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Phase-induced vortex pinning in rotating supersolid dipolar systems
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We analyze the pinning of vortices for a stationary rotating dipolar supersolid along the low-density paths
between droplets as a function of the rotation frequency. We restrict ourselves to the stationary configurations of
vortices with the same symmetry as that of the array of droplets. In particular, such an analysis clearly reveals
that vortices are not only pinned at local density minima, but instead their coordinates are smooth functions of
the rotation frequency. Our approach to explaining such a behavior exploits the fact that the wave function of
each rotating droplet acquires a linear phase on the coordinates. Hence, the relative phases between the nearest
neighboring droplets allow us to predict the position of the vortices in the intermediate low-density region. Here,
we show that, for a droplet distribution forming a triangular lattice, the phases of three neighboring droplets are
needed for the correct description of the vortex location. In particular, for our confined system, we demonstrate
that the estimate accurately reproduces the extended Gross-Pitaevskii results in the spatial regions where the
neighboring droplets are well defined.
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I. INTRODUCTION

Supersolids were experimentally created for the first time
in 2017 in spin-orbit-coupled Bose-Einstein condensates
(BECs) [1], in BECs with cavity-mediated interactions [2,3],
and in 2019 in dipolar BECs [4–6], with many other experi-
ments featuring them afterwards [7–20]. This state of matter
combines the frictionless flow of the superfluids with a trans-
lational symmetry breaking typical of crystals [21–26]. In the
case of dipolar supersolids, one can obtain them either by
generating a roton instability into an already condensed gas
[4–6,18,27–33] or by directly condensing the gas from a ther-
mal cloud into a supersolid [20]. Dipolar supersolids break the
translational symmetry by spontaneously forming a position-
dependent density distribution, which includes droplets of
high density separated by lower-density areas. In such a su-
persolid phase of dipolar BECs [34–36], given that droplets
are separated by low-density valleys, the barrier required for
the nucleation of vortices is reduced with respect to the su-
perfluid case (see, e.g., Ref. [37]). In particular, for stationary
rotating systems, it was shown that low-density regions reduce
the energetic barrier for a vortex to enter the system, which
lowers the nucleation frequency and helps in pinning the vor-
tices in the interstitial zones between droplets [35]. For other
long-range interacting systems where droplet configurations

*Contact author: aitor.alana@ehu.eus
†Contact author: michele.modugno@ehu.eus
‡Contact author: capuzzi@df.uba.ar
§Contact author: djezek@df.uba.ar

are formed, the competition of vortices to locate inside the
superfluid droplets or at low-density regions has also been
theoretically analyzed in Ref. [38]. Such a difference in the
nucleation process has been observed early experimentally in
systems with contact interactions, as evinced by comparing
the results of, e.g., Abo-Shaeer et al. [39], where vortices were
nucleated at the bulk, to those of the experiment by Williams
et al. [40], where a square lattice was used.

The aim of this work is to predict the positions of vortices
in a stationary array in a supersolid dipolar BEC [18,34,35]
forming a triangular lattice of droplets when it is subject to
rotation. Our approach consists of approximating the system
wave function through a superposition of the localized wave
functions of individual droplets. Such a hypothesis is based on
the fact that the density is concentrated on the droplets, which
are surrounded by very low relative density valleys. Then, any
droplet exhibiting axial symmetry around a line parallel to
the rotation axis acquires a homogeneous velocity field [41],
which is determined by the velocity of the center of mass of
the rotating droplet. In consequence, the phase of the droplet
wave function turns out to exhibit a linear expression in terms
of the spatial coordinates [41,42]. Such an expression can
be conveniently employed for estimating the vortex positions
between two neighboring droplets through a simple formula,
as it has been already shown for a BEC in rotating square
lattices [42]. In the present work, which involves a triangular
lattice, we show that the use of three neighboring droplets in
the model leads to very accurate values for the vortex positions
along the low-density region surrounded by such droplets.

The paper is organized as follows. In Sec. II we intro-
duce the basic characteristics and parameters of a rotating
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FIG. 1. Density plot of the density distribution given by Eq. (1),
where the density maxima are marked with red dots. The thin white
lines indicate the low-density paths around the droplets, while the
dashed line marks the specific path described in the text. In such a
path, the saddle point at ys = λ is marked with a triangle, and the
minima at yv1 = d/

√
3 and yv2 = 2d/

√
3 (vertices) are marked with

crosses.

triangular lattice of droplets, which is considered in our anal-
ysis, and in Sec. II we outline the method for determining the
vortex positions. In Sec. III we describe the confined system
of dipolar atoms and show a typical stationary configuration,
whereas Sec. III is devoted to the determination of the co-
ordinates of vortices of different configurations. Finally, a
summary of the results is given in Sec. IV.

II. TRIANGULAR DROPLET LATTICE

We start by considering the stationary configuration of a
rotating supersolid dipolar BEC, which forms an extended
triangular lattice of droplets. The key properties of this system
are outlined below and are then used to predict the character-
istics of the vortex array that emerges within the low-density
regions between these droplets. We assume the density is
modulated as [18,43–45]

ρ(r) = ρ0

[
1 + C

3∑
i=1

cos(qi · r)

]
, (1)

where the parameter C > 0 represents the contrast. The vec-
tors qi, which lie in the (x, y) plane, are defined by

q1 = qŷ, q2 = −1

2
qŷ +

√
3

2
qx̂, q3 = −1

2
qŷ −

√
3

2
qx̂,

(2)

with q = 2π/λ. It is worth noting that in a realistic setup,
the overall density factor may exhibit a dependence on the
coordinate z, ρ0 = ρ0(z). This dependence can be modeled by
a Gaussian or Thomas-Fermi distribution. However, for the
purposes of the subsequent discussion, this dependency can
be safely disregarded without loss of generality. In Fig. 1 we
show a plot of the density distribution in Eq. (1). By analyzing
its maxima, minima, and saddle points, we can characterize
the density pattern as follows. The distance between neighbor-
ing droplet maxima is d = 2λ/

√
3. The minima are located at

equidistant positions from three neighboring droplets, namely,
at the vertices of the hexagonal structure depicted in the figure.

In the following, we use the term path to denote the line
segments connecting them (namely, each side of the hexagon).
When the droplets all have the same size and shape, as in the
ideal case depicted in Fig. 1, all paths in between the first
ring of droplets are equivalent. These are the paths that are
specifically relevant for the discussion in Sec. III. Therefore,
here we focus on the vertical path marked by the dashed line
in Fig. 1, without loss of generality. For this specific case, the
two vertices are located along the y axis at yv1 = d/

√
3 and

yv2 = 2d/
√

3. At the center of the path, ys = √
3/2d , which

corresponds to the middle point between the two neighboring
droplets, the density displays a saddle point.

When the supersolid lattice is put under rotation, stationary
vortices will appear along the low-density paths between the
droplets [33,37,42]. The position of the vortex along those
paths, denoted as Yv for the specific path considered above,
can be easily estimated using the ansatz discussed below, in
Sec. II.

In Sec. III we consider a finite realization of this system,
which can be achieved through numerical calculations. In
order to do so, we introduce a harmonic trap to confine the
system. Given that we also subject the system to rotation
at constant frequency � along the z axis, the effective con-
finement varies with �. Then, the distribution of droplets
and their densities vary as well. We verify that a number of
droplets arrange in a triangular lattice, and hence, we compute
d and the remaining geometrical quantities from the obtained
densities for each frequency.

Estimate of the vortex positions

In this section, we outline the way to estimate the position
of the vortices, following Ref. [42]. We assign to each droplet
k a localized wave function wk (r,�) normalized to unity,
where r = (x, y, z). Hence, the wave function of the system
of droplets can be approximated by

ψD(r, t ) =
∑

k

wk (r,�) eiφk (t )
√

Nk (t ), (3)

where Nk (t ) is the number of particles of the droplet, φk (t ) is
its global phase, and the index k runs upon all the droplets.
Given the axial symmetry of each droplet, we may further
approximate [41]

wk (r,�) = |wk (r,�)|ei m
h̄ (r−rk

cm )·(�×rk
cm ), (4)

where we have fixed to zero the phase of wk at the center of
mass of the droplet.

Two-droplet case. Let us first consider the case in which
the vortex sits between two neighboring droplets, labeled as k′
and k. Specifically, we examine the two droplets indicated in
the upper section of Fig. 1, which are symmetric with respect
to the vertical y axis. We denote the generic coordinates of
a vortex core in the z = 0 plane as (Xv,Yv, 0). Due to sym-
metry, a vortex lying between these two droplets will have
Xv = 0, while the vertical coordinate Yv can be obtained by
requiring the vanishing of the wave function at the vortex core,
ψD(Xv,Yv, 0) = 0, namely,

wk′ (r) eiφk′ √Nk′ + wk (r) eiφk
√

Nk = 0, (5)
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where we have omitted the time dependence for ease of nota-
tion. By writing,(

r − rk
cm

) · (
� × rk

cm

) = (
r − rk′

cm

) · (� × rk′
cm)

+ r · [
� × (

rk
cm − rk′

cm

)]
, (6)

Eq. (5) can be rewritten as
√

Nk|wk| ei{ m
h̄ r·[�×(rk

cm−rk′
cm )]−ϕk} + √

Nk′ |wk′ | = 0, (7)

where ϕk (t ) = φk′ (t ) − φk (t ) is the phase difference between
the centers of such neighboring droplets.

In terms of the center-of-mass coordinates, one has

r · [
� × (

rk
cm − rk′

cm

)] = −x
(
yk

cm − yk′
cm

)
� + y

(
xk

cm − xk′
cm

)
�.

(8)

As for the droplet label k, here we set k = 0 for the central
droplet and let k run clockwise for the outer droplets, as indi-
cated in Fig. 1. Then, considering the case of the two droplets
with k = 2 and k′ = 1 in Eq. (8), for which y1

cm = y2
cm, we may

obtain, from the condition that the imaginary and real parts of
Eq. (7) should vanish, the vortex coordinate Yv (t ),

Yv (t ) =
(

ϕ(t )

π
+ 2l + 1

)
π h̄

md�
, (9)

where d = x2
cm − x1

cm is the distance between the center of
mass of the droplets, and ϕ = ϕ2 = φ1 − φ2. Here, l is an in-
teger number labeling different possible solutions, with l = 0
corresponding to the first vortex that enters through that path
[42]. It is also important to remark that the coordinates of the
center of mass increase as functions of the rotation frequency
due to the centrifugal force, and we estimate its position by
searching the density maxima of the droplets.

Three-droplet case. In principle, in a triangular lattice,
when the location of a vortex is near a vertex of the droplet
lattice, the presence of a third neighboring droplet should
affect the vortex position, and hence it becomes important to
take such an effect into account. Then, one can approximate
the wave function in such a region as

ψD(r, t ) �
2∑

k=0

|wk (r,�)|ei m
h̄ (r−rk

cm )·(�×rk
cm )+iφk

√
Nk . (10)

In this case we cannot extract an analytical expression for
the vortex coordinates. However, by adequately modeling the
individual wave functions of the droplets, an approximate
solution can be obtained. Here we consider the two droplets at
the first ring (k = 1 and 2) together with the central one (k =
0), a case that is relevant for the finite realization presented in
the following section. For such a purpose we approximate |wk|
by Gaussian functions with widths a and heights which al-
most reproduce the characteristics of our droplets. We further
assume that φk = φ0 for all sites. With these approximations,
we can again obtain an expression for Yv by imposing that the
wave function of Eq. (10) vanishes at the position of the vortex
core. In particular, the value of Yv is given by the solution of√

N0

N1
e

d (d−√
3Yv )

2a2 + 2 cos

(
md

2h̄
�Yv

)
= 0, (11)

where we have accounted for the fact that in a finite realization
the central droplet population N0 may be different from the
population N1 = N2 of the other two droplets. Notice that
Eq. (11) has multiple solutions which are related to those
labeled by l in Eq. (9).

The above Eq. (11), along with Eq. (9), constitutes one of
the central results of the present work. In Sec. III, we compare
it with exact results from numerical simulations, demonstrat-
ing its accuracy in predicting vortex positions.

III. ROTATING STATIONARY SUPERSOLID

In order to present a practical case study, we focus on inves-
tigating a rotating stationary supersolid configuration within a
dipolar system akin to the one studied in Ref. [35]. Specif-
ically, we consider a Bose gas composed of N = 1.1 × 105

dipolar 162Dy atoms trapped by an axially symmetric har-
monic trap of frequencies {ωr, ωz} = 2π × {60, 120} Hz. For
this atomic species, the dipolar scattering length is add =
130a0, where a0 stands for the Bohr radius. The magnetic
dipoles are considered to be aligned along the z direction by a
magnetic field B. The s-wave scattering length of the contact
interaction is fixed to as = 92a0 throughout the whole paper.
The system is set to rotate at an angular velocity � around the
polarization axis.

The advantage of this specific configuration is that it fea-
tures a triangular supersolid lattice as the ground state, which
is the closest packing configuration and thus is of special
interest. However, the model developed in this paper does
not require any specific geometry and could be applied to
other supersolid configurations as long as the positions of the
droplets are correctly taken into account [46].

We consider the gas to be at T = 0; thus no thermal
fluctuations are taken into account. We describe the system
using the usual extended Gross-Pitaevskii (eGP) theory, which
includes both the quantum fluctuations in the form of the
Lee-Huang-Yang (LHY) correction [47–50] and the dipole-
dipole interaction [51]. To account for the rotation of the
condensate we work in the rotating frame, for which an ad-
ditional term is introduced into the energy functional [52,53].
The energy functional of such a system can be written as
EGP + Edd + ELHY + E�, with

EGP =
∫ [

h̄2

2m
|∇ψ (r)|2 + V (r)n(r) + g

2
n2(r)

]
dr,

Edd = Cdd

2

∫∫
n(r)Vdd(r − r′)n(r′)drdr′,

ELHY = 2

5
γLHY

∫
n5/2(r)dr, (12)

E� = −�

∫
ψ∗(r)L̂zψ (r)dr,

where EGP = Ek + Eho + Eint is the standard GP energy
functional including the kinetic, potential, and contact
interaction terms; V (r) = (m/2)

∑
α=x,y,z ω2

αr2
α is the har-

monic trapping potential; and g = 4π h̄2as/m is the contact in-
teraction strength. The system wave function ψ (r) is normal-
ized to the total number of particles N and the condensate den-
sity is given by n(r) = |ψ (r)|2. The interparticle dipole-dipole
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(a)

(b)

FIG. 2. Typical density and phase configuration of the stationary
supersolid triangular lattice obtained from the eGP simulations, in
the rotating frame. Here � = 2π × 20 Hz. (a) Isodensity contours
and velocity field around the stationary droplets. The black curves
correspond to the contours around the six first-ring droplets at a den-
sity value of 0.2ρmax, and the red curves correspond to the contours
around the low-density clouds at a density value of 0.04ρmax, where
ρmax is the maximum density value. The red arrows at the droplet
maxima correspond to the vk . (b) Color map of the phase of the
supersolid wave function at the plane z = 0. The plus signs mark
the locations of the vortices, and the curves are isodensity contours
of the droplets for the same values as in panel (a).

potential is Vdd(r) = (1 − 3 cos2 θ )/(4πr3), with Cdd ≡ μ0μ
2

being its strength, μ the modulus of the dipole moment μ,
r the distance between the dipoles, and θ the angle between
the vector r and the dipole axis, cos θ = μ · r/(μr). The LHY
coefficient is γLHY = 128

√
π h̄2a5/2

s /(3m)(1 + 3ε2
dd/2), with

εdd = μ0μ
2N/(3g). The last term E� accounts for the rotat-

ing frame, with L̂z = −ih̄(x∂y − y∂x ) representing the angular
momentum operator along z. To obtain the supersolid sta-
tionary states in the rotating frame, we perform numerical
simulations [54] in which we minimize the above energy
functional employing a conjugate gradient method (see, e.g.,
Ref. [55]). Among the several possible stationary configura-
tions, we select those corresponding to a triangular supersolid
lattice by means of a suitable choice of the trial wave function
[56].

A typical configuration is displayed in Fig. 2, featuring
the density contours and velocity field in panel (a), and the
phase distribution along with the position of the vortex cores
in the panel (b). This figure corresponds to the case with
� = 2π × 20 Hz and serves as a representative illustration
for all cases within the range of rotation frequencies consid-
ered in this work. Figure 2 reveals well localized, circularly
symmetric densities of the gas droplets (depicted in black)

FIG. 3. Mean value of the interdroplet distance d (blue circles) as
a function of the rotation frequency �. The data have been obtained
by identifying the density maxima from the calculated supersolid
configurations. The solid red line corresponds to the distance for
a nonrotating configuration with an effective trap frequency ω̃r =√

ω2
r − �2.

arranged in a triangular structure formed by a central droplet
at (x, y) = (0, 0) and six droplets located along a ring around
it. It may be seen that each of these droplets exhibits a uni-
form velocity field vk = � × rk

cm. Additionally, at the border,
very low-density clouds with noncircular shapes (in red) are
present and display a diffuse distribution with an extended
velocity field. Then, such a cloud is not included in the region
where ψD is defined. Between the droplets, we observe the
presence of vortices whose positions form a lattice structure
determined by the periodic arrangement of the supersolid
droplets [see Fig. 2(b)].

Vortex pinning

In order to investigate the position of the vortices as a
function of the rotation, we employ the method outlined in
Sec. II. Here we focus on the location of the vortices along
the low-density paths bounded by two vertices, such as the
line joining yv1 and yv2 in Fig. 1. We begin by considering
the effect of pairs of neighboring droplets. The mean relative
distance d between droplet pairs is shown in Fig. 3 as a
function of the rotation frequency � (blue circles). We ob-
serve an increase of such a distance with the frequency, which
can be mainly attributed to the effect of the centrifugal force
acting on the particles. This can be proved by comparison
with the interdroplet distance of a nonrotating gas trapped at
the effective frequency ω̃r = √

ω2
r − �2 so as to mimic the

centrifugal force effect, shown in Fig. 3 (solid red line).
Then, we extract the positions of any vortices present in the

system using a plaquette method [57] and compare them to
our estimate in Eq. (9). In Fig. 4 we show examples of the sta-
tionary density distribution at different rotation frequencies,
along with the vortex locations. This figure shows that the
vortices are not necessarily pinned to the vertices, but rather
along the low-density paths that connect them. The configu-
rations conserve the triangular symmetry for both the density
and phase profiles, and we observe that they display vanishing
phase differences among droplet centers, i.e., ϕk = 0,∀k. This
leads to the prediction Yv = (2l + 1)π h̄/(md�). It is worth
noting that the position of the vortex along the straight path
between the vertices yv1 and yv2 corresponds to the solution
with l = 0, whereas different values of l identify additional
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FIG. 4. Density plots of stationary supersolid configurations ob-
tained from the eGP simulations at the z = 0 plane for some
representative rotation frequencies: �/(2π ) = 16, 20, and 30 Hz
(from top to bottom, respectively). The black dots mark the maxima
of the density. The vortex positions determined with the plaquette
method are shown as white plus symbols (+). The position of the
vortex core obtained from the analytical ansatz, along the straight
path between the vertices yv1 and yv2 [yellow crosses (×)], is indi-
cated by a green square.

vortices that may enter the system from the outside. Neverthe-
less, we remark that those additional vortices that appear, e.g.,
for �/(2π ) = 30 Hz [Fig. 4(b)] cannot be properly described
by the ansätze (9) and (11) because they are nucleated in
the low-density cloud, outside the region of validity of the
analytical approach.

At this point, we are now able to compare the analytical
predictions of Eqs. (9) and (11) with the extracted values of
the vortex coordinates Yv along the path indicated in Fig. 1
as a function of the rotating frequency, as summarized in
Fig. 5. Overall, this figure demonstrates that the analytical
ansatz discussed in Sec. II provides an accurate prediction for
the positions of the vortex cores between supersolid droplets
in stationary rotating configurations. It is also worth noting
that the pinning at the saddle points, represented by a dotted
line in the graph, and density minima do not seem to be

FIG. 5. Vortex coordinate Yv as a function of the rotation fre-
quency �, for the stationary configurations and along the straight
path with Xv = 0 (see Fig. 1). The coordinates are extracted from
full eGP simulations using a plaquette method (see text) are marked
as blue points with their corresponding error bar. The predictions
provided by Eq. (9) with l = 0 (black dashed line) and Eq. (11)
(solid red line) have been calculated using the values of d obtained
from the numerical simulations, which are shown in Fig. 3. They
correspond to the ansatz based on two and three droplets, respec-
tively. The parameters of the three-droplet ansatz are a = 0.75 µm
and

√
N0/N1 = 1.06. The (green) dashed lines represent positions of

the vertices, whereas the (black) dotted line indicates the position of
the saddle point.

favored with respect to other points along such paths, as stated
previously (see, e.g., Ref. [33]). Instead, the vortex position
smoothly changes as a function of the rotation frequency. As
a matter of fact, in a rotating supersolid, the slow variation of
the vortex location arises from the imprinted velocity field on
the droplets, rather than from density holes that typically pin
vortices in nonrotating systems.

Let us now comment about the two- and three-neighboring-
droplet approximations. Although the two-droplet ansatz is
not expected to hold far from the saddle point, where the
third droplet effect should be taken into account, the ansatz
accurately predicts the rotation frequency at which vortices lo-
cate near such a point, through an analytical formula. Instead,
the three-droplet model permits us to numerically estimate
with accuracy the position of vortices along the line joining
the saddle point and the vertex yv1. We note that in such a
region the three neighboring droplets are well defined. This
is evident from Fig. 5, where the positions of the vertices are
indicated by (green) dashed lines. We may first mention that
the predicted rotation frequency for the presence of a vortex
at the saddle ys, using the two- and three-droplet approxi-
mations, differs in less than 0.3%, as the exponential term
in Eq. (11) is smaller than 10−2. Notice that by neglecting
such an exponential term altogether, both approaches coin-
cide. In contrast, for the vertex yv1, the two-droplet rotation
frequency estimate is given by �/2π = h̄

√
3/(2md2) � 28

Hz; whereas, using the three-droplet approach of Eq. (11), one
obtains �/2π � 37 Hz. The last result may be easily obtained
by considering that the argument of the exponential vanishes
at the vertex yv1, and hence the frequency at which the vortex
should reach such a vertex satisfies

cos

(
md2�

2h̄
√

3

)
= −1

2

√
N1

N0
. (13)
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Then, assuming equal populations N0 = N1, the above equa-
tion leads to �/2π = 2h̄/(

√
3md2) � 37 Hz for the lowest �

solution, which improves the value of the vortex coordinate
with l = 0 of Eq. (9), consistently with the numerical findings
of the eGP simulations. In summary, we have shown that the
three-droplet model better describes the vortex position as a
function of rotation frequency between the saddle ys and the
vertex yv1. Moreover, as seen from the previous analysis, the
inclusion of the third droplet explains the fact that for a given
frequency it is more likely to find the vortex near the vertex
than in the proximity of the saddle.

We finally note that we do not apply the three-droplet
approach in the line from the saddle point to the vertex yv2

since near such a vertex the formation of a third neighboring
droplet is not observed. The deviation from the estimate there
observed (see Fig. 5) can be caused by the presence of what
we call the cloud which, as shown in Fig. 2, has a very low
density and a different symmetry.

IV. SUMMARY AND CONCLUDING REMARKS

We have shown that when a dipolar supersolid is subjected
to rotation, the positions of vortices between two neighboring
droplets can be predicted in terms of the rotation frequency
and the interdroplet distance. Such a distance can be roughly
estimated using the nonrotating system with a harmonic po-
tential that mimics the net confinement produced by the
rotating trap. The vortex positions are a smooth function of the
rotation frequency and are distributed along the low-density
paths between the droplets, instead of being fixed at a density
minimum. Such a formulation applies in the regions where

robust droplets acquire on-site axially symmetric profiles.
We have further shown that a very accurate value of the
vortex locations can be numerically obtained by considering
three neighboring droplets within the triangular lattice. In the
present case, due to the external confinement, three well-
formed neighboring droplets could be observed only around
the first vertex, but given that our estimate remains valid
from the vertex up to the saddle, we may conclude that the
model should work well for less-confined systems where more
droplets are formed around other vertices of the triangular
lattice.

As a final remark, the approach can be generalized to
more complex droplet configurations as long as the droplets
themselves are axially symmetric and well defined. Vortices
will likely be placed in areas where two or three neighbor-
ing droplets are enough to precisely predict their positions,
regardless of the lattice structure of the supersolid.
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