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Confinement-induced resonance from the generalized Gross-Pitaevskii equations
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The confinement-induced resonances for trapped bosons in the cigar-shaped and pancake geometries are
studied within the generalized Gross-Pitaevskii equations, which are a simplified version of the Hartree-Fock-
Bogoliubov approximation. Although the Hartree-Fock-Bogoliubov method is considered applicable only for
small interparticle interactions, the resonance denominators for the chemical potential are obtained in both
quasi-one and quasi-two dimensions. A useful integral representation of the one-particle Green’s function are
found for the cylindrical confinement. We find the position of a smoothed resonance for the chemical potential
in the pancake geometry at positive scattering length.
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I. INTRODUCTION

The confinement-induced resonance (CIR) is an efficient
tool to tune effective interparticle interactions in low-
dimensional systems of cold gases [1–5] (see also review [6]).
The resonance was predicted in the cigar-shaped [1,2] and
pancake [3,4] geometries and confirmed experimentally [5].
The cases of very tight and anisotropic confinements were
studied in Refs. [7] and [8–10], respectively.

The tight cylindrical or flat atomic waveguide creates, in
effect, a low-dimensional system of cold atoms, and the prob-
lem is how to describe the corresponding interactions in low
dimensions. The standard approach [1–4] is to obtain inter-
particle interactions in low dimensions from the two-body
scattering problem, thus reducing the effective dimension of
the many-body system.

For identical bosons, it seems more attractive to develop a
scheme that directly describes the wave function of the Bose-
Einstein condensate (BEC) for trapping potentials of arbitrary
shape. This is all the more interesting because various optical
traps are currently being produced experimentally, including
an optical-box trap [11]. The well-known Gross-Pitaevskii
(GP) equation [12,13] is not suitable for this purpose, since it
does not reproduce the resonance denominators for effective
interactions in low dimensions. For instance, in the cigar-
shaped geometry, the wave function of BEC coincides up to a
factor with the ground state of the trapping harmonic oscillator
in the x-y plane, provided its frequency is sufficiently high.
Then one can integrate out the x and y coordinates in the
interaction term of the GP functional and obtain the effective
coupling constant in one dimension [14]: g1D = 2h̄2a/(m l2).
This result is valid only away from the resonance when a � l .
Here a, m, and l are the three-dimensional (3D) scattering
length in free space, boson mass, and length of the two-
dimensional (2D) oscillator, respectively. On the other hand,
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the correct coupling constant contains the resonance denomi-
nator [1], see Eq. (33) below.

In the paper [15] a system of nonlinear equations in both
stationary and time-dependent cases was proposed and called
the generalized Gross-Pitaevskii (GGP) equations. Apart from
the standard one-body wave function of BEC, the equa-
tions also contain the two-body wave function of BEC.
This approach is nothing else but a simplified version of
the full Hartree-Fock-Bogoliubov (HFB) approximation (see
Appendix below). The GGP equations are applicable for
arbitrary shape of the trapping potential. In particular, the
resonance denominators were obtained [15] in both cases of
cigar-shaped and pancake geometries. However, the result-
ing denominators of Ref. [15], which determine the position
of the resonances, contained incorrect coefficients, since the
solutions were derived with an additional quite rough ap-
proximation (see the discussion in Sec. IV B below). As is
shown in this paper, the GGP equations indeed yield the exact
coefficients, which are consistent with the two-body scattering
problem [1–4].

The GGP equations are nonlinear, but the effective cou-
pling constants in low dimensions are determined by the
short-range correlations, where the nonlinearity is not impor-
tant. The problem can be reduced to the two-body problem
and the corresponding Green’s functions (GFs). We find and
examine the integral representations for the one-particle GFs
at low energies for the flat and cylindrical harmonic confine-
ments. In the latter case, the equation for the GF differs from
the previously found integral representation [16,17], which
is actually the Fourier transform of the Feynman propagator
for a harmonic oscillator with contour rotation in the complex
plane. We believe that the found representation is more con-
venient for obtaining the low-energy expansions of the GF.

This paper is organized as follows. In the next section, the
GGP equations are written and discussed in the case of the
tight confinements. In Sec. III the integral representations and
expansions of the GFs are obtained for the cylindrical and flat
confinements. The CIRs for the effective coupling constant
and chemical potential are found within the suggested scheme
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in Secs. IV and V. The main results and prospects are dis-
cussed in the Conclusion section. In Appendix the GGP are
derived through the HFB approximation.

II. GENERALIZED GROSS-PITAEVSKII EQUATIONS

We consider a dilute many-body system of identical
bosons, interacting with a pairwise short-range1 potential
V (r), in an external field Vext (r). For simplicity, the bosons
are assumed to be spinless. The equilibrium properties of such
systems at zero temperature are described by Eqs. (16) and
(17) of Ref. [15], which can be written in the form

[Ĥ (r1)−μ]φ(r1)+
∫

dr2φ(r2)V (|r1−r2|)ϕ(r1, r2) = 0, (1)

[Ĥ (r1)+Ĥ (r2)−2μ]ψ (r1, r2)+V (|r1−r2|)ϕ(r1, r2) = 0,

(2)

where μ is the chemical potential. Here we set by definition

ψ (r1, r2) = ϕ(r1, r2) − φ(r1)φ(r2), (3)

and the one-body Hamiltonian is given by

Ĥ (r) = − h̄2∇2
r

2m
+ Vext (r) − E0, (4)

with E0 being its ground-state energy. By definition, φ(r) ≡
〈�̂(r)〉 and ϕ(r1, r2) ≡ 〈�̂(r1)�̂(r2)〉 are the anomalous av-
erages of the field Bose operators. The derivation of these
equations and their relation to the HFB approximation are
given in Appendix.

The function φ(r) is the one-body function of inhomoge-
neous BEC and can be considered as the order parameter. The
function ϕ(r1, r2) is called pair wave function. It describes two
bosons in the Bose-Einstein condensate, and this function is
not reduced in general to the product of the one-body func-
tions. The exact definitions can be done through the one-body
and two-body matrices [19–21]. The property of decay of
correlations dictates the boundary condition

ϕ(r1, r2) � φ(r1)φ(r2), when |r1 − r2| � ξh, (5)

where ξh is the healing (or coherence) length defined through
the chemical potential: ξh = h̄/

√
μm. The system of equa-

tions (1) and (2) is nonlinear due to the presence of the
condensate wave function φ(r2) under the integral in Eq. (1).
The GGP equations (1) and (2), being a particular case of
HFB approximation, are applicable to weak interactions when
the mean distance between bosons is much smaller than the
healing length.

Various solutions for different external potentials were
considered in Ref. [15]. In particular, the one- and two-
dimensional (1D, 2D) harmonic CIRs were obtained [see
Eqs. (48) and (57) of Ref. [15]]. However, the method used
did not enable us to obtain the precise coefficients in the

1A potential is of the short-range type if it decreases at infinity as
1/rα with the exponent α > 3 or faster (see, e.g., Ref. [18]). For
such a potential, only the s-wave scattering amplitude survives in
the limit of zero scattering energy. It is called the scattering length
[see Eq. (26) below].

resonance denominators, which determine the CIR positions.
In this paper we show that the correct coefficients can be
derived from Eqs. (1) and (2).

We assume that the radius r0 of the short-range interaction
potential V (r) is much smaller than the characteristic length
of the external potential Vext (r) and the mean distance between
bosons. This implies that at low energies, physical processes
are governed by the s-wave scattering length a of the interac-
tion potential, which is obtained from the symmetric solution
of the two-body Schrödinger equation at zero energy in free
space.

Thus, our task is to get the chemical potential of N strongly
confined bosons at zero temperature as a function of the 3D
scattering length a and oscillator frequency ω in the case of
cylindrical and flat harmonic confinements.

III. GREEN’S FUNCTIONS OF THE ONE-BODY
SCHRÖDINGER EQUATION AT LOW ENERGIES FOR

CYLINDRICAL AND FLAT HARMONIC CONFINEMENTS

To obtain the chemical potentials of the Bose-Einstein
condensates for the cigar-shaped and pancake geometries, we
need to calculate the corresponding GFs for the one-body
Hamiltonian (4), which is defined as

ĜE = −(Ĥ − E )−1, (6)

with the scattering energy E , which is assumed to be suffi-
ciently small (see the discussions below).

In this section we find useful integral representations
for the GFs in the cases of cylindrical and flat harmonic
confinements. These representations are very convenient for
obtaining the low-energy expansions of the GFs.

A. Cylindrical confinement

The cylinder harmonic confinement implies that a particle
is confined in the x-y plane but can move freely in z direction
with a finite momentum, whose absolute value is denoted by
h̄p. The one-particle Hamiltonian (4) is given by

Ĥ = − h̄2∇2

2m0
+ m0ω

2(x2 + y2)

2
− E0, (7)

where the shift E0 = h̄ω is introduced to get zero ground-state
energy.

It is convenient to use the following notation for radius
vector: r = (ρ, z) with ρ = (x, y). We calculate the GF (6)
in coordinate representation with the radial coordinate ρ =√

x2 + y2 being equal to zero and E = h̄2 p2

2m0
:

Gp(z − z′) ≡ 〈z, ρ = 0|ĜE |ρ ′ = 0, z′〉

= − 1

2π2l2

∞∑
n=0

p.v.
∫ ∞

−∞
dq

eiq(z−z′ )

2h̄ωn + h̄2

2m0
(q2 − p2)

.

(8)

Here l0 = √
h̄/(m0ω) is the harmonic oscillator length, and

p.v. denotes the Cauchy principal value. This kind of reg-
ularization ensures the reality of the GF in coordinate
representation [22].
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Here we use the expression for the GF in Dirac no-
tation 〈r|ĜE |r′〉 = −∑

k〈r|k〉〈k|r′〉/(Ek − E ), with |k〉 and
Ek being the eigenfunctions and eigenvalues of a Hamil-
tonian, respectively. For the Hamiltonian (7), k = (n, m, q)
is a multi-index, where n = 0, 1, 2, . . . is the main quan-
tum number, m = 0,±1,±2, . . . is the orbital momentum
in 2D, and q is the z component of the wave vector. The
eigenvalues and normalized eigenfunctions are given by
Ek = h̄ω(2n + |m|) + q2

2m0
and ϕk (ρ, α, z) = eiqz√

2π
φn,m(ρ, α),

respectively. Here φn,m(ρ, α) are the eigenvalues for the 2D
oscillator in the polar coordinates x = ρ cos α, y = ρ sin α.
One can show that for an arbitrary main quantum num-
ber, φn,0(ρ = 0, α) = 1/(

√
π l0) and φn,m(ρ = 0, α) = 0 for

m �= 0. Since we are interested at the GF of the Hamiltonian
(7) only at ρ = ρ ′ = 0, we are left with one sum over the main
quantum number and thus arrive at Eq. (8).

When the scattering momentum is sufficiently small, p <

2/l0, only the first term in the sum in Eq. (8) is singular. Sepa-
rating this term and using the relations

∫ ∞
−∞

dq
2π

eiqz

(q2+κ
2 ) = e−κ|z|

2κ

and p.v.
∫ ∞
−∞

dq
2π

eiqz

(p2−q2 ) = sin p|z|
2p yield

h̄2

2m0
Gp(z) = 1

π l2
0

[
sin p|z|

2p
− l0

4
�

(
2|z|
l0

,− p2l2
0

4

)]
, (9)

�(ξ, ε) =
∞∑

n=1

e−ξ
√

n+ε

√
n + ε

, (10)

where dimensionless variables ξ = 2|z|/l0 and ε = −p2l2
0 /4

are introduced.
The first term of the GF (9) is proportional to the one-

dimensional GF of a free particle, which obeys the relation
( ∂2

∂z2 + p2) sin p|z|
2p = δ(z). At large distances |z| � l0, the sec-

ond term of the GF falls off exponentially as it follows directly
from the expansion (10). Then the asymptotics of the scat-
tering part of the wave function, proportional to the GF, is
essentially one dimensional, as expected.

Let us calculate the GF at low momenta |ε| � 1 and
small coordinates ξ � 1. To expand �(ξ, ε) in ξ and ε

around zero, we use the identity for exponential e−x =
1√
π

∫ ∞
0

dt
t3/2 e−1/t e−x2t/4 and find the integral representation

�(ξ, ε) = 1√
π

∫ ∞

0

dt

t3/2
e− 1

t e− ξ2 (1+ε)t
4 �

(
e− ξ2t

4 ,
1

2
, 1 + ε

)
,

(11)

where �(x, s, α) = ∑∞
n=0 xn/(n + α)s is the Lerch transcen-

dent, or Lerch zeta function [23]. Upon expanding the
integrand

e− ξ2 (1+ε)t
4 �

(
e− ξ2t

4 ,
1

2
, 1 + ε

)

= 2
√

π√
tξ

+ ζ (1/2) − ε

2
ζ (3/2) + O(ξ 2) + O(ε2)

and substituting it into Eq. (11), we obtain

�(ξ, ε) = 2

ξ
+ ζ (1/2) + ξ

2
− ε

2
ζ (3/2) + O(ξ 2) + O(ε2)

+ O(ξε), (12)

with ζ (x) being the Riemann zeta function. The symbol O(x)
is the big O notation, which designates terms of the order of x
or smaller. When |z| � l0 and p � 1/l0, the expansion of the
GF (9) takes the form

h̄2

2m0
Gp(z) = − 1

4π |z| −
1

4π l0
ζ (1/2)+ |z|

4π l2
0

− p2l0
32π

ζ (3/2)

+ O
(
z2

/
l2
0

) + O(|z| p2l0) + O
(
p4l4

0

)
. (13)

B. Flat confinement

The flat harmonic confinement along the z axis is consid-
ered by close analogy with the previous section. A particle,
being confined in z direction, can move freely in the x-y plane.
The Hamiltonian reads

Ĥ = − h̄2∇2

2m0
+ m0ω

2z2

2
− E0, (14)

with the shift E0 = h̄ω/2. A complete set of its eigenfunctions
is given by ϕq,n(ρ, z) = φn(z)eiq·ρ/(2π ), with φn(z) being the
normalized eigenfunctions of the linear harmonic oscillator.
We need only their absolute values at z = 0: when n is odd
then φn(0) = 0, while for even n,

|φ2k (0)| = 1

π1/4l1/2
0

√
(2k)!

2kk!
, k = 0, 1, 2, . . . , (15)

see, e.g., the textbook [24].
Using the same method as in the previous section, we find

the expression for the GF at z = z′ = 0 and E = h̄2 p2

2m0
,

Gp(|ρ − ρ′|) ≡ 〈ρ, z = 0|ĜE |z′ = 0, ρ′〉

= −
∞∑

k=0

|φ2k (0)|2

× p.v.
∫

d2q

(2π )2

eiq·(ρ−ρ′ )

2h̄ωk + h̄2

2m0
(q2 − p2)

,

(16)

where |φ2k (0)| is given by Eq. (15). When the momentum
is small, p < 2/l0, only the first term in the sum is singular.
Separating it and using the identities p.v.

∫ d2q
(2π )2

eiq·ρ
p2−q2 = Y0(pρ)

4 ,∫ d2q
(2π )2

eiq·ρ
κ

2+q2 = K0(κρ)
2π

for positive p and κ yield

h̄2

2m0
Gp(ρ) = 1√

π l0

[
Y0(pρ)

4
− 1

2π
S

(
2ρ

l0
,− p2l2

0

4

)]
, (17)

S(ξ, ε) =
∞∑

k=1

K0(ξ
√

k + ε)
(2k)!

4k (k!)2
, (18)

with the dimensionless variables ξ = 2ρ/l0 and ε = −p2l2
0 /4.

Here Y0(x) and K0(x) are the Bessel and modified Bessel
functions of the second kind, respectively (see, e.g., Ref. [25],
Chap. 9).

Similar to the one-dimensional case considered in
Sec. III A, the first term is proportional to the GF of a free
particle in two dimensions: ( ∂2

∂ρ2 + 1
ρ

∂
∂ρ

+ p2)Y0(pρ)
4 = δ(ρ).

When ρ � l0, the second term in Eq. (17) is exponentially
small, which actually implies two-dimensional scattering.
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The relation K0(x) = ∫ ∞
0

dt
2t e−t e−x2/(4t ) enables us to sum

up the series (18) under the integral and find its integral
representation in elementary functions:

S(ξ, ε) =
∫ ∞

0

dt

2t
exp

(
−t − ε ξ 2

4t

)[
1√

1 − e−ξ 2/(4t )
− 1

]
.

(19)

This relation is a particular case of a more general equation,
which was obtained by another method in Refs. [16,17]. This
general equation is actually the Fourier transform of the well-
known Feynman propagator for a harmonic oscillator.

It is easy to obtain the expansion

S(ξ, ε) =
√

π

ξ
+ ln ξ + γ − √

π − ln 2 + C − ξ

√
π

8

− ε ln 2 + O(ξ 2) + O(ε2) + O(ξε), (20)

where γ = 0.5772 . . . is Euler’s constant and

C =
∫ ∞

0

dy e−y

2y

[
1√

1 − e−y)(1 + √
1 − e−y) )

+1 − 1√
y

]
.

Its numerical value is given by C = 0.803 558 9 . . . .
To find the GF at ρ � l0 and p � 1/l0, we substitute the

expansions (20) and Y0(x) = 2 ln(xeγ /2)/π + O(x2 ln x) into
Eq. (17) and finally arrive at

h̄2

2m0
Gp(ρ) = − 1

4πρ
+ 1

4π3/2l0
ln

(
π p2l2

0

2B

)

+ 1

8π l0

[
ρ

l0
− ln 2√

π
p2l2

0

]
+ O(ρ2 p2 ln pρ)

+ O
(
ρ2

/
l2
0

) + O(ρp2l0) + O
(
p4l4

0

)
, (21)

where we put by definition

B ≡ 2π exp[2(C − √
π )] = 0.904 916 . . . . (22)

The first two terms of GF (21) were first calculated in [3] with
the constant B being equal to 1. In the subsequent paper [4], its
numerical value was estimated to be 0.915. Further, the value
of B being equal to 0.9049 was obtained in Ref. [16], which
is consistent with Eq. (22). We believe that this is the most
accurate estimation.

IV. CONFINEMENT-INDUCED RESONANCE IN ONE
DIMENSION: CYLINDRICAL GEOMETRY

A. The tight confinement

When the bosons are trapped in the x-y transverse direc-
tion with the axially symmetric harmonic potential Vext (ρ) =
mω2ρ2/2, the order parameter depends only on the transverse
coordinates, but it is homogeneous along the z axis.

The tight confinement implies that the chemical poten-
tial is small in scale of h̄ω, that is, l � ξh, in terms of
the oscillator length l = √

h̄/(mω). Then, with a good ac-
curacy one can put for the wave function of BEC [26] φ =
φ(ρ1) = √

n1Dφ0(ρ1), with φ0(ρ1) = exp[−ρ2
1 /(2l2 )]

l
√

π
being the

ground-state wave function of the one-particle Schrödinger

equation with Hamiltonian (4), and n1D is the linear density
of the Bose-Einstein condensate. Thus, the nonlinear term in
Eq. (1) is treated as a perturbation, and the chemical potential
is obtained by multiplying Eq. (1) by φ0(ρ1) and integrating
out over r1:

μ = 1

L

∫∫
dr1dr2φ0(ρ1)φ0(ρ2)V (|r1−r2|)ϕ(r1, r2), (23)

where L is the length of the system along the z axis.
To take the integral (23), we need to examine the properties

of the pair wave function. In the case of transverse confine-
ment, Eqs. (1) and (2) are translationally invariant under a
spatial translation z1 → z1 + b, z2 → z2 + b for any b, which
yields ϕ = ϕ(ρ1, ρ2, |z1 − z2|). Moreover, for the harmonic
confinement, the spatial variables in Eq. (2) are separated into
the center-of-mass position and relative coordinates by anal-
ogy with the two-body problem. We can look for a solution in
the form

ϕ(r1, r2) = ϕ(ρ, z) exp[−(ρ1 + ρ2)2/(4l2)], (24)

and the same relation for ψ (ρ1, ρ2, z), see Eq. (3). Here
ρ = ρ1 − ρ2 and z = z1 − z2 are the relative coordinates,
and ρ = |ρ|. The boundary conditions (5) read ϕ(ρ, z) �
n1D exp[−ρ2/(4l2)]/(π l2) when z � ξh.

In the range r � l , one can use the approximation

ϕ(ρ, z) = ηϕ
(0)
3D (r)

n1D

π l2
, (25)

since r0 � l . Here r =
√

ρ2 + z2, and ϕ
(0)
3D (r) is the 3D

solution of the two-body Schrödinger equation in the center-
of-mass system at zero energy:

−(h̄2/m)∇2ϕ
(0)
3D (r) + V (r)ϕ(0)

3D (r) = 0.

The solution is assumed to be regular in the vicinity of the
origin and obeys the boundary condition when r � r0:

ϕ
(0)
3D (r) � 1 − a/r, (26)

a = m

4π h̄2

∫
drV (r)ϕ(0)

3D (r). (27)

Substituting Eqs. (24) and (25) into Eq. (23) and using the
difference of the scales r0 � l and Eq. (27), we are left with

μ = η
2h̄2a

m l2
n1D. (28)

Here the point is that the constant η �= 1, which is crucial
for the appearance of CIR. This constant can be recovered
from Eq. (2).

B. The application of the Green’s function

Substituting Eq. (24) into Eq. (2), we arrive at the equa-
tion for the wave function ϕ(ρ, z):[

− h̄2∇2

2m0
+ m0ω

2ρ2

2
− E0 − 2μ

]
ψ (ρ, z) = −V (r)ϕ(ρ, z),

(29)

with m0 = m/2 being the reduced mass. It is sufficient to find
the wave function ϕ(ρ, z) at ρ = 0. According to Eqs. (25)
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and (26), it has the asymptotics

ϕ(ρ = 0, z) � η
n1D

π l2

(
1 − a

|z|
)

, (30)

in the short-range regime r0 � |z| � l .
The solution of Eq. (29) can be found with the

Green’s function (GF) at E = 2μ = h̄2 p2

2m0
as ψ (ρ, z) =∫

dr′〈z, ρ|ĜE |ρ′, z′〉V (r′)ϕ(ρ ′, z′). In the short-range regime
|z| � l and at low energies p � 1/l , the GF at ρ = ρ ′ = 0
was obtained in Sec. III A and given by Eq. (13). At m0 = m/2
and l0 = √

h̄/(m0ω) = √
2l , we get

ϕ(ρ = 0, z) = n1D

π l2
+ Gp(z)

∫
dr′V (r′)ϕ(ρ ′, z′),

where Eq. (3) is used: ϕ(ρ = 0, z) = n1D/(π l2) +
ψ (ρ = 0, z).

The potential V (r) is localized within r � r0, where the
wave function ϕ(ρ, z) takes the form (25). Using the relation
(27) and the first two terms of Eq. (13) for the Green’s func-
tion, we find

ϕ(ρ = 0, z) � n1D

π l2

[
1 − η a

(
1

|z| + ζ (1/2)√
2l

)]
.

Comparing this asymptotics with Eq. (30) finally yields

η =
(

1 + a ζ (1/2)√
2l

)−1

, (31)

where ζ (1/2) = −1.460 35 . . . .
Note that in our paper [15] we used the approx-

imation for the wave function ϕ(ρ, z) = η(1 − a/r)
exp[−ρ2/(4l2)]n1D/(π l2) when r0 � r � ξh. It allows
us to integrate out the ρ coordinate in Eq. (29) and
obtain the coefficient η without using the GF formalism.
However, as is mentioned in the Introduction, this
leads to an incorrect coefficient in the denominator
of Eq. (31): −√

π = −1.772 . . . instead of the correct
one, ζ (1/2) = −1.460 35 . . . . The reason is that this
approximation is accurate only when r0 � r � l [see
Eq. (25)] but fails near r � l . Thus, the approximation of
Ref. [15] can be used for qualitative rather than quantitative
estimations.

C. The chemical potential

The chemical potential is given by Eqs. (28) and (31):

μ = g1Dn1D, (32)

g1D = 2h̄2a

m l2

1

1 + a ζ (1/2)√
2l

. (33)

Taking into account the relation g1D = − 2h̄2

m a1D
for the coupling

constant in 1D, we arrive at the expression for the effective
1D scattering length a1D in the two-body problem (see, e.g.,
Ref. [18]), first obtained in Ref. [1]:

a1D = − l2

a

(
1 + a ζ (1/2)√

2l

)
.

V. CONFINEMENT-INDUCED RESONANCE
IN TWO DIMENSIONS: FLAT GEOMETRY

A. The tight confinement

The flat confinement of identical bosons is provided
by harmonic forces along the z axis: Vext (z) = mω2z2/2.
The order parameter is homogeneous within the x-y plane,
and in the case of the tight confinement l � ξh, one
can put with a good accuracy φ = φ(z1) = √

n2Dφ0(z1),
with the oscillator ground-state wave function φ0(z1) =
exp[−z2

1/(2l2)]/(l1/2π1/4). Here n2D is the 2D density of the
Bose-Einstein condensate. The chemical potential can be ob-
tained from Eq. (1) by analogy with the previous section,

μ = 1

S

∫∫
dr1dr2φ0(z1)φ0(z2)V (|r1−r2|)ϕ(r1, r2), (34)

where S is the area of the system occupied in the x-y plane.
The pair wave function is invariant under transla-

tions along the x-y plane: ϕ(r1, r2) = ϕ(z1, z2, ρ). It can
be written for the harmonic confinement as ϕ(r1, r2) =
ϕ(z, ρ) exp[−(z1 + z2)2/(4l2)].

The approximation for the pair wave function for r � l is

ϕ(z, ρ) = ηϕ
(0)
3D (r)

n2D

l
√

π
, (35)

which is analogous to Eq. (25). In the same manner, we find
from Eqs. (27), (34), and (35),

μ = 4π h̄2

m
n2Du, (36)

where we introduce a more convenient dimensionless
parameter

u = ηa√
2π l

. (37)

The prefactor η can also be found by analogy with Sec. IV.

B. Application of the Green’s function

On the one hand, in the short-range regime r0 � ρ � l ,
Eqs. (26) and (35) yield

ϕ(z = 0, ρ) � η
n2D

l
√

π

(
1 − a

ρ

)
. (38)

One the other hand, one can use the GF for Eq. (2) (see
Sec. III B) and obtain in the same regime

ϕ(z = 0, ρ) � n2D√
π l

+ Gp(ρ)
∫

dr′V (r′)ϕ(z′, ρ ′)

= n2D√
π l

+ Gp(ρ)η
n2D

l
√

π

4π h̄2a

m
, (39)

with the GF (21), where 2μ = h̄2 p2

2m0
, m0 = m/2, and l0 =√

2l = √
2h̄/(mω).

C. The chemical potential

In the quasi-1D condensate, considered in the previous
section, Sec. V, the GF remains finite in the limit p → 0. By
contrast, in the quasi-2D condensate, the GF (21) exhibits a
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logarithmic divergence as p → 0. This implies that the chem-
ical potential should be determined self-consistently. Indeed,
comparing Eq. (38) with Eq. (39) and using the definition (37)
yield the algebraic equation for u

1

u
+ ln u = δ, (40)

δ =
√

2π l

a
− ln

[
8π2n2Dl2

B

]
, (41)

where the constant B is defined by Eq. (22). Thus, the chemi-
cal potential is given by Eqs. (36), (40), and (41).

Equation (40) has no real solutions when δ < 1 and two so-
lutions when δ > 1: one is greater than 1, and the other is less
than 1. It follows from the thermodynamic stability condition
∂μ

∂n2D
= 4π h̄2

m
u

1−u > 0 that only the solution u < 1 is physical.
This fits well with the condition of weak coupling, which tells
us that the healing length should be at least smaller than the
mean distance between bosons on the plane: h̄√

μm > 1√
n2D

, see
Eq. (36). When the dimensionless parameter δ is big then
u � 1/δ, and we arrive at the weak-coupling relation for the
chemical potential,

μ � 4π h̄2n2D

mδ
, (42)

which allows us to interpret δ, given by Eq. (41), as the
resonance denominator. Note, however, that this approxima-
tion overestimates the values of the chemical potential, see
Fig. 1(a).

The CIR arises [see Fig. 1(b)] when the 3D scattering
length is negative while the 2D density is sufficiently small
for δ to be positive and close to 1, which is its minimum
possible value within our approach. At positive scattering
length, a reminiscence of the resonance is also observed,
when the dimensionless chemical potential reaches the local
maximum at

l

a
=

√
2

π
= 0.7978 . . . , (43)

as it follows from Eq. (41). This differs from the experi-
mentally found [5] value l/a = 1.19(3), at which the CIR is
realized at positive scattering lengths.

Relations (36), (40), and (41) should be used with some
caveats. First, the quasi-2D regime imposes the restriction
on the oscillator length: the characteristic wave vector of
bosons p � √

n2D should be smaller than 2/l as discussed in
Sec. III B. This yields l

a � 2√
n2Da2

, which for the chosen pa-

rameter n2Da2 = 0.05 in Fig. 1(b) is of order of 9. Second, we
assume that the range of interaction potential is much smaller
than the oscillator length: r0 � l . Thus, in the vicinity of
l = 0, the approximation of zero-range interactions (r0 = 0) is
used. We believe that the extremely tight confinement r0 � l
also can be described by means of the GGP equations with
methods similar to those considered in Ref. [7].

VI. CONCLUSIONS

Using the GGP equations (1) and (2), we obtained
the correct resonance denominators, which determine the

FIG. 1. (a) The solution of Eq. (40), u(δ) (blue solid line). The
parameter u is the chemical potential in units of 4π h̄2n2D/m, see
Eq. (36). At large δ, the function u(δ) asymptotically approaches
1/δ (dashed red line). (b) The chemical potential in the pancake
geometry [in units of 4π h̄2n2D/m], obtained from Eqs. (40) and
(41), vs. the oscillator length l of the trapping potential [in units
of the 3D scattering length a] (blue solid line). The same diagram
in the approximation u � 1/δ is shown in dashed red line. This
approximation overestimates the values of the chemical potential.
The absolute value of a and 2D density n2D are supposed to be
fixed, while the sign of a can change. When a is negative, the CIR
is observed: the chemical potential grows rapidly with increase of
the oscillator length, because the parameter δ [Eq. (41)] decreases.
When the scattering length is positive, one can also observe a kind
of smoothed resonance behavior of the chemical potential with the
maximum at l/a = 0.7978 . . . , see Eq. (43). The position of the
maximum is independent of the 2D density.

positions of CIRs in the cigar-shaped and pancake geometries
[see Eqs. (32), (33), and (41), (42)].

The GGP equations, being a particular case of the HFB
approximation (see Appendix), are applicable for a weakly
interacting Bose gas, strictly speaking. Nevertheless, the GGP
equations correctly reproduce the effective coupling in the
low-dimensional geometries. The reason is that these equa-
tions describe well the short-range correlations even inside
the radius of interaction potential. This confirms that the
GGP equations can be considered as a universal tool for

023309-6



CONFINEMENT-INDUCED RESONANCE FROM THE … PHYSICAL REVIEW A 110, 023309 (2024)

describing BECs in various regimes. For instance, the method
has good prospects for studying the extremely tight confine-
ments, crossover between 3D and 2D or 1D regimes, and the
dipolar BEC in various regimes, including quantum droplets
[27].

In addition, the integral representation for GF was found
for the cylindrical confinement [Eqs. (9), (11)], which is
valid for small scattering wave vectors p < 2/l0 and arbitrary
values of coordinates. It is convenient for obtaining the low-
density expansion (13) of the GF.

Within our approach, we found the position (43) of the
smoothed resonance at positive scattering length in the pan-
cake geometry. The position is independent of the density.
This is nearly two-thirds of the experimentally observed value
[5]. The discrepancy might be attributed to condensate deple-
tion at finite temperatures or to many-body effects that are
beyond the used weak-coupling approximation.

In this paper one species of bosons is considered. As a
prospect, one can apply the GGP equations to study the CIR
resonances for two species of bosons as well. To tackle the
problem, we need to introduce two additional indices and
solve a system of five coupled equations, which contain two
corresponding chemical potentials. The task is quite com-
plicated, since the center of mass and relative motions are
not separated anymore due to different lengths of transverse
confinement for different species. Green’s function methods
of the two-body scattering in the presence of transverse con-
finement [28,29] can be expected to apply here as well. Note
that for the cylindrical geometry, the p-wave contribution to
the scattering amplitude of distinguishable atoms turns out to
be quite significant [29].
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APPENDIX: HARTREE-FOCK-BOGOLIUBOV
APPROXIMATION

Let make some remarks about the Hartree-Fock-
Bogoliubov (HFB) method. We consider only the stationary
HFB theory at zero temperature. The HFB approximation for
fermions was suggested by Bogoliubov [30] as a variational
scheme formulated in terms of the normal and anomalous
averages of two Fermi-field operators. These schemes can
be simplified [31–33] if we note that these averages are
given by bilinear forms of the u and v parameters of the
Bogoliubov transformation. Then the variational procedure
can be reformulated directly in terms of u and v parameters,
and the resulting equations are called Bogoliubov–de Gennes
equations.

For bosons, the relations analogous to the Bogoliubov–
de Gennes equations can be written down [12,34]. They are
called the Bogoliubov equations. In addition to the u and v

parameters, these equations contain the wave function of the
inhomogeneous Bose-Einstein condensate.

On the other hand, one can also formulate the HFB method
for bosons as a variational scheme with three variational
functions: the condensate wave function and normal and
anomalous averages of two Bose field operators. Below we
follow this scheme [15] and derive the generalized GP equa-
tions by further simplifying the HFB scheme.

1. Hartree-Fock-Bogoliubov approximation for bosons
in the variational formulation

The ground-state energy and mean number of interacting
bosons in an external field is given by (see, e.g., textbooks
[35,36])

E = − h̄2

2m

∫
dx ∇2

x 〈�̂†(x′)�̂(x)〉∣∣x′=x

+
∫

dx Vext (x)〈�̂†(x)�̂(x)〉

+ 1

2

∫
dx1dx2 V (x1, x2)〈�̂†(x1)�̂†(x2)�̂(x2)�̂(x1)〉,

(A1)

N =
∫

dx 〈�̂†(x)�̂(x)〉, (A2)

respectively. Here x = (r, σ ) are the coordinate and spin
of a particle, respectively, and

∫
dx · · · = ∑

σ

∫
dr · · · . The

brackets 〈· · · 〉 stand for the ground-state average. The Bose
field operators are denoted as �̂(x) and �̂†(x).

The Bose-Einstein condensation implies that the global
gauge symmetry is broken. Then one can separate the conden-
sate contribution to the field operators: �̂(x) = φ(x) + ϑ̂ (x)
and �̂†(x) = φ∗(x) + ϑ̂†(x). Here φ(x) and ϑ̂ (x) are the nu-
merical and operator parts, respectively, for which we have
φ(x) = 〈�̂(x)〉 and 〈ϑ̂ (x)〉 = 0. Then the two-boson correla-
tors read

〈�̂†(x)�̂(x′)〉 = φ∗(x)φ(x′) + 〈ϑ̂†(x)ϑ̂ (x′)〉, (A3)

〈�̂(x)�̂(x′)〉 = φ(x)φ(x′) + 〈ϑ̂ (x)ϑ̂ (x′)〉. (A4)

The normal two-boson correlator (A3) is nothing else but the
one-body density matrix, and the anomalous correlator (A4)
can be treated as the two-body wave function of the Bose-
Einstein condensate [19,20].

The diagonal part of the two-body density matrix, which
determines the interaction term, can also be found by sepa-
rating the condensate part, and using Wick’s theorem for the
correlators of ϑ̂ and ϑ̂† operators,

〈�̂†(x1)�̂†(x2)�̂(x2)�̂(x1)〉 = φ∗(x1)φ(x2)∗φ(x2)φ(x1) + φ(x1)φ(x2)〈ϑ̂†(x1)ϑ̂†(x2)〉 + φ∗(x1)φ∗(x2)〈ϑ̂ (x2)ϑ̂ (x1)〉
+ φ(x1)φ∗(x2)〈ϑ̂†(x1)ϑ̂ (x2)〉 + φ∗(x1)φ(x2)〈ϑ̂†(x2)ϑ̂ (x1)〉 + 〈ϑ̂†(x1)ϑ̂†(x2)〉〈ϑ̂ (x2)ϑ̂ (x1)〉
+ 〈ϑ̂†(x1)ϑ̂ (x1)〉〈ϑ̂†(x2)ϑ̂ (x2)〉 + 〈ϑ̂†(x1)ϑ̂ (x2)〉〈ϑ̂†(x2)ϑ̂ (x1)〉. (A5)
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Wick’s theorem is applicable, since the effective HFB
Hamiltonian contains only a bilinear form of creation and
annihilation operators [34].

The normal 〈ϑ̂†(x)ϑ̂ (x′)〉 and anomalous 〈ϑ̂ (x)ϑ̂ (x′)〉 av-
erages are not independent quantities. The relations between
them at zero temperature can be obtained [15] using the fact
that the HFB ground state is the quasiparticle vacuum. The
relations do not depend explicitly on parameters of the Hamil-
tonian and take the form∫

dx 〈ϑ̂†(x1)ϑ̂†(x)〉〈ϑ̂ (x)ϑ̂ (x2)〉

= 〈ϑ̂†(x1)ϑ̂ (x2)〉 +
∫

dx 〈ϑ̂†(x1)ϑ̂ (x)〉〈ϑ̂†(x)ϑ̂ (x2)〉,
(A6)∫

dx 〈ϑ̂†(x)ϑ̂ (x1)〉〈ϑ̂ (x)ϑ̂ (x2)〉

=
∫

dx 〈ϑ̂ (x1)ϑ̂ (x)〉〈ϑ̂†(x)ϑ̂ (x2)〉. (A7)

Finally, the stationary HFB equations can be obtained by
means of variation of E − μN , given by Eqs. (A1)–(A5), un-
der the conditions (A6) and (A7). The variational functions are
φ(x), φ∗(x), 〈ϑ̂ (x)ϑ̂ (x′)〉, 〈ϑ̂†(x)ϑ̂†(x′)〉, and 〈ϑ̂†(x)ϑ̂ (x′)〉.
We do not explicitly write the resulting equations.

The full HFB scheme is rather cumbersome, and additional
simplifications of Eq. (A5) are often used [37]. The simplest
approximation is to neglect all the quantum correlators and

leave only the wave function of the condensate. Then we
arrive at the well-known GP functional with the help of the
pseudopotential.

2. Generalized Gross-Pitaevskii equations as a simplified
version of the Hartee-Fock-Bogoliubov approximation

The GGP equations can be obtained [15] from the full
HFB theory when the normal two-boson terms are completely
neglected in Eq. (A5):

〈�̂†(x1)�̂†(x2)�̂(x2)�̂(x1)〉
� φ∗(x1)φ(x2)∗φ(x2)φ(x1) + φ(x1)φ(x2)〈ϑ̂†(x1)ϑ̂†(x2)〉
+ φ∗(x1)φ∗(x2)〈ϑ̂ (x2)ϑ̂ (x1)〉
+ 〈ϑ̂†(x1)ϑ̂†(x2)〉〈ϑ̂ (x2)ϑ̂ (x1)〉.

Besides, if the condensate depletion is small, one can neglect
the second term in the right-hand side of Eq. (A6), which is of
the next order of the condensate depletion. Thus, we are left
with the relation

〈ϑ̂†(x1)ϑ̂ (x2)〉 �
∫

dx 〈ϑ̂†(x1)ϑ̂†(x)〉〈ϑ̂ (x)ϑ̂ (x2)〉. (A8)

In the approximation (A8), Eq. (A7) turns into iden-
tity. Then the variational procedure yields [15] the GGP
equations (1)–(4).
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