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Exact results for heavy unitary Bose polarons
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We consider the problem of unitary Bose polarons, i.e., impurities interacting via a potential with infinite
scattering length with a bath of weakly interacting bosons. We provide an analytic expression for the energy of
a heavy impurity whose interaction potential has a range larger than the healing length of the bath. Furthermore,
we perform numerically exact diffusion Monte Carlo calculations and we demonstrate that the simple Gross-
Pitaevskii theory provides a remarkably accurate description of heavy unitary Bose polarons throughout the
whole experimentally relevant range of gas densities.
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I. INTRODUCTION

The study of dilute quantum impurities immersed in a bath
of identical bosons or fermions has been a topic of significant
interest over the past few years [1–5]. The main driver of
such efforts was the tremendous experimental progress in
ultracold atomic gases and atomically thin semiconductors
[6–23], where researchers learned how to control with great
precision the strength of the interaction between the dilute im-
purities and the bath, the temperature of the system, and even
change the mass or the quantum statistics of the impurities.
In particular, it is nowadays feasible to investigate theoret-
ically and experimentally the scenario of strong (“unitary”)
interactions in which the scattering length of the impurity-
bath two-body potential is tuned to infinity, and therefore the
physics becomes independent of it. If the number of remaining
relevant scales in the problem is small, then one anticipates
that the properties of the system can be described by univer-
sal combinations of those. What makes the unitary polaron
especially intriguing is that while the results are independent.
of the bath-impurity scattering length, the problem remains
nontrivial because of the strong interactions. In this scenario,
the physical intuition built on perturbation theory dramatically
fails, and one has to rely on numerical methods. An example
of particular interest is that of an impurity immersed into a
weakly interacting BEC, which is commonly referred to as
the Bose polaron problem [24–37]. Most of the recent theo-
retical studies assumed that adding a single impurity will not
significantly distort the bath density and therefore expanded
the problem around the translationally invariant ground state
of the interacting bosons in the absence of the impurity. How-
ever, even a single impurity can significantly affect the density
of a dilute bosonic bath (due to the large compressibility of the
latter), and indeed a true “orthogonality catastrophe” arises
when the bath becomes an ideal Bose gas [27,38,39]. As
such, the prediction of the energy of the polaron computed
starting from an unperturbed bath turns out to be incorrect, as
has been recently shown by using more advanced analytical
methods and performing Monte Carlo simulations [35,40,41].
A natural way to circumvent this issue is therefore to solve
the problem in real space by means of the Gross-Pitaevskii

equation (GPe), which self-consistently deforms the density
profile of the bath around the impurity, and in particular cap-
tures correctly the emergence of the orthogonality catastrophe
[39]. This approach has been particularly fruitful in the study
of one-dimensional (1D) Bose polarons with contact inter-
actions, where the problem becomes integrable and one can
even go beyond mean-field and account for quadratic fluctu-
ations, showing a good agreement with the quantum Monte
Carlo studies [42–44]. Similarly, in 3D, if the gas parameter
remains small everywhere, even in the vicinity of the impurity
where the bath density may be highest, then the mean-
field GP picture will provide an accurate description of the
Bose-polaron properties. Such mean-field studies have been
performed before, but the main emphasis was on the numer-
ics [27,34,36,39,45]. Quite remarkably, the GPe for a heavy
impurity with a finite range of the boson-impurity potential,
infinitesimally short range of the boson-boson potential, and
sufficiently low gas density may be solved analytically even
for strong interactions (at unitarity, and in its neighborhood),
as we have shown in Refs. [40,41]. While it is known that the
GPe correctly reproduces the properties of the heavy polarons
in the regime of weak boson-impurity interactions [26,39,41],
a recent Monte Carlo study in Ref. [35] argued that this ap-
proach should break down at unitarity. Their critique of the GP
approach is based on the statement that the number of particles
trapped within an impurity should be much larger than unity,
and together with the smallness of the gas parameter, this
should imply ab � rc, where ab is the boson-boson scatter-
ing length and rc is the characteristic size of the impurity
potential. The same condition was first derived in [46] for
the applicability of the GPe in the presence of impurity-bath
bound states. However, here we formally consider the unitary
case where the impurity-bath bound state is absent, so we
believe the above condition does not have to be satisfied. This
is confirmed by the Monte Carlo numerics that will be pre-
sented throughout this paper. Another claim of Ref. [35] is that
the energy of the polaron as a function of the gas parameter
has a universal form containing a logarithm. This prediction
differs from what was found in Refs. [40,41]. However the
model potentials used in Ref. [35] are not compatible with a
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GP treatment of the problem, so a direct comparison is not
possible. This prompted us to perform a separate Monte Carlo
study where we chose the boson-boson and boson-impurity
potentials in a way that allows us to study the problem using
the GPe and the Monte Carlo methods on equal footing, for
which such a comparison can be made. To test whether the
solution of the GPe correctly captures the behavior of the
unitary Bose polaron in 3D, we perform here an extensive
numerical study of the Bose polaron at unitarity using both
the GPe and the diffusion Monte Carlo (DMC) methods. In
particular, we study the effects of including a nonzero range
of the boson-boson interaction potential and the applicability
of the Born approximation to this potential, and we demon-
strate the remarkable accuracy of the simple GP approach. In
addition, we find an analytic solution of the problem based on
the local density approximation (LDA) which is valid when
the impurity-bath potential has a range larger than the healing
length of the bath, which is typically the case for ionic and
Rydberg impurities [47]. This paper is organized as follows.
In Sec. II we introduce the Hamiltonian of the system of
interest together with the model potentials that characterize
the boson-boson and boson-impurity interactions that are used
in our numerical simulations. Here we also discuss the role
of different length scales in the problem and show that at
unitary the local GPe is governed by a single dimensionless
parameter ε = rc/ξ , the ratio of the characteristic size of
the boson-impurity potential and healing length of the BEC.
In Sec. III we show that this local GPe can be analytically
solved in two distinct regimes. Solution in the regime ε � 1
has been previously discussed in Refs. [40,41], so we briefly
review its properties for later convenience. Additionally, we
provide a simple derivation of the solution in the regime
ε � 1 together with the corresponding expressions for the
energy of the polaron and the number of trapped particles
in the polaronic cloud. We also compare our results with the
phenomenological expression for the energy of the polaron
proposed in Ref. [36] and show that contrary to their predic-
tion, the energy of the polaron does not depend on the effective
range of the boson-impurity potential. Finally, we argue that
the effects of finite boson-boson range are typically small and
can be effectively incorporated into the above picture using
the first order perturbation theory within the generalized GPe.
For the Bose polaron at unitarity this produces a nonuniversal
small negative shift in energy. In Sec. IV we present our
numerical results based on local GPe, nonlocal GPe and the
DMC and show the consistency of the results across all three
methods. We also show that our analytical results are validated
by the numerical analysis. Section V presents our conclusions.
Finally, in the Appendices we discuss the applicability of the
Born approximation to the boson-boson potential and solve a
toy model of a square-well potential at weak coupling that
shows that unless ε � 1, the solution depends on various
details of the potential, so the properties of the polaron in
this regime are not universal. The details of the numerical
simulations are also presented there.

II. PROBLEM SETUP

We consider bosons of mass m at density n0 interacting
among themselves via a short-range potential Vbb.

Additionally, bosons interact with a single infinitely massive
(i.e. pinned) impurity via the potential U , which effectively
acts as an external field. The microscopic Hamiltonian
describing the Bose polaron problem reads

H = −
∑

i

�i

2m
+

∑
i< j

Vbb(xi − x j ) +
∑

i

U (xi − X), (1)

where xi represents the coordinates of the bosons, X denotes
the position of the impurity, and we have set h̄ = 1. To find
the ground-state energy of this Hamiltonian we follow various
strategies. On the one hand, we perform DMC simulations for
a fixed number of particles (typically, 100). Next to that, we
solve the problem at the mean-field level by means of the GPe,[

− �

2m
+ U (x) − μ +

∫
d3y Vbb(x − y)|ψ (y)|2

]
ψ (x) = 0,

(2)

where the particle density is now fixed by the chemical
potential μ, and without loss of generality we located the
impurity at the origin, X = 0. Solving the nonlocal GPe (2)
poses serious analytical and numerical challenges due to its
nonlinear integrodifferential nature. Choosing a potential
between bath particles like

Vbb(x − y) = λ

π3/2r3
b

e−|x−y|2/r2
b (3)

permits us to reduce Eq. (2) to a one-dimensional equation in
the radial direction, simplifying drastically the complexity
of its numerical solution [41]. The parameters of the above
potential are chosen in a such way that in the zero-range
limit, rb → 0, one formally recovers the usual local GPe,
introduced in Eq. (6) below. The s-wave scattering length ab of
this potential is determined by the solution of the zero-energy
scattering problem and depends on both the amplitude λ

and the range rb. In the first Born approximation, applicable
for ab � rb, the scattering length is directly proportional to
the amplitude of the Gaussian potential (3), ab = λm/(4π ).
The situation in which the potential range rb is of the order of
the scattering length ab is a delicate one and will be discussed
in detail below [see also Appendix A]. Let us now consider
the boson-impurity potential U (r). Various earlier numerical
studies focused on short-range interactions represented by
a contact pseudopotential. While this choice can be tackled
by the DMC method, it is still a very singular limit for the
nonlocal GPe (2), which suffers from a 1/r divergence at
the origin [34]. As a result, in the vicinity of the impurity the
gas parameter |ψ (x ∼ 0)|2a3

b grows indefinitely, leading to a
breakdown of the GPe description. Such a divergence can be
avoided by making the range of the impurity potential finite.
Then, the predictions of the GPe can be trusted provided that
the gas parameter remains small everywhere, including in the
vicinity of the impurity [40,41]. In the following, we model
the boson-impurity potential by a Pöschl-Teller potential of
range rc and amplitude tuned to unitarity:

U (r) = − 1

mr2
c cosh2(r/rc)

. (4)

At zero energy, the Schrödinger equation with this potential
has the simple analytic solution ψ (r) = tanh(r/rc). A
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deeper insight into the underlying physics can be gained by
examining the length scales inherent to the model: n−1/3

0 , ab,
rc, and rb, where n0 is the uniform density of the condensate
in the absence of the impurity. An additional simplification
arises when the boson-boson interactions are replaced by a
zero-range potential,

Vbb(x − y) = λ δ(x − y), (5)

with λ = 4πab/m. The choice of a contact interaction
potential yields the usual local GPe[

− �

2m
+ U − μ + λ|ψ (x)|2

]
ψ (x) = 0. (6)

The local version of the GPe is easier to handle numerically
and it also turns out to be analytically tractable in several
regimes that we discuss below. We show below that replacing
Vbb by Eq. (5) only mildly affects the properties of the Bose
polarons that we study. The only relevant length scales left in
the microscopic Hamiltonian are n0, ab, and rc. Also, it can
be anticipated that the healing length ξ becomes an important
parameter of the system. Physically, such a length corresponds
to the energy scale fixed by the chemical potential, which
in a weakly interacting Bose gas is given by μ = 1/(2mξ 2).
Scaling the condensate function by its long-range asymptotic
value (φ = ψ/

√
n0), using rc as the unit of distance

(y = r/rc), and introducing the dimensionless parameter
ε = rc/ξ , the local GPe can be brought to the compact form:

−∇2φ + 2mr2
cU (y)φ = ε2(φ − φ3). (7)

For the unitary boson-impurity potential introduced in Eq. (4),
the left-hand-side of Eq. (7) becomes independent of mr2

c .
Consequently, the only dimensionless parameter that governs
the local GP problem is ε.

III. ANALYTICALLY TRACTABLE REGIMES
OF THE LOCAL GPE AT UNITARITY

Remarkably, Eq. (7) can be analytically solved in two
distinct regimes. Previously we have found the solution in the
regime of low gas densities, which for a fixed ab corresponds
to the condition ε � 1. Here we also report the solution to
the problem in the opposite regime, ε � 1. In this section we
first review the main features of the analytical solution at
low gas density we derived in Refs. [40,41], then we present
the solution at high gas density, and finally we consider the
importance of including in the treatment the range of the
potential between bath atoms

A. Analytical solution of the unitary polaron at low gas densities

In the case where ε � 1 the solution at the location of
the impurity scales as φ(0) ∼ 1/ε2/3. For simplicity, we first
consider impurity-bath potentials U that vanish identically
beyond some range rc. The solution of the local GPe (7) for
the case of a weak potential (|a|3 � ξ 2rc) reads:

φ(r) ≈
⎧⎨
⎩

rc
r

(
1 − a

rc

)
v
(

r
rc

)
, r < rc,

1 − a
r e−

√
2r
ξ , r > rc.

(8)

Here v is the solution to the zero energy Schrödinger equa-
tion in the potential U (y) with boundary conditions v(0) = 0
and v(1) = 1, and a is the corresponding scattering length.
When the potential U (y) is tuned to unitarity, the result be-
comes

φ(r) ≈
⎧⎨
⎩

ξ 2/3R1/3

r v
(

r
rc

)
, r < rc,

1 + ξ 2/3R1/3

r e−
√

2r
ξ , r > rc.

(9)

The length R is defined as R−1 = ∫ ∞
0 dy v(y)4

y2 , and generally
R ∼ rc. The energy of the polaron at unitarity reads:

E = −πn0ξ

m

(
3δ

1
3 − 2

√
2δ

2
3 + 4δ ln δ + · · · ), (10)

where δ = R/ξ . Correspondingly, the number of bath particles
in the cloud of a unitary polaron is

N = 4πn0ξ
3

(
δ1/3 − 5

3
√

2
δ2/3 + 2δ ln δ + · · ·

)
. (11)

The above results for the energy and the number of par-
ticles are also applicable to the short ranged potential that
do not vanish identically beyond rc. In order to compute R
for such potentials, one has to use the boundary conditions
v(0) = 0 and v(∞) = 1 for the corresponding zero energy
Schrödinger equation. For the unitary Pöschl-Teller potential
we have v(y) = tanh(y), and R is almost equal to the potential
range, R ≈ 1.049rc. This gives δ ≈ 1.049 ε, and so the above
expansion works in the regime where δ � 1. In the limit of
small bath densities we can retain only the leading terms in
these expressions and obtain:

E = −3πn0ξδ
1
3

m
= −3(πn0)2/3

2m

(
R

ab

)1/3

, (12)

N = 4πn0ξ
3δ1/3 = R1/3

4
(
πn0a4

b

)1/3 . (13)

The above results hold provided that both δ and the value
of the local gas parameter at the position of the impurity
n0a3

b/δ
4/3 are much smaller than one. This can be conveniently

expressed as:

(
n0a3

b

)1/4 � R

ab
� 1√

n0a3
b

. (14)

When R violates the rightmost condition, one has to solve the
GPe either numerically or using the local density approxima-
tion as discussed in the next section.

B. Local density approximation

An analytic solution for Eq. (7) may also be found in the
opposite limit ε � 1 (while n0a3

b still remains small), making
use of the LDA. The leading terms in this equation are those
on its right-hand side (i.e., the ones multiplied by ε2). This
tells us that as a first approximation φ ≈ 1. We seek a solution
of the form φ = 1 + u1/ε

2 + u2/ε
4 · · · . For convenience, we

write 2mr2
cU (y) = U (y). At order ε0 we get U (y) = −2u1,

from which we obtain u1 = −U (y)/2. This produces φ =
1 − U (y)/(2ε2). The next equation is at the 1/ε2 order and it
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TABLE I. Effective ranges and LDA polaron energies for four different unitary potentials. The LDA may not be applied reliably to the
square well, because the latter has a sharp discontinuity at y = 1; as a consequence, for the square well we provide only the leading term in the
energy.

Potential U (y) at unitarity reff/rc LDA energy (in units of 2πn0rc/m)

Pöschl-Teller − 2
cosh2 y

2 −
[

π2

6 + (π2−6)
9ε2 − 2π2

45ε4

]
Gaussian −2.65e−y2

1.44 −(
1.19 + 1.13

2ε2 − 3.39
4ε4

)
Exponential −1.45e−y 3.53 −(

2.89 + 0.523
2ε2 − 0.523

4ε4

)
Shape resonant −3.73e−y2 + 0.707e−y 0.0336 −(

0.241 + 1.47
2ε2 − 5.12

4ε4

)
Square well −(

π

2

)2

(1 − y) 1 − π2

12

defines u2. However, as will be shown below, the term u2 con-
tributes at order higher than 1/ε4, so we do not need it here.
Indeed, if we plug the solution φ = 1 + u1/ε

2 + u2/ε
4 · · ·

into the energy functional, then we obtain

E = n0rc

2m

∫
d3y

[
(∇φ)2 + (U (y) − ε2)φ2 + ε2

2
φ4 + ε2

2

]
,

Then the term at order 1/ε4 that involves u2 vanishes identi-
cally, leaving only (∇u1)2 at 1/ε4 order. Plugging u1 = −U (y)

2
into the remaining terms produces the final result:

E = n0rc

2m

∫
d3y

[
U (y) − U (y)2

2ε2
+ (∇U (y))2

4ε4

]
. (15)

The first term is the standard LDA result and the other terms
are the corrections in powers of 1/ε2 on top of it. Note that
this result is valid both for weak potentials and for potentials
tuned to unitarity. We further expect this expression to hold for
sufficiently smooth potentials, so that the gradient term can be
treated perturbatively. We can compute the number of parti-
cles in the polaronic cloud using the relation N = −∂E/∂μ,
where the expression for energy should be first expressed in
terms of μ. This gives:

N = − rc

8πab

∫
d3y

[
U (y) − (∇U (y))2

4ε4

]
. (16)

For the Pöschl-Teller potential given in Eq. (4) we have
U (y) = −2/cosh2(y). This leads to

EPT = −πn0rc

m

[
π2

3
+ 2(π2 − 6)

9ε2
− 4π2

45ε4

]
, (17)

NPT = π2

12

rc

ab
. (18)

In the intermediate regime where ε ∼ 1, instead, we do not
expect that there exists an analytic and universal (depending
on a single parameter that describes the boson-impurity poten-
tial) solution to the problem. For example, we solved the GPe
analytically for the case of a shallow square-well potential for
arbitrary values of ε and we showed that unless ε � 1 the
solution is sensitive to details of the potential. The details of
the derivation are presented in the Appendix B. As an illus-
tration of the above analysis, in Table I we consider various
unitary potentials U (y), and for each of those we compute the
effective range reff and the LDA expression for the polaron
energy. The energies obtained via the GP equation, its LDA
approximation, and QMC are shown in Fig. 1. The results

of the local GPe are obtained using rb = 0, while in DMC
calculations we use rb = rc = R. To conclude this section,
we compare our results with the ones reported by Schmidt
and Enss in Ref. [36]. According to them, in the regime where
reff � 0.2ξ the energy of a unitary and infinitely massive po-
laron should be given by

ESE = − n0

2m
[5.2(2)ξ + 9.0(1)reff]. (19)

When reff � ξ , the second term in the expression is dominant,
giving E ∝ reff. At the same time, generally reff ∼ rc and
in the regime where rc � ξ we have shown that the LDA
becomes applicable. This leads us to conclude that the energy
should not scale with reff, but rather with rc [see Eq. (15)].
Indeed, in Fig. 1 we show that in the regime of large bath den-
sity (such that ε > 1) the numerical solution of the GPe agrees
better with the LDA result than with Eq. (19). The discrepancy
between the two approaches becomes particularly evident for
so-called shape-resonant potentials, which are fine-tuned so

FIG. 1. Polaron energy as a function of the gas parameter for
the ratio between the bath scattering length and the range of the
potential equal to ab/R = 0.1. Dashed lines represent the numerical
solution of the local GPe (6). Symbols show DMC data points. Solid
lines at high density indicate the first term of the LDA prediction
as summarized in Table I. Dotted lines depict the prediction from
Eq. (19), taken from Ref. [36].
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FIG. 2. Scattering length, effective range and coefficient g2 for
the repulsive Gaussian potential defined in Eq. (3).

that their effective range reff vanishes. In this case Eq. (19)
clearly fails, while the LDA result remains valid. For example,
considering the shape-resonant potential given in the last line
of Table I, the energy obtained from the numerical solution of
the GPe when ε = 3 agrees with the LDA result within 1%.

C. Accounting for a nonzero range in Vbb

via the generalized GPe

To conclude our analytical considerations, we consider the
effect of a nonzero range rb in Vbb. In our previous work [41]
we demonstrated that as long as rb � rc, the solution of the
nonlocal GPe with ε � 1 still scales as 1/ε2/3 close to the im-
purity. As such, we expect that the analytical results obtained
above using the local GPe will have a weak dependence on
rb in the experimentally realistic scenario where ab ∼ rc ∼ rb.
Another way to prove that the effects of a finite range between
bath bosons are mild is to consider the generalized GPe in-
troduced in Ref. [48], which takes into account explicitly a
nonzero effective range reff of the boson-boson potential Vbb:{

− �

2m
+ U − μ + λ[|ψ (x)|2 + g2�|ψ (x)|2]

}
ψ (x) = 0,

(20)

with g2 = ( a2
b

3 − abreff
2 ). For the case of a repulsive Gaussian

potential, the coefficient g2 turns out to be always positive and
small, see Fig. 2. A similar behavior is obtained also for a
repulsive square well. As such, the effect of this correction can
be safely estimated by first order perturbation theory. Calling
ψ0 the solution of Eq. (20) with g2 = 0, the shift in energy due
to the new term is

�E = λ g2

2

∫
d3x |ψ0(x)|2∇2|ψ0(x)|2 (21)

A numerical evaluation of the latter expression proves that it
is always negative, across the whole range of parameters ex-
plored, so this correction consistently lowers the total energy.
Our numerical study also shows that the ratio �E/E is always
small, typically of the order of a few percent, and compatible
with the downshift we found by means of the nonlocal GPe.
In the following, we will show that this is precisely the case
in the analytically solvable limit δ � 1.

Analytical results at low gas density

Let us focus on the potentials considered in the main
text: unitary impurity-bath Pöschl-Teller potential, for which

FIG. 3. Function f (δ) defined in Eq. (25). The dotted line shows
its series expansion f (δ) = 0.008 + 0.07δ2/3.

v(r) = tanh(r) and R ≈ rc, and a Gaussian repulsive potential
between bath bosons, with ranges rb = rc. The PT potential
does not vanish identically beyond some range. However, it
goes to zero sufficiently fast beyond rc, so that for example
U (r = 3rc) ≈ −0.01/(mr2

c ). As such, to a very good approx-
imation in the limit δ = R/ξ � 1 the wave function in such
potential is given by

φ(r) ≈
⎧⎨
⎩

ξ 2/3R1/3

r v
(

r
rc

)
, r < 3rc,

1 + ξ 2/3R1/3

r e−
√

2r
ξ , r > 3rc.

(22)

To proceed, we write �E = �Ein + �Eout, where each term
corresponds to the contribution to the energy shift coming
from the regions r < 3rc and r > 3rc. In the neighborhood of
the impurity, r < 3rc, the wave function (22) decays rapidly
(i.e., it has a large and negative curvature), and a numerical
evaluation of the corresponding contribution �Ein gives

�Ein = −1.58
n0ξ

m

g2

r2
c

ξ

rc
δ4/3, (23)

which is always negative. Its importance with respect to the
unperturbed energy (10) is

�Ein

|E | ≈ −0.167
g2

r2
c

R

rc
= −0.175

g2

r2
c

. (24)

Taking the maximum value of g2 shown in Fig. 2, one sees
that �Ein can be at most 9% of the local-GPE energy E .
On the contrary, in the Yukawa tail away from the impurity
the wavefunction has a small and positive curvature, and the
explicit calculation of the integral in Eq. (21) for r > 3rc

shows that �Eout is positive and very small:

�Eout

|E | = g2

ξ 2δ2
f (δ) ≈ g2

r2
c

f (δ), (25)

where f (δ) is the function shown in Fig. 3. For small δ we
have f (δ) ≈ 0.008 + 0.07δ2/3, and as such we find �Ein ≈
−20�Eout for small δ. In conclusion, we have shown explic-
itly that for small δ (i.e., for a dilute gas) the correction �E
due to the nonzero range of Vbb is small and negative, as an-
ticipated, and it comes mainly from the region in the vicinity
of the impurity, where the wave function varies rapidly.
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IV. NUMERICAL RESULTS

Let us now switch to describing our numerical results.
Please refer to the Appendix C for the details of the numerical
simulations. We compute the energy of the unitary polaron for
different values of ab, comparing the results of three different
methods: local GPe, nonlocal GPe, and DMC. In all cases,
we consider the experimentally relevant situation of equal
ranges for the potentials Vbb and U , i.e., we set rb = rc = R
in Eqs. (3) and (4). In the DMC calculations, the amplitude
λ of the Gaussian interaction potential (3) between bosons
is chosen such that the scattering length obtained from the
two-body Schrödinger equation is equal to ab. Instead, in
the simulations of the local and nonlocal GPe, we fix λ via
the Born relation λ = 4πab/m. We do so even when ab = R,
where the Born approximation is clearly not satisfied, and
the discrepancy with the exact scattering length is large (see
Table II and the corresponding discussion in Appendix A for
details). As we will see below, this unorthodox choice still
yields remarkably accurate polaron energies. The energies
obtained by the three methods are compared in Fig. 4. The
open circles denote DMC results, the dashed lines repre-
sent outcomes of the local-GPe (6), and plus-symbols depict
results of the nonlocal GPe (2). The nonlocal GPe yields
lower energies than the local-GPe, because the nonlocal po-
tential is effectively softer than the contact one, and therefore
more bosons can be accommodated within the polaron cloud
surrounding the impurity. The numerical solution of the gen-
eralized Gross-Pitaevskii equation introduced in Ref. [48]
yields a similarly small downshift of the energy. For small
gas parameters (left side of the graph), ξ is large and our nu-
merical energies from both GPe and DMC converge towards
our analytical solution of the unitary polaron, Eq. (10) (thin
solid lines). On the contrary, on the right side of the graph
(where ξ becomes smaller than rc) our energies smoothly
approach the LDA result (17) (thick solid lines). We find
a remarkable agreement between DMC and the GPe for all
considered values of ab/R. The minor discrepancies observed
between DMC and GP results at very low densities might be
attributed to finite-size effects. More specifically, finite-size
effects in DMC start to become important for densities be-
low the vertical arrows, which indicate where the local GPe
predicts the number of particles in the polaron dressing cloud
to be equal to the typical number of particles used in DMC
calculations. The number of particles in the dressing cloud
of the polaron can be estimated using LDA, Eq. (18). As a
result, the smallest gas parameter n0a3

b that we were able to
reliably investigate was achieved for the largest value of ab/R.
Levinsen et al. studied a similar physical setup in Ref. [35],

TABLE II. Value of the boson-boson scattering length ab [in
units of the boson-boson potential range rb], obtained varying the
strength λ of the potential Vbb.

ab [Born, Eq. (A2)] ab [exact] Relative error (%)

0.01 0.00992 0.792

0.1 0.0926 7.95

3.63 1 263

FIG. 4. Polaron energy as a function of the gas parameter for
three values of the ratio between the bath scattering length ab and the
range of the potentials R: From top to bottom, ab/R = 1, 0.1, 0.01.
The dashed lines represent the numerical solution of the local GPe
[Eq. (6)]. Plus symbols represent the data points obtained by solving
the nonlocal GPe [Eq. (2)]. The circles show DMC results with
the statistical error bars smaller than the symbol size. The arrows
indicate the densities at which the polaron size is comparable with
the box size for 100 particles, highlighting the onset of significant
finite-size effects in DMC calculations for lower densities. Thin solid
lines at low density show the analytic prediction of Eq. (10), while
the solid thick lines on the right side indicate the LDA prediction
given in Eq. (17). The squares and grey dashed line show DMC data
and their logarithmic fit from Ref. [35] (obtained considering ab = rb

but rc = 0).

choosing however a contact impurity-bath potential U and
a hard-sphere bath-bath potential Vbb (i.e., they considered
rc = 0 and ab = rb). Their DMC results and a logarithmic
fit to them are shown in Fig. 4 with grey symbols and a
dashed line, correspondingly. Despite the different choices
of potentials, their DMC data are in remarkable agreement
with our DMC and GPe results as long as the total number
of particles in the polaronic cloud does not exceed 100, as
is indicated by the blue arrow in Fig. 4. In the regime of
very low gas parameter, however, their DMC energies are
significantly lower than our GPe predictions. As discussed
above, we have not been able to produce reliable DMC results
at such extremely low densities due to pronounced finite-size
effects. To investigate further the effects of nonzero range, in
Fig. 5 we examine the energy of the polaron as a function of
R/ab for three different values of the gas parameter n0a3

b. To
avoid finite-size effects, DMC points are shown only for the
values of the gas parameter for which the number of particles
in the polaron dressing cloud is smaller than the total number
of particles in our simulations, i.e., 100. By changing the value
of R/ab on the horizontal axis of Fig. 5, we move between
the different curves depicted in Fig. 4. Figure 5 illustrates that
in a dilute bath for sufficiently small value of the potential
range, the polaron energies follow the asymptotic law E ∝
n2/3

0 (R/ab)1/3 (dashed line) with the subleading term given by
Eq. (10). Note that the latter equation was derived for rb = 0,
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FIG. 5. Polaron energy as a function of the range of the inter-
actions of the bath particles for three characteristic values of the
gas parameter n0a3

b = 10−6, 10−7, 10−8 represented by red, green
and blue colors and ordered from top to bottom. Symbols: Pluses,
numerical solution of the nonlocal GPE; circles, DMC results.
The dashed (dotted) line represents the leading term (two terms)
of Eq. (10).

but our numerical results shown here are for R = rb = rc.
This proves that a nonzero range of Vbb yields negligible
changes to the energy (as we had argued above, at the end
of our analytical considerations). The condition for the appli-
cability of this law, R � ξ , can be expressed equivalently as√

8π (n0a3
b)(R/ab)2 � 1. Focusing on the rightmost points in

Fig. 5 (the ones with R/ab = 103) the condition R � ξ is
clearly violated for n0a3

b = 10−6 (red cross, where R ≈ 5ξ ),
and a clear departure from the trend E ∝ a−1/3

b is observed.
However, for a more dilute gas with n0a3

b = 10−8 (blue cross)
one has R ≈ ξ/2, and the scaling E ∝ a−1/3

b is approached.

V. CONCLUSIONS

In conclusion, we analyzed the Bose-polaron problem at
unitarity by means of the DMC and the GP (local, and nonlo-
cal) methods. Our study revealed a remarkable agreement be-
tween these approaches in experimentally relevant conditions.
We also showed that the GP results remain accurate even when
the microscopic boson-boson potential does not satisfy the
Born approximation and all ranges of the problem are com-
parable to each other. Moreover, we showed that including
a nonzero boson-boson range yields negligible corrections
to the polaron energy, which implies that for many practical
purposes the analysis based on a local version of the GPe is
sufficient for making qualitative and quantitative predictions
for polarons all the way between weak-coupling and unitarity.
We have also shown that there are two regimes, obtained when
either rc � ξ or when rc � ξ , where the problem admits an
analytical solution (which is universal in the first case, but
potential-dependent in the second). In the intermediate regime
where rc ∼ ξ the properties of Bose polarons are not expected
to be universal, even in the weak-coupling limit. In particular,
this may explain the discrepancy between the recent Monte

Carlo study [49] and the perturbative analysis of the r−4 po-
larization potential [50], where the characteristic range of the
polarization potential R∗ was of the same order as the healing
length ξ . Indeed, the analysis based on many-body pertur-
bation theory seems to be reliable only in the regime where
rc � ξ and |a| � (R/ab)1/3n−1/3

0 [40], where one can expand
the fields around the ground state of the weakly interacting
BEC without the impurity. The overall remarkable agreement
between GPe results and exact DMC calculations demon-
strated here proves that the GPe is a reliable and ideal
framework for predicting Bose polaron energies. An open
question is whether such good agreement extends to other
properties. Some of us showed earlier that the GPe can also
be used to obtain analytical expressions for the polaron’s
effective mass and the induced interactions between two uni-
tary Bose polarons [51]. We plan to verify those results in a
forthcoming DMC study. Furthermore, the GPe shall provide
important guidance towards characterizing the orthogonality
catastrophe in a Bose gas, which has been predicted long ago
but not yet observed.
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APPENDIX A: APPLICABILITY
OF THE BORN APPROXIMATION

The GPe is generally derived under the approximation that
the potential Vbb(x) satisfies the criteria of the applicability of
the Born approximation. To see this we can look for a spatially
uniform solution of the GPe without the polaron potential.
Substituting ψ = ψ0 into the nonlocal GPe (2) with U = 0
we find

μ = |ψ0|2
∫

d3x Vbb(x). (A1)

Comparing with the standard equation of state of a weakly
interacting Bose gas, μ = 4πab|ψ0|2/m immediately gives

ab = m

4π

∫
d3x Vbb(x). (A2)

This is nothing but the expression given by the Born approx-
imation for the scattering length ab in the potential Vbb. It is
well known that Eq. (A2) works for those potentials whose
range rb � ab, therefore Eq. (2) strictly speaking holds only
under this condition. Nonetheless, the GPe is used routinely
to describe experiments with ultracold dilute Bose gases,
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where typically rb ∼ ab. One could therefore reasonably ask
if the Gross-Pitaevskii equation is entirely incompatible with
potentials whose scattering length is not given by the Born
approximation expression (A2). It is not difficult to see that in
principle it is possible to use GPe even when the potential in
it does not obey Eq. (A2), that is even if ab � rb. Formally,
in this case the potential Vbb(x) in Eq. (2) must be replaced
by the so-called vertex function, computed up to all orders
of perturbation theory. The usual textbook approach to the
Gross-Pitaevskii equation, valid when GPe does not include
the boson-impurity potential U , is to argue that the solutions
to the GPe are not sensitive to the dependence of the po-
tential Vbb on the coordinates and replace the potential by
the delta-function potential given by (6), whose strength λ is
adjusted to produce the desired scattering length ab according
to Eq. (A2). However, since our GPe does include the potential
U and its solutions depend on the range of that potential, it is
not clear a priori whether the solutions to it depend on the
range of Vbb(x) as well. In fact, in Ref. [41] we examined this
question and found that the solutions to Eq. (2) depend on
the range of the potential Vbb only mildly. In this work we
take a practical approach to this problem. If ab � rb, then
we use the equation (2) as is. If ab � rb, then we use the
simplified equation (6) with the properly adjusted λ, counting
on this equation still providing a reasonable approximation to
the solution that we seek. Quite remarkably, as we show in
the main text, the polaron energies obtained by the GPe with
this choice of λ agree closely with the ones obtained by exact
DMC calculations. For the interaction potential Vbb given by
the Gaussian potential in Eq. (3), the table below compares
the exact values of ab obtained from the numerical solution of
the Schrödinger equation for various values of λ with ab com-
puted using the first Born approximation Eq. (A2). As should
be expected, the validity of the first Born approximation gets
worse with increasing ab/rb.

APPENDIX B: BOSE POLARON AT WEAK COUPLING

Here we present a toy model which shows that when
rc ∼ ξ the solution of the GPe will generally depend on vari-
ous details of the potential. As such, a universal description of
the Bose polaron is not expected to exist in this regime even in
the weak-coupling limit. A shallow square-well potential may
be written as U (r) = 1

2mr2
c
( απ

2 )2
(1 − y) with α � 1 (α = 1
corresponds instead to the unitary point). The corresponding
dimensionless GPe reads:

−∇2φ + ε2(φ2 − 1)φ =
(

απ

2

)2


(1 − y)φ. (B1)

Since α is small, we may seek a solution in the form 1 + δ:

−∇2δ + ε2(2δ + 3δ2 + δ3) =
(

απ

2

)2


(1 − y)(1 + δ).

(B2)

Neglecting the nonlinear terms and writing δ = u
y , we get:

−u′′ +
[

2ε2 −
(

απ

2

)2


(1 − y)

]
u =

(
απ

2

)2

y
(1 − y).

(B3)

In the region y > 1, we get u = B e−√
2εy. When y < 1 we

have three scenarios: (1) 2ε2 > ( απ
2 )2, (2) 2ε2 = ( απ

2 )2, and
(3) 2ε2 < ( απ

2 )2. Below we consider only the first and the
third scenarios, which are of the most physical relevance. Let
us focus on the first scenario. Defining ( απ

2 )2 = ω2
0 and 2ε2 −

( απ
2 )2 = ω2, solution reads: u = A sinh (ωy) + ω2

0
ω2 y. Matching

the amplitude and the derivative at y = 1, we get:

1 + A sinh (ω) + ω2
0

ω2
= 1 + B e−√

2ε,

1 + Aω cosh (ω) + ω2
0

ω2
= 1 −

√
2Bεe−√

2ε . (B4)

Solving the above system one gets:

B = ω2
0

ω2

[
1 − tanh (ω)

ω

]
e
√

2ε[
1 +

√
2ε
ω

tanh (ω)
] ,

A =
[

Be−√
2ε − ω2

0

ω2

]
1

sinh (ω)
. (B5)

This result depends on the details of the potential; however, if
we consider the limit ξ � rc, or equivalently ε � 1, then we
can simplify it further. For a fixed α taking ε → 0 limit pushes
the solution into the third regime 2ε2 < ( απ

2 )2, where instead
of a real ω, we have an imaginary one: ω → iω, tanh (ω) →
i tan (ω), and ω = |2ε2 − ( απ

2 )2|1/2. Taking the limit ε → 0
gives:

lim
ε→0

[
−ω2

0

ω2

(
1 − tan (ω)

ω

)
e
√

2ε[
1 +

√
2ε
ω

tan (ω)
]
]

= −
(

1 − tan (ω0)

ω0

)
= −a/rc. (B6)

In the last step we used the analytical formula for the scat-
tering length of the square-well potential. The solution inside
the impurity potential becomes sinh (ωy) → i sin (ωy). When
ε → 0, the whole solution inside the impurity potential be-
comes:

lim
ε→0

φ = lim
ε→0

[
1 + A

sin (ωy)

y sin (ω)
− ω2

0

ω2

]
1

=
(

1 − a

rc

)
sin (ω0y)

y sin (ω0)
= rc

r

(
1 − a

rc

)
v

(
r

rc

)
. (B7)

Here v(r/rc) is the solution to the zero energy Schrödinger
equation that satisfies v(0) = 0 and v(1) = 1. This reproduces
the result already quoted in Eq. (8). This analysis shows that
the solution to the GPe has universal features (depends only
on a single parameter such as scattering length a or range R)
only in the ξ � rc limit, but when those two length scales are
of the same order it will depend on the details of the potential
in some nontrivial way. If rc � ξ , then one can solve the
problem using the LDA discussed above.
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APPENDIX C: DETAILS OF THE
NUMERICAL SIMULATIONS

1. Nonlocal GPe

We find the ground state solution of the nonlocal GPe in
Eq. (2) by solving it in imaginary time:

−∂τψ =
[
− �

2m
+ U − μ +

∫
d3y Vbb(x − y)|ψ (y)|2

]
ψ (x)

For numerical convenience, we introduce the variable φ(y) =
ψ (y)/

√
n0 where y = r/rc. We study the problem on a finite

interval r ∈ [0,�]. At very large distances from the impu-
rity we impose the Yukawa boundary condition: φ(y) = 1 +
C
r e−√

2 rc
ξ

y. We use the method of lines by discretizing the space
variable to obtain a system of coupled nonlinear differential
equations in imaginary time. This method is very efficient for
the case of local Vbb, where after finding the coefficient of
the tail C, one can also add the contribution from the interval
y ∈ [�,∞]. For the nonlocal Vbb this method introduces some
artificial boundary effects near r = �. If � is large enough,
then those effects do not change the behavior of the solution
in the bulk. In order to compute the energy, we choose the
size of the interval to be large enough, so that the energy
can be computed by using the solution on a smaller interval
y ∈ [0,�0], �0 < �, such that the changes in both � and �0

produce little change in the energy of the polaron.

Boson-boson interaction potential

For the choice of potential in Eq. (3), one can perform
the angular integration in the expression inside the integral
analytically and obtain:∫

d3y Vbb(x − y)|ψ (y)|2

= λ√
πrbx

∫ ∞

0
y dy e

− (x−y)2

r2
b

(
1 − e

− 4xy

r2
b

)
|ψ (y)|2. (C1)

When we discretize space, for every point x we sum over all
neighboring sites that are within a distance corresponding to
five widths of the corresponding Gaussian.

2. Details of DMC simulations

The microscopic Hamiltonian of our model is given by

H = −
Nb∑

i=1

�i

2m
+

Nb∑
i< j

Vbb(xi − x j ) +
Nb∑
i

U (xi − X), (C2)

where xi represents the coordinates of the bosons and X
denotes the position of the impurity. The DMC method is
based on solving the many-body Schrödinger equation in
imaginary time and allows one to find the ground-state energy
exactly. Simulations are performed for a system consisting of
Nb bosons (typically we use Nb = 100) and a single impurity
within a box of dimensions L · L · L with periodic boundary
conditions, which help to reduce the finite-size effects. The
size of the simulation box is determined from the number of
bosons Nb and the average density n0, such that n0 = Nb/L3.
In order to reduce the statistical noise, an importance sampling
technique is employed. The guiding wave function is chosen

FIG. 6. Polaron energy as a function of the inverse number of
particles for the ratio between the bath scattering length and the
range of the potential equal to ab/R = 0.01 and gas parameter
n0a3

b = 10−9. Symbols, DMC data points; solid line, fit of type
f (x) = c0 + c1x + c2x2; dashed line, the numerical solution of the
local GPe (6). The vertical range is kept the same as in Fig. 4.

in the Jastrow pair-product form

�T (x1, . . . , xN ; X) =
Nb∏

i< j

fbb(|xi − x j |)
Nb∏

i=1

fbi(|xi − X|).

(C3)

The boson-boson fbb(r) Jastrow terms are determined by
solving numerically the two-body scattering equation for two
bosons of mass m interacting with the repulsive Gaussian
Vbb interaction potential in the range 0 < r < L/2. The scat-
tering energy is chosen such that the Jastrow term has zero
derivatives at the borders, f ′

bb(0) = f ′
bb(RL/2) = 0. The boson-

impurity fbi(r) Jastrow terms are obtained by solving the
scattering problem for bosons of mass m and a pinned impu-
rity, interacting via an attractive Pöschl-Teller U (r) potential
in the range 0 < r < Rmatch with f ′

bi(0) = f ′
bi(Rmatch ) = 0. The

matching distance Rmatch is treated as a variational parame-
ter that indirectly controls the value of the boson-impurity
Jastrow term at zero, fbi(0). Additionally, it influences the
boson-impurity pair distribution function and, consequently,
the number of bosons in the polaron in the variational prob-
lem. The specific values of the matching distance Rmatch are
obtained by minimizing the total energy.

To determine the properties of a polaron immersed in a
homogeneous system, we perform simulations for Nb bosons
contained in a box with periodic boundary conditions. This
procedure induces finite-size effects on the polaron energy.
A physically relevant parameter in this context is the ratio of
the box size L, determined by the density n0 = Nb/L3, to the
healing length ξ , which corresponds to the typical size of the
polaron. This ratio can be expressed as L

ξ
= 3

√
8Nb(n0a3

b)1/6 in

terms of the number of bosons Nb and the gas parameter n0a3
b.

Figure 6 illustrates the dependence of the polaron energy
on the inverse number of bosons, so that the thermodynamic
value of the energy is obtained in the 1/Nb → 0 limit. The
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example shown in the figure corresponds to a very small gas
parameter value, n0a3

b = 10−9, for which finite-size effects
are significant since the condition L > ξ requires N > 250
particles in that case.

To reduce the gas parameter further to n0a3
b = 10−15 (the

minimum value for which we report GPE results in Fig. 4),
the gas parameter must be diminished further by a factor of
106. Maintaining the same value of L/ξ ratio would require

increasing the number of bosons by a factor of 1000. The
Jastrow wave function (C3) contains N2

b terms, and their
evaluation would increase the calculation time by a factor
of 106. This renders such calculations unfeasible with the
current implementation of the DMC method. As a result, we
limit the DMC results to parameters (L � ξ for Nb = 100) for
which accurate DMC calculations can be performed within a
reasonable time.
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