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Dynamics of spin helices in the diluted one-dimensional XX model
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Motivated by discrepancies between recent cold-atom experiments and the associated theory, we explore the
effect of immobile holes on the quantum dynamics of x-z spin helices in the one-dimensional XX model. We
calculate the exact spin dynamics by mapping onto a system of noninteracting fermions, averaging over the
distribution of holes. At small hole densities we find that the helical spin pattern decays exponentially, with a
pitch dependence that agrees with the experiments. At large hole densities we instead find persistent oscillations.
While our analytic approach does not generalize to the XXZ model with arbitrary anisotropies, we validate a
matrix-product-state technique which might be used to model the experiments in those settings.
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I. INTRODUCTION

In a recent experiment [1], Jepsen et al. used a gas of 7Li
atoms trapped in a one-dimensional (1D) optical lattice as an
analog simulator of the 1D anisotropic Heisenberg model, one
of the most important spin models from condensed-matter
physics [2–15]. In certain limits their experiment showed
behavior which was qualitatively different from the exact
solution of that model [16,17]. Here, we show that adding a
realistic density of immobile holes to the model removes the
discrepancy.

In the experiment bosonic lithium atoms were loaded into
an optical lattice and confined with an additional harmonic
trap. Due to the deep optical lattice, the atoms formed a
Mott insulator, and in the majority of the cloud there was
a single particle per site. Superexchange, from the virtual
hopping between neighboring sites, led to an effective XXZ
(or anisotropic Heisenberg) model, H = ∑

j Jx(Sx
j S

x
j+1 +

Sy
j S

y
j+1) + JzS

z
jS

z
j+1. Here, Jx and Jz parametrize the nearest-

neighbor interactions within a 1D array of spins with spin-1/2
operators Sμ. Physically, the two spin degrees of freedom
correspond to two hyperfine spin states of 7Li. To probe the
dynamics of this model, they initialized the spins in a classical
x-z helix state, where the spin on site j was oriented with
〈Sx

j 〉 = h̄
2 cos(Q j + φ) and 〈Sz

j〉 = h̄
2 sin(Q j + φ). The wave

vector Q and phase φ were varied. The experimentalists quan-
tified the dynamics by studying the Fourier component of
〈Sz〉 at wave vector Q, a quantity referred to as the contrast.
They found that the contrast decayed exponentially in time to
a nonzero value. From the Q dependence of the decay time
τ (Q), they identified a variety of transport regimes, ranging
from ballistic to subdiffusive as a function of anisotropy Jz.

Unfortunately, these observations disagree with theoretical
modeling [16,17]. The XX limit of the 1D XXZ model (i.e.,
taking Jz = 0) can be mapped onto a problem involving free
spinless fermions and hence is exactly solvable. In Ref. [16]
we used this mapping to show that in this XX limit the con-
trast decays to zero as a power law, implying that τ = ∞,
independent of Q. Calculations based upon generalized hy-
drodynamics came to a similar conclusion [17].

Here, we consider one possible source of this discrepancy,
namely, the presence of missing spins. When atoms are loaded
into the optical lattice, some sites remain empty. Aside from
a region at the very center of the harmonic trap, these holes
cannot move, and hence, we treat them as immobile. To un-
derstand the hole mobility, we note that the hopping strength
[1] is t ≈ h × 400 Hz, and the trap potential is Vj = (1/2)κ j2,
with κ ≈ h × 100 Hz. By energy conservation, a hole at site j
can hop only when Vj+1 − Vj ≈ κ j is smaller than 2t . Thus,
in a chain of length L ≈ 40 [1], only holes in the central
(2t/κ )/L = 20% of the trap can even hop by a single site. If
we extend the criteria of “immobile” to mean that a hole can
hop by no more than a single site, then the holes are immobile
in more than 90% of the cloud. Any disorder in the poten-
tial further increases this fraction. Mobile holes can also be
modeled (for example, using the tensor-network approaches
in Refs. [1,18]), but given the small region they are contained
in, they should have a small impact on the experiment.

It is simple to add immobile holes to the spin model. The
empty sites act as barriers, breaking the spin chain into disjoint
segments whose dynamics are independent. We choose to
model the hole density as uniform. Calculating the experi-
mental hole distribution is challenging, as it is sensitive to the
details of how the atoms are loaded into the optical lattice.
Gross features should be captured by a uniform distribution.

The experimentalists estimate that p ∼ 5%−10% of the
sites are empty [1]. At such small hole densities, we find
that the contrast decays exponentially with a time constant
τ (Q) ∝ Q−α for α ∼ 1, which agrees with the experimental
observations. We have quantitative agreement if we take p =
5%.

At large hole density (p � 35%) we find a distinct dynam-
ical regime which has not yet been experimentally observed.
We argue that large hole densities stabilize the helix, prevent-
ing its decay. In this regime we instead observe persistent
oscillations of the contrast about a nonzero average.

Our treatment is exact, but it relies upon special properties
of the XX model. It does not readily generalize to the case
where Jz �= 0. Thus, we also develop a more general matrix-
product-state approach [19] for calculating quantum dynamics
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in the presence of a random collection of static holes. To
perform the average over the distribution of empty sites we
borrow a strategy from studies of thermal systems [20,21]: we
introduce a set of ancillary spins which are entangled with
our physical spins. Tracing over the ancillary spins yields
a mixed density matrix for the physical state, correspond-
ing to an average over all disorder realizations. We use the
time-dependent variational principle algorithm [22,23] to time
evolve this purified density matrix. We use our previous mod-
eling to validate this numerical technique but reserve studies
of generic anisotropies for future work.

We emphasize that this study should not be interpreted as a
criticism of Ref. [1] or other quantum simulators. Rather, we
are in the early days of quantum simulation and therefore must
explore and understand the impact of various imperfections.
Similarly, our goal is not to comprehensively model Ref. [1]
in its particular experimental details. Our goal is instead to
explore the effect of holes on spin dynamics in a tunable
manner, exposing the fundamental physics and clarifying why
theory and experiment may have disagreed. Confronting and
understanding such experiment-theory discrepancies are im-
perative for developing future generations of simulators.

The outline of this paper is as follows. In Sec. II, we
describe our model and the main observable. In Sec. III, we
show how to calculate the properties of this model by consid-
ering ensembles of noninteracting fermions. We present the
results of these calculations in Sec. IV. In Sec. V, we compare
our results to those of the experiment. We conclude with a
summary of our work in Sec. VI. Appendix A describes our
matrix-product-state approach to solving this problem, and
Appendix B describes a rough approximation which relates
the thermal fraction of atoms in the experiment to the hole
density used in our modeling.

II. SETUP

We take a 1D chain of sites, labeled by integers j, that can
be in one of three states: |↑〉 j , |↓〉 j , or |0〉 j , corresponding to
the presence of a spin-↑ particle, a spin-↓ particle, or an empty
site. These empty sites are treated as immobile, but the spins
interact via an XX Hamiltonian,

H = J
∑

j

[
Sx

j S
x
j+1 + Sy

j S
y
j+1

]
(1)

= J

2

∑
j

[
S+

j S−
j+1 + S−

j S+
j+1

]
. (2)

Here, Sμ = 1
2σμ (μ = x, y, z) are the standard spin-1/2 ma-

trices, with S± = Sx ± iSy. These can be extended into our
larger local Hilbert space by taking them to vanish when
acting on |0〉. We use units where h̄ = 1.

To model the experiment, we consider an ensemble of ini-
tial product states, each of which has the form |ψ〉 = ∏

j |ψ〉 j .
The wave function on site j is |ψ〉 j = |0〉 j with probabil-
ity p or |ψ〉 j = [Aj,↑ |↑〉 j + Aj,↓ |↓〉 j] ≡ |χ〉 j with probability
(1 − p). Here, Aj,↑ = sin(θ j/2), and Aj,↓ = cos(θ j/2), with
θ j = Q j + φ for some wave vector Q = 2π

λ
and phase φ. The

helix wavelength is λ. For our numerics we use φ = 0, and we
use λ = 8 whenever the pitch dependence is not needed.

FIG. 1. Example configuration of a spin helix with holes. The
spin helix has wavelength λ = 8, and 12 sites are shown. Solid red
arrows represent sites with spins; black dots represent the location
of immobile holes. Transparent red arrows represent the spins that
have been replaced by immobile holes; red dots represent starting
positions of spinful segments. The 12-site chain in this example has
been divided into spinful segments with lengths �1 = 5 and �2 = 4
and starting positions m1 = 2 and m2 = 8, separated by holes at sites
h1 = 1, h2 = 7, and h3 = 12. The wave function for this particu-
lar configuration is written as |ψ〉 = |0〉h1

|m1�1〉 |0〉h2
|m2�2〉 |0〉h3

=
|0〉1 |2, 5〉 |0〉7 |8, 4〉 |0〉12.

Our calculations are simplest when we choose λ to be
an integer. We expect that all physical quantities are smooth
functions of the wavelength, and hence, it is justifiable to limit
ourselves to considering integer λ.

Consider a realization where the holes are at locations
{hν}. These holes break the chain into disjoint segments.
At all times the wave function takes on a product form,
with each segment being uncorrelated with the others. We
write this product as |ψ〉 = ∏

ν |0〉hν
|�〉hν+1,hν+1−1 , where

|�〉hν+1,hν+1−1 is the wave function for all sites in between
the holes at hν and hν+1. We find it convenient to write
|�〉hν+1,hν+1−1 ≡ |mν�ν〉, where mν is the first site in the νth
spinful chain segment and �ν is the length of the segment (see
Fig. 1). Explicitly, mν = hν + 1, and mν + �ν − 1 = hν+1 −
1. That is, |2, 5〉 represents a wave function for spins 2, 3, 4,
5, and 6, while |8, 4〉 describes a wave function for spins 8, 9,
10, and 11, as illustrated in Fig. 1.

At time t = 0 (and suppressing ν), the wave function for
a spinful segment is equivalent to the initial spin helix state
on that segment, |m�〉 = ∏m+�−1

j=m [Aj,↑ |↑〉 j + Aj,↓ |↓〉 j] =∏m+�−1
j=m |χ〉 j . To quantify the dynamics of this helix, we cal-

culate the contrast, which is the primary diagnostic in the
experiments. The contrast is the spatial Fourier transform of
the z component of the spin texture,

CQ(t, p) = 4

L

L∑
j=1

eiQ j
〈
Sz

j (t, p)
〉
, (3)

where the bar represents an ensemble average and 〈 · 〉 is the
quantum-mechanical expectation value in a given realization.
Here, t is time, and as already introduced, p is the probability
that any given site contains a hole. The normalization of
CQ(t, p) is chosen so that CQ(0, p) = 1 − p, which is unity
when p = 0. To compare our results with the experiments, we
focus on two quantities of interest: (1) the time series of the
contrast [i.e., CQ(t, p) itself] and (2) the static background
contrast [i.e., the zero-frequency contribution to CQ(t, p),
which we denote as C̃Q(ω = 0, p) ≡ C̃Q(p)].

III. METHODS

The XX model with holes can be mapped onto noninteract-
ing fermions via a Jordan-Wigner transformation [3,16,24].
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In particular, if the site j is not occupied by a hole, S+
j =

e−iπ
∑

l< j nl a†
j , and Sz

j = n j − 1
2 , where a†

j is the fermion cre-

ation operator and n j = a†
j a j = (2Sz

j + 1)/2 is the fermion
number operator. Hence, in terms of the occupation number,

CQ(t, p) = 4

L

L∑
j=1

eiQ j〈n j (t, p)〉, (4)

C̃Q(p) = 4

L

L∑
j=1

eiQ j 〈̃n j (ω = 0, p)〉. (5)

Determining CQ(t, p) or C̃Q(p) thus reduces to deter-
mining 〈n j (t, p)〉 or its time average 〈̃n j (ω = 0, p)〉 =
limT →∞ T −1

∫ T
0 〈n j (t, p)〉 dt . We will first focus on calculat-

ing 〈n j (t, p)〉.
Consider a particular chain segment |m�〉; we suppress the

subscript ν. In this case, the bracketing holes are at sites m −
1 and m + �, and the fermionic Hamiltonian for the segment
m � j � m + � − 1 is

Hf = J

2

m+�−1∑
j=m

[a†
j a j+1 + a†

j+1a j]. (6)

The density of fermions on site j at time t within this segment
is

〈n j (t )〉 = 〈m�| a†
j (t )a j (t ) |m�〉 . (7)

For noninteracting fermions, the annihilation operator at time
t can be written in terms of an � × � matrix G as

a j (t ) =
∑

u

Gju(t )au(0), (8)

where the Green’s function G has elements

Gju(t ) =
�∑

μ=1

Gμ
ju(t ), (9)

Gμ
ju(t ) = e−iωμt (v∗

μ) j (vμ)u. (10)

Here, ωμ and vμ are the eigenvalues and eigenvectors of
the � × � tridiagonal matrix with zeros on the main diagonal
and J/2 on the others. These wave functions correspond to
discretized “particle-in-a-box” solutions and depend only on
where j and l sit inside the segment and not on the absolute
location of the segment. Relative to the hole at site m − 1, we
introduce j̄ = j − (m − 1) and ū = u − (m − 1). Thus, vμ is
a sinusoidal function which vanishes at j̄ = 0, � + 1,

(vμ) j̄ =
√

2

� + 1
sin

(
μπ

� + 1
j̄

)
. (11)

In terms of these wave functions we can then calculate

〈n j (t )〉 =
∑
uw

�∑
μ,ν=1

[
Gμ

u j (t )
]∗

Gν
jw(t ) 〈m�| a†

u(0)aw(0) |m�〉 .

(12)

The initial expectation value ρuw = 〈m�| a†
u(0)aw(0) |m�〉 is

given by [16]

ρuw = Aw,↑A∗
w,↓Au,↓A∗

u,↑

⎛
⎝ w−1∏

i=u+1

(|Ai,↓|2 − |Ai,↑|2)
⎞
⎠ (13)

for u < w, ρuw = ρwu for u > w, and ρuu = |Au,↑|2 for u =
w. Note that |m�〉 is a segment of length � surrounded on ei-
ther side by holes. The probability of finding a hole, followed
by � spins, followed by another hole is p × (1 − p)� × p =
p2(1 − p)�. Hence, summing over all such segments, the en-
semble average is accomplished by taking

〈n j (t, p)〉 =
∑
m� j

�+m> j

p2(1 − p)� 〈m�| a†
j (t )a j (t ) |m�〉 . (14)

Here, the limits on the sum ensure site j is contained within
|ml〉. Equation (4) is then readily calculated as

CQ(t, p) = 4

L

L∑
j=1

∑
m� j

�+m> j

p2(1 − p)�eiQ j 〈m�| a†
j (t )a j (t ) |m�〉 ,

(15)

with 〈nj (t )〉 = 〈m�| a†
j (t )a j (t ) |m�〉 coming from Eq. (12).

Equation (15) can be written in a more practical form with
three simplifications. First, the spin helix has periodicity in
λ. This means the sum over sites need not run over the full
chain length L. Second, the triple sum over m, j, and � can be
rearranged so that j is constrained by the choice of m and �.
Combining these two simplifications gives

CQ(t, p) = 4

λ

∞∑
�=1

λ∑
m=1

∑
m−1< j<m+�

p2(1 − p)�eiQ j

× 〈m�| a†
j (t )a j (t ) |m�〉 . (16)

Third, 〈nj (t )〉 = 〈m�| a†
j (t )a j (t ) |m�〉 can be substituted from

Eq. (12), with the Green’s functions having the known form
from Eq. (10). With this substitution, all summations neatly
separate into a telescoping set of expressions, which are
the key equations that are used to numerically calculate our
results:

CQ(t, p) =
∞∑

�=1

p2(1 − p)�C�
Q(t ), (17)

C�
Q(t ) =

�∑
μ,ν=1

ei(ωμ−ων )tC�
μν (Q), (18)

C�
μν (Q) = 4

λ

⎡
⎣λ−1∑

m=0

�∑
u,w=1

eiQmρu+m,w+m(vμ)∗u(vν )w

⎤
⎦

×
⎡
⎣ �∑

j=1

eiQ j (vμ)∗j (vν ) j

⎤
⎦. (19)

The summation over � in Eq. (17) performs the ensemble
average for a given hole probability p. The summation over
momenta μ and ν in Eq. (18) produces the time evolution.
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FIG. 2. Ensemble-averaged contrast CQ(t, p) for helix wavelength λ = 8 and phase φ = 0 in three distinct dynamical regimes. (a)
CQ(t, p = 0.05) calculated by mapping onto noninteracting fermions using a Jordan-Wigner transformation (solid red line). It exhibits roughly
exponential decay at early times. The exact result in the absence of holes [16] is also displayed (dashed black line), exhibiting power-law
behavior. (b) CQ(t, p = 0.60) calculated using the Jordan-Wigner (JW) method described in the main text (solid red line) as well as the
numerical matrix-product-state (MPS) method described in Appendix A (blue circles). In this regime one sees persistent oscillations. The
dotted black line shows C̃Q(p = 0.6).

The moments C�
μν (Q) in Eq. (19) contain all information about

the spin helix. It is the only sum involving the site indices. The
sum over j can be performed analytically by writing the sinu-
soidal wave functions in terms of complex exponentials and
evaluating the resulting geometric series. Thus, tabulating the
C�

Q’s for a single t takes O(λ�4) operations. These coefficients
are independent of p and then can be summed in Eq. (17) to
arrive at the time-dependent contrast for arbitrary p.

The static background contrast C̃Q(p) is readily calculated
from these expressions. Equation (18) controls the time evolu-
tion of the spin helix. The particle-in-a-box spectrum {ωμ} is
nondegenerate for any choice of �. Hence, the zero-frequency
contribution comes only from those terms in Eq. (18) for
which μ = ν:

C̃Q(p) =
∞∑

�=1

p2(1 − p)�C�
Q(ω = 0), (20)

C�
Q(ω = 0) =

�∑
μ=1

C�
μμ(Q). (21)

These can be efficiently calculated.
The probability that a spin is in a segment longer than �max

sites is

P�>�max = (1 − p)�max+1(1 + p�max). (22)

To numerically evaluate Eq. (17) we introduce a cutoff �max =
300 such that P�>�max � 10−3 for the smallest p = 0.03 that we
consider. This �max is larger than the experimental system size
of ∼40 sites. We use this larger cutoff to be able to model
smaller values of p. To prove Eq. (22), we note that there are
� possible segments of length � that can contain a given spin.
Such segments occur with probability p2(1 − p)�, and hence,
P�>�max = ∑∞

�=�max+1 �p2(1 − p)�, which evaluates to Eq. (22).
Although we assume an integer λ, this calculation can

readily be extended to rational wavelength λ = r/q. The pri-
mary change would be that the sum over m in Eq. (16)
would instead run from 1 to (q × λ). An irrational λ can be
modeled as the limit of a series of rational approximants. As
already argued, we expect the experimental observables to be
smooth functions of λ, and the results with integer λ should be
representative.

IV. RESULTS

Figure 2 shows the ensemble-averaged contrast CQ(t, p)
for λ = 8, φ = 0, and three different choices of the hole
probability: p = 0 and p = 0.05 in Fig. 2(a) and p = 0.60 in
Fig. 2(b). These parameters illustrate the three regimes that we
observe: (1) In the absence of holes, p = 0, the contrast oscil-
lates with an envelope that falls off as a power law, C(t ) ∼
t−1/2. At long times C(t ) approaches zero. (2) At small but
nonzero p, we initially see an exponential-like envelope (until
t ≈ 50h̄/J for p = 0.05), followed by weak but long-lived
oscillations about a nonzero mean. This is the regime most
relevant to experiments. (3) At large p we see large aperiodic
oscillations about a nonzero mean. In Fig. 2(b), we also show
the results of our numerical matrix-product-state calculation
(described in Appendix A). They are indistinguishable from
our Jordan-Wigner approach.

In the context of Eqs. (17)–(19), the exponential-like de-
cay in Fig. 2(a) can be understood from the segment-length
dependence of the fermion spectrum in the low-p regime.
Each segment length � contributes a different set of fre-
quencies and hence a different set of phase factors in the
time evolution, Eq. (18), leading to dephasing. At low p,
the segment length distribution is quite broad, producing a
decay whose time constant will grow with decreasing p (an
observation that will be discussed later on in this section). At
large p most segments are very short, resulting instead in only
a few discrete frequencies. These are incommensurate with
one another, leading to persistent quasiperiodic oscillations.
The long-time behavior at small p is similar; there are just
more discrete frequencies involved, and hence, the oscillations
are weaker.

Perhaps the most notable feature in these graphs is the
long-time nonzero background contrast C̃Q(p). This is best
understood by noting that the net spin polarization is con-
served in any given segment: a segment which initially has
a large total 〈Sz〉 will always have a large net polarization;
a segment with small total 〈Sz〉 will always have a small
net polarization. Since all segments are separated by holes
and cannot equilibrate with each other, some memory of the
spatial spin patterns persists for all times. We expect this
background to tend to zero as p → 0 (where equilibration
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FIG. 3. Static background contrast C̃Q(p) (blue circles, left axis)
as a function of hole probability p for helix wavelength λ = 8 and
phase φ = 0. C̃Q(p) normalized by the initial contrast CQ(0, p) =
1 − p is also shown (red triangles, right axis). The data points at p =
0 are known from previous work [16].

occurs across large portions of the chain) and as p → 1 (where
most of the initial polarization is lost to holes).

This static background contrast C̃Q(p) is shown in
Fig. 3 as a function of p. Indeed, the background con-
trast tends to zero as p → 0 and p → 1. We also show
the ratio of the static background contrast to the initial
contrast, CQ(0, p) = 1 − p, corresponding to the fraction
of the initial contrast that remains at long times. This
normalized contrast is a monotonically increasing function
of p.

For p � 0.35 we observe a notable separation between a
rapidly decaying envelope at short times and aperiodic os-
cillations at long times. For larger p the decay time is so
short that one cannot reliably make such a separation. To
extract the decay rate at small p (� 0.2), we fit the enve-
lope of the contrast versus time curves to a function of the
form

Cenv
Q (t, p) = C̃Q(p) + At−1/2e−�t . (23)

We shift by C̃Q(p) to account for the background contrast. The
factor of t−1/2 is included so that the envelope has the correct
functional form when p = 0. For λ = 8, we empirically find
C̃Q(p) ≈ p for small p (see Fig. 3). To find the optimal A
and �, we perform a least-squares fit for 0 < t � 40h̄/J ,
which excludes any of the long-time persistent oscillations for
p ∈ [0.03, 0.09]. The resulting decay rate � as a function of
p is shown in Fig. 4. When p is finite, the decay rate � is
non-negligible, corresponding to an exponential decay (with
logarithmic corrections). As p → 0, however, � → 0, indicat-

FIG. 4. Exponential decay rate � from Eq. (23), determined by
fitting the maxima of the scaled-and-shifted contrast [CQ(t, p) −
C̃Q(p)]

√
t for various hole probabilities p. � → 0 as p → 0 is in-

dicative of the evolution from exponential decay at nonzero p to
power-law decay at p = 0.

ing a diverging time constant with decreasing p. Ultimately,
an exponential decay at small p gives way to a power-law
decay as p → 0. This offers one possible resolution to the
discrepancy between earlier hole-free calculations and the
experiments.

V. COMPARISON TO EXPERIMENT
AND PRIOR MODELING

By modifying their loading procedure, Jepsen et al. [1]
were able to increase their hole density and experimentally
study some of its impact. They analyzed the time series of the
contrast, fitting it to the empirical form

Cemp
Q (t ) = [a0 + b0 cos(ωt )]e−t/τ + c0. (24)

Their fits used data with time between 0 and 20h̄/J at large
Q and between 0 and 30h̄/J at small Q. They found that in
the XX limit the oscillation period of the contrast and the
decay time only weakly depended on p, with the decay time
decreasing slightly as p increased.

On the other hand, the normalized background contrast
c0 increased monotonically with hole concentrations over the
range that they explored. For all p they found that the contrast
decayed exponentially to its background value.

As in our model, the normalized experimental background
contrast increased with hole probability, but a quantitative
comparison is challenging as they do not have a direct mea-
sure of the hole density. In Appendix B we use entropy
arguments to model the experimental hole density and make
some comparisons.

As already discussed in Sec. IV, at larger hole densities
our model displays persistent quasiperiodic oscillations in
the contrast. The experiments do not see these oscillations.
Instead, their data are well described by Eq. (24), with perhaps
an additional long-time drift. Clearly, additional physics is
needed to explain these large p results. In the experiment, the
harmonic trap leads to an inhomogeneous hole distribution.
There are also mobile holes in the central region of the trap.
Both of these effects are potential sources of the discrepancy.
Nonetheless, it appears that static holes play an important role
in the experiment, especially at low hole densities.

In Ref. [1], the experimentalists also made comparisons to
numerical simulations of the bosonic t-J model with finite
hole concentrations. Their simulations did not, however, in-
clude the harmonic trap, and hence, their holes were mobile
throughout rather than fixed. Thus, their model was very dif-
ferent from ours. In the XX limit, those simulations showed
an exponential decay of the contrast. Crucially, however, they
found that the contrast vanished at long times—that is, the
simulations had C̃Q(p) = 0. It therefore seems likely that im-
mobile holes are not simply important but even necessary for
producing the finite background contrast (see Sec. IV for a
physical argument). Indeed, the authors of Ref. [1] also argued
that immobile holes were the source of the finite background
contrast.

In the experiment a central role was played by the pitch
dependence of the decay time τ (Q), as they used its behavior
(particularly its power-law scaling τ ∼ Q−α) to distinguish
between various transport regimes. To compare our results
with theirs, we use their fitting function [Eq. (24)] for the
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FIG. 5. Decay time τ as a function of helix wave vector Q at
p = 0.05 (red circles), using the same fitting function [Eq. (24)] for
the contrast as Ref. [1]. The straight line represents the least-squares
fit of our calculated τ (Q), with the decay time satisfying τ ∝ Q−α

for α = 1.00(5). The black stars are experimental data points from
Ref. [1]. Inset: decay exponent α as a function of p using the same
fitting procedure.

contrast, extracting the constants a0, b0, c0, and τ for λ =
2π/Q = 4, 8, 12, 16 and p ∈ [0.03, 0.10]. We fit the data
from time t = 0 to the time at which quasiperiodic oscillations
begin, which ranges from as small as t ≈ 20h̄/J to as large as
t ≈ 80h̄/J , depending on λ and p. In this manner we fit only
the regime of exponential decay. Figure 5 shows the resulting
best-fit decay time τ as a function of the wave vector Q on a
log-log plot at p = 0.05. The best fit describes a straight line,
and from it we conclude that τ (Q) ∝ Q−α , with α = 1.00(5)
when p = 0.05. This quantitatively agrees with the exponent
measured by the experimentalists. As seen in the inset, our
exponent α decreases with increasing hole density, going as
low as α = 0.84(6) at p = 0.10.

Figure 5 also shows the experimental data. Our predicted
decay constants are roughly 20% greater than what was
measured in the experiment, but as already emphasized, the
exponents agree. This small discrepancy could be due to de-
tails in the fitting procedure (for example, the range of times
used) or physics which was not included in our model (mobile
holes, inhomogeneous hole distribution, etc.).

We caution that the residuals of our fit to Eq. (24) are
small only at very short times, including no more than two
oscillations. Consequently, the time constant τ extracted from
this fit is not the inverse of the decay rate � extracted from the
envelope, which was plotted in Fig. 4.

VI. CONCLUSION

We studied the effect of immobile holes on the quantum
dynamics of the XX spin helix, revealing three dynamical
regimes as a function of hole probability p. For p = 0, the
contrast of the spin helix decays to zero as a power law;
for small p, the contrast decays exponentially to a finite
background value, about which it exhibits weak oscillations;
and for large p, the contrast exhibits large quasiperiodic os-
cillations about a finite background. The experiment largely
operated in the regime of small p. We were able to explain a
number of their observations, including the finite background
contrast and exponential decay of the contrast. We found

quantitative agreement with the pitch dependence of their
exponential decay constant. As such, a small density of im-
mobile holes is sufficient for explaining the main experimental
mysteries.

We caution, however, that in our attempt to produce the
simplest and most intuitive picture we have neglected a
number of experimental details. The experiments were per-
formed on an array of finite-length spin chains, which may
not be identical: they contain different numbers of particles,
have different hole distributions, and, due to field gradients,
may experience slightly different Hamiltonians. The particles
in each spin chain feel a harmonic potential. This localizes the
majority of the holes, but it also leads to an inhomogeneous
hole distribution, with more holes in the wings. Our modeling
also does not take into account the mobile holes which are
found in the center of the trap. All of these effects could be
included in finite-chain t-J model calculations at the cost of
making the results harder to interpret. One could also envision
modifications of the experiment which would eliminate some
of these complications. For example, adding a large field
gradient could ensure that all holes are immobile [25].

Our work serves as a warning for transport studies using
analog quantum simulators [26,27]. The spin dynamics for
hole probabilities as small as 5% already significantly differed
from the true spin dynamics of the XX spin helix in the
absence of holes [see Fig. 2(a)]. In the experiment, this density
of holes on a chain of length L = 40 corresponds to only
two holes. Furthermore, our modeling suggests that the ex-
perimental timescales may be too short to reliably distinguish
between an exponential and power-law decay.

On a positive note, our study illustrates the richness of the
physics which is being explored by the current generation of
quantum simulators. The experiments in Ref. [1] have taught
us much about the dynamical behavior of spin chains and the
way that cold atoms can be used to explore that physics.
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APPENDIX A: MATRIX-PRODUCT-STATE METHOD
FOR HOLE ENSEMBLES

The properties of an ensemble of quantum states are cap-
tured by its density matrix,

ρS =
r∑

α=1

pα |α〉S 〈α|S . (A1)

Here, the probability of finding state |α〉S is pα . Note that
the set of {|α〉S} need not be orthogonal (although in most
formulations it is). It is often helpful to encode this density
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matrix in a purified wave function [20,21], defined by

|ψ〉 =
r∑

α=1

sα |α〉S |α〉T . (A2)

Here, {|α〉T } is a set of orthonormal states in some unphysical
auxiliary space T , and |sα|2 = pα . The original density matrix
can then be recovered by performing a partial trace,

ρS = TrT |ψ〉 〈ψ | . (A3)

The construction of the purified wave function |ψ〉 is clearly
not unique, as one has a choice of the decomposition in
Eq. (A1), the auxiliary space T , the vectors |α〉T , and the
phases of the coefficients sα .

Such purified wave functions are routinely used in
matrix-product-state (MPS) simulations of thermal ensembles
[20,21]. Here, we use this approach to model the dynamics
of an ensemble of spin chains with a random distribution of
immobile holes. As shown in Fig. 2(b), the resulting MPS sim-
ulation agrees with our Jordan-Wigner approach to modeling
the experiment. It is more numerically expensive but, unlike
our Jordan-Wigner approach, can be extended beyond the XX
limit.

We describe our purified state as an alternating array of
physical and auxiliary sites. As explained in the main text, the
physical site at integer location j can be in one of three states:
|↑〉 j , |↓〉 j , or |0〉 j . The auxiliary sites at half-integer positions
can be in one of two states: |0〉 j+1/2 or |1〉 j+1/2. Our initial
ensemble can then be encoded in a purified wave function,

|ψ〉 =
∑

s

∏
j

(1 − p)s j/2 p(1−s j )/2

× [(1 − s j ) |0〉 j |0〉 j+1/2 + s j |χ〉 j |1〉 j+1/2], (A4)

where s j = 0, 1. The probability of finding a hole on a given
site is p, and |χ〉 j is given in Sec. II. One can readily verify
that

ρ(t = 0, p) = ρS = TrT |ψ〉 〈ψ | (A5)

=
∏

j

[
p |0〉 j 〈0| j + (1 − p) |χ〉 j 〈χ | j

]
, (A6)

which is the density matrix describing our spin helix after
randomly adding immobile holes.

We time evolve Eq. (A6) by using the time-dependent
variational principle algorithm [22,23] as implemented in the
ITENSOR library [28]. We evolve the system from t = 0 to t =
128h̄/J with time steps of size �t = 0.8h̄/J . The Hamiltonian
acts on only the physical space. At every time step, we first
perform a global subspace expansion [22], using two Krylov
states: that is, we construct a MPS representation of both
|ψ (t )〉 and H |ψ (t )〉 and use the resulting tensors to represent
|ψ (t + δt )〉. For the time evolution using the time-dependent
variational principle, we use a singular-value-decomposition
cutoff of 10−7 and a maximum bond dimension of 600, with
one sweep being performed at every time step. We use a larger
cutoff, 10−3, in our global subspace expansion.

FIG. 6. Approximate relationship between hole density p of the
Mott insulator and the thermal fraction Nth/N of the harmonically
trapped gas from which it is loaded. This crude estimate comes from
equating the entropies in Eqs. (B1) and (B2).

APPENDIX B: MODELING THE EXPERIMENTAL
HOLE DENSITY

In Ref. [1], the experimentalists loaded a three-dimensional
optical lattice (consisting of a two-dimensional array of one-
dimensional chains) from a harmonically trapped gas. They
controlled the density of holes by adjusting the temperature
of the initial cloud. A higher-temperature cloud has more
entropy, resulting in spin chains with more holes. Here, we
estimate the hole density by simply equating the entropy of the
initial cloud to the configurational entropy from a distribution
of holes in a perfect Mott insulator.

Of course, this is at best a crude approximation. The
loading process will undoubtedly lead to a nonuniform hole
density. Further, these entropy arguments neglect processes
which could either increase or decrease the entropy. Nona-
diabatic transitions during the loading process will increase
the entropy. Conversely, during loading entropy tends to be
pushed from the central Mott-insulating region into the super-
fluid wings. This leads to an effective entropy reduction in the
central region. It is also worth noting that the loading process
generically leads to a nonequilibrium state. Nevertheless, our
approach serves as a first-order approximation for estimating
the hole density in the experiment.

The grand-canonical free energy of a three-dimensional
harmonically trapped Bose condensate is � = −kBT (kBT /

h̄ω)3ζ (4), where ζ ( j) = ∑∞
s=1 s− j is the Riemann zeta func-

tion [29]. The entropy is S = −∂�/∂T = 4�/T . The number
of noncondensed atoms is Nth = (kBT/h̄ω)3ζ (3), and hence,
the entropy per particle is(

S

N

)
gas

= 4kB
ζ (4)

ζ (3)

Nth

N
(B1)

for N particles.
On the other hand, for a random distribution of holes, the

entropy is S = −kBNs[p ln p + (1 − p) ln(1 − p)]. Here, Ns is
the number of sites, and p is the probability that a hole is found
on any site. The number of particles is N = Ns(1 − p), and
hence, the entropy per particle is(

S

N

)
lattice

= −kB

(
p

1 − p
ln p + ln(1 − p)

)
. (B2)

Equating the two entropies, Eqs. (B1) and (B2), relates the
thermal fraction Nth/N of the harmonically trapped gas to the
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FIG. 7. Time evolution of the normalized contrast
CQ(t, p)/CQ(0, p) for a chain with λ = 10, φ = 0, and
p = 0.04, 0.10, 0.24, 0.38, 0.48, and 0.56, which have the same
entropy as a harmonically trapped condensate with thermal fraction
Nth/N = 0.05, 0.1, 0.2, 0.3, 0.37, and 0.43.

hole density p in the Mott-insulating chains. The resulting
relation is illustrated in Fig. 6.

With this relation in hand, we show the time dependence
of the contrast for various values of p in Fig. 7, roughly
corresponding to the values of Nth/N used in the experiment.
Here, we use λ = 10 to allow comparison to the experimen-
tal studies with λ = 10.4 [1]. Despite notable quantitative
differences, this crude model appears to capture the general
trends seen in the equivalent plot in the experimental paper.
In particular, increasing p or Nth results in a larger normalized
contrast, with weaker oscillations.

Additionally, as shown in Fig. 8, we can use the rela-
tionship between p and Nth to compare the experimental

FIG. 8. Static background contrast C̃Q(p) normalized by the ini-
tial contrast CQ(0, p) = 1 − p for λ = 10 and φ = 0 (solid red line).
The black stars are experimental data points from Ref. [1] for λ =
10.4 and p = 0.04, 0.10, 0.24, 0.38, 0.48, and 0.56, which have the
same entropy as a harmonically trapped condensate with thermal
fraction Nth/N = 0.05, 0.1, 0.2, 0.3, 0.37, and 0.43.

background contrast for various values of Nth/N with our
calculated background contrast as a function of the corre-
sponding hole density p. Here, we again use λ = 10. It is
clear that for p > 0.05 our model significantly overestimates
the magnitude of the background contrast. It is difficult to
determine the extent to which the discrepancy is due to our
estimation of p, as opposed to physics that we did not include
in our model of the spin dynamics (mobile holes, the harmonic
trapping potential, field inhomogeneities, etc.).
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