔ H̄ . By assumption,
the elements of H̄ are small compared to ω, therefore, H̄
can be treated perturbatively. The expansion (3) then be-
comes an expansion in powers of 1/ω. However, if transitions
resonant with ω are possible, then one is required to in-
clude the diagonal elements of H̄ in the unperturbed part of
the problem, but this introduces degeneracies. Specifically, if
the difference Eβ − Eα between two diagonal elements of Ĥ0

is equal (or is close to) nω, where n is integer, then the de-
generacy 〈〈β(m + n)|Q̄|β(m + n)〉〉 = 〈〈αm|Q̄|αm〉〉 makes the
perturbation theory divergent. In that case, one can apply the
standard degenerate perturbation theory (see, e.g., Ref. [31]),
whereby Ŵ [n]

D is constructed by including the couplings be-
tween the degenerate states exactly, and taking into account
all the remaining couplings perturbatively [32,33].

Our present aim is to extend the degenerate perturbation
theory in the Floquet-Hilbert space to obtain expressions for
Ŵ [n]

D that ensure higher accuracy of the resulting quasienergy
spectrum both exactly on resonance and in its vicinity. This
will be achieved by including in the degenerate subspace not
only the degenerate levels of interest but rather all the states
of the system. The resulting approach, called EDPT, paral-
lels the van Vleck high-frequency expansion [28] provided
the elements of Q̄ are reordered so that each mth diagonal
block corresponds to the mth Floquet zone. To demonstrate
the validity of the obtained expressions, we apply them to
the calculation of quasienergy spectra of the driven Bose-
Hubbard model for a number of parameter sets. Comparison
with numerically exact results shows that EDPT surpasses
the conventional degenerate perturbation theory in terms of
accuracy while requiring less computational effort than the
exact approach.

II. DEGENERATE PERTURBATION THEORIES
IN THE EXTENDED SPACE

The starting point of the proposed theory is the natural
concept of reduced energies

ε(0)
α = Eα − aω ∈ FZ, (5)

which are the diagonal elements Eα of Ĥ0 reduced to the
chosen Floquet zone (FZ), whose width necessarily equals ω.
Note that Ĥ0 is just the unperturbed Hamiltonian with, possi-
bly, the secular contribution of the driving included. This way,
an integer a is uniquely assigned to each state |α〉; generally,
multiple states will share the same value of a. We reserve the
symbols a, a′, b, and c to indicate the “reduction numbers” of
states |α〉, |α′〉, |β〉, and |γ 〉, respectively. Next, we reorder the
elements of the quasienergy operator so that its mth diagonal
blocks contains energies reduced to the mth FZ. The diagonal
elements of the resulting quasienergy operator Q̄′ then read

ε(0)
αm ≡ 〈〈αm|Q̄′|αm〉〉 = ε(0)

α + mω, (6)

FIG. 1. Schematic representation of Q̄ and Q̄′. In the first step,
the diagonal elements of Q̄ are colored such that those lying in the
same Floquet zone share the same color. For example, the diagonal
elements falling in the range [− ω

2 , ω

2 ) are colored red, those falling
in the range [ ω

2 , 3ω

2 ) are colored blue, and so on. Additionally, each
off-diagonal element (in both diagonal and off-diagonal blocks) is
colored in two tones corresponding to the colors of diagonal elements
that are being coupled. In the second step, all elements are permuted
so that like-colored diagonal elements are gathered in the same
blocks (while the permutation of the off-diagonal elements follows
unambiguously).

and an arbitrary element of Q̄′ is expressed as

〈〈α′m′|Q̄′|αm〉〉 = 〈α′|Ĥa−a′+m′−m|α〉 + δm′mδα′αmω. (7)

The quasienergy matrix retains its block structure, which can
be visualized as follows:

Q̄′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

· · · D̂ − Îω X̂−1 X̂−2 · · ·
· · · X̂1 D̂ X̂−1 · · ·
· · · X̂2 X̂1 D̂ + Îω · · ·
. .

. ...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D̂ =

⎛
⎜⎜⎝

ε(0)
α Hαβ

b−a Hαγ
c−a

Hβα

a−b ε
(0)
β Hβγ

c−b

Hγα
a−c Hγ β

b−c ε(0)
γ

⎞
⎟⎟⎠,

X̂m =

⎛
⎜⎜⎝

Hαα
m Hαβ

b−a+m Hαγ
c−a+m

Hβα

a−b+m Hββ
m Hβγ

c−b+m

Hγα
a−c+m Hγ β

b−c+m Hγ γ
m

⎞
⎟⎟⎠. (8)

Here the matrices D̂ and X̂m are shown for the case of a
three-level system for brevity, and Hα′α

m ≡ 〈α′|Ĥm|α〉. The
central block D̂ describes the states of the central (m = 0)
FZ and their mutual couplings, which will be accounted for
exactly. The off-diagonal blocks X̂m describe couplings be-
tween different Floquet zones; these couplings will be taken
into account perturbatively. The connection between Q̄ in
Eq. (2) and Q̄′ in Eq. (8) is shown schematically in Fig. 1.
The diagonal blocks no longer share common elements, with
one possible exception in case there are states with reduced
energies near both boundaries of the Floquet zones. For ex-
ample, for the FZ choice [−ω

2 , ω
2 ), this will be the case if

ε
(0)
± ≈ ±ω

2 . The element ε
(0)
+ + mω of the mth diagonal block

will then coincide with the element ε
(0)
− + (m + 1)ω of the

(m + 1)st diagonal block. This issue will be discussed further
in Sec. II C. Abstracting from it, we proceed to derive the
expressions for the effective Hamiltonian.
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A. Extended degenerate perturbation theory

In the first step, we separate Q̄′ into the unperturbed part
and the perturbation, the latter having a block-diagonal part
and a block-off-diagonal one:

Q̄′ = Q̄′(0) + λV̄D + λV̄X , (9)

where

〈〈α′m′|Q̄′(0)|αm〉〉 = ε(0)
αmδα′αδm′m,

〈〈α′m′|V̄D|αm〉〉 = 〈α′|Ĥa−a′ |α〉(1 − δα′α )δm′m,

〈〈α′m′|V̄X |αm〉〉 = 〈α′|Ĥa−a′+m′−m|α〉(1 − δm′m). (10)

The dimensionless parameter λ has been introduced to track
the order of the expansion. Inserting Q̄′ into Eq. (3) and as-
suming Ḡ = λḠ(1) + λ2Ḡ(2) + · · · , one can collect the terms
of the same order. In the first order, this yields

−[Ḡ(1), Q̄′(0)] + V̄D + V̄X = W̄ (1)
D + W̄ (1)

X . (11)

We require Ḡ(1) be block-off-diagonal, so that [Ḡ(1), Q̄′(0)]
is block-off-diagonal as well. The remaining block-diagonal
terms immediately yield the first-order term of the effective
Hamiltonian according to

〈〈α′m|W̄ (1)
D |αm〉〉 = 〈〈α′m|V̄D|αm〉〉, (12)

or, in the Hilbert space,

〈α′|Ŵ (1)
D |α〉 = 〈α′|Ĥa−a′ |α〉. (13)

Next we require W̄ (1)
X = 0, obtaining the equation for the

block-off-diagonal terms: [Ḡ(1), Q̄′(0)] = V̄X . This allows us
to find Ḡ(1) and proceed to the equation for the second-order
terms. Continuing in the similar fashion, one obtains

〈〈α′m|W̄ (2)
D |αm〉〉 = 1

2

∑
β

∑
n 
=m

〈〈α′m|V̄X |βn〉〉〈〈βn|V̄X |αm〉〉

×
(

1

ε
(0)
α′m − ε

(0)
βn

+ 1

ε
(0)
αm − ε

(0)
βn

)
. (14)

One recognizes that the resulting expressions are identical
to the van Vleck high-frequency expansion [28], which is
expected since Q̄′ possesses exactly the same structure as in
the usual applications of this expansion. The Hilbert-space
expressions, however, do different because the matrix ele-
ments of V̄X and the quantities ε(0)

αm have a different meaning in
our case. The second-order term of the effective Hamiltonian
results as

〈α′|Ŵ (2)
D |α〉 = 1

2

∑
β

∑
n 
=0

〈α′|Ĥ−(a′−b+n)|β〉〈β|Ĥa−b+n|α〉

×
(

1

ε
(0)
α′ − ε

(0)
β − nω

+ 1

ε
(0)
α − ε

(0)
β − nω

)
.

(15)

Expressions for the third-order terms of the effective Hamil-
tonian are provided in Appendix A.

The formula (14) could alternatively be obtained by a di-
rect application of the conventional degenerate perturbation
theory (DPT) widely used in the context of ordinary Hilbert

space [31], provided one assumes that all of the states |αm〉〉 of
a given block (m = 0, say) constitute the degenerate subspace.
The condition n 
= m in the summation over the intermediate
states |βn〉〉 in Eq. (14) corresponds precisely to the skipping
of states belonging to the degenerate subspace. We will refer
to the Eqs. (13) and (15) as the results of the extended degener-
ate perturbation theory (EDPT) since the degenerate subspace
is extended to include all levels in a Floquet zone.

B. Conventional degenerate perturbation theory

For comparison, let us consider the conventional DPT,
whereby the degenerate subspace of F consists only of the
states that are exactly (or nearly) degenerate. We start by
diving the Hilbert space H into two subspaces, D0 and D1, so
that D1 contains the states sharing the same value of reduced
energy of interest, ε(0)

∗ , while D0 contains the remaining states.
That is, for each state |α〉,

|α〉 ∈
{
D1, ε(0)

α = ε
(0)
∗ ,

D0, ε(0)
α 
= ε

(0)
∗ .

(16)

Consequently, we partition each diagonal block of Q̄′ into two
subblocks—one containing the states belonging to D0, and
one containing the states of D1. The couplings between these
subblocks are then considered to constitute the off-diagonal
blocks of Q̄′ and are therefore treated as a perturbation. This
means that the definition of diagonal and off-diagonal blocks
is changed from the one given in Eq. (10) to

〈〈α′m′|ŌD|αm〉〉 = 〈〈α′m|Ō|αm〉〉δm′mδA′A,

〈〈α′m′|ŌX |αm〉〉 = 〈〈α′m′|Ō|αm〉〉(1 − δm′mδA′A).
(17)

Here |α〉 ∈ DA and |α′〉 ∈ DA′
so that the Kronecker delta

δA′A is unity if both states |α′〉 and |α〉 belong to the
same subspace—either degenerate or not—and zero if they
belong to different subspaces. With these definitions, and
〈〈α′m′|V̄ |αm〉〉 = 〈α′|V̂a−a′+m′−m|α〉 as before, one finds

〈α′|ŵ(1)
D |α〉 = δA′A〈α′|Ĥa−a′ |α〉 (18)

in the first order and

〈α′|ŵ(2)
D |α〉 = 1

2
δA′A

×
∑

β

∑
n 
=0 if B=A

〈α′|Ĥ−(a′−b+n)|β〉〈β|Ĥa−b+n|α〉

×
(

1

ε
(0)
α′ − ε

(0)
β − nω

+ 1

ε
(0)
α − ε

(0)
β − nω

)

(19)

in the second. In the last expression, B is the subspace number
which |β〉 belongs to, i.e., |β〉 ∈ DB. The terms of the effective
Hamiltonian constructed using DPT are denoted here by ŵ(n),
and they are composed of two uncoupled blocks. In fact, when
using DPT, one is only interested in the block describing the
degenerate subspace, and it can be diagonalized separately
from the other block.

Notably, construction of ŵ
[2]
D is not equivalent to simply

neglecting in Ŵ (2)
D the couplings between the blocks D0 and

D1. Considering two states |α′〉 and |α〉 of the degenerate
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subspace, one has 〈α′|ŵ(2)
D |α〉 
= 〈α′|Ŵ (2)

D |α〉. This point will
be discussed further in Sec. III B.

The above formalism also allows one to construct schemes
that are intermediate between DPT and EDPT. Instead of
including in D1 only the states whose reduced energies are
equal to the reduced energy of interest ε

(0)
∗ , one can include

all states in a certain interval [ε(0)
∗ − �ε/2, ε

(0)
∗ + �ε/2] (with

�ε < ω). The size of D1 will then increase, resulting in larger
numerical effort required to calculate the eigenvalues, but
these should approximate the exact values more accurately.
The choice �ε = ω corresponds to EDPT, whereby all states
are assigned to D1. We will not, however, consider the ac-
curacy of these intermediate schemes further in this work,
instead focusing on the two limiting cases, DPT and EDPT.

C. Convergence condition

It follows that the necessary condition for the convergence
of the expansion (3) is

r ≡ |〈α′|Ĥa−a′−n|α〉|∣∣ε(0)
α′ − ε

(0)
α − nω

∣∣ � 1, (20)

which has to be satisfied for all states |α〉, |α′〉 and all integers
n, except those excluded in the summation in Eq. (15) (EDPT
case) or Eq. (19) (DPT case). As long as the numerator does
not vanish, this condition might be violated for |ε(0)

α′ − ε(0)
α | ≈

ω, which is possible if the reduced energies of the two states
|α′〉 and |α〉 are on the opposite boundaries of the FZ. A simple
resolution is to shift the FZ in a such way so that there are no
levels near one or both boundaries. However, if the reduced
energies ε(0)

α fill the FZ densely, then the problem cannot be
circumvented. The EDPT will be applicable in those cases
only if the couplings between states on the boundary of the
FZ can be disregarded. On the other hand, in case of DPT this
issue does not arise for the states of the degenerate subspace if
one centers the FZ around ε

(0)
∗ . Since |α〉 and |α′〉 enumerate

only the states of the degenerate subspace, the absolute values
of denominators in Eq. (19) are no smaller than ω/2. How-
ever, the problem appears in the DPT case as well once the
third-order term, provided in Appendix A, is included since
it contains differences between the reduced energies of the
nondegenerate subspace.

III. APPLICATIONS

To check the validity of the presented theories, we will
compare the quasienergy spectra obtained by diagonalizing
Ŵ [3]

D and ŵ
[3]
D with the numerically exact ones. The latter were

obtained by diagonalizing the single-period evolution opera-
tor, calculated by propagating the Schrödinger equation [34].
The theory will be applied to a driven Bose-Hubbard system,
defined in Sec. III A.

A. Driven Bose-Hubbard model

The driven Bose-Hubbard model is defined by the Hamil-
tonian [35]

Ĥ ′(t )=−J
∑
〈i j〉

â†
i â j + U

2

∑
j

n̂ j (n̂ j − 1) +
∑

j

n̂ jx jF cos ωt,

(21)

where J , U , and F control the strengths of, respectively,
the nearest-neighbor hopping, the on-site interaction, and the
external driving (we study monochromatic driving of fre-
quency ω). The first sum runs over nearest-neighbor pairs,
while the remaining ones run over all lattice sites. In the last
sum, x j is the x coordinate of site j, in units of the lattice
constant. A gauge transformation Ĥ (t ) = Û †(t )Ĥ ′(t )Û (t ) −
iÛ †(t )dtÛ (t ) with Û (t ) = exp(−i F

ω
sin ωt

∑
j x j n̂ j ) shows

that the effect of the driving amounts to a renormalization of
the hopping strength [26]:

Ĥ (t ) = −J
∑
〈i j〉

ei F
ω

(xi−x j ) sin ωt â†
i â j + U

2

∑
j

n̂ j (n̂ j − 1). (22)

The Fourier image of the resulting Hamiltonian is given by

Ĥm = −
∑
〈i j〉

JJm

(
F (xi − x j )

ω

)
â†

i â j, (23)

where Jm(x) denotes the Bessel function of the first kind of
order m.

We will use the Fock basis |α〉 to refer to the elements of
Ĥ (t ), denoting the diagonal ones by Eα = 〈α|Ĥ0|α〉. An ex-
ample of the distribution of diagonal elements Eα is displayed
in Fig. 2(a). The presence of degenerate elements does not
require extra care—these degeneracies will directly translate
into degeneracies in the first-order term (14) of the effective
Hamiltonian. The effective Hamiltonian, once obtained per-
turbatively, will be diagonalized exactly (numerically). On
the other hand, the possibility of resonant transitions re-
quires the application of degenerate perturbation theory in F .
Since the diagonal elements Eα are given by integer multiples
of U , resonant transitions become possible when the condition
pU = qω, where {p, q} ∈ Z, is satisfied. This translates into
degeneracies in F , as depicted in Fig. 2(b) showing the diag-
onal elements ε(0)

αm [see Eq. (6)] for 3U = 2ω. In the figure,
black horizontal lines delimit the FZ chosen as [−ω

2 , ω
2 ), and

the values of a are displayed.
The analysis of accuracy of DPT and EDPT will be per-

formed by choosing the driving strength F and the frequency
ω, and calculating the quasienergies as the parameter U is
varied. We will focus our attention on the quasienergy of the
“driven Mott-insulator (MI) state,” a name we will use for
the Floquet mode having the largest overlap with MI state
(denoted as |MI〉). For U 
 J , |MI〉 is the ground state of the
undriven system, corresponding to E = 0. Therefore, we cen-
ter the FZ around ε

(0)
∗ = 0 by choosing the interval [−ω

2 , ω
2 ).

We note that the interesting features of the quasienergy
spectra—the anticrossings indicatory of resonant processes—
will appear at certain values of the ratio U/ω. From the
definition (5) with Eα = kαU where kα is integer, it fol-
lows that the denominator in Eq. (20), ω|(ε(0)

α′ − ε(0)
α )/ω − n|,

grows linearly in ω for fixed U/ω. Therefore, the accuracy
of the perturbation theory in the vicinity of resonances is
expected to increase with increasing ω, although this reason-
ing does not take into account the dependence on ω of the
coupling strength [i.e. the numerator in Eq. (20)].

Finally, let us clarify that DPT can be applied not only
exactly on resonance (when the degenerate energies of interest
exactly coincide), but also in its vicinity. For example, we
can calculate the quasienergies for U in the vicinity of 2

3ω by
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(a) (b)

FIG. 2. Diagonal elements of Ĥ0 and Q̄′ for a BH system on a 1 × 6 lattice assuming ω/J = 20, U = 2
3 ω. (a) Diagonal elements Eα =

〈α|Ĥ0|α〉. (b) Diagonal elements ε(0)
αm = 〈〈αm|Q̄′|αm〉〉 in the vicinity of zero. The values of m are: m = 0 for the levels in the central FZ

[− ω

2 , ω

2 ), m = −1 for the levels in the zone below, and m = 1 for the levels in the zone above.

including in D1 the same states as those constituting D1 when
U exactly equals 2

3ω. Similarly, the same reduction numbers
[see Eq. (5)] as those obtained exactly on resonance are used
even when U does not exactly equal 2

3ω.

B. Study case 1: One-dimensional lattice

We begin the assessment of accuracy of the perturbation
theories with the study of a BH system defined on a peri-
odic 1 × 8 lattice containing 8 bosons; we set F/ω = 2 and
ω/J = 20. The plots in Fig. 3(a) display the quasienergies
of 10 Floquet modes having the largest overlap with the MI
state for U ∈ [0, 1.5ω]. The quasienergies of the driven MI
state are highlighted in red. The left plot displays the exact
result, while the right one shows the results obtained using
third-order EDPT. As explained above, the DPT approach
is only applicable in the vicinity of resonances, and cannot
be directly used to calculate the quasienergies for such a
wide range of U . The most pronounced anticrossing seen
at U ≈ ω corresponds to first-order creation of particle-hole
excitations in the MI state, whereby a particle is annihilated

at a certain site and created at its neighboring site [32]. At
U = ω, transitions between all levels of the system become
resonant, therefore, all diagonal elements of Q̄′ in the given
diagonal block share the same value. Consequently, the actual
distribution of quasienergies is almost entirely captured by
the first-order effective Hamiltonian (13). Additionally, DPT
becomes equivalent to EDPT since all levels of the system are
included in the degenerate subspace. The second- and third-
order terms of ŴD provide a slight improvement and yield
results in agreement with the exact ones, as shown in Fig. 3(a).
Notably, the EDPT results remain sufficiently accurate away
from resonances as well. Exactly on the resonance U = ω, the
largest value of the coupling ratio (20) is rmax = 0.12, which
is one of the largest values that can be considered to satisfy
the condition (20). Therefore, for smaller values of ω (and the
same value of F/ω), the EDPT is not expected to yield reliable
results near the resonance U = ω.

To assess the accuracy of the methods on a finer scale, we
inspect the quasienergy of the driven MI state in the vicinity of
U = 2

3ω, as shown in Fig. 3(d). The obtained anticrossing is a
result of the second-order process whereby two particles of an

FIG. 3. Assessment of accuracy of DPT and EDPT for an eight-particle BH system on a 1 × 8 lattice with F/ω = 2, ω/J = 20.
(a) Quasienergy spectrum for U ∈ [0, 1.5ω]. Quasienergies of ten Floquet modes having the largest overlap with the MI state are displayed;
quasienergies of the mode with the maximum overlap are highlighted in red. (b) Diagonal elements of Q̄′ at U = 2

3 ω. Black horizontal lines
indicate the boundaries of the FZs. Red and blue arrows with numbers show the largest relative coupling strengths r (20) corresponding
to coupling with states outside the central FZ. For example, for the states |α0〉〉 of the central FZ with α ∈ [478, 1205], the largest relative
coupling strength of r = 0.058 is found as a result of the coupling with one of the states |α1〉〉. Green arrows with numbers show the largest
coupling strengths r corresponding to coupling with states inside the central FZ. Only some of the couplings are indicated. (c) Coupling
element c3 ≡ 〈3|Ŵ (2)

D |MI〉 calculated at U = 2
3 ω using DPT and EDPT versus F/ω. (d) Quasienergies of the driven MI state in the vicinity of

U = 2
3 ω. (e) Quasienergies of the driven MI state in the vicinity of U = 4

3 ω.
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MI state hop to the site of their common neighbor, producing a
triply occupied site and resulting in a state of energy E = 3U .
This process has been analyzed in Ref. [32] using the DPT
approach. Plugging the expressions (23) into Eq. (19) one
finds that for the resonance condition 3U = qω, the element
c3 ≡ 〈3|ŵ(2)

D |MI〉 vanishes for q odd (|3〉 denotes any one of
the states with a triply occupied site reachable starting from
|MI〉 in two hops). Meanwhile, for q = 2, the strongest cou-
pling is observed for F/ω ≈ 2. The quasienergy of the driven
MI state is indeed calculated correctly using DPT, as shown
in Fig. 3(d). However, as U is tuned away from resonance,
the EDPT yields more accurate results. As noted in Sec. II B,
the EDPT and DPT approaches are not equivalent, therefore,
the value of c3 depends on which method is used to con-
struct the effective Hamiltonian. These values are compared
in Fig. 3(c) for U = 2

3ω and a range of coupling strengths
F/ω. The curves are quite different in nature: For example, at
F/ω ≈ 3.4 the DPT curve crosses the zero, while the EDPT
curve approaches a local maximum. Vanishing coupling in-
dicates disappearance of the corresponding anticrossing in
the quasienergy spectrum [32], which is indeed the case for
F/ω ≈ 3.4, as confirmed by an exact calculation (not shown).
Thus, even though EDPT yields quasienergies with higher
accuracy than DPT, the matrix elements of ŴD constructed
using EDPT do not have such a straightforward interpretation
compared to the case when DPT is used. Another difference
between EDPT and DPT concerns the higher-order terms of
the effective Hamiltonian. In the DPT case, the third-order
term ŵ

(3)
D gives an insignificant correction to the second-order

theory at U = 2
3ω. The additional processes appearing in the

third order are the creation of a state featuring three doubly
occupied sites (the corresponding matrix element is η = 9.2
times smaller than c3) and the process of creating a state with
a triply occupied site in three hops (η = 25). In the EDPT
case, on the other hand, inclusion of the third-order term Ŵ (3)

D
gives a substantial improvement in terms of accuracy.

It is instructive to consider the values of the coupling ra-
tios (20) for EDPT. Exactly on resonance U = 2

3ω, we find
rmax = 0.30, which is quite large. However, this value comes
from the coupling of a state corresponding to ε(0)

αm = − 1
3ω with

a state corresponding to ε
(0)
α′m′ = − 2

3ω, therefore, this coupling
does not directly influence the driven MI state, whose reduced
energy is ε

(0)
∗ = 0. The said coupling is indicated in red in

Fig. 3(b) depicting the diagonal elements of Q̄′ at U = 2
3ω.

On the other hand, all of the degenerate states sharing the
value ε

(0)
∗ = 0 are coupled weakly to states outside the central

FZ, as indicated by the blue numbers in Fig. 3(b) (see the
figure caption for details). This explains the fact that accurate
results have been obtained using EDPT despite the condi-
tion (20) not being satisfied. We remind that the couplings
between the states in the central FZ [see green arrows with
numbers in Fig. 3(b)] are taken into account exactly in the
EDPT framework. Meanwhile, the couplings of degenerate
states with the nondegenerate ones are treated perturbatively
in the DPT, which explains why the reported DPT results are
less accurate even exactly on resonance.

Let us also discuss the origin of the discontinuity at U =
5
8ω in the EDPT results seen in Fig. 3(d). For definiteness,
consider the group of levels characterized by ε(0)

α = − 1
3ω and

reduction number a = 3, appearing in red in Fig. 3(b), where
U = 2

3ω is assumed. These are the levels arising from the
unperturbed states of energy E = 4U . As U decreases, these
levels shift downwards, reaching the lower FZ boundary when
U attains the value of 5

8ω. Decreasing U still further makes
this particular group of levels leave the FZ, and another one
(appearing in green in the figure) enters from above. However,
the reduction number for the levels of the latter group is a = 2.
Since the reduction number directly influences the strength of
coupling with other levels, the coupling with the states under
consideration changes abruptly as U crosses the value of 5

8ω.
Although processes such as this one reduce the accuracy of
the EDPT, their impact is not that noticeable if the states of
actual interest are not strongly coupled to the states crossing
the boundaries of FZ. This is certainly the case presently: Our
main focus is on the driven MI state, which is not directly
coupled to the 4U states. Consequently, the artifactual discon-
tinuity in Fig. 3(d) is an order of magnitude narrower than the
width of the anticrossing that is of actual interest.

The last case for this parameter set is studied in Fig. 3(e)
that displays the quasienergy of the driven MI state in the
vicinity of U = 4

3ω. The anticrossing is again a manifesta-
tion of the second-order process producing a triply occupied
site. Despite the width of the anticrossing making up only
∼2% of the width of the FZ, it can be calculated accurately
using perturbation theory. Again, EDPT is more accurate
than DPT, although the former one yields a number of false
anticrossings.

C. Study case 2: Two-dimensional lattice

We now turn to a BH system described by the same
parameter values (F/ω = 2, ω/J = 20), but this time on a
2 × 4 lattice periodic in the x direction (we direct the x axis
along the longer dimension of the lattice). The quasienergy
spectrum calculated for U ∈ [0, 1.5ω] is shown in Fig. 4(a).
We notice that the curve of the driven MI state undergoes
many more anticrossings compared to the above case of a one-
dimensional lattice, indicating richer system dynamics. The
EDPT results are less accurate here, featuring erroneous and
noticeable discontinuities. Nevertheless, the quasienergies can
be considered calculated qualitatively correctly in the vicinity
of the main anticrossing at U = ω.

According to Eq. (22), driving renormalizes the hopping
strength only for hopping along the x axis. As a result, the
DPT theory no longer predicts that c3 vanishes for all F
when U = m

3 ω with m odd. Indeed, Fig. 4(b) confirms that
numerous anticrossings appear in the vicinity of U = 1

3ω.
Their presence is predicted by both EDPT and DPT, albeit
the exact results are matched only qualitatively. Meanwhile,
in the cases U = 2

3ω and U = 4
3ω the EDPT ensures higher

accuracy, providing a considerable improvement over DPT
[see Figs. 4(c) and 4(d)].

Finally, we consider the results obtained for the case of a
higher driving frequency: ω/J = 30. As expected, the accu-
racy of the perturbation theory is higher in this case, which is
confirmed by the plots in Fig. 5. Figure 5(a) shows that EDPT
yields accurate results on a large scale, capturing all the essen-
tial features of the exact quasienergy spectrum. The close-up
views of the spectrum in the vicinity of U = 1

3ω, U = 2
3ω and
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FIG. 4. Assessment of accuracy of DPT and EDPT for an eight-particle BH system on a 2 × 4 lattice with F/ω = 2, ω/J = 20.
(a) Quasienergy spectrum for U ∈ [0, 1.5ω]. Quasienergies of five Floquet modes having the largest overlap with the MI state are displayed;
quasienergies of the mode with the maximum overlap are highlighted in red. (b) Quasienergies of the driven MI state in the vicinity of U = 1

3 ω.
(c) Quasienergies of the driven MI state in the vicinity of U = 2

3 ω. (d) Quasienergies of the driven MI state in the vicinity of U = 4
3 ω.

U = 4
3ω, shown in Figs. 5(b)–5(d), respectively, display that

EDPT is capable of providing quantitatively correct results in
this regime. The DPT is certainly applicable as well, although
the accuracy is lower.

D. Computational cost of the methods

Concluding the discussion of accuracy of the considered
methods, let us compare the associated computational costs.
Calculation of quasienergies using both DPT and EDPT
comes down to a Hermitian matrix diagonalization. In the
EDPT case, one is required to diagonalize the matrix whose
size is given by the total number of states of the unperturbed
systems. In the studied eight-particle systems, there are N =
6435 such states. In the DPT case, the size is given by the
number of states sharing the same value of reduced energy
ε

(0)
∗ . For example, on a 2 × 4 lattice and at U = 2

3ω, there
are 2017 states sharing the value of ε

(0)
∗ = 0 [cf. Fig. 3(b)].

Both methods thus suffer from exponential growth of the
required computation resources, which can only be alleviated
by limiting the number of states taken into consideration.

The numerically exact calculation of the quasienergies via
the single-period evolution operator P̂ requires performing a

(unitary) N × N matrix diagonalization, similarly to the the
EDPT case. However, the construction of P̂ additionally re-
quires propagating the Schrödinger equation for one period of
the drive N times (for each basis state as the initial condition).
Although the specific time required to solve the differential
equations depends on multiple factors (such as the solver,
required tolerance, and hardware), in our experience [36] the
exact calculation of the quasienergies for a single value of U
took 2.5–6 times longer than the EDPT calculation and, im-
portantly, required ∼15 times more memory (see Appendix B
for details).

IV. CONCLUSION

Let us now summarize the results. We have provided an
extension of the conventional degenerate perturbation theory
that improves the accuracy of the calculation of quasienergy
spectra of periodically driven systems. Application of the
theory to the driven Bose-Hubbard system has shown that
third-order EDPT yields results matching the exact ones on
a quantitative level. While the exact applicability criterion is
difficult to formulate, the simple condition (20) together with
the provided example calculations may serve as a basis for

(a)

(b)

(c)

(d)

FIG. 5. Same as in Fig. 4 for ω/J = 30.
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FIG. 6. Scaling of computation time and required memory with
the system size. The code [36] was benchmarked on a Mac mini
computer with Apple M2 Pro chip (8 performance cores variant)
and 32 GB RAM. The exact calculations for systems with N > 8
were not performed as the memory requirements exceeded resources
available on the test machine. The reported memory utilization was
measured as the total amount of memory allocated during the calcu-
lation. This was chosen as a reproducible criterion that reflects the
scaling behavior. The actual amount of memory required is highly
dependent on the implementation details.

predicting the expected accuracy. Generally, the accuracy is
expected to improve with increasing driving frequency.

Along the way, we have also studied the application of
the conventional DPT. It has an advantage that the matrix
elements of the resulting effective Hamiltonian ŵ

[n]
D admit a

straightforward interpretation. Specifically, it enables one to
make qualitative predictions about the possible appearance of
the anticrossings in the quasienergy spectrum, and the matrix
elements of ŵ

[n]
D may be used to estimate the relative probabil-

ities of various resonant excitation processes [28,32,33]. On
the other hand, since ŵ

[n]
D consists of two decoupled blocks

(describing Hilbert spaces D0 and D1, cf. Sec. II B), which is
clearly a bold approximation, it might not capture important

properties of the system, such as the existence of a Floquet
dynamical symmetry [37–39]. In this respect, the effective
Hamiltonian Ŵ [n]

D provided by EDPT is expected to be more
useful: existence of an operator Â such that [Ŵ [n]

D , Â] = λÂ
with λ a real number would imply the existence of a dynami-
cal symmetry in the effective system [37,40], to the nth order
of the perturbation theory. This might help in exploring the
platforms for constructing discrete time crystals.

The performed analysis has shown that the accuracy of the
quasienergies obtained using DPT is considerably lower than
that of EDPT. Moreover, while DPT is applicable only in the
vicinity of resonances, EDPT remains equally useful if the
driving is not resonant. The advantages of EDPT, however,
come at the expense of increased numerical effort since the
resulting effective Hamiltonian is of the same size as the un-
perturbed one. For large systems, its diagonalization becomes
prohibitively costly, and one might need to reduce the number
of considered states by excluding highly excited ones, for
example. Another option is to adopt a scheme intermediate
between DPT and EDPT so that only some of the couplings
between the states in the FZ are treated exactly, and others are
taken into account perturbatively. The required formalism has
been presently provided.
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APPENDIX A: THIRD-ORDER EXPRESSIONS
FOR THE EFFECTIVE HAMILTONIAN

Here we provide the third-order expressions for the effec-
tive Hamiltonians. In the DPT framework, one obtains

〈α′|ŵ(3)
D |α〉 = 1

2
δA′A

∑
β,γ

∑
p
=0 if C=A

{
δAB

1

εβ − εγ − pω

( 〈α′|Ĥb−a′ |β〉〈β|Ĥc−b−p|γ 〉〈γ |Ĥa−c+p|α〉
εγ − εα′ + pω

+ 〈α′|Ĥc−a′−p|γ 〉〈γ |Ĥb−c+p|β〉〈β|Ĥa−b|α〉
εγ − εα + pω

)
+ δBC〈α′|Ĥb−a′−p|β〉〈β|Ĥc−b|γ 〉〈γ |Ĥa−c+p|α〉

×
[

1

(εα′ − εβ − pω)(εα′ − εγ − pω)
+ 1

(εα − εβ − pω)(εα − εγ − pω)

]}

− 1

12
δA′A

∑
βγ

∑
p
=0 if A=B

∑
q 
= p if B = C
q 
= 0 if C = A

〈α′|Ĥb−a′−p|β〉〈β|Ĥc−b+p−q|γ 〉〈γ |Ĥa−c+q|α〉

×
{

3

εβ − εα + pω

[
1

εα − εγ − qω
+ 1

εβ − εγ + (p − q)ω

]

+ 3

εα′ − εγ − qω

[
1

εβ − εγ + (p − q)ω
+ 1

εβ − εα′ + pω

]

+ 1

εβ − εγ + (p − q)ω

(
1

εβ − εα′ + pω
+ 1

εα − εγ − qω

)
+ 2

(εα − εγ − qω)(εβ − εα′ + pω)

}
. (A1)
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Here integers A, A′, B, and C indicate which subspaces the
states belong to: |α〉 ∈ DA, |α′〉 ∈ DA′

, |β〉 ∈ DB, |γ 〉 ∈ DC .
In the EDPT framework, all states are assigned to the same
subspace, therefore, in that case one should put A = A′ = B =
C in the above equation.

APPENDIX B: BENCHMARKS OF THE METHODS

In this Appendix we provide benchmarks of the methods
and additional technical details.

The scaling of the computational time and required mem-
ory with the system size is shown in Fig. 6. The performed
calculations correspond to those presented in Fig. 3 at a single
point of U = 2

3ω, for lattice sizes N = 5 through 10 (with
unit filling). The data are depicted on a semilogarithmic scale,
together with an exponential fit y = 10kN + y0; the coeffi-
cients k are provided in the legends. It is apparent that the
EDPT provides a noticeable advantage in terms of calculation
times compared to the exact approach and requires more than

an order of magnitude less memory. The memory require-
ments for DPT are similar to those of EDPT because we
were constructing the effective Hamiltonian ŵ

[3]
D for both the

degenerate and nondegenerate subspaces, although we were
diagonalizing only the block corresponding to the degenerate
space.

In practice, one often needs to repeat the calculation of
quasienergies for a range of one or more system parameters,
as was done in our analysis in the main text. The loop scanning
over the parameters can be easily parallelized on a multicore
machine or a cluster, but the memory requirements might put
a limit on the number of processes that can be run in parallel.
For example, the exact calculation shown in Fig. 4(a), where
∼300 values of U were scanned, was performed using only 21
of 64 cores of an AMD 2990WX CPU because that already
used almost all available RAM space (121 of 128 GB). The
execution time was 6 h. Meanwhile, EDPT3 allowed us to
utilize all 64 cores while requiring 22 GB RAM in total; the
calculation finished in 50 min.
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