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Floquet engineering tunable periodic gauge fields and simulating real topological phases
in a cold-alkaline-earth-metal-atom optical lattice
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We propose to synthesize tunable periodic gauge fields via Floquet engineering cold-alkaline-earth-metal
atoms in one-dimensional optical lattice. The artificial magnetic flux is designed to emerge during the combined
process of Floquet photon-assisted tunneling and internal state transitions. By varying the initial phases of the
driving protocol, our proposal presents the ability to smoothly tune the periodic flux. Moreover, we demonstrate
that the effective two-leg flux ladder model can simulate one typical real topological insulator, which is described
by the first Stiefel-Whitney class and protected by the space-inversion–time-reversal symmetry. Benefiting from
the long lifetime of excited states of alkaline-earth-metal atoms, our work opens new possibilities for exploiting
the physics related to gauge fields, such as topological phases, in the current cold-atom platform.
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I. INTRODUCTION

Gauge fields, as well as the associated gauge theories,
are crucial to modern physics. In the standard model, com-
plex gauge fields are necessary to mediate the interactions
between elementary particles. The application of strong mag-
netic fields to two-dimensional electronic systems has led
to the discovery of topological matter [1–5] that has been
actively expanded over the past 15 years [6–10]. Among the
topological matter, Chern insulators have drawn tremendous
attention for exploring the topological mechanisms beyond
Landau levels and their potential application aspects, which
was first proposed by Haldane through introducing staggered
fluxes threading the honeycomb lattice [11]. Inspired by this
spatial magnetic configuration, much research has been de-
voted to combining that with various lattice systems, whose
interplay results in flat bands [12–18], anomalous quantum
Hall effects [12,19,20], high Chern numbers [15,18], high-
order Chern number [17], unique edge states [21,22], and so
on. Extra effort has focused on investigating other periodic
fluxes to explore similar phenomena such as high Chern num-
bers [23], redistribution of Chern numbers [24,25], and chiral
edge states [26]. Nevertheless, it is interesting to note that
there is a kind of novel topological phase recently emerging
from the periodic π flux configuration [27–35]. Distinct from
other precursors, their Brillouin zone, band topologies, edge
states, symmetry groups, and topological classifications are
profoundly modified by the Z2 projective algebra [27–32].
It is naturally anticipated that more general periodic U(1)
gauge fields may extend the realm of intriguing topological
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phases [28]. However, how to engineer periodic gauge fields
is still an open question.

Due to the unprecedentedly clean and controllable ex-
perimental system, cold atoms offer a unique platform for
simulating and investigating the gauge fields [36–41]. One
early and simple route to synthesizing effective magnetic
fields involves rapidly rotating the cold gases, leveraging the
analogy between the neutral atomic Coriolis force and the
charged particles’ Lorentz force [42–46]. This method, how-
ever, faces a limitation in the range of the fields it can induce.
To approach larger gauge fields, the scheme of laser-assisted
tunneling was later suggested to exploit Peierls phases which
arise when the suppressed adjacent tunneling is resonantly re-
stored by Raman transitions [47–52]. Widely used with alkali-
metal atoms, such scenarios typically generate staggered or
uniform gauge fields. Desirable are the diverse spatial con-
figurations. A more elaborate dynamical driving technique,
commonly referred to as Floquet engineering [41,53–63],
can be employed to achieve gauge fields of varied lattice
configurations, attaching gauge fields to a triangular lattice,
a kagome lattice, and a hexagonal lattice [56,57,61,64–66].
The proven versatile tool can even engineer solenoid-type flux
geometries [67].

Among those cold atomic species, cold-alkaline-earth-
metal atoms (AEMAs) offer unique advantages for simulating
gauge fields. The primary reason is that, by utilizing
long-lived electronic excited states, the strongly suppressed
spontaneous emission reduces related heating [50,68–72].
This useful low heating rate has allowed the application of
Floquet engineering methods in optical lattices to advance re-
cent experimental progress not only in quantum simulation but
also in precision measurement [73,74]. These developments
motivate us to explore the possibility of engineering periodic
artificial gauge fields in such atomic platforms.
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FIG. 1. Sketch of the proposed setup. (a) Cold AEMAs are
trapped in a shaking superlattice formed by two standing-wave laser
fields with wavelengths λm and 2λm. Interacting with modulated
pumping lasers, atoms with ground states |g〉 can be excited to
higher-energy levels |e〉. (b) Periodic shaking of superlattice origi-
nates from the two coordinated frequency modulation functions for
the laser with magic wavelength �νm = ν1 sin(ωst ) and the other
�ν2m = ν1

2 sin(ωst ), denoted by the blue solid line and red dashed
line, respectively. (c) Modulation function to the frequency of the
pumping laser �νp(t ) = ν2 cos(ωst + ϕ) + λm

2λp
ν1 sin(ωst ), with set-

ting ν2 = ν1, ϕ = π

3 , and λm
λp

= 7π

6 .

In this paper we propose a feasible and efficient scheme
for the generation of tunable periodic gauge fields by Flo-
quet engineering of cold AEMAs. Starting with the synthetic
dimension method, we further break the spatial translation
symmetry and periodically drive the system. By designing
an appropriate superlattice, we show that these atoms experi-
ence state-dependent potentials, and thus acquire net magnetic
fluxes attaching the artificial “electronic” dimension due to
different Floquet photon-assisted resonant precesses. Intrigu-
ingly, it is found that the effective two-leg periodic flux model
can exhibit the real topological phase. This topological state is
protected by PT symmetry, the combined symmetry of spatial
inversion P and time reversal T , and characterized by the first
Stiefel-Whitney class. Topological phase transition can occur
when tuning the periodic flux.

The paper is organized as follows. Section II serves as
an introduction to our proposal and the corresponding time-
dependent Floquet model. In Sec. III we discuss the effective
Hamiltonian in the case of the Floquet photon-assisted reso-
nant tunneling between adjacent sublattices and the transition
between two levels of atoms. According to that, the tunabil-
ity of periodic artificial gauge potentials is then shown. We
discuss the topological properties of the effective model in
Sec. IV. In Sec. V we conclude with a discussion.

II. PROPOSAL

Illuminated by the modulated pumping laser, we consider
cold-AEMA gases confined in a one-dimensional driven su-
perlattice, which is illustrated intuitively in Fig. 1(a). The
pumping laser interrogates the transition between the ground

states |g〉 and the excited states |e〉. Such a superlattice is
formed by overlapping two one-dimensional (1D) optical
lattices with one at a magic wavelength λm giving a lattice
depth Vm and the other at a wavelength 2λm giving depths
Vg and Ve for states |g〉 and |e〉, respectively. To simplify our
discussion, the superlattice and pumping laser are assumed
to be driven simultaneously and the sine protocol is chosen,
which can be achieved by acousto-optic modulators.

Defining Pg and Pe as the projection operator to the ground
state |g〉 and the excited state |e〉, respectively, the driven state-
dependent superlattice can be written as

V (x, t ) = −Vm cos2{km[x − XL(t )]}

− VgPg cos2

(
km

2
[x − XL(t )]

)

− VePe cos2

(
km

2
[x − XL(t )]

)
, (1)

where the sinusoidal driven function is applied

XL(t ) = λm

2

∫ t

0
ν1 sin(ωst )dτ, (2)

with ωs/2π denoting the driving frequency. The right-hand
side of the first line in Eq. (1) indicates that the atomic two
levels experience the same lattice potential generated by the
magic wavelength λm. In contrast, the second and third lines
describe different trapping conditions due to the laser with
wavelength 2λm. Assuming identical spatial shaking XL(t )
for the two lattices, the two driven protocols should be co-
ordinated as shown in Fig. 1(b). Let ν1 be the frequency
excursion of the modulation to the magic laser frequency.
Such conditions can be achieved by just choosing the fre-
quency excursion ν1/2 for the other one.

Considering another time-dependent modulation to the fre-
quency of the pumping laser,

�νp(t ) = ν2 cos(ωst + ϕ) + 1

λp
ẊL(t ), (3)

which is shown in Fig. 1(c), the |g〉 ↔ |e〉 transition can
be described by the atom-laser coupling matrix (under the
rotating-wave approximation)

W = h̄

2

(
δ geikp[x−Xp(t )]

ge−ikp[x−Xp(t )] −δ

)
,

with

Xp(t ) = λp

∫ t

0
dτ �νp(τ ). (4)

Here g is the Rabi frequency, δ = ω0 − ωp is the detuning,
ω0 is the frequency difference between |g〉 and |e〉, and λp

and kp are the wavelength and wave number of the pumping
laser, respectively. It is noteworthy that we have introduced an
initial phase difference ϕ between the two driven functions
in Eq. (2), which is the key ingredient for engineering the
periodic flux in our following discussion. According to cold-
AEMA experiments such as those using 173Yb [68,70] and
87Sr [71,73,74], neglecting atomic interaction in some suitable
lattices is reasonable. Under individual-particle approxima-
tion, then the external and internal motion of the atoms is
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governed by the Hamiltonian

H =
(

p2

2m
+ V (x, t )

)
⊗ 1̂ + W, (5)

where m and p are the atomic mass and momentum, re-
spectively, and 1̂ is the identity operator associated with the
internal atomic degrees of freedom.

III. EFFECTIVE HAMILTONIAN AND PERIODIC
GAUGE FIELDS

It is convenient to work in the frame of reference comov-
ing with the superlattice, into which we can transform the
atomic motion by two steps of unitary transformation. First,
we define U1 = exp[ i

h̄ XL(t )p] and transform the Hamiltonian
in Eq. (5) by H → H1 = U1HU †

1 − ih̄U1∂tU
†
1 . The shift of

position in the potential V (x, t ) is compensated by U1xU †
1 =

x + XL(t ). However, the extra term −ih̄U1∂tU
†
1 generates

−ẊL(t )p, which means a shift of the momentum. To cancel
this extra term, we implement the other unitary transformation
by U2 = exp[− i

h̄ mẊL(t )x], which results in p → p + mẊL(t ).
Finally, the Hamiltonian Hc = U2H1U

†
2 − ih̄U2∂tU

†
2 in the co-

moving frame becomes

Hc =
(

p2

2m
+ V ′(x) + mẌL(t )x − m

2
ẊL(t )2

)
⊗ 1̂

+ h̄

2

(
δ geikp[x−Xp(t )+XL (t )]

ge−ikp[x−Xp(t )+XL (t )] −δ

)
, (6)

with the undriven superlattice potential

V ′(x) = −V1 cos2(kLx) − VgPg cos2

(
kL

2
x

)

− VePe cos2

(
kL

2
x

)
. (7)

Here the term −m
2 ẊL(t )2 can be ignored since it is a time-

dependent energy shift. In this laboratory frame, we can
see now that the vibration of the superlattice gives rise to
two physical effects. The first is the inertial force, given by
F (t ) = −mẌL (t ), which generates the energy term mẌL(t )x.
The second is the Doppler effect, related to the term eikpXL (t ).

In the Wannier representation using the tight-binding ap-
proximation, the many-body Hamiltonian described by Eq. (6)
can be formulated as

Hc =
∑

l,σ=g,e

Kσ (b†
l,σ al,σ + a†

l+1,σ
bl,σ + H.c.)

+ h̄g

2
eikp[XL (t )−Xp(t )]

∑
l

(ei2lθ a†
l,eal,g

+ ei(2l+1)θ b†
l,ebl,g + H.c.) + HF + Hp, (8)

where al,σ (a†
l,σ ) and bl,σ (b†

l,σ ) denote the fermionic annihi-
lation (creation) operators for atoms occupying the Wannier
state at the a and b sublattices of the lth site respectively, Kσ

is the corresponding tunneling amplitude, and g and e label
the internal states |g〉 and |e〉, respectively. Here the phase
θ = πλm/λp can be changed by adjusting the angle between

the pumping laser and the superlattice [70]. The energies
associated with the inertial force acting on atoms at different
sites are given by

HF = −F (t )λm

∑
l,σ=g,e

[
la†

l,σ al,σ +
(

l + 1

2

)
b†

l,σ bl,σ

]
. (9)

Let μ be the chemical potential generated by the magic lattice,
the first term on the right-hand in Eq. (7). Then the second
and third terms in Eq. (7) will shift the chemical potential
of one sublattice (assuming sublattice a) to be μa,g and μa,e,
respectively. Including the detuning related energy, the corre-
sponding total potentials become μa,g − h̄

2 δ and μa,e + h̄
2 δ at a

sites and μ − h̄
2 δ and μ + h̄

2 δ at b sites. Visualization of those
potentials is also sketched in Fig. 1(a). Since we are interested
in Floquet photon-assisted resonant processes, we set those
potentials equal to integer multiples of h̄ωs,

Hp = h̄ωs

∑
l

[naa†
l,eal,e + mgb†

l,gbl,g + (na + me)b†
l,ebl,e],

(10)

where μa,g − h̄
2 δ is redefined as the zero point of potential en-

ergy and nah̄ωs = μa,e − μa,g + h̄δ, mgh̄ωs = μ − μa,g, and
meh̄ωs = μ − μa,e. It is notable that the ratio of mg to me is
equal to the ratio of the polarizability of the ground state to
the excited state at the wavelength 2λm. By choosing proper
driving frequency, lattice laser power, and detuning, this reso-
nant condition can be achieved.

We proceed to discuss the resonant situation. In this case,
we need to combine the potentials Hp with the inertial force
induced energies HF and the Doppler effect associated terms
eikp[XL (t )−Xp(t )] in Eq. (8). Based on this consideration, we do
a combined rotation transformation of U3 = exp( i

h̄

∫ t
0 HF dτ )

and U4 = exp( i
h̄ Hpt ), which leads to the new Hamiltonian

HR = U4U3HcU
†
3 U †

4 − ih̄U4U3∂t (U
†
3 U †

4 )

=
∑

l,σ=g,e

Kσ

(
ησ

b,ab†
l,σ al,σ + ησ

a,ba†
l+1,σ

bl,σ
)

+ h̄g

2

∑
l

χ l
aa†

l,eal,g + χ l
beiθ b†

l,ebl,g + H.c., (11)

where

ησ
b,a = exp

(
− i

2h̄

∫ t

0
dτ F (τ )λm + imσωst

)
,

ησ
a,b = exp

(
− i

2h̄

∫ t

0
dτ F (τ )λm − imσωst

)
,

χ l
α = exp{i2lθ + ikp[XL(t ) − Xp(t )] + inαωst}, (12)

with α denoting a or b and nb = na + me − mg.
In a typical AEMA experiment, for example, on 87Sr

atoms [73,74], the driving frequency ωs/2π can vary from
several hundred to several kilohertz and the superlattice depth
ranges from near zero to tens of recoil energies (the recoil
energy is defined as Er = h2/2mλ2

m). Therefore, we can adjust
the experimental parameters to ensure that the driven fre-
quency is larger than the intersite tunneling amplitudes and the
Rabi frequency, and then the high-frequency expansion can be
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FIG. 2. Illustration of the effective two-leg ladder model with
periodic gauge fields. (a) A modulated pumping laser induces tran-
sitions between ground states |g〉 and excited states |e〉, which can
be viewed as two sites in the synthetic dimension. The tunneling
between sublattices is inhibited due to the potential offset and can
be restored with the assistance of Floquet photons. The Floquet
photon-assisted resonance pathways of one loop in each plaquette is
accompanied by phases θ and ϕ, thus giving rise to periodic fluxes.
(b) Renormalized functions of the hopping amplitudes along the legs
are Bessel functions J1 and J5. (c) Renormalized functions along the
rungs, J0 and J4.

applied safely. In our proposal, the periodic modulation is a
sine signal function, as shown in Eqs. (2) and (3). We make
use of the Bessel function expansion eiz sin β = ∑

k Jk (z)eikβ to
replace the driven modulation terms in Eq. (12). Keeping only
the resonant processes and neglecting other rapidly oscillating
terms, the renormalized parameters of Eq. (12) can be approx-
imately expressed as

ησ
b,a ≈ J−mσ

(�1),

ησ
a,b ≈ Jmσ

(�1),

χ l
α ≈ Jnα

(�2)e2ilθ−inαϕ, (13)

where �1 = πhν1/4Er and �2 = 2πν2/ωs. Finally, substitut-
ing Eq. (13) into Eq. (11), we obtain a time-independent
effective Hamiltonian. By employing the internal atomic
degrees of freedom as the extra lattice dimension, it can be re-
garded as a two-leg flux ladder model as depicted in Fig. 2(a).

From the last of Eqs. (13) we can see that the phases
nαϕ, and thus the relevant gauge fields, emerge from the
internal state resonant transition with the assistance of Floquet
photons. As for this artificial gauge field, the physical gauge-
invariant quantity is the phase accumulated on an elementary
loop per plaquette. Taking into account the phase θ , the total
magnetic flux through each plaquette is θ ± (na − nb)ϕ. For
an atomic species such as 87Sr, the polarizability αe of the |e〉
states at the wavelength 2λm ≈ 1626.86 nm is 41.36 a.u. [75].
Choosing a proper laser power of wavelength 2λm, the rele-
vant chemical potential shift of the |e〉 state can be matched
to the driving frequency as μ − μa,e ≈ αeE2 ≈ h̄ωs = h ×
1 kHz, namely, me = 1. Note that the polarizability αg of |g〉
states is 206.37 a.u., which is approximately five times that
of the |e〉 state, and then μ − μa,g ≈ αgE2 ≈ h × 5 kHz and
mg = 5. Setting the detuning δ to zero, which implies nb = 0

and na = 4, the accumulated phase is θ ± 4ϕ in this case.
Now it is clear that our scheme can simulate the periodic U(1)
gauge fields with two plaquettes as one period. Recall that θ

is induced by an incommensurate ratio between wavelengths
of the lattice and the pumping lasers; it can be tuned by
adjusting the angle between those lasers. Moreover, ϕ is the
initial phase of the sinusoidal driving function and is fully
controllable [73]. Thus our scheme offers a feasible method
to tune the periodic gauge potentials.

Finally, we discuss the modulation of hopping ampli-
tudes in the effective model. The Bessel functions from
Eq. (13) renormalize the nearest-neighbor hopping ampli-
tudes along legs as Kσ Jmσ

(0.25πhν1/Er ) and along rungs as
1
2 h̄gJnα

(2πν2/ωs), respectively. Independent of the phases θ

and ϕ, such simple parameter-dependent function forms re-
sult in their individual controllability via varying the driving
amplitudes ν1 and ν2. While the demonstrated controllability
offers exciting possibilities, it is essential to first consider the
widely studied cases with equal hopping amplitudes along
legs and along rungs. Figure 2(b) shows the Bessel functions
Jmσ

for mg = 5 and me = 1. The crossing points J5(�1) =
J1(�1) indicate the equal tunneling amplitudes along legs if
considering Kg ≈ Ke. Similarly, Fig. 2(c) illustrates the tuned
hopping amplitudes across rungs, with equal points clearly
visible.

IV. TOPOLOGICAL PHASE

Now we investigate the topological phase of the ladder
model caused by the gauge fields. For clarity, we rewrite the
effective Hamiltonian for the case of mg = 5, me = 1, na = 4,
and nb = 0,

Heff = t
∑

l

(ei(θ+φ)b†
l,gal,g + ei(θ−φ)a†

l+1,gbl,g

+ b†
l,eal,e + a†

l+1,ebl,e)

+ t⊥
∑

l

(a†
l,eal,g + b†

l,ebl,g) + H.c., (14)

where t = 0.21Kσ , t⊥ = 0.14h̄g, φ = 4ϕ, and the proper
gauge transformation is performed. When φ = 0, namely, the
uniform flux scenario, previous research has demonstrated
that no topological states are present in this 1D system [76].
When θ + φ = 0 and θ − φ = π , recent work by Jiang et al.
shows that nontrivial topological states manifest and the topo-
logical invariant can be entirely determined by the projective
symmetry algebra [32]. For φ/2π being the rational number,
Sun [25] studied the particular case of periodic fluxes with pe-
riod 3, �1 = θ + 2π/3, �2 = θ + 4π/3, and �3 = θ + 2π ,
where the 1D topological invariant was elucidated with the
help of the Chern numbers of the corresponding extended 2D
system.

To explore the effects of general periodic gauge fields in
Eq. (14), we notice that this model exhibits combined sym-
metry of inversion P and time reversal T :

PT Heff(PT )−1 = Heff. (15)
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In momentum space, the Hamiltonian and PT operator are
represented by

Heff = t

(
1 + cos(k) 0

0 cos(θ + φ) + cos(k − θ + φ)

)
⊗ σ1

+ t

(
sin(k) 0

0 sin(θ + φ) + sin(k − θ + φ)

)
⊗ σ2

+ t⊥τ1 ⊗ σ0,

PT = τ0 ⊗ σ1K, (16)

respectively, where τi and σi denote Pauli matrices and K
denotes the complex conjugation. Since (PT )2 = 1, the PT
operator can be transformed into K by a unitary transfor-
mation, and the corresponding Hamiltonian Heff(k) will be
required to be real in this basis. When the number of occupied
bands is 1 or 3, the ground state is classified by the first
Stiefel-Whitney class and characterized by a Z2-valued topo-
logical invariant [77,78]. The topological invariant ν can be
formulated with the help of the Wilson loop. Introducing the
non-Abelian gauge connection [A(k)]ab = 〈ua(k)|∂k|ub(k)〉,
where |ua(k)〉 and |ub(k)〉 are the wave functions of occupied
bands, the Wilson loop is constructed as

W = P exp

(∫ π

−π

A(k)dk

)
, (17)

where P indicates path ordering. Here ν is defined by the
determinate of W ,

(−1)ν = det W = � je
iα j ,

ν = 1

π

∑
j

α jmod2, (18)

where eiα j are eigenvalues of W . Due to the PT symmetry, ν

can only take value 0 or 1 [78].
Taking 87Sr atoms as an example, θ can be approxi-

mated as 7π/6 if the pumping laser is parallel to the lattice
laser [71,74]. We set t⊥/t = 4 and restrict φ within the inter-
val [−π, π ] because of its periodicity. Applying Z2-invariant
formulas in Eqs. (17) and (18) to the lowest filled band of the
Hamiltonian in Eq. (16), we find that ν = 1 for −π < φ < 0
and is trivial otherwise, as shown in Fig. 3(a). The topolog-
ical number can be explained as follows [78]. Considering
the lowest band of the energy spectrum [see Fig. 3(b)], if
we impose real conditions on the bulk wave function over
the Brillouin zone, the wave function can be made smooth
over −π < k < π and glued on the boundaries k = ±π but
with an orientation-reversing transition function. The transi-
tion function equal to 1 indicates that the state is orientable
and ν = 0, while −1 indicates that the state is nonorientable
and ν = 1, as intuitively depicted in Fig. 3(d). Figure 3(c)
shows the probability of a pair of edge states located inside
the energy gap separating the second band from the lowest
one, calculated for 40 unit cells with open boundary condi-
tions when φ = −π/4. When φ = 0, the system simplifies to
the case of uniform fluxes, and the number of sites per unit
cell reduces from 4 to 2. This reduction indicates that the
energy gap should close when φ = 0, which corresponds to
a topological phase transition.

FIG. 3. (a) Topological phase diagram and Z2-invariant ν versus
φ, where θ = 7π/6 and t⊥/t = 4. (b) Dispersion relation with the
same parameters as in (a) but φ = −π/4, where the topological num-
ber of the lowest band ν = 1. (c) Pair of edge states corresponding
to ν = 1 in (a) with φ = −π/4, calculated for 40 unit cells in open
boundary conditions. (d) Intuitive illustration of the nonorientable
state in the lowest band on the Brillouin zone boundaries k = ±π .

Additionally, we note that a similar discussion of topolog-
ical properties can be conducted for three occupied bands,
yielding the same results as those for one occupied band.
Similar to other well-known topological phases, one observ-
able consequence of this PT symmetry-protected topological
phase is the edge states. However, different from a single band
with a nontrivial Zak phase, the topological number ν here
can be defined for multiple bands. For instance, when there
are three occupied bands in our model and ν = 1, there will
be a pair of edge modes in the third gap.

V. CONCLUSION

We have presented a feasible and efficient proposal for
engineering a two-leg ladder model with periodic gauge fields
based on driven cold-AEMA optical lattice systems. The pe-
riodic gauge field is widely controllable by independently
changing the parameters of the driven protocol. Our pro-
posal can simulate a real topological phase described by
the first Stiefel-Whitney class and demonstrate a topological
phase transition induced by gauge fields. Furthermore, from
an experimental technical perspective, it has a long history
of utilizing AEMAs in the construction of optical lattice
clocks [79]. The technologies developed for those purpose can
be naturally transferred to the study of our proposed gauge
field simulation. Therefore, we hope this work could enrich
the gauge-field-related topological research both in theory and
in future experiments.

One seemingly inevitable obstruction toward realizing the
present scheme is the ultimate thermalization of the driven
system. However, there is a Floquet prethermal regime where
the effect can be employed to describe the system’s physics.
Generally, the heating rate is exponentially suppressed to
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increase the shaking frequency and this prethermal timescale
can be engineered up to 104 driving periods [41,80–82]. The
preparation of the sample and the measurement can usually
be completed within 102 cycles [83]. Meanwhile, AEMA’s
internal states used here have a long lifetime. Thus our scheme
is robust and the experimental studies can be completed before
the thermalization happens.

Recently, the time-dependent synthetic gauge potentials
was theoretically confirmed as the critical ingredient for
realizing tailored dynamical evolution of quasiparticles,
quasiholes [67,84,85], wave packets [86,87], and adiabatic

state preparation [88]. Another application of our proposal is
expected for those dynamical process studies.
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