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Dispersive shock waves in a one-dimensional droplet-bearing environment
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We demonstrate the controllable generation of distinct types of dispersive shock waves emerging in a quantum
droplet bearing environment with the aid of steplike initial conditions. Dispersive regularization of the ensuing
hydrodynamic singularities occurs due to the competition between mean-field repulsion and attractive quantum
fluctuations. This interplay delineates the dominance of defocusing (hyperbolic) and focusing (elliptic) hydrody-
namic phenomena being designated by the real and the imaginary speed of sound, respectively. Specifically, the
symmetries of the extended Gross-Pitaevskii model lead to a three-parameter family, encompassing two densities
and a relative velocity, of the underlying Riemann problem utilized herein. Surprisingly, dispersive shock waves
persist across the hyperbolic-to-elliptic threshold, while a plethora of additional wave patterns arise, such as
rarefaction waves, traveling dispersive shock waves, (anti)kinks, and droplet wave trains. The classification and
characterization of these features are achieved by deploying Whitham modulation theory. Our results pave the
way for unveiling a multitude of unexplored coherently propagating waveforms in such attractively interacting
mixtures and should be detectable by current experiments.
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I. INTRODUCTION

Dispersive hydrodynamics (DH) deals with multiscale
wave phenomena in fluid media featuring suppressed bulk
dissipation. In this context, dispersive shock waves (DSWs)
are ubiquitous coherent excitations emerging due to the com-
petition between self-steepening nonlinear effects and wave
dispersion. Their implications extend across various disci-
plines ranging from surface (and interfacial) waves [1–3] and
water waves [4,5] in classical settings to light flow in nonlin-
ear media [6–8], nonlinear dynamics in cold atomic platforms
[9–12], and in the materials science theme of (discrete) gran-
ular crystals [13–15] and related Fermi-Pasta-Ulam-Tsingou
lattices [16].

The anatomy of the DSW is that of a continuously ex-
panding waveform. The latter refers to a modulated periodic
wave encapsulated by a monotonically varying wave enve-
lope, extending from a nonlinear (solitonic) edge to a linear
dispersive wave tail (linear edge) [17] [see also Fig. 1(a)].
In essence, DSWs are generated either as a consequence
of the dispersive regularization (Riemann problem) of wave
breaking (gradient catastrophe) [7] or when the flow speed is
close to the speed of sound intrinsic to the medium [18,19]
(for further details see also the review in [17]). A standard
framework to unravel the behavior of DSWs is the celebrated
Whitham modulation theory [20]. In essence, this method is
a multiscale approach and refers to averaging over the fast
oscillatory scale. This process leads to a set of spatiotemporal
modulation equations incorporating the slow variation of the
parameters governing the multiscale periodic wave such as
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the DSW. The number of these parameters has to match the
number of conservation laws so as to obtain a meaningful
dimensional reduction through such a scheme.

Cold-atom simulators have been proven to be fertile play-
grounds for investigating coherent nonlinear structures (see
the reviews of [21–23]) owing to their high degree of pa-
rameter tunability and isolation. Here intense research activity
has been focused on DSW generation [9,24–26] spearheaded
by their experimental observation in Bose-Einstein conden-
sates [27] and later on in Fermi gases [28]. Properties of
DSWs have also been discussed in long-range interacting
setups such as strongly interacting Rydberg settings [29]. In
the same spirit, more recently, DSW nucleation has been
reported within an extended Gross-Pitaevskii (eGPE) model
[30] featuring contact interatomic interactions as a by-product
of kink-antikink interactions [31]. This model, besides the
standard cubic nonlinearity, incorporates the effect of the
first-order Lee-Huang-Yang (LHY) quantum correction [32]
which, in the effectively one-dimensional (1D) setting, intro-
duces (an attractive) quadratic nonlinear term.

Within this eGPE model another state of matter forms
the so-called quantum bright droplets which have been ex-
perimentally observed in both homonuclear [33–35] and
heteronuclear [36,37] bosonic mixtures (at least in higher-
dimensional settings). They refer to many-body self-bound
states of matter [38–40] existing due to the competition be-
tween mean-field repulsion and quantum fluctuation attraction
(represented by the quadratic nonlinearity in one dimension)
[39,41], a situation that is reversed in three dimensions (3D)
[30]. However, additional coherent structures can be hosted
in this setup such as bubbles [31,42,43] (also known as dark
droplets), kinks [31,44], dark solitons [42,45,46], and vortices
in two dimensions [44,47,48]. Note that droplets (bubbles)
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are known to be stable [49,50] (unstable [31]) structures,
solitary waves feature parametric windows of instability [42],
and plane waves may be modulationally unstable leading to
droplet mergers [51,52]. Interestingly, it was demonstrated
[31] that DSWs dynamically emerge as a consequence of
the interaction between some of the aforementioned coherent
entities including droplets and kinks as well as kinks with
antikinks, but also through the destabilization of bubbles.
However, the origin and properties of DSWs in droplet related
systems characterized by the interplay of the quadratic-
cubic interactions remain open questions. Such an interaction
combination for studying DSWs has been exploited in a
different context, namely that of the cubic-quintic nonlinear
Schrödinger (NLS) equation [53].

It is the main purpose of our work to systematically study
and control the dynamical generation of DSWs in such a
1D droplet supporting environment modeled by an eGPE.
For this reason, a piecewise constant step initial condition
featuring zero velocity, referred to as the dispersive dam-
break problem, arising also in shallow-water theory [54,55],
is deployed. Interestingly, it is found that the interplay of
the involved interaction terms leads to mean-field and LHY
dominated dynamical response regimes characterized primar-
ily by a real and an imaginary speed of sound. The latter
is analytically extracted through the hydrodynamic reduc-
tion of the model under consideration. In the former regime,
the spontaneous generation of robustly propagating rarefac-
tion waves and DSWs is observed, manifesting the repulsive
mean-field dynamics [56,57]. Excellent agreement between
the predictions of the eGPE model and the analytical ones
stemming from the so-called Whitham-El closure method
[56,58] is demonstrated. This includes the characterization
of the rarefaction wave profiles and macroscopic dynamical
properties of the emitted wave patterns such as the velocity
and density of the intermediate background and DSW edge
speeds.

Remarkably, across the threshold between the mean-field
and LHY dominated regimes, we find different flavors of
shock waves. The latter include, among others, Whitham
shocks with (anti)kinks being identified as belonging to this
larger family. Moreover, there exist DSWs that are seen to
persist across the obtained (real-to-imaginary speed of sound)
threshold, which we term DSW remnants. Additionally, deep
within the LHY dominated response regime, we observe ro-
bustly propagating droplet DSWs, which are reminiscent of
their bright solitonic counterparts arising in optical settings
[59–61] and attractive superfluids [62]. The characteristic time
of initiation of the droplet DSWs appears to be related to
modulation instability (MI) of plane waves. It turns out that all
the aforementioned DSW structures, even though subjected to
MI in one of the asymptotic plane-wave backgrounds, are sur-
prisingly long-lived. The quantum droplet bearing system thus
provides a versatile environment to access distinct regimes
in which different dispersive hydrodynamic features nucleate
spontaneously.

This work unfolds as follows. In Sec. II we introduce the
reduced single-component eGPE model supporting droplet
solutions and describe the initial condition (Riemann prob-
lem) allowing the dynamical emergence of DSWs. Section III
elaborates on the hydrodynamic formulation of the eGPE, the

conditions under which MI appears in this system, and the
system’s underlying conservation laws. In Sec. IV we discuss
the spontaneous generation of DSWs and their characteristics
in the droplet environment. Whitham modulation theory is de-
ployed to interpret the properties of DSWs obtained from the
simulations of the eGPE model. We conclude and offer pos-
sible future research extensions of our findings in Sec. V. In
Appendix A we lay out some analytical formulations related
to the Whitham-El closure method [58] and in Appendix B
we briefly touch upon a few instances of general Riemann
problems with nonzero hydrodynamic velocity.

II. SETUP AND INITIAL CONDITION

The setup under consideration consists of a 1D homonu-
clear bosonic mixture. The atoms reside in two different
hyperfine states of, e.g., 39K as per the corresponding 3D
experiment of Ref. [34] in free space. The 1D geometry
is achieved by utilizing tightly confined transversal direc-
tions as compared to the elongated unconfined x direction.
For simplicity, both states share the same atom number
(N1 = N2 ≡ N). They feature equal intracomponent repul-
sion g11 = g22 ≡ g > 0, whereas intercomponent attraction
g12 < 0 gives access to the droplet environment for δg =
g12 + g > 0. These assumptions render the participating com-
ponents equivalent and the mixture can be described by a
reduced single-component eGPE [30,41] which incorporates
the first-order LHY quantum correction. The relevant reduced
dimensionless model reads

iψt + ψxx

2
− |ψ |2ψ + |ψ |ψ = 0, (1)

where ψ is the 1D wave function. Importantly, the quadratic
nonlinearity encompasses the 1D attractive nature of the LHY
contribution, whereas the cubic term accounts for the stan-
dard mean-field repulsion. Here the energy of the system is
expressed in terms of h̄2/mξ 2, with ξ = π h̄2√|δg|/mg

√
2g

defining the healing length. The atom mass is m and h̄ is
the reduced Planck constant. Also, time, length, and wave
function are in units of h̄/mξ 2, ξ , and (2

√
g)3/2/πξ (2|δg|)3/4,

respectively. In what follows, all quantities shown are in di-
mensionless form. Typical evolution times considered herein
are of the order of t ∼ 103, translating to approximately 800
ms, e.g., for a transverse confinement ω⊥ ≈ 200 Hz used in
the experiment of Ref. [34].

This 1D eGPE model admits a plethora of coherent struc-
tures such as droplets [30,49], bubbles [31], and single- and
multiple-dark-soliton states [31,42,43] but also stationary pe-
riodic waves of the Jacobi-elliptic type, traveling periodic
waves, and kinks (see, e.g., Refs. [31,42,51]). Additionally,
this model has been used to study interactions among several
of the aforementioned entities [31], but it was also utilized to
explicate relevant MI phenomena [51,52,63]. The existence
of periodic traveling waves and information regarding modu-
lationally unstable parametric regions are of vital importance
for the generation and subsequent propagation of DSWs that
are the focus of our present investigation.

To unravel the spontaneous nucleation of DSW structures
subject to the eGPE [Eq. (1)] but also understand their char-
acteristics and longevity, we utilize a three-parameter family
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of Riemann problems. In this context, the Riemann prob-
lem refers to the evolution dynamics of a piecewise constant
waveform composed of two distinct, i.e., j = 1, 2, hydrody-
namic backgrounds. The latter have the general form ψ

( j)
0 =√

ρ
( j)
0 exp[i(u( j)

0 x − �t )], with � = 1
2 (u( j)

0 )2 + ρ
( j)
0 −

√
ρ

( j)
0

and ρ
( j)
0 (u( j)

0 ) designating the constant amplitude (velocity)
of the waveform. We remark that Eq. (1) possesses transla-
tional and Galilean invariance but also reflection1 symmetry.
However, the loss of scaling invariance is evident due to the
presence of two distinct nonlinearities, namely, cubic and
quadratic. This necessitates the existence of the second param-
eter ρ

(2)
0 in the Riemann initial condition, since it cannot be

scaled out. It is the above symmetry considerations that lead
to the three-parameter family {ρ (1)

0 , ρ
(2)
0 , u(1)

0 } of the ensuing
Riemann problem. This can be adequately described, setting
u(2)

0 = 0 without loss of generality, by the stepwise initial
ansatz

ψ (x, 0) =

⎧⎪⎨
⎪⎩

√
ρ

(1)
0 eiu(1)

0 x, x < 0√
ρ

(2)
0 , x > 0.

(2)

In the remainder, also without loss of generality, we choose
ρ

(1)
0 > ρ

(2)
0 . This appropriate initial condition allows us to

explore the impact of the three-parameter space of Riemann
problems of Eq. (1) on the DSW dynamical generation. Note
that the case of u(1)

0 = 0, which we will mainly focus on below,
is known as a dispersive dam-break problem [54,55]. Exper-
imentally, such an initial condition characterized by density
asymmetry around a focal point can be achieved, for instance,
by utilizing phase masks [64] or digital micromirror devices
[65]. These allow us to imprint arbitrary shapes even in box
potentials. Another possible way would be to use a mov-
ing repulsive potential barrier (built up via an optical dipole
force of a far-detuned laser beam), as it was demonstrated
in Ref. [66] for producing DSWs in repulsive condensates.
Finally, the initial velocity can be achieved, for instance, by
using magnetic-field gradients to induce a directional flow.

The spatiotemporal evolution of the eGPE is tracked us-
ing a second-order finite-difference method for the spatial
derivatives and a fourth-order Runge-Kutta method [67] for
the dynamics with time discretization dt = 10−4. To model
the Heaviside stepwise initial condition, we employ relatively
smoother ramps of the tanh(ax) type with a � 1. To ensure
that edge effects are suppressed during the evolution, an ad-
equately large spatial domain is employed. The underlying
spatial discretization is of the order of dx = 0.01, enabling
high resolution of the generated localized features. We have
also cross-checked the robustness of the dynamical generation
of DSWs in our setting with a pseudospectral time-stepping
method based on the modified exponential time-differencing
method [68] for representative cases.

1Here ψ (x − u0t, t ) exp[iu0(x − u0
2 )t] (Galilean transformation to

a traveling solution with speed u0) and ψ (−x, t ) (reflection) satisfy
Eq. (1).

III. DISPERSIVE HYDRODYNAMIC FORMULATION

By introducing the Madelung transformation ψ =√
ρ(x, t )

exp(i
∫ x

x0
u dy) [17], the eGPE [Eq. (1)] assumes the DH form

ρt + (ρu)x = 0, (3a)

ut + uux + 1

ρ
Px =

(
2ρρxx − ρ2

x

8ρ2

)
x

. (3b)

Here ρ ≡ |ψ |2 represents the droplet density and u =
Im(ψ∗ψx )/|ψ |2 denotes the corresponding velocity, which
can also be expressed in terms of the phase φ(x, t ) of the
droplet as u(x, t ) = ∂φ(x, t )/∂x. The term P(ρ) = (ρ2/2 −
ρ3/2/3) is referred to as the hydrodynamic pressure defining
the speed of sound c = √

dP/dρ = √
ρ − √

ρ/2. The system
of equations (3a) and (3b) possesses reflection and translation
symmetries as well as Galilean invariance (see also the discus-
sion below). Finally, the dispersive term on the right-hand side
of Eq. (3b) defines the so-called quantum pressure [69] given
by −(

√
ρ)xx/2

√
ρ. We note, in passing, that in the absence

of the quantum pressure term, the aforementioned system of
hydrodynamic equations resembles the ones governing the
isentropic gas dynamics and shallow-water fluid flow [54].

In the context of Eqs. (3a) and (3b), rescaling of the inde-
pendent variables X = εx and T = εt , where ε is a formally
small parameter (ε 	 1), reveals that to leading order O(ε)
the quantum pressure term can be neglected. Furthermore, the
speed of sound can acquire either real or complex values. In
the former case, the system reduces to a purely hyperbolic one
describing the behavior of a classical fluid [55] and can be cast
into a Riemann invariant form

∂T ri + ai(
r )∂X ri = 0, i = 1, 2. (4)

The Riemann invariants 
r = (r1, r2) are given by r1,2 =
(u/2) ∓ ∫

(1/2ρ)c(ρ)dρ [see also Eq. (A1) in Appendix A],
while the associated characteristic velocities correspond to
a1,2 = u ∓ c(ρ). Specifically, c is real (complex) for ρ � 1

4
(ρ < 1

4 ) leading to a hyperbolic (elliptic) reduction of Eq. (4).
Importantly, this hyperbolic (elliptic) behavior is related to
dominance of mean-field repulsion (LHY attraction). Indeed,
in the absence of the LHY contribution the elliptic regime
does not exist.

A fundamental question in the study of DH systems
is the stability of plane waves on which various nonlin-
ear excitations, e.g., solitary waves, propagate. The dual
hyperbolic-elliptic character of the hydrodynamic reduction
[Eq. (4)] has implications for this stability. To explore the
latter, i.e., study the propagation of infinitesimal disturbances
on the plane wave, we next linearize Eq. (1) about a plane-
wave solution ψ0(x, t ) = √

ρ0 exp(iu0x − i�t ), extracting in
this way the dispersion relation

ω0(k, ρ0, u0) = u0k ± k

√
k2

4
+ ρ0 −

√
ρ0

2
. (5)

As already highlighted above, in the elliptic regime of the
hydrodynamic limit ρ0 − √

ρ0/2 < 0. This leads to a complex
dispersion (and thus imaginary ω0) for sufficiently long wave
numbers 0 < k <

√
2
√

ρ0 − 4ρ0, implying MI of plane waves
in the quantum droplet environment as reported previously,
e.g., in Refs. [51,52]. However, in the hyperbolic regime,
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TABLE I. Different types of DSW structures emerging within the eGPE model.

Types Figure Defining features

Standard DSW Fig. 1(a) Exists in the hyperbolic regime being characterized by a solitonic (linear) left (right) edge
DSW remnant Fig. 4(c) Similar to standard DSW, but formed across the elliptic-to-hyperbolic threshold
Droplet DSW Fig. 1(b) Contains a nonlinear droplet edge and a linear one, formed within the elliptic regime
Traveling DSW Fig. 1(c) Composite waveform comprised of a partial DSW and traveling-wave segments
(Anti)kink Fig. 1(d) Robust tanh-type waveforms emerging for (ρ (1)

0 , ρ
(2)
0 ) = ( 4

9 , 0) and (ρ (1)
0 , ρ

(2)
0 ) = (0, 4

9 )

plane waves are modulationally stable. Such dispersive hydro-
dynamic systems featuring dual elliptic-hyperbolic regimes
have received attention in the context of cubic-quintic NLS
equations modeling double-shock-wave phenomena in optical
and superfluid media [70–72].

Moreover, this DH system (and thus the eGPE) exhibits lo-
cal conservation of (i) density P1 = |ψ |2, (ii) momentum P2 =
Im(ψ∗ψx ), and (iii) energy P3 = 1

2 (|ψx|2 + |ψ |4) − 2
3 |ψ |3.

The corresponding density, momentum, and energy fluxes
are Q1 = Im(ψ∗ψx ), Q2 = [Im(ψ∗ψx )]2/|ψ |2 + P(|ψ |2) −
|ψ |2(ln|ψ |2 )xx

4 , and Q3 = − 1
2 (ψ∗

x ψt + ψxψ
∗
t ), respectively,2 sat-

isfying the continuity equation

∂tPi + ∂xQi = 0, i = 1, 2, 3. (6)

The aforementioned conservation laws along with the exis-
tence of traveling waveforms that the eGPE admits [31,51] are
the prerequisites for studying DH features such as the DSW
[17,56]. Recall that the DSW is a modulated periodic wave
encompassing a multitude of nonlinear dispersive oscillations
and it is commonly studied through the lens of Whitham
modulation theory [54].

Due to its multiscale rank-ordered nature, the DSW in con-
vex dispersive hydrodynamic theory [17,58] possesses both
microscopic (internal oscillations) and macroscopic charac-
teristics, e.g., distinct speeds and amplitudes associated with
its edges. In what follows, we aim to describe the anatomy
of various types of shock waves that arise within the eGPE
model whose characteristics are outlined in Table I and whose
density profiles are shown in Fig. 1. Concretely, we choose
specific spatial domains that solely focus on the individual
shock-wave nucleation subject to Eq. (2) and the distinct
constituents appearing in each of them. Four out of five in
total different types of shock waves that will be reported in
what follows are illustrated in Fig. 1. These correspond to
the (standard) DSW [Fig. 1(a)], droplet DSW [Fig. 1(b)],
traveling DSW [Fig. 1(c)], and the (anti)kink [Fig. 1(d)] (see
also Sec. IV for their detailed characterization). Finally, yet
another waveform identified herein is the so-called DSW rem-
nant. Since it is structurally similar with the standard DSW, it
is not shown in Fig. 1 for brevity, but rather discussed in detail
in Sec. IV (see also Table I).

2The total atom number and energy, i.e.,
∫ ∞

−∞ Pidx for i = 1, 3,
are conserved throughout the evolution featuring relative errors of
approximately 10−13 and approximately 10−6. The integrated mo-
mentum should change at a constant rate d

dt

∫ ∞
−∞ P2dx = P(ρ (1)

0 ) −
P(ρ (2)

0 ) and this is captured up to a relative error of approximately
10−9.

A paradigmatic example of an eGPE DSW, whose den-
sity profile develops above ρ > 0.25 (hyperbolic-to-elliptic
threshold) of the hydrodynamic reduction [Eq. (4)], is de-
picted in Fig. 1(a). As expected, such a waveform emerges
in a mean-field (repulsive) dominated regime. The macro-
scopic characteristics describe the overall features of the wave
train, which include prominently the velocity of its left v−
and its right v+ bounding edges (see the relevant discus-
sion in Sec. IV A). The difference in edge velocities w =
v+ − v− then describes the rate of spreading of the wave
train. To capture the rank-ordered nature of the DSW over
its slow modulation scale, a monotonic envelope containing
the rapid oscillations has been overlaid indicated by black
dashed lines. Three different zones of the DSW can be dis-
cerned in Fig. 1(a) marked by red rectangles. These are the
solitonic edge, the modulated periodic interior, and the linear
edge comprised of very-small-amplitude oscillations (see also
Sec. IV).

In particular, the leftmost inset depicting the first zone pro-
vides a magnification of the solitonic edge being compared to
an exact eGPE dark soliton computed using a Newton scheme
[73] (see the magenta dashed line). To be concrete, the fixed
point to an ordinary differential equation upon substituting the
traveling-wave profile �(ζ ) exp{i[θ (ζ ) − (ρm − √

ρm)t]} to
the eGPE (1) is identified. Here � and θ are the amplitude and
phase profiles, respectively, while ζ ≡ x − cst is the traveling
coordinate. Also, ρm is the soliton background, with velocity
um, and cs = v− − um is the soliton velocity in the reference
frame of the background (see also below). Thereafter, we
emphasize that while the subsequent two to three oscillations
are solitonlike, they are part of the modulated periodic DSW
interior. This is rooted in the gradual shift in the nonlinear
and self-similar character of a DSW as we traverse from the
solitonic to the linear edge. The middle and right insets present
a close-up of the periodic oscillations in the DSW interior and
linear edge, respectively. Further encapsulating the multiscale
nature of this DSW, the corresponding wave mean ρ, varying
slowly across the DSW structure, is shown by the purple
dashed line.

Crucially, the eGPE also features other regimes bearing
distinct shock-wave flavors. This is tied to the dual elliptic-
hyperbolic behavior associated with the hydrodynamic limit
of Eq. (4). One such feature is a DSW-like train that emerges
from a gradient catastrophe (discontinuity in the initial condi-
tion) in the elliptic regime [Fig. 1(b)]. This wave train mimics
the form of a DSW with a rank ordering of its constituent
waves demonstrated by its nearly monotonic envelope (black
dashed line). Moreover, there exist two distinct edges. The
nonlinear (linear) edge propagates with intrinsic speed vd (vl )
leading to wave train spreading. However, several density
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FIG. 1. Distinct coherent shock-wave structures manifesting across the hyperbolic threshold ρ
( j)
0 = 0.25 ( j = 1, 2) [see Eq. (2)]. (a) DSW

nucleation as captured by the eGPE dynamics subjected to a dam-break problem above the hyperbolic threshold [(ρ (1)
0 , ρ

(2)
0 ) = (2, 1)]. Its

multiscale structure can be decomposed into three zones, indicated by red rectangles. From left to right the insets depict the solitonic edge
with speed v− and fitted by an exact dark soliton ρs of the eGPE (see the text for details), the modulated periodic interior, and the linear
edge having speed v+. The slowly varying wave mean ρ and envelopes (see the legend) reflect the long length scale variation of the entire
waveform. (b) Below the hyperbolic threshold, droplet DSWs emerge [here (ρ (1)

0 , ρ
(2)
0 ) = (0.15, 0)], whose rank-ordered nature is evident by

its nearly monotonic envelopes (see the legend). Rectangles mark the droplet (right inset) and linear edge (left inset) of the pattern with speeds
vd and vl , respectively. In the right inset a sequence of exact 1D droplet solutions ρd are fitted to the first six density oscillations. (c) Composite
waveforms occurring across the hyperbolic threshold (ρ (1)

0 = 2 > 0.25 and ρ
(2)
0 = 0.03125 < 0.25). They consist of a partial DSW with edge

speeds v− and vp situated between the two leftmost vertical lines and a traveling entity with vs. The rectangle represents the link of the periodic
train to the hydrodynamic background, a magnification of which is provided in the inset. The wave envelopes and ρ are also marked. (d) The
antikink and kink correspond to a fourth type of shock structure that occurs across the hyperbolic threshold with (ρ (1)

0 , ρ
(2)
0 ) = ( 4

9 , 0) and
(ρ (1)

0 , ρ
(2)
0 ) = (0, 4

9 ), respectively.

oscillations within this wave train are dropletlike. This can be
seen in the right inset of Fig. 1(b), where a density fitting of
the analytical 1D localized droplet solution (blue dashed line)
[41,42,49] given by

ρd =

⎛
⎜⎝ 3μ

1 +
√

1 + 9μ

2 cosh(
√−2μx)

⎞
⎟⎠

2

, (7)

with μ ∈ (− 2
9 , 0) the chemical potential, is performed. These

are quite distinct in character to dark solitons, whose density
profile is tanh2(x)-like, with the former constituting bright
states on top of a vanishing amplitude, while the latter dark
ones constitute density dips on top of a finite amplitude.
While the relevant distinction might be less straightforward
to discern at the small-amplitude limit on one edge of the
pattern, it is definitively discernible at the large-amplitude
limit of the opposite end of the pattern. Specifically, six
such droplets are illustrated showcasing excellent agreement
with the wave train’s tail. This scenario of several modulated
density oscillations approaching the droplet limit occurs (and
evolves) dynamically. This is reminiscent of the saturation of
modulated oscillations to bright solitons being observed in the
context of attractive interaction (i.e., focusing) NLS models
[59]. Moreover, the left inset in Fig. 1(b) provides a close-up

of the relevant linear edge. Notice that the generation mech-
anism of the droplet DSW also differs significantly from the
standard mean-field DSW (see the discussion in Sec. IV B).

A third type of shock waves, presented in Fig. 1(c), can
emerge from the gradient catastrophe across the hyperbolic
threshold of ρ = 0.25. Here a composite waveform, distinct
from a standard DSW, comprising of a partial DSW, i.e., a
DSW that only contains an incomplete range of nonlinear
dispersive oscillations marked by vertical black lines, and a
peculiar traveling-wave feature occurs. This composite entity
experiences a slowly varying wave mean ρ across the partial
DSW that saturates close to ρ ≈ 4

9 before rapidly dropping
below ρ ≈ 0.1 (green dashed line). The relevant waveform
velocities in this case correspond to that of the soliton edge
v−, the right partial DSW edge vp, and the traveling-wave one
vs. Moreover, there exists a fourth member of the shock-wave
family, shown in Fig. 1(d). Indeed, we will showcase in what
follows that these well-known kink and antikink waveforms
[31,42,44] correspond to Whitham shocks (see Sec. IV B)
formed across the hyperbolic threshold. Remarkably these
structures, which are limiting cases of the traveling waves
in Fig. 1(c), propagate into the vacuum state with a velocity
specified by the nonzero homogeneous background. This is in
contrast to other scenarios appearing in convex bidirectional
dispersive NLS-type hydrodynamics [17].
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FIG. 2. (a) Density profile of the initial and long-time-evolved
(see the legend) waveform of a dam-break problem for (ρ (1)

0 , ρ
(2)
0 ) =

(2, 1). The analytical rarefaction solution ρR of Eq. (4), the wave
mean ρ and DSW envelopes are also provided (see the legend),
evincing slow variations across the wave train. (b) Intermediate
hydrodynamic background density and velocity (ρm, um ) found
through the intersection of the one-rarefaction and the two-DSW loci.
(c) Density evolution using the initial condition of (a) showcasing the
generation and propagation of a DSW which occurs in general for
ρ

(1,2)
0 � 0.25. The analytically obtained linear edge v− and soliton

v+ speeds are also depicted.

IV. DYNAMICAL GENERATION OF DSWs

In the following, we explore the dynamics emanating from
the initial condition of Eq. (2) (Riemann problem) applied
to the eGPE [Eq. (1)]. In particular, the long-time evolution
is monitored with an emphasis on the zero-velocity u(1)

0 = 0
scenario also known as the dispersive dam-break problem
[17]. Two distinct regimes are examined based on the ex-
istence of the above-discussed hyperbolic-elliptic threshold.
This investigation corresponds to the variation of ρ

(2)
0 in the

initial condition being either above or below the critical value
of ρ

(2)
0 = 0.25, while ρ

(1)
0 is held fixed.

A. Mean-field driven dynamics with ρ
(1,2)
0 � 0.25

To ensure that the emergent waves from the Riemann
problem lie above the hyperbolic threshold of the hydrody-
namic reduction [cf. Eq. (4)], we choose as a representative
parameter set of the initial wave function that of {ρ (1)

0 = 2,
ρ

(2)
0 = 1, u(1)

0 = 0}. As such, both asymptotic density states
ρ

(1,2)
0 � 0.25 [see Fig. 2(a)], implying that the standard

mean-field nonlinearity prevails over the LHY one. The long-
time-evolved wave patterns, simulated through the eGPE
model, consist of a left-propagating rarefaction wave and
a right-propagating DSW [56] interconnected via a plane

wave as shown in Fig. 2(a). This plane wave has an ampli-
tude ρm ≈ 1.47 (see also the discussion below) and velocity
um = Im[ψ∗

m(ψx )m]/|ψm|2 ≈ 0.32. In the context of hydro-
dynamics, the aforementioned generation of counter-traveling
waves originates from the necessity to equalize the hydrody-
namic pressure term [Eq. (3b)] across the initial step profile
[Eq. (2)]. For this reason an expansive (compressive) rarefac-
tion (DSW) wave is produced leaving behind the “wake” of
the new intermediate plane-wave state.

To analytically estimate the characteristics of this plane
wave for ρ

(1,2)
0 > 0.25, an asymptotically (t � 1) valid

Whitham-El closure procedure is used [56,58,74,75]. In
essence, for the bidirectional dispersive hydrodynamic system
of Eqs. (3a) and (3b), two families of waves (a rarefaction
and a DSW) are anticipated to be emitted when u(1)

0 = 0.
Along the left-traveling rarefaction wave, alias 1-wave (slower
or left), the second Riemann invariant r2 of Eq. (4) is con-
stant, while across the DSW (2-DSW) which travels to the
right or is faster, the first Riemann invariant r1 is constant
(see also Ref. [58]). The process of estimating the prop-
erties of the intermediate state is as follows. The isoline
of r2(ρ, u) = r2(ρ (1)

0 , u(1)
0 ) ≡ r (1)

2 is evaluated and shown in
Fig. 2(b) along with the isoline of r1(ρ, u) = r1(ρ (2)

0 , 0) ≡
r (2)

1 . Their intersection represents the (expected to be formed)
intermediate state (ρm, um) in the u(ρ)-ρ phase plane as de-
picted in Fig. 2(b). Deviation of the order of 5% is observed
between this analytical estimate as compared to our eGPE
simulations.

This agreement further motivates the comparison of the
asymptotically valid so-called simple-wave solution of the
hydrodynamic reduction [Eq. (4)] to the expansive left-
propagating wave profile identified in our simulations [see ρR

in Fig. 2(a)]. Specifically, the internal profile of this simple
wave can be obtained through the ansatz a1(r1(x/t ), r (1)

2 ) =
x/t . Moreover, the left and right edge locations of the rar-
efaction wave for a fixed time instant can be determined
via x = a1(ρ (1)

0 , u0 = 0)t and x = a1(ρm, um)t , respectively.
Figure 2(a) illustrates the excellent agreement between
the analytically ascertained self-similar density profile and
the one extracted from our simulations exemplarily at
t = 2000.

Next we track the emergent DSW propagating towards
the right while spreading in the course of the evolution. The
DSW is a multiscale periodic waveform having an internal
microstructure, together with distinct gray solitonic and linear
edges. Figure 2(a) presents the slow variation of the wave
mean ρ across the DSW from ρm (solitonic edge) to ρ

(2)
0

(linear edge).
Here, in order to track the edge speeds of the emitted

DSW, we use a reduced-order method based on the system
of Whitham modulation equations [56,58]. Three of them for
Eq. (1) can be obtained by averaging its underlying system
of local conservation laws given by Eq. (6). This averag-
ing is performed over the rapid oscillations of the family of
the eGPE periodic waveforms characterized by four physical
parameters, namely, amplitude a, wave number κ , mean ve-
locity u, and mean density ρ. Specifically, three out of four
Whitham modulation equations in DH form, utilized herein,
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read

ρt + (ρu)x = 0, (8a)

ρut +
(

ρu2 + P(ρ) − ρ

4
[ln(ρ)]xx

)
x

= 0, (8b)

(
ρ2

x

8ρ
+ ρu2

2
+ ρ2

2
− 2ρ3/2

3

)
t

+ 1

2

(
ρu3 + 2ρ(ρ − √

ρ)u + ρ2
x

4ρ
u − ρxxu

2
+ ρx(ρu)x

2ρ

)
x

= 0. (8c)

In all cases, the overbar indicates averaging of the associ-
ated terms over an oscillation period. A fourth modulation
equation κt + ωx = 0, the so-called conservation of waves, is
needed to describe the slow variation of the additional param-
eter (wave number κ), thus closing the system. All Whitham
modulation equations are valid for x, t � 1.

The spatiotemporal evolution of the density of the
dam-break problem with (ρ (1)

0 , ρ
(2)
0 ) = (2, 1) is depicted in

Fig. 2(c). As it can be seen, a DSW emerges characterized
by an upstream (solitonic) and a downstream (linear) front
that are associated with two distinct velocities, namely, v−
and v+. These velocities can also be analytically predicted
deploying the aforementioned Whitham modulation equations
(see Appendix A). Specifically, the expression for the speed of
the linear edge of the two-DSW structure reads

v+
(
ρ

(2)
0

) = [
2c(2)

0

(
α

(2)
0

)2 − c(2)
0

]/
α

(2)
0 , (9)

where α
(2)
0 =

√
k2/4(c(2)

0 )2 + 1 signifies the scaled phase
speed of the linear edge. Moreover, the wave number at the
linear edge reads

k
(
ρ

(2)
0

) = 2
[
c
(
ρ

(2)
0

)]√[
α
(
ρ

(2)
0

)]2 − 1. (10)

On the other hand, the conjugate phase speed (see the relevant
definition in Appendix A) at the soliton edge of the two-DSW
structure yields the soliton phase speed

v− = um + cm

√
1 − k̃2

m

4c2
m

, (11)

where cm = c(ρm) is the local speed of sound at the interme-
diate state and k̃m is the conjugate wave number at the soliton
edge which is essentially analogous to the wave amplitude.
These analytically predicted velocities for both the soliton
x/t = v− and the linear x/t = v+ edges are illustrated in
Fig. 2(c). Evidently, excellent agreement between the analyt-
ics and the eGPE predictions is observed.

As a next step, the family of dam-break problems obtained
by fixing ρ

(1)
0 = 2 and varying 0.25 � ρ

(2)
0 < ρ

(1)
0 is investi-

gated. The variation of the four variables characterizing the
macroscopic properties of the generated two-DSW structure
as a function of ρ

(2)
0 is displayed in Figs. 3(a)–3(d). Con-

cretely, these variables refer to the intermediate density ρm

and velocity um, the linear edge wave number k(ρ (2)
0 ), and the

soliton edge speed v−. The results extracted from the eGPE
simulations are shown as magenta squares, against the asymp-
totic curves (blue solid lines). The latter are obtained using
Eqs. (10) and (11) and by estimating the intermediate state
through the intersection of the isolines of the relevant Rie-

mann invariants [see, e.g., Fig. 2(b)]. The intermediate density
ρm and velocity um are identified at later evolution times
(t � 500) from the relevant snapshots. The linear (soliton)
edge velocities v+ = ∂kω0 (v−) are extracted by fitting a
straight line to either of the edges in the spatiotemporal
density evolution. Moreover, to obtain the linear edge wave
number we invert the velocity ∂kω0. Despite the multival-
uedness therein, we observe k(ρ (2)

0 ) > ki, where ∂kkω0(ki ) =
0. Excellent agreement between numerical and analytical
(asymptotic curves) findings is witnessed, with the observed
deviations for ρ

(2)
0 � 0.5 being typically less than 5%.

It turns out that this deviation can be interconnected with
the role of the LHY contribution already within the hyper-
bolic regime. Recall that the hydrodynamic pressure curve
P(ρ) possesses a root at ρ

(2)
0 = 4

9 . As a consequence, there
exists an interval of densities in the hyperbolic regime, i.e.,
0.25 � ρ

(2)
0 < 4

9 , for which P(ρ (2)
0 ) < 0, a negative-pressure

region that would be absent without the LHY contribution.
Intuitively, the flow resulting from the dam-break problem
is driven by the pressure difference �P = P(ρ (1)

0 ) − P(ρ (2)
0 ).

If P(ρ (2)
0 ) < 0, �P > P(ρ (1)

0 ) is enhanced, which leads to

0.8
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0.4

0.6

0.8

(a)
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FIG. 3. Macroscopic characteristics of the generated DSWs of
dam-break problems with ρ

(1)
0 = 2 and for distinct values of ρ

(2)
0 .

Specifically, the intermediate hydrodynamic (a) density ρm and
(b) velocity um are depicted along with (c) the linear edge wave
number k and (d) the soliton edge speed v−. The smooth behavior of
these quantities across the threshold of ρ

(2)
0 = 0.25 suggests the per-

sistence of the DSW in a LHY dominated ρ
(2)
0 < 0.25 region. Black

dashed lines mark the relevant threshold. The green dashed line
designates the curve of marginal stability below which MI occurs.
In all cases, analytical predictions through an asymptotic procedure
(see the text for details) together with the results extracted from the
eGPE are illustrated (see the legend).
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FIG. 4. Density snapshots at t = 500 depicting the emitted right-
propagating waves in the case of a dam-break problem with fixed
ρ

(1)
0 = 2 and varying ρ

(2)
0 (see the legends). (a)–(d) DSWs persist

across the hyperbolic threshold, transitioning thereafter (e) to travel-
ing DSWs and finally (f) in the vacuum case to an antikink entity.

an increased linear momentum growth rate d
dt

∫ ∞
−∞ ρu dx =

�P = P(ρ (1)
0 ) − P(ρ (2)

0 ).
Representative density profiles of the emitted two-DSW

structure for ρ
(1)
0 = 2 and varying 0.25 � ρ

(2)
0 < ρ

(1)
0 are pre-

sented in Figs. 4(a) and 4(b). Here the focus is the deformation
of DSW patterns across the threshold. Within this ρ

(2)
0 interval

there is a gradual slowdown of the soliton speed, relative to
the background given by cs = v− − um. The latter is a generic
feature of Schrödinger-type systems [17]. For ρ

(2)
0 = 0.25 a

black soliton edge occurs [Fig. 4(b)], resulting in a cavitation
point, i.e., a point of zero-density therein. Here we should
also emphasize the longevity of the two-DSW waveforms for
0.25 � ρ

(2)
0 < 2, as they develop coherently across very long

simulation times t ∼ 2000.

B. LHY driven evolution with ρ
(1)
0 � 0.25 or ρ

(2)
0 < 0.25

Subsequently, we extend the family of dam-break problems
into the elliptic regime where ρ

(1)
0 = 2 and ρ

(2)
0 is reduced

below the hyperbolic threshold, i.e., ρ
(2)
0 < 0.25 (see also

Sec. III). At threshold, the speed of sound c(ρ (2)
0 ) = 0 and

thus both Riemann invariants (and the relevant hyperbolic
speeds a1,2) of Eq. (4) coincide. Below the threshold, the
associated speed of sound is imaginary and as a conse-
quence the Whitham modulation equations become elliptic
[cf. Eqs. (A2b) and (A2c)]. This ellipticity impacts the exis-
tence, stability, and lifetimes of the emitted DSW. Generally,
in attractive environments, DSWs can be observed only under
very specific circumstances [17,60,76]. However, in our case,
as we explicate below, the eGPE admits robust DSW genera-
tion.

Indeed, as it can be seen in Figs. 4(c) and 4(d), even for
ρ

(2)
0 < 0.25, development of coherent DSW remnants takes

place up to t ∼ 500. The parametric variation of the macro-
scopic properties ρm, um, k, and v− of these DSW remnants
is depicted in Figs. 3(a)–3(d). These observables exhibit a
smooth transition across the hyperbolic threshold into the
elliptic regime. They demonstrate that the aforementioned
remnants represent an extension of the DSW into this regime

since they connect a stable [ρm > 0.25; cf. Fig. 3(a)] and an
unstable (ρ (2)

0 < 0.25) hydrodynamic state. Specifically, ρm

(um) decreases (increases) across the threshold, while k (at the
linear edge) reduces accompanied by a corresponding descent
of the linear edge speed. Importantly, k lies outside the interval
of unstable wave numbers 0 < k < kc, with the threshold of
marginal stability defined as kc(ρ0) = √

2
√

ρ0 − 4ρ0. In the
elliptic regime, besides a small band of unstable wave num-
bers 0 < k <

√
2
√

ρ0 − 4ρ0, shorter waves are regularized
by the underlying dispersion in the DH equations (3a) and
(3b). The aforementioned stabilization mechanism hints at the
longevity of these remnants. A similar, but less pronounced,
stabilization scenario manifests in the case of the classical,
attractive cubic NLS equation [76–78].

For longer evolution times (not shown) t � 600, the enve-
lope of the DSW remnant begins to breakdown, in contrast
to the standard DSW, which does not experience such a
breakdown. The associated instability develops in the vicin-
ity of the DSW linear edge and propagates into its interior.
This indicates that the eventual breakdown of the remnant
is solely a consequence of MI associated with ρ

(2)
0 . An esti-

mate for the breakdown time can be extracted by assuming
exponential growth of the instability with its associated rate3

given by the amplitude of the mode of maximal growth, at
kmax = √√

ρ0 − 2ρ0, in the spectral sideband at 0 < k < kc.
A similar degree of destabilization has been reported for
attractive dispersive dam-break flows in the cubic NLS equa-
tion [60,61,77].

Closely inspecting Figs. 4(b)–4(d), it becomes evident that
the location of the cavitation point of the DSW shifts into
its interior as ρ

(2)
0 is reduced. Furthermore, the envelope of

the DSW corresponding to ρ
(2)
0 = 1/16 [Fig. 4(d)] displays a

prominent curvature near its linear edge. These observations
motivate the exploration of the nucleated structures for de-
creasing ρ

(2)
0 → 0 [see Figs. 4(e) and 4(f)]. For sufficiently

small ρ
(2)
0 as shown in Figs. 4(e) and 1(c), the DSW remnant

transitions to a composite waveform characterized by two
segments. The first segment refers to a partial DSW, which
connects the intermediate hydrodynamic background (ρm, um)
to an eGPE periodic wave possessing edge speeds v− and
vp, respectively. Due to the distinct modulation speeds at its
edges, the partial DSW spreads as it propagates. The second
segment, however, is a waveform that travels with speed vs,
linking the aforementioned periodic wave and the hydrody-
namic background ρ

(2)
0 across very few density oscillations

(similarly to, e.g., [79]). Such composite waveforms compris-
ing of partial DSW and traveling-wave segments have been
referred to as traveling DSWs in the context of shallow-water
waves in which higher-order nonconvex dispersive effects
are prevalent [79–82]. We have checked that such traveling
DSWs occur within the interval 0 < ρ

(2)
0 � 1

32 . Similarly to
the DSWs remnants, these waveforms are long-lived up to
t � 600 and their eventual breakdown appears to be due to
the MI of ρ

(2)
0 . Interestingly, the traveling segment satisfies the

Rankine-Hugoniot jump conditions [55] 
F ( 
UL ) − 
F ( 
UR) =

3The characteristic time of destabilization is given by tc ∼ 2
k2

max

ln(
√

ρ0
ε

), ε 	 1, where ε is a representative perturbation amplitude.
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vs( 
UL − 
UR) of the system of Eqs. (8) written in the compact
form 
Ut + [ 
F ( 
U )]x = 0, where the subscript L (R) stands for
the left periodic (right hydrodynamic background ρ

(2)
0 ) state.

At the level of the modulation equations, 
UL,R represent the
averaged quantities, which for a periodic (or homogeneous
background) wave solution correspond to constant param-
eters. Thus, these novel waveforms appear to be Whitham
shocks, i.e., shock solutions of the Whitham modulation equa-
tions of the eGPE. While we are not aware of previous reports
of such structures in the present setting, Whitham shocks
have been extensively studied in the context of the Kawahara
equation modeling shallow-surface-water waves incorporat-
ing higher-order nonconvex dispersion [79,82,83].

Turning to the case of ρ
(2)
0 = 0, i.e., the vacuum dam-

break Riemann problem, we observe that the intermediate
hydrodynamic density is ρm = 4/9 [see Fig. 4(f)]. Here the
right-traveling waveform transitions to an antikink configu-
ration which is an exact stable solution to the eGPE [31].
This stability translates to the robust evolution of the entire
structure monitored for times up to t = 2000. Remarkably,
it turns out that the antikink is a dispersive hydrodynamic
structure that spontaneously emerges from a family of vac-
uum (ρ (2)

0 = 0) dam-break problems having ρ
(1)
0 > 0.15 and

propagating with um.4 It turns out that the antikink (and kink)
itself is a Whitham shock traveling with um and satisfying the
Rankine-Hugoniot jump conditions of Eqs. (8a)–(8c) since it
connects two homogeneous plane-wave backgrounds charac-
terized by zero hydrodynamic pressure, i.e., P( 4

9 ) = P(0).
As a next step, we maintain ρ

(2)
0 = 0 but vary ρ

(1)
0 ∈ (0, 4

9 ].
In this case, since �P = P(ρ (1)

0 ) < 0, the growth rate of the
integrated momentum is negative, i.e., d

dt

∫ ∞
−∞ ρu dx < 0, sug-

gesting that the emitted pattern propagates to the left. Indeed,
monitoring the density evolution shown in Fig. 5(a) for ρ

(1)
0 =

0.15, we observe the emission of a one-phase modulated wave
train, which remains robust up to t = 750. Interestingly, the
density oscillations in this wave train correspond to droplets,
as can be seen from Fig. 5(b), which provides a fitting of the
analytical 1D droplet (and stable) solution [see Eq. (7)] for
the first six waves in the wave train. We refer to this coherent
and robust wave train as a droplet DSW. The longevity of this
entity is corroborated by the known droplet stability [42], with
its eventual breakdown occurring seemingly due to the MI of
ρ

(1)
0 for t � 800. Here the filamentation of the droplet DSW is

initiated at the linear edge, as was the case also for the DSW
remnants [Fig. 4(d)].

However, in contrast to DSW remnants, the mechanism for
the initiation of droplet DSWs is the dominant presence of
the attractive LHY term. The antihydrodynamic mechanism,
entailed by negative pressure and imaginary speed of sound
[77], is in sharp contrast to the formation of remnants and
standard DSWs developing across and above the hyperbolic
threshold. We remark that the aforementioned droplet DSW
can also be produced for ρ

(1)
0 � 0.15. Similar robust yet bright

4For ρ
(1)
0 > 4

9 , an estimate for um is analytically given by
∫ ρ

(1)
0

4/9
c
ρ

dρ

(one-wave condition) with the overall pattern comprising a left-
(right-)propagating rarefaction wave (antikink).

FIG. 5. (a) Spatiotemporal density evolution of a nucleated
droplet DSW for a vacuum dam-break problem characterized by
(ρ (2)

0 , ρ
(1)
0 ) = (0, 0.15). Its formation originates from the MI, and

such a wave develops and propagates robustly for long evolution
times. (b) Density profile of the ensuing droplet train at t = 750.
Black dashed lines indicate the envelope of the wave pattern, whereas
red dashed lines correspond to six fitted exact droplet solutions of the
eGPE (see the text for details).

solitonic wave trains are known to emerge in the vacuum
dam-break problem in the context of the cubic attractive NLS
equation (and nonintegrable variants thereof), studying the
universal stage of MI [59,77,78], and rogue wave generation
[60].

The macroscopic properties of this one-parameter droplet
DSW family (ρ (1)

0 � 0.15) are presented in Fig. 6. Notice
that k at the linear edge fluctuates around unity as a func-
tion of ρ

(1)
0 . However, k(ρ (1)

0 ) ≈ 1 lies outside the band of
unstable wave numbers bounded by the curve of marginal
stability, kc(ρ0), illustrated in Fig. 6 with a black solid line.

0.1 0.11 0.12 0.13 0.14 0.15

0.4

0.6

0.8

1

FIG. 6. Properties of the emitted droplet DSWs throughout their
ρ

(1)
0 domain of existence. The wave number k at the linear edge of

the droplet DSW displays weak variations and lies above the curve of
marginal stability (see the legend). The relevant velocity width w =
v+ − v− of the droplet DSW fluctuates in the interval w ∈ (0.7, 0.9).
Additionally, the droplet edge height ρde, as a function of ρ

(1)
0 , shows

a monotonic increase and just begins to saturate slightly below 4
9 .
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FIG. 7. Density profiles of the wave patterns at t = 500 emerging
from the class of vacuum dam-break problems with 0 < ρ

(1)
0 � 4

9 .
(a) Droplet DSW arising for ρ

(1)
0 � 0.15 (see the legend). (b) Turning

to ρ
(1)
0 > 0.15, the right droplet edge transitions to an antikink which

is connected to the homogeneous background ρ
(1)
0 through a 1-DSW

remnant. (c) Same as (b) but with a repulsive one-DSW structure
connecting the antikink to the respective background. (d) Consid-
ering ρ

(1)
0 = 4

9 , a nonmoving antikink emerges corresponding to
zero-pressure difference of the underlying dam-break problem.

The velocity width w of the droplet DSW is found to display
insignificant variation with ρ

(1)
0 . Furthermore, the behavior of

the peak density ρde(ρ (1)
0 ) of the droplet edge features a linear

growth for ρ
(1)
0 	 0.15 which begins to saturate to a value less

than 4
9 .

For 0.15 < ρ
(1)
0 � 4

9 and ρ
(2)
0 = 0, droplet DSWs are no

longer present. Instead, the right droplet edge is seen to de-
form into an antikink entity [see, for instance, Fig. 7(b) where
ρ

(1)
0 = 0.2]. This difference between the left background den-

sity of the antikink and ρ
(1)
0 produces a 1-DSW remnant which

acts as the regularization mechanism. For a larger ρ
(1)
0 such as

0.25 � ρ
(1)
0 < 4

9 depicted in Fig. 7(c), repulsive 1-DSW wave
trains nucleate, being stable for adequately long evolution
times t = 2000. Moreover, here it is possible to extract the
intermediate background velocity um < 0 (and thus the veloc-
ity of the antikink) by utilizing the 1-DSW jump condition.
This prediction is found to be in agreement within 5% with
the eGPE simulations. Increasing the value of the left back-
ground to ρ

(1)
0 = 4

9 , it holds that �P = P( 4
9 ) = 0, implying

a zero-momentum growth rate. This explains the dynamical
formation of a nonmoving antikink, as can be attested from
the eGPE simulations presented in Fig. 7(d). Notice also the
existence of small-amplitude undulations in the nonzero back-
ground caused by the discrepancy between the width of the
initial condition as compared to that of the antikink.

The final category of dam-break problems corresponds to
ρ

(1)
0 < 0.25 and ρ

(2)
0 �= 0. Here the speed of sound associated

with each homogeneous background is complex, thus leading
to a regime where effects quite contrary to fluidlike behav-
ior dominate. Three characteristic examples are illustrated
in Figs. 8(a)–8(c) for (ρ (1)

0 , ρ
(2)
0 ) = (0.15, 0.1), (ρ (1)

0 , ρ
(2)
0 ) =

(0.2, 0.1), and (ρ (1)
0 , ρ

(2)
0 ) = (0.25, 0.2), respectively. Evi-

dently, in the case of Fig. 8(a) two counterpropagating droplet
DSWs occur, while in the second scenario in Fig. 8(b) the
emergent counterpropagating flows consist of a left-traveling

0

0.2

0.4

0.6

0

0.2

0.4

0.6

-600 -400 -200 0 200 400 600
0

0.2

0.4

0.6

(b)

(a)

(c)

FIG. 8. Density snapshots of counterpropagating (a) droplet
DSW at t = 500, (b) antikink-droplet DSW at t = 500, and
(c) antikink-kink pairs at t = 750. The latter are connected to the
external flow via 1-DSW and 2-DSW remnants, respectively. In
all cases, the emergent configurations occur below the hyperbolic
threshold and appear to be superpositions of vacuum dam-break
Riemann problems with (ρ (1)

0 , 0) and (0, ρ
(2)
0 ).

antikink and 1-DSW remnant together with a right-traveling
droplet DSW. On the other hand, by setting ρ

(1,2)
0 > 0.15

(or generally above the threshold of the existence of droplet
DSWs), one can realize the formation of a counterpropagating
antikink-kink pair [Fig. 8(c)].

We remark that the piecewise constant initial condition
(Riemann problem) can be viewed as a superposition of two
different vacuum dam-break problems. Astonishingly, it turns
out that the resulting wave patterns here emerge from the
individual vacuum dam-break problems with (ρ (1)

0 , 0) (having
0 < ρ

(1)
0 < 0.25) and (0, ρ

(2)
0 ). A similar response has been

reported for Riemann problems in the absence of the LHY, but
for an attractive NLS model [76]. However, in our case, such a
superposition aspect could also lead to kink-antikink pairs, in
sharp contrast to the NLS scenario. This is primarily related to
the manifestation of the underlying regularization mechanism
transitioning from the droplet DSW [Fig. 7(a)] to an antikink
together with the upstream 1-DSW structure [Fig. 7(b)] when
increasing ρ

(1)
0 > 0.15. However, in the attractive NLS equa-

tion, it always corresponds to bright solitonic wave trains
[76–78]. This is somewhat natural to expect as the absence
of competing nonlinearities does not enable the existence of a
kink or antikink solution in the latter setting.

V. SUMMARY AND FUTURE CHALLENGES

We explored the on-demand dynamical generation of
a plethora of dispersive shock waves arising in attractive
homonuclear mixtures, as captured by the 1D eGPE model.
In particular, by designing steplike initial conditions char-
acterized by two densities and a relative velocity (being set
to zero) of the underlying Riemann problem utilized herein,
we were able to identify a threshold that designates distinct
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dynamical response regimes. This threshold, existing due
to the interplay between standard mean-field repulsion (hy-
perbolic) and LHY attraction (elliptic), separates regions of
real-valued vs imaginary speed of sound. This is analytically
obtained via the hydrodynamic reduction of the eGPE.

In the former situation, where mean-field interactions pre-
vail, rarefaction and DSW nucleation is evidenced with the
two entities being interconnected through an intermediate
plane wave. Full characterization of the emitted patterns is
provided utilizing the Whitam-El method describing, for in-
stance, the rarefaction wave profiles as well as the velocity and
density of the intermediate background or the edge speed of
the DSW. Overall, our analytical predictions are in excellent
agreement with the relevant eGPE simulations.

Remarkably, in the elliptic regime, where the speed of
sound becomes imaginary and thus MI is present, robust
DSW nucleation also occurs. Specifically here, we identify
the formation of (i) DSW remnants (namely, a DSW but
unexpectedly within the elliptic regime), which transition to
(ii) a composite traveling DSW and finally to (iii) an antikink
structure. The latter emerges as a limiting case of the ensuing
dam-break problem and it is found herein to be also a member
of the family of Whitham shocks. (iv) Droplet DSWs are
also identified in this regime, referring to long-lived shocks
that bear in their trailing edge droplets. We were able to
obtain the cutoff of formation of these waveforms, in terms
of nonzero hydrodynamic background and also their deforma-
tion towards antikink-kink pairs connected with 1-DSW and
2-DSW remnants, respectively. Notably, all of the aforemen-
tioned dispersive entities owe their nucleation to the presence
of the LHY contribution.

There is a multitude of future research directions emanat-
ing from our present findings. Chiefly among them is the
systematic investigation of the existence and stability prop-
erties of periodic and solitary traveling waves [42]. This can
be partially tackled by means of phase-plane analysis and
by employing Newton-like iterative schemes [73,84]. The
characterization of stability of periodic waves can be done
via (a) Floquet theory and (b) investigation of MI to the
full Whitham modulation equations, to which periodic waves
are homogeneous backgrounds (see [85]). Moreover, an an-
alytical characterization of the (antikink) kink to (1-DSW)
2-DSW patterns identified herein by self-similar solutions
to the Whitham modulation equations in the elliptic regime
would be intriguing and should be of relevance to other
generalized NLS-type equations, e.g., the cubic-quintic NLS
equation [70,86–88].

Two other related and compelling problems concern the
nonlinear stage of MI [59] along with the existence of
rogue waves [60] in the 1D droplet environment. These in-
vestigations would require the use of multiscale expansion
techniques and potential reconstruction of solutions thereof in
the present setting. Another intriguing problem in the context
of the observed traveling DSW is to study the existence of
generalized heteroclinic connections between periodic and
homogeneous backgrounds observed elsewhere [79,80]. An-
other extension of immediate interest would be the study of
oblique [89] and radial DSWs [9] in two-dimensional droplet
settings, investigations that thus far have only been con-
ducted in setups lacking the inclusion of quantum fluctuations.

Finally, exploring the growth of correlations and entangle-
ment accompanying the emergence of DSWs in this attractive
environment through nonperturbative approaches [90,91] is
certainly desirable.

ACKNOWLEDGMENTS

We thank Dr. Patrick Sprenger and Prof. Mark A. Hoefer
for inspiring discussions on the subject matter of Whitham
shocks. S.C. thanks Missouri University of Science and Tech-
nology for their hospitality, where a part of this work was
discussed. This material is based upon work supported by
the U.S. National Science Foundation under Grants No. PHY-
2110030 and No. DMS-2204702 (P.G.K.).

APPENDIX A: RIEMANN INVARIANTS AND WHITHAM
MODULATION EQUATIONS AT THE LINEAR

AND SOLITONIC EDGES

Explicit formulas for the Riemann invariants r1,2 [see
Eq. (4)] are

r1,2 = u

2
∓ 1

2

[√
2A

√
2A − 1

− 1

2
ln(4A − 1 + 2

√
2A

√
2A − 1)

]
, (A1)

where A = √
ρ is the amplitude of the wave function. The

Riemann invariant formulation is important to study the
Whitham-El simple-wave DSW theory (see [56,58,75]).

Furthermore, in this Appendix we derive simple-wave
ordinary differential equations (ODEs) from the Whitham
equations at the linear and solitonic edges that can be used
to predict the associated edge speeds. We first examine this
Whitham equation system [Eqs. (8) and the conservation of
waves] in the vicinity of the two-DSW linear edge. Down-
stream to this linear edge, the one-phase modulated zone
transitions to the dispersionless (oscillation free) limit of the
DH equation system of equations (3a) and (3b).

Here it is well known that the equation system reduces
to a system of three equations given by (see [56,58] for a
discussion for generalized Schrödinger-type models)

kt + (ω0(k, ρ, k))x = 0, (A2a)

ρt + (ρ u)x = 0, (A2b)

ut + u ux + f ′(ρ )ρx = 0, (A2c)

where k is the wave number of small-amplitude oscillations
in the vicinity of the linear edge, ω0 is the linear dispersion
function [Eq. (5)], and f (ρ) = ρ − √

ρ. Note that in this lin-
ear limit G(ρ, u) = G(ρ, u), for some generic function G [58].
Furthermore, for the two right-propagating DSWs we observe
that the positive branch of Eq. (5) describes the appropriate
linear dispersion relation. Finally, we note that Eqs. (A2b)
and (A2c) are decoupled from (A2a) in the linear limit, which
simplifies their simultaneous solution.
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We initiate the simultaneous solution of Eqs. (A2a)–(A2c)
by invoking the two-DSW relation (see also [53,56]) given
by u = ∫ ρ

ρ
(2)
0

c
ρ ′ dρ ′, where c is the speed of sound. Substituting

this averaged velocity in the vicinity of the linear edge into the
linear modulation system leads to a system of two equations

kt + (ω0)x = 0, (A3a)

ρt + V (ρ)ρx = 0, (A3b)

where V = ∫ ρ

ρ
(2)
0

c
ρ ′ dρ ′ + c. The reduced hyperbolic system in

Eqs. (A3a)–(A3b) possesses two characteristic velocities ∂kω0

and V . One can derive the integral curve of this reduced two-
equation Whitham system by premultiplication with its left
eigenvector [∂kω0 − V, ∂ρω0]T , which yields the first simple-
wave ODE

dk

dρ
= ck/ρ + ∂ρ (k

√
k2/4 + c2)

c − ∂k (k
√

k2/4 + c2)
. (A4)

For convenience, one could instead look at a related
simple-wave ODE for the scaled phase speed variable

α = (1/c)
√

k2

4 + c2 =
√

k2

4c2 + 1, which upon incorporating

the relationship dα/dρ = k/(4c2α)(dk/dρ − kcρ/c) gives

dα

dρ
= −1 + α

2

(
1

ρ
+ 2α − 1

2α + 1

fρ ρ

fρ

)
. (A5)

The ODE above is subject to the condition that the wave num-
ber (scaled phase speed) at the two-DSW soliton edge is zero
(one), i.e., k(ρm) = 0 [α(ρm) = 1] [56,58]. Equation (A5) can
be mapped to an appropriate initial-value problem (IVP) by
defining the forward timelike variable

τ = ρm − ρ, (A6)

for which τ (ρm) = 0 and τ (ρ (2)
0 ) = ρm − ρ

(2)
0 , and the corre-

sponding ODE for α(τ ) being

dα

dτ
= 1 + α

2

(
1

ρm − τ
+ 2α − 1

2α + 1

fρρ (τ )

fρ (τ )

)
, (A7)

which is supplemented with the initial condition α(0) = 1.
Upon integrating this IVP in time τ with a fourth-order
Runge-Kutta (RK4) time stepper, we obtain α(ρ (2)

0 ). There-
after, at the linear edge, since u(ρ (2)

0 ) = 0, we obtain the
associated wave number

k
(
ρ

(2)
0

) = 2
[
c
(
ρ

(2)
0

)]√[
α
(
ρ

(2)
0

)]2 − 1. (A8)

Substituting this into the expression for the group velocity
∂kω0(k(ρ (2)

0 ), ρ (2)
0 ), we get the expression for the speed of the

linear edge of the 2-DSW

v+
(
ρ

(2)
0

) = [
2c(2)

0

(
α

(2)
0

)2 − c(2)
0

]/
α

(2)
0 , (A9)

where α(ρ (2)
0 ) and c(ρ (2)

0 ) are written as α
(2)
0 and c(2)

0 , respec-
tively.

Having determined both the (a) wave number and (b) speed
v+ at the linear edge, we describe the calculation of the soliton

edge speed v− of the 2-DSW. The associated task is to now
determine the phase speed of the soliton edge, which would
correspond to the DSW left edge speed. In this vein, it is
beneficial to utilize the conjugate wave number k̃ approach
(see [58] for details), where k̃ plays a similar role to the
wave amplitude. Moreover, this defines the conjugate angular
frequency ω̃(k̃, ρ ) = −iω0(ik̃, ρ ), which translates to

ω̃ = uk̃ + k̃

√
c2 − k̃2

4
= uk̃ + ω0(k̃, ρ ). (A10)

The conjugate phase speed at the soliton edge of the two
DSWs then yields the soliton phase speed

v− = ω̃(ρm, k̃m)

k̃m
= um + cm

√
1 − k̃2

m

4c2
m

, (A11)

where cm = c(ρm) and we have from the two-DSW jump
condition

um =
∫ ρm

ρ
(2)
0

c(ρ ′)
ρ ′ dρ ′. (A12)

Thus, what remains to be determined is the conjugate wave
number k̃m at the soliton edge. The integral curve governing
the dynamics of k̃m in the k = 0 plane can be derived from the
second simple-wave ODE

dk̃

dρ
=

c(ρ)k̃/ρ + ∂ρ

(
k̃
√

c2 − k̃2

4

)
c(ρ ) − ∂k̃

(
k̃
√

c2 − k̃2

4

) (A13)

and (A13) is subject to initial condition k̃(ρ (2)
0 ) = 0 (reflects

the zero-amplitude condition at the linear edge). Note that
one typically solves the IVP for the associated conjugate, the

scaled phase speed α̃ =
√

1 − k̃2

4c2 . The associated ODE for
the conjugate phase speed can be derived to have the same
form as Eq. (A5) and is supplemented with the initial condi-
tion α̃(ρ (2)

0 ) = 1. This conjugate ODE is integrated forward
in time with an RK4 time stepper to obtain α̃(ρm) = α̃m.
Ultimately, we can then obtain the soliton edge speed as
v− = um + cmα̃m.

APPENDIX B: RIEMANN PROBLEMS
WITH NONTRIVIAL VELOCITY u(1)

0 �= 0

We are interested in studying wave pattern formation under
the active competition of mean-field and LHY contributions of
Eq. (2) as in the main text but for finite velocity u0 < 0. Recall
that in classical dispersive Eulerian hydrodynamics [57],
u0 < 0 implies that the generated wave patterns get closer
to the vacuum state, and for |u0| � 1 speeds one expects
the generation of counterpropagating rarefaction waves on
the intermediate vacuum state ρm = 0. However, a far richer
phenomenology occurs for the model under consideration in
the LHY dominated regime. In what follows, we explicate
this phenomenology with two representative examples. To set
the stage, we decrease u0 < 0 starting from the dam-break
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limit (u0 = 0). The progressive reduction of u0 initially leads
to a corresponding decrease of the intermediate density ρm

(predicted by the Whitham-El closure method) between a
rarefaction wave and a DSW [see Fig. 9(a)]. It is possible to
predict the critical velocity u(1)

0 = uc for which ρm = 0.25,
corresponding to the hyperbolic threshold. For instance, in
the case of (ρ (1)

0 , ρ
(2)
0 ) = (1, 0.25), this critical threshold as

predicted by the closure method yields uc = 1
2 ln(3 + 2

√
2) −√

2 ≈ −0.53, and our eGPE simulations agree with this
prediction to about 5%. Below u(1)

0 < uc, a far richer wave
pattern emerges due to the generation of counterpropagating
kink-antikink pairs. These are connected to the external flow
through a rarefaction and a two-DSW structure, respectively,
as depicted in Fig. 9(b). Such patterns, which have also
previously arisen in studies of the eGPE [31], merit further
investigation in their own right, which is deferred to future
studies.

-4000 -2000 0 2000
0

0.5

1

-4000 -2000 0 2000
0
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FIG. 9. (a) and (b) Density profiles at t = 2000 for different
(ρ (1)

0 , ρ
(2)
0 , u0) (see the legends). The emergent wave patterns having

velocities below uc consist of (a) a counterpropagating rarefaction
and a DSW and (b) a counterpropagating kink-antikink pair and a
DSW.
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