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Super Fermi polaron and Nagaoka ferromagnetism in a two-dimensional square lattice
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We consider the Fermi polaron problem of an impurity hopping around a two-dimensional square lattice and
interacting with a sea of fermions at given filling factor. When the interaction is attractive, we find standard Fermi
polaron quasiparticles, categorized as attractive polarons and repulsive polarons. When the interaction becomes
repulsive, interestingly, we observe an unconventional highly excited polaron quasiparticle, sharply peaked at
the corner of the first Brillouin zone with momentum k = (±π,±π ). This super Fermi polaron branch arises
from the dressing of the impurity’s motion with holes, instead of particles of fermions. We show that super Fermi
polarons become increasingly well defined with increasing impurity-fermion repulsions and might be considered
as a precursor of Nagaoka ferromagnetism, which would appear at sufficiently large repulsions and at large filling
factors. We also investigate the temperature dependence of super Fermi polarons and find that they are thermally
robust against the significant increase in temperature.
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I. INTRODUCTION

The problem of a single impurity moving in a many-body
environment of a noninteracting Fermi sea is probably the
simplest quantum many-body system [1]. It was first ad-
dressed by Landau 90 years ago in a two-page short paper
[2], which gives birth to a fundamental concept known as
quasiparticle. Termed as a “polaron” quasiparticle, or more
specifically “Fermi polaron” to reflect the Fermi sea back-
ground, this impurity problem arises in diverse research fields,
including Kondo screening [3–5], Anderson’ s orthogonality
catastrophe [6], the x-ray Fermi edge singularity [7–9], Na-
gaoka ferromagnetism [10–14], the phase string effect [15],
ultracold atomic polaron [16–24], and most recently exciton-
polariton polaron in two-dimensional materials [25,26].

Among those fields, the recent research on ultracold
atomic polarons attracts particular interests due to the
unprecedented tunability and controllability on quantum
atomic gases [27]. For instance, the interatomic interaction
can be precisely tuned by changing an external magnetic
field across a Feshbach resonance [28]. In the strongly
interacting regime near resonance, particle-hole excitations
of the Fermi sea are attached to the impurity [16], forming
an attractive Fermi polaron in the absolute ground state.
Moreover, above the Feshbach resonance in the presence of
a two-body bound (molecule) state, although the underlying
interaction between the impurity and the Fermi sea is
always attractive, an additional repulsive Fermi polaron
develops as an excited state [14,29]. Over the past 15 years,
attractive and repulsive Fermi polarons have been extensively
investigated in a quantitative manner, both experimentally
[17,18,20,30–32] and theoretically [16,22–24,33–49].
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In this work, we would like to suggest the existence of a
novel Fermi polaron in two-dimensional (2D) optical lattices,
which can be readily realized in cold-atom experiments, again
owing to the unprecedented tunability and controllability. In
lattices, the interaction between the impurity and fermions in
the Fermi sea, as given by the on-site repulsion strength U
[see Eq. (1) below], can become positive on the molecular side
of the Feshbach resonance since the absolute ground state of
molecules can be effectively projected out from the Hilbert
space by the lattice potential (i.e., the ground state is too
deep to be effectively occupied in the timescale of cold-atom
experiments). In addition, the filling factor ν of fermions can
be tuned to be near unity (ν ∼ 1), so the background envi-
ronment can be more conveniently described as a new Fermi
sea of holes, centered around the corner of the first Brillouin
zone [see, i.e., Fig. 1(e)], where k = (kx, ky) = (±π,±π ).
Therefore, the repulsion between the impurity and fermions
can be equivalently treated as an effective attraction between
the impurity and holes, leading to an “attractive” Fermi po-
laron that has the highest energy. This state is analogous to
the highly excited super-Tonk-Girardeau gas phase found in
a one-dimensional Bose gas with infinitely strong attraction
[50], which is contrasted with a ground-state Tonk-Girardeau
gas with infinitely strong repulsions. Thus, it is useful to
dub the novel highest-lying Fermi polaron as a super Fermi
polaron.

We find that the appearance of the super Fermi polaron is
a precursor of Nagaoka ferromagnetism [10], which is antici-
pated to occur at large repulsion and at large filling factor for
a cluster of spin-1/2 fermions [11–14]. There, all fermions
prefer to align their spin (i.e., into the spin-up state) due to the
strong repulsion between two fermions with unlike spin. In
other words, if initially we consider a spin-down fermion (i.e.,
impurity) immersed in a sea of spin-up fermions, the spin-
down fermion at zero momentum prefers to flip its spin, oc-
cupies into a spin-up state near Fermi surface located at about
k = (±π,±π ), and eventually creates a fully spin-polarized
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FIG. 1. Impurity spectral function A(k, ω) at different filling fac-
tors ν and at a negative interaction strength U = −6t , shown as 2D
contour plots with a logarithmic scale in units of t−1. The blue and
red colors represent the minimum intensity (i.e., 0.01t−1) and maxi-
mum intensity (i.e., t−1), respectively. On the left-hand side of each
panel (i.e., k < 0), we consider a cut in the first Brillouin zone from
the X point X = (−π, 0) to the � point � = (0, 0), as illustrated in
the subplot (e), so k represents the wave vector k = (k, 0). On the
right-hand side of the dotted line (i.e., k > 0), the cut is along the
diagonal direction from the � point to the M point M = (π, π ), so
k gives the wave vector k = (k, k). The energy ω is in units of t and
the temperature is set to kBT = 0.1t .

noninteracting Fermi sea. In our case of super Fermi polaron,
of course, the impurity cannot take spin-flip and automatically
turn itself into a fermion. However, this tendency is clearly
demonstrated in the impurity spectral function: on the one
hand, near zero momentum the quasiparticle peak becomes in-
creasingly blurred in the spectral function; on the other hand,
a very sharp peak well develops at k = (±π,±π ). To further
confirm the instability towards Nagaoka ferromagnetism, at
low temperature we calculate the ground-state energy of the
super Fermi polaron and find that it is indeed preferable in
energy to take an imaginable “spin-flip” at large repulsion.

The rest of the paper is laid out as follows. In Sec. II, we
describe the model Hamiltonian for an impurity interacting

with a Fermi sea on a 2D square lattice with on-site
interaction. In Sec. III, we solve the model Hamiltonian at
finite temperature, by using a non-self-consistent many-body
T -matrix approach that captures the crucial one-particle-hole
excitations of the Fermi sea. In Sec. IV, we first report the
results of conventional Fermi polarons with an attractive
on-site interaction strength U < 0. We then consider
a repulsive on-site interaction (U > 0) and discuss the
evolution of the impurity spectral function as functions of
the filling factor and repulsion strength. We clearly
demonstrate the Nagaoka ferromagnetic transition by
comparing the energies of the Fermi polaron state and of
the fully polarized Fermi sea, and determine the critical
interaction strength at a given filling factor. We finally discuss
the temperature dependence of Fermi polarons, and show the
remarkable thermal robustness of the super Fermi polaron. We
conclude in Sec. V and present an outlook for future studies.

II. MODEL HAMILTONIAN

Let us start by considering one impurity and N fermionic
atoms moving on a 2D L × L square optical lattice, with
hopping strengths td and t , respectively. The impurity inter-
acts with fermions when they occupy the same site only. In
momentum space, the system can be described by the standard
Hubbard model

H =
∑

k

(ξkc†
kck + Ekd†

kdk ) + U

A

∑
kk′q

c†
kd†

q−kdq−k′ck′ , (1)

where A = (La)2 is the area of the system with a lattice spac-
ing a, c†

k, and d†
k are the creation field operators for fermionic

atoms and the impurity, respectively. The first term of the
model Hamiltonian describes the single-particle motion with
dispersion relation

ξk = −2t (cos kx + cos ky) − μ (2)

for atoms and

Ek = −2td (cos kx + cos ky) (3)

for the impurity, while the last term is the interaction Hamilto-
nian with on-site interaction strength U . Here, for convenience
we have taken the lattice size a = 1, so the first Brillouin
zone is given by kx, ky ⊆ [−π,+π ]. We introduce a chemical
potential μ to tune the filling factor ν = N/A of atoms on the
lattice. In the thermodynamic limit (i.e., N → ∞), the motion
of fermionic atoms is barely affected by the existence of the
impurity, so at finite temperature T , the chemical μ simply
relates to ν by the noninteracting number equation

ν = 1

A

∑
k

〈c†
kck〉 =

∫ +π

−π

dkxdky

(2π )2 f (ξk ), (4)

where f (x) = 1/[ex/(kBT ) + 1] is the Fermi-Dirac distribution
function. In contrast, the behavior of the impurity is strongly
modified by the on-site interaction and could be solved below
by using a non-self-consistent many-body T -matrix theory.
Moreover, for a single impurity at finite temperature, the im-
purity chemical potential tends to infinity (μimp → −∞) due
to the vanishing impurity density in the thermodynamic limit.
This impurity chemical potential μimp can be eliminated, by
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shifting the frequency ω with respect to it (i.e., by redefining
ω + μimp as ω) [46]. Throughout the work, we always assume
the impurity and fermionic atoms have the same hopping
strength, i.e., td = t , and we use t as the units of energy.

III. NON-SELF-CONSISTENT MANY-BODY
T -MATRIX APPROACH

The non-self-consistent many-body T -matrix theory of
Fermi polarons has been thoroughly studied in the past, with-
out considering optical lattices. The generalization of the
theory to the lattice case is straightforward since the resulting
equations for the key quantities, such as the vertex function
and the impurity self-energy, take the exactly same forms. The
only change is to restrict the summation over the momentum
k = (kx, ky) to the first Brillouin zone. Therefore, we directly
write down the inverse vertex function [33,46]

�−1(q, ω) = 1

U
−

∫ +π

−π

dkxdky

(2π )2

1 − f (ξk )

ω − ξk − Eq−k
, (5)

and the impurity self-energy

�(k, ω) =
∫ +π

−π

dqxdqy

(2π )2 f (ξq−k )�(q, ω + ξq−k ). (6)

Once the impurity self-energy is determined, we calculate the
impurity Green’s function [33,46]

G(k, ω) = 1

ω − Ek − �(k, ω)
. (7)

The emergent Fermi polarons can be well characterized by the
impurity spectral function

A(k, ω) = − 1

π
ImG(k, ω), (8)

where the existence of polaron quasiparticles is clearly re-
vealed by a sharp spectral peak. The position and the width of
the spectral peak relate to the energy EP(k) and the decay rate
(i.e., inverse lifetime) �P(k) of polaron quasiparticles [29,33],
respectively. It is readily seen that the polaron energy EP(k),
of either attractive Fermi polaron or repulsive Fermi polaron,
is given by the pole of the impurity Green’s function, if we
take the replacement ω → EP(k):

EP(k) = Ek + Re�[k, EP(k)]. (9)

By Taylor-expanding the impurity self-energy around the po-
laron energy, i.e.,

�(ω) 	 Re�(EP ) + ∂Re�(ω)

∂ω
(ω − EP ) + iIm�(EP ), (10)

where we suppress the dependence of the impurity self-energy
on the momentum k, the impurity spectral function takes an
approximate Lorentzian form in the vicinity of the polaron
energy

A(k, ω) 	 Zk

π

�P(k)/2

[ω − EP(k)]2 + �2
P(k)/4

. (11)

Here, Zk is the polaron residue

Zk =
[

1 − ∂Re�(k, ω)

∂ω

∣∣∣∣
ω=EP (k)

]−1

, (12)

and �P(k) is the polaron decay rate

�P(k) = −2ZkIm�[k, EP(k)]. (13)

In the dilute limit of vanishingly small filling factor ν → 0,
where the interesting physics occurs at the very small momen-
tum, the system behaves like an interacting Fermi gas in free
space with a contact interaction potential. In this case, for a
negative on-site interaction strength U < 0 and an associated
binding energy εB, we may then introduce a dimensionless
interaction parameter

ζ = 1
2 ln (2εF /εB) (14)

to fully characterize the universal low-energy polaron
physics [35,39].

It should be noted that, at zero temperature our non-self-
consistent many-body T -matrix theory is fully equivalent
to a variational Chevy ansatz [14], which has been exten-
sively used in the investigations of Nagaoka ferromagnetism
[11–13], particularly for the idealized case of infinitely large
repulsion (U → +∞). Thus, our work might be viewed as
a useful extension of these variational studies to the realistic
cases with large but finite repulsion at nonzero temperature.

The key difficulty of applying the non-self-consistent T -
matrix theory for Fermi polarons comes from the numerical
integration over the momentum k in Eq. (5). This is caused by
the singularity in the integrand, which occurs when the energy
or frequency ω lies in the two-particle scattering continuum,
i.e., ω = ξk + Eq−k, at certain momenta k. A formal proce-
dure to solve the difficulty is to first calculate the imaginary
part of the vertex function

Im�−1(q, ω) = π

A

∑
k

[1 − f (ξk )]δ(ω − ξk − Eq−k ), (15)

where δ(x) is the Dirac delta function [46]. We then use the
Kramers-Kronig relation to recover the real part of the vertex
function. In our case, since the momentum is restricted to the
first Brillouin zone, a more economic and straightforward way
is to introduce a nonzero broadening factor η and replace the
frequency ω with ω + iη to remove the singularity of the inte-
grand. We then extrapolate the results to the zero-broadening
limit. In practice, we find the following linear extrapolation
with a broadening factor η = 0.3t ,

�−1(q, ω) 	 2�−1(q, ω + iη) − �−1(q, ω + 2iη), (16)

works very well. The choice of the value η = 0.3t is discussed
in Appendix.

IV. RESULTS AND DISCUSSIONS

A. Fermi polarons at U < 0

Let us first consider the cases with negative on-site inter-
action strengths U < 0, which connect to the well-studied 2D
Fermi polarons in free space [19,35,37]. These cases have also
been investigated by using an ab initio impurity lattice Monte
Carlo method [39]. However, the ab initio results are restricted
to the polaron energy only.

In Fig. 1, we present the impurity spectral function at U =
−6t and at four filling factors (as indicated), in the form of a
2D contour plot with a logarithmic scale, where the spectral
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peaks in red color can be clearly identified. To account for the
anisotropy of the first Brillouin zone, in each panel, following
the convention we consider two cuts on the Brillouin zone
along the �X line (see the left part) and the �M line (the right
part). As the filling factor ν increases, we always find two
branches in the spectral function: the low-energy attractive
Fermi polarons and high-energy repulsive Fermi polarons.
However, the evolutions of the two kinds of Fermi polarons
as a function of the filling factor turn out be very different.

For the very-low filling factor ν = 0.01 in Fig. 1(a), the
spectral function is dominated by the repulsive polaron branch
whose energy is always larger than −4td = −4t (which is
the lowest single-particle energy of the impurity since we
take td = t). The attractive polaron branch is only visible
at low momentum k ∼ 0. Towards the X point or the M
point, the spectral weight of attractive Fermi polarons quickly
disappears. This weak attractive polaron branch might be un-
derstood from the results of 2D Fermi polarons in free space.
In the dilute limit at zero temperature, the dispersion relation
of fermionic atoms can be well approximated as

ξk 	 tk2 − (μ + 4t ) = h̄2k2

2m
− εF , (17)

where m = h̄2/(2t ) is the effective mass and εF = h̄2k2
F /(2m)

is the Fermi energy with Fermi wave vector kF = (4πν)1/2.
It is easy to see that εF = 4πνt . At U = −6t , the binding
energy εB ∼ t . Thus, the dimensionless interaction parame-
ter in Eq. (14) is about ζ ∼ (1/2) ln(8πν) 	 −0.7, which is
very close to the threshold for the polaron-molecule transition
[35,39]. At this interaction parameter, the residue Zk∼0 for the
attractive polaron is not significant.

For the low filling factor ν = 0.1 in Fig. 1(b), the dimen-
sionless interaction strength ζ increases to about ζ ∼ 0.5,
where near-zero momentum the attractive Fermi polaron is
well defined. Indeed, we find that a much sharper attractive
polaron peak with large spectral weight or polaron residue
Zk. Accordingly, the repulsive polaron peak near zero mo-
mentum becomes blurred, with much smaller spectral weight.
Interestingly, the repulsive Fermi polaron at large momentum
near the X point or the M point remains sharply peaked. This
observation is in marked contrast to the free space 2D polaron
model, where Fermi polarons always become less well defined
at large momentum. Therefore, this feature should be related
to the unique structure of square lattice. We may understand it
as a consequence of the van Hove singularity is in the density
of states of square lattice. In particular, the logarithmically
divergent density of states at the X point could be ener-
getically favorable for particle-hole excitations and therefore
leads to more stable Fermi polarons. On the other hand, a well-
marked repulsive polaron at the M point seems to indicate
a more robust two-body bound state at the corner Brillouin
zone than at zero momentum. To better show the robust repul-
sive Fermi polaron, we also report in Fig. 2 the evolution of the
one-dimensional spectral function as the momentum increases
along the �M line.

As we further increase the filling factor ν, the effect the
square lattice band structure becomes more prominent. As
shown in Figs. 1(c) and 1(d) for ν = 0.3 and ν = 0.5, the
spectrum of the upper repulsive Fermi polaron distributes

FIG. 2. Impurity spectral function A(kx = k, ky = k; ω) along the
diagonal direction of the first Brillouin zone [i.e., the �M line in
Fig. 1(e)], at temperature kBT = 0.1t , filling factor ν = 0.1, and a
negative interaction strength U = −6t . The energy ω and the spectral
function A(k, ω) are in units of t and t−1, respectively.

much wider, in sharp contrast to the attractive Fermi polaron
whose spectral response becomes increasingly narrower. Nev-
ertheless, at the filling factor as large as ν = 0.3, the repulsive
polaron peak near the M point remains visible, although the
spectral weight of the repulsive branch gets strongly depleted
close to the � point at zero momentum.

To better understand the robust repulsive Fermi polaron
near the M point, we focus on the case ν = 0.1 and report
in Fig. 3(a) the real part of the inverse impurity green function

ReG−1(k, ω) = ω − Ek − Re�(k, ω) (18)

at three different momenta. The condition of a pole in the
impurity green function, i.e., ReG−1(k, ω) = 0, determines
the polaron energy. We observe that although in general
ReG−1(k, ω) increases with the frequency ω, it has a pecu-
liar peak-dip structure around the bottom of the energy band
(i.e., ω ∼ −4t at zero momentum). The depth of this peak-
dip structure increases with increasing momentum. At k = 0,
we find two solutions of ReG−1(k, ω) = 0, giving rise to an
attractive Fermi polaron at ω 	 −6t and a repulsive Fermi
polaron at ω 	 −3t . At k = (π/2, π/2) and at the M point
with kM = (π, π ), the peak values of ReG−1(k, ω) become
negative, implying the absence of the attractive polaron. How-
ever, the repulsive Fermi polaron always appears, owing to the
positive and k-independent slope with increasing frequency.

The existence of repulsive Fermi polaron is generally re-
lated to a two-body molecule bound state. In Fig. 3(b), we
present the molecule spectral function

Amol(q, ω) = − 1

π
Im�(q, ω), (19)

along the �M line in the form of a 2D contour plot. We
may clearly identify the two-particle scattering continuum
enclosed by ωmin(q) = min{k}(ξk + Eq−k ) and ωmax(q) =
max{k}(ξk + Eq−k ). There is always an in-medium molecule
bound state with energy EM (q), as revealed by a strong spec-
tral peak near the bottom of the scattering continuum. The
dispersion of EM (q) is nonmonotonic and exhibits a minimum
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FIG. 3. (a) The real part of the inverse of the impurity Green’s
function ReG−1(k, ω) as a function of the energy ω, at three different
wave vectors on the �M line in Fig. 1(e): the � point (black solid
line), k = (π/2, π/2) (red dashed line), and the M point (blue dot-
dashed line). The pole of the impurity Green’s function, at which
ω − Ek − �(k, ω) = 0 as given by the crossing point with the green
dotted line, determines the energy of polaron quasiparticles. (b) The
molecular spectral function Amol(qx = q, qy = q; ω) along the diag-
onal direction in momentum space, in arbitrary units (as indicated
by the color bar in the logarithmic scale). Here, we take the same
parameters for T , ν and U as in Fig. 2.

at about q ∼ 0.3π . More importantly, at q < qc ∼ π/2, the
molecule state is buried in the scattering continuum, so the

molecule peak has a finite spectral width due to scattering and
can be viewed as a quasibound state. Above qc, the molecule
state develops into a true long-lived bound state, although
there is a residual spectral width due to thermal broadening.
Near the M point, therefore the molecule state becomes very
robust. This robustness directly leads to the well-defined re-
pulsive Fermi polaron at the corner of the first Brillouin zone,
as we highlighted earlier.

B. Super Fermi polarons at U > 0

We now turn to consider a positive on-site interaction U >

0. In Fig. 4, we show the 2D contour plots of spectral function
at U = +6t and at three filling factors, ν = 0.5 [Fig. 4(a)],
ν = 0.7 [Fig. 4(b)], and ν = 0.9 [Fig. 4(c)]. Due to the repul-
sion, the spectral weight appears only at ω > −4t , when the
energy ω is larger than the lowest single-particle energy of the
impurity −4t . As in the cases of negative on-site interactions,
we may identify the existence of two polaron branches in the
spectrum. However, these two branches seem to behave very
differently from the negative-U case.

First, the low-lying polaron branch always has a notable
spectral width and the width increases with increasing filling
factor. This is remarkably different from the case with U <

0, where the width of the sharply peaked low-lying attractive
Fermi polarons is negligible as we increase the filling factor ν

above 0.1. Second, the high-lying polaron branch behaves like
a well-defined δ-function peak near the M point, regardless of
the filling factor. Finally, at large filling factor, i.e., ν = 0.9,
the two branches tend to connect with each other.

Therefore, in comparison with the negative-U case, the
low-lying and high-lying polaron branches seem to exchange
their roles: the low-lying branch behaves more or less like a
repulsive Fermi polaron; instead the high-lying branch looks
like an attractive Fermi polaron, although it is now restricted
to the vicinity of the M point. This exchange in role becomes
much more evident when we increase the on-site repulsion. In
Fig. 5, we show the impurity spectral function at U = +12t
and at the filling factor ν = 0.5. The two polaron branches,
both in the one-dimensional plot [Fig. 5(a)] and in the 2D
contour plot [Fig. 5(b)], are now clearly separated. In par-
ticular, the sharply peaked high-lying polaron branch extends
from the M point to the � point. Moreover, the high-lying
branch at the X point also becomes well defined.

(a) (b) (c)

FIG. 4. Impurity spectral function A(k, ω) at three filling factors (a) ν = 0.5, (b) ν = 0.7, and (c) ν = 0.9, and at a positive interaction
strength U = 6t . The same logarithmic contour plots as in Fig. 1 are used. On the left-hand side of each panel (i.e., k < 0), k represents the
wave vector k = (k, 0) along the X� line, as illustrated in Fig. 1(e). On the right-hand side (i.e., k > 0), k represents the wave vector k = (k, k)
along the �M line. The temperature is set to kBT = 0.1t .
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(a)

(b)

FIG. 5. Impurity spectral function A(k, ω) at a large positive
interaction strength U = 12t , where the upper branch of super Fermi
polarons becomes well defined for all wave vectors. In (a) or (b),
we show the spectral function in either the standard one-dimensional
plot along the diagonal direction kx = ky = k [see the �M line in
Fig. 1(e)] or in the 2D contour plot with a logarithmic scale, where
the wave vector k moves first along the X� line and then along the
�M line. In the 2D contour plot, the blue and red colors represent the
minimum intensity (i.e., 0.01t−1) and maximum intensity (i.e., t−1),
respectively. The parameters kBT = 0.1t and ν = 0.5 are used.

The role exchange is mostly easily understood by con-
sidering a particle-hole transformation for fermionic atoms.
At large filling factor above the half-filling, i.e., ν � 0.5, it
is more convenient to adopt a viewpoint of holes. We treat
unoccupied single-particle states as holes and introduce the
hole creation field operator h†

k = c−k. When it acts on a fully
occupied Fermi sea with unity filling factor ν = 1 (i.e., the
vacuum state of holes), it destroys a fermionic atom with
momentum −k and creates a hole with momentum k. In the
hole representation, the interaction Hamiltonian in Eq. (1) can
be casted into

Hint = U
∑

k

d†
kdk − U

A

∑
kk′q

h†
kd†

q−kdq−k′hk′ . (20)

Thus, the impurity up-shifts its dispersion relation by an
amount U due to the (mean-field) repulsion of the fully
occupied Fermi sea, and more importantly, the effective inter-
action between the impurity and holes becomes attractive, i.e.,

FIG. 6. The molecular spectral function Amol(q, ω) at a large
positive interaction strength U = 12t , in arbitrary units (as indicated
by the color map in the logarithmic scale). For q < 0, the wave vector
q = (q, 0), while for q > 0, we consider the wave vector q = (q, q)
along the diagonal direction. Here, we take the same temperature
kBT = 0.1t and filling factor ν = 0.5 as in Fig. 5.

Ueff = −U < 0. It is reasonable to assume that this effec-
tive attraction would induce attractive Fermi polarons. As the
holes occupy around the M point with a smaller hole Fermi
sea, the density fluctuation (in the form of particle-hole exci-
tations of the new hole Fermi sea) will first create attractive
Fermi polarons around the M point and then extends to the �

point.
These attractive polarons are highly nontrivial, in the sense

that they are the highest in energy but remain completely
undamped at zero temperature. It would be useful to name
such high-lying Fermi polarons as super Fermi polarons, to
highlight the fact that they are exact many-body states of the
system. In contrast, the usual excited Fermi polaron state, such
as repulsive Fermi polaron in the negative-U case, consists
of a bundle of many-body states and hence has an intrinsic
decay rate even at zero temperature [26,51]. We note that a
similar terminology has been used to characterize the highest
excited many-body state, i.e., super-Tonk-Girardeau state, in
a strongly attractive Bose gas [50].

The effective attraction between the impurity and holes
may also lead to a two-body bound state, i.e., a repulsively
bound pair between the impurity and fermionic atoms due
to repulsion. Actually, such a repulsion-induced bound pair
has already been experimentally observed in a Bose gas in
optical lattices [52]. To confirm the (repulsively) bound pair
of the impurity and holes due to the effective attraction Ueff,
we show in Fig. 6 the molecule spectral function along the �M
line (see the right part of the figure) and the �X line (the left
part), at the same parameters as in Fig. 5. We see clearly the
molecule peak above the two-particle scattering continuum.
Analogous to the negative-U case, where a two-body bound
state implies the existence of repulsive Fermi polarons, it is
natural to classify the low-lying polaron branch in Fig. 5 as
repulsive Fermi polarons. In this way, it is not a surprise to
find a nonzero decay rate of low-lying polaron branch, even at
temperatures close to the zero temperature (i.e., kBT = 0.1t).
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FIG. 7. Quasiparticle properties of Fermi polarons at the positive
interaction strength U = 12t : (a) polaron energy, (b) residue, and
(c) decay rate. Both polaron energy and decay rate are measured in
units of t . The black solid lines show the results of the upper branch,
super Fermi polarons. The red dashed lines show the properties of
the lower branch of standard Fermi polarons. As shown in the inset
of (c), along the �X line and the XM line, we individually increase
kx and ky from 0 to π , respectively; while along the M� line, we
decrease both kx and ky from π to zero. Once again, we use the
temperature kBT = 0.1t and filling factor ν = 0.5 as in Fig. 5.

The decay rate or spectral broadening of the repulsive Fermi
polaron is due to the scattering with fermionic atoms or holes
since the repulsive polaron energy is within the two-particle
scattering continuum, although the repulsive polaron turns out
to be the low-energy, ground-state-like polaron quasiparticle.

For completeness, in Figs. 7(a) to 7(c) we report the po-
laron energy, residue, and decay rate of both polaron branches
along the � − X − M − � cut lines, at the same parameters
as in Fig. 5. The results of super Fermi polarons and of
repulsive Fermi polarons are shown by the solid lines and
dashed lines, respectively. We find that the dispersion relation
of super Fermi polarons is rather flat, compared with that of

repulsive Fermi polarons, indicating a large effective mass. In
particular, the effective mass of super Fermi polarons at the M
point is negative. This is easy to understand, if we recall the
fact that the original mass of the impurity at the M point (i.e.,
the top of its energy band) is negative. On the other hand, for
the parameters we choose, super Fermi polarons always have
less spectral weight than repulsive Fermi polarons, as we infer
from the polaron residue. Their weights are only comparable
at the M point, where super Fermi polarons seem to have the
strongest presence. Finally, as we already emphasized, super
Fermi polarons have the smallest decay rate at the M point
only due to thermal broadening. Repulsive Fermi polarons
instead always show a larger decay rate, even at the � point,
where it is supposed to be most stable.

C. Nagaoka ferromagnetism

At large on-site repulsion, the polaron problem under
investigation could be related to the celebrated Nagaoka fer-
romagnetism in a cluster of spin-1/2 fermions [10], which
concerns the instability of a ferromagnetic state with full spin
polarization against a single spin flip. Previous variational
studies suggest the breakdown of Nagaoka ferromagnetism
below a certain critical fermion filling factor νc or above a cor-
responding critical hole filling factor δc = 1 − νc [11–14]. At
infinitely large repulsion U = +∞, the simple Chevy ansatz
predicts νc 	 0.59 or δc 	 0.41 at zero temperature [12,14].

We may treat the impurity as a single spin-down fermions
and all the others atoms in the Fermi sea as the spin-up
fermions. Thus, at large on-site repulsion U and at large
filling factor ν > νc(U ), we may anticipate a phase transition
towards the Nagaoka ferromagnetic state, if we allow the
impurity to flip its imaginable spin and to jump from the
zero momentum spin-down state to a single-particle spin-up
state with a momentum k ∼ kF ∼ (±π,±π ). Accordingly,
the Fermi sea will shuffle its Fermi surface to satisfy the
momentum conservation. This anticipation reasonably agrees
with the filling factor ν dependence of both Fermi polaron
branches at large repulsion U 
 t , as we observe in Fig. 4.
As the filling factor increases, the tendency of the spin re-
versal makes low-lying repulsive Fermi polarons less well
defined and at the same time makes high-lying super Fermi
polarons much more sharply peaked. Thus, in the thermo-
dynamic limit, upon infinitesimal fluctuations in temperature
and lattice potential, the fragile low-lying repulsive polaron
state can easily turn into a state, where a super Fermi polaron
with momentum k ∼ kF gains notable weight. As the super
Fermi polaron might be viewed as the Nagaoka ferromagnetic
state after the imaginable spin-flip, there is a thermodynamic
instability of turning the low-lying repulsive polaron state
into the Nagaoka ferromagnetic state, if the spin-reversal is
allowed.

As a quantitative measure, we may consider the lowest
energy of the repulsive Fermi polaron at the � point, and
compare it to the chemical potential μ, which can be regarded
as the energy of the spin-up state after the imaginable spin
flip. The stability of the Nagaoka ferromagnetic state is then
ensured by the condition, EP(0) > μ. Although the repulsive
Fermi polaron is not a single quantum many-body state,
we believe that this condition could provide a reasonable
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FIG. 8. Zero-momentum polaron energy EP(k = 0) as a function
of the positive interaction strength U , with increasing filling factor:
ν = 0.6 (plus symbols), ν = 0.7 (circles), and ν = 0.8 (stars). The
color of symbols represents the polaron decay rate �P in units of t ,
as indicated by the color bar. From bottom to top, the three horizontal
lines show the chemical potential μ of the Fermi sea at ν = 0.6,
ν = 0.7, and ν = 0.8, respectively. The two green arrows indicate the
critical interaction strength for Nagaoka ferromagnetism, Uc 	 84t at
ν = 0.7 and Uc 	 45t at ν = 0.8, at which EP(0) = μ. Here, we take
the temperature kBT = 0.1t .

thermodynamic evaluation of the critical on-site repulsion at
a given filling factor, Uc(ν), at very low temperature.

In Fig. 8, we compare the low-lying repulsive polaron
energy EP(0) with the chemical potential μ with increas-
ing on-site repulsion, at three filling factors as indicated. At
ν = 0.6, we always find that the polaron energy is below
the chemical potential, indicating the absence of the Nagaoka
ferromagnetic state at the on-site repulsion considered in the
figure. This is understandable since ν = 0.6 is very close to
the critical filling factor νc 	 0.59 at U = +∞. The small
but nonzero temperature kBT = 0.1t used in our calculations
effectively reduce the interaction effect and may already wash
out the Nagaoka ferromagnetism transition. In contrast, at
other two filling factors in the figure, by using the criterion
EP(0) = μ we find (W/U )c 	 0.10 at ν = 0.7 and (W/U )c 	
0.18 at ν = 0.8, where W = 8t is the energy bandwidth of
the square lattice. These two critical values (W/U )c agree
qualitatively well with the initial estimation by Shastry, Kr-
ishnamurthy, and Anderson [11], and the improved variational
result by von der Linden and Edwards [13].

D. Finite-temperature effect

We finally briefly discuss the temperature effect. In Fig. 9,
we show the 2D contour plot of spectral function at the
temperature T = t [see Figs 9(a) and 9(c) on the left] and
T = 4t [Figs. 9(b) and 9(d)]. We focus on a filling factor
ν = 0.5 and consider both on-site attractions U = −6t (see
the upper panel) and repulsions U = +6t (the low panel).
We observe that the conventional attractive Fermi polarons
in the negative-U case significantly changes with increasing
temperature. Quite differently, super Fermi polarons near the
M point with on-site repulsions appear to be insensitive to
temperature and hence are thermally robust. They remains

(a) (b)

(c) (d)

FIG. 9. Impurity spectral function A(k, ω) at large temperatures
(a), (c) kBT = t and (b), (d) kBT = 4t . Here, the wave vector k moves
first along the X� line [i.e., k = (k, 0)] and then along the �M line
[i.e., k = (k, k)], as illustrated in Fig. 1(e). The upper panel and low
panel report the results at U = −6t and U = +6t , respectively. We
use the same logarithmic contour plots as in Fig. 1 and consider the
half-filling of the Fermi sea ν = 0.5.

sharply peaked at the temperature as large as the half-energy
bandwidth (i.e., kBT = 4t = W/2).

V. CONCLUSION AND OUTLOOKS

In conclusion, we investigated the Fermi polaron prob-
lem in two-dimensional square lattices at finite temperature,
with both on-site attractive interactions and repulsive interac-
tions between an impurity and a Fermi sea of noninteracting
fermions. The standard non-self-consistent many-body T -
matrix approach has been used, which well describes the
key ingredient of polaron physics, i.e., the one-particle-hole
excitations of the Fermi sea as excited by the on-site interac-
tion [33,46]. This method is equivalent to a variational ansatz
previously used to address Nagaoka ferromagnetism [10] of
a cluster of spin-1/2 fermions on square lattices [11–14].
However, our diagrammatic calculations are able to obtain
the impurity spectral function at finite temperature, thereby
leading to new understanding to the old research topic of
Nagaoka ferromagnetism.

For on-site attractions at small filling factor, we found
conventional Fermi polarons, including both attractive and
repulsive branches. In the dilute limit of vanishingly small
filling factor, the results can be well understood by using a
free-space Fermi polaron model [35,37,39]. We demonstrated
how the polaron physics is affected by the lattice structure.
In particular, we showed that the repulsive Fermi polaron at
the M point, where kM = (±π,±π ), is relatively robust with
increasing filling factor due to the stable two-body bound state
at the corner of the first Brillouin zone.

For on-site repulsions at large filling factor, we have found
a novel type of Fermi polarons, the so-called super Fermi
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FIG. 10. The real part and imaginary part of the pair propagator
χ (q, ω) at zero wave vector q = 0, in arbitrary units. The black
lines and red circles show the results with η = 0.3t and η = 0.1t ,
respectively. The temperature is set to kBT = 0.1t .

polaron, when the repulsion is strong enough. The super Fermi
polaron is an exact many-body state centered around the M
point and is therefore long-lived at low temperature, although
it is highly excited with large energy. We explained that the
formation mechanism of high-lying super Fermi polarons is
due to an effective attraction between the impurity and holes
arising from strong on-site repulsions. Therefore, it can be
understood in terms of conventional attractive Fermi polarons.
We showed that there is also a ground-state-like, low-lying
Fermi polaron branch with on-site repulsion. However, this
low-lying polaron branch has a finite decay rate and should be
understood as conventional repulsive polarons.

The classification of the two polaron branches in the case
of on-site repulsions suggests that the appearance of the super
Fermi polaron could be viewed as a precursor of Nagaoka
ferromagnetism. This is because, at large filling factor with
increasing on-site repulsions, the impurity may leave from

the short-lived repulsive polaron state at zero momentum,
virtually occupy the much more well-defined super Fermi
polaron state at the M point, and turn the system into the
Nagaoka ferromagnetic state upon reversing its imaginable
spin. We provided a thermodynamic estimation for the critical
on-site repulsion Uc needed for the transition into a Nagaoka
ferromagnetic state, at a given large filling factor ν ∼ 1. The
obtained values of Uc(ν) agree qualitatively well with the
previous variational calculations [11,13].

In future studies, it would be useful to improve theoretical
predictions on super Fermi polarons beyond the non-self-
consistent many-body T -matrix approximation. This would
provide us an accurate determination of the phase diagram
for the Nagaoka ferromagnetic phase transition, at both zero
temperature and finite temperature. It would also motivate
the experimental investigation of the intriguing Nagaoka
ferromagnetism in cold-atom laboratories, by preparing a
spin-population imbalanced Fermi gas in two-dimensional op-
tical lattices [53].
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APPENDIX: CHOICE OF THE BROADENING FACTOR

In Fig. 10, we report the pair propagator

χ (q, ω) = �−1(q, ω) − 1

U
, (A1)

calculated at two broadening factors, η = 0.1t (circles) and
η = 0.3t (lines), following the linear extrapolation scheme in
Eq. (16). We find the results of χ (q, ω) are independent on η,
except at the frequencies ω ∼ 0 and ω ∼ 8t , where its real part
exhibits sharp peaks and its imaginary part starts to appear or
disappear. At the small broadening factor η = 0.1t , the insuf-
ficient number of grid points used in our Gaussian quadrature
integration leads to a small oscillation in the calculated pair
propagator. This unwanted oscillatory behavior can be quickly
removed by increasing η to 0.3t . A nonlinear extrapolation
can also be implemented to improve the numerical accuracy,
but it might not be necessary, considering our purpose of
clarifying the existence of super Fermi polarons.
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