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Controllable interatomic interaction mediated by diffractive coupling in a cavity
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Photon-mediated interaction can be used for simulating complex many-body phenomena with ultracold
atoms coupled to electromagnetic modes of an optical resonator. We study theoretically a method of producing
controllable interatomic interaction mediated by forward-diffracted photons circulating inside a ring cavity. One
example of such a system is the three-mode cavity, where an on-axis mode can coexist with two diffracted
sidebands. We demonstrate how the self-organized stripe states of a Bose-Einstein condensate (BEC) occurring
in this cavity geometry can exhibit supersolid properties, due to spontaneous breaking of the Hamiltonian’s
continuous translational symmetry. A numerical study of the collective excitation spectrum of these states
demonstrates the existence of massless and finite-gap excitations, which are identified as phase (Goldstone) and
amplitude (Higgs) atomic density modes. We further demonstrate how judicious Fourier filtering of intracavity
light can be used to engineer the effective atom-atom interaction profile for many cavity modes. The numerical
results in this configuration show the existence of droplet-array and single-droplet BEC states for commensurate
and incommensurate cavity modes, respectively. Diffractive coupling in a cavity is thereby introduced as
an alternative route towards tailoring the photon-mediated interaction of ultracold atoms. Spatial features of
the self-organized optical potentials can here be tuned to scales several times larger than the pump laser
wavelength such that the corresponding atomic density distributions could be imaged and manipulated using
low-numerical-aperture optics. These calculations and insights pave the way towards quantum simulation of
exotic nonequilibrium many-body physics with condensates in a cavity.
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I. INTRODUCTION

Ultracold atoms coupled to modes of an optical cavity can
be used for simulating complex phenomena in condensed-
matter physics [1,2]. The effective atom-atom interaction is
here mediated by cavity photons, which has the advantage
of being relatively strong and highly tunable. Throughout
the past two decades, various many-body effects have been
explored in this context. These include the Dicke model
phase transition [3], supersolidity [4–6], and the occurrence
of phonons in a quantum gas [7].

It was recently shown that diffraction of light at a cloud
of cold atoms can be used to induce self-organization in
atomic density [8–12] and magnetization [13–15], in the sin-
gle retroreflecting mirror configuration. This type of ordering
relies on the coupling between the atoms being mediated
via photons diffracted by a small angle at the atomic cloud.
The work on cold and ultracold atoms extends the previous
theoretical ideas regarding transverse instabilities in nonlinear
media [16–18], where the emphasis was placed on coupling of
optical waves via the material’s susceptibility.

Diffractive coupling of ultracold atoms could also be
achieved using cavities, which would increase the effective
strength of interactions [12,19,20]. The corresponding opti-
cal phenomena have been experimentally realized in various
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nonlinear media, using plano-planar cavities with intracavity
lenses in the nearly self-imaging configuration, which tunes
the system close to mode degeneracy [21,22]. Moreover, it
was also shown that employing nearly confocal cavities can
lead to the same behavior [23–25], with the potential of enter-
ing the strong cavity-medium coupling regime.

We describe here a theoretical study of the properties
of diffractive coupling in a one-dimensional Bose-Einstein
condensate (BEC) coupled to electromagnetic modes of a
ring cavity. We demonstrate how the profile of the photon-
mediated atom-atom interaction can be tailored by filtering
the Fourier modes to allow propagation of light with desired
transverse wavelengths. Within the mean-field approximation,
laser driving of the on-axis cavity mode can lead to BEC
self-organization into stripe states for a setup with two cavity
sidebands. We explore the supersolid properties of these stripe
states arising due to spontaneous breaking of the U(1) transla-
tional symmetry of the system Hamiltonian. The Bogoliubov
theory calculation reveals the presence of phase (Goldstone)
and amplitude (Higgs) modes in atomic density. In the case of
many cavity modes, we numerically demonstrate the existence
of droplet arrays and single-droplet states for commensurate
and incommensurate cavity sidebands, respectively.

Methods of controlling the cavity-photon-mediated in-
teraction were recently implemented in cold atoms in a
single-mode cavity with an applied magnetic-field gradient
[26], along with ultracold atoms coupled to modes of a multi-
mode degenerate cavity [27]. Another theoretically proposed
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method relies on using frequency combs for pumping a BEC
near cavity resonances of multiple longitudinal cavity modes
[28]. The present article describes an addition to the toolbox
for control of photon-mediated interaction profiles in quantum
simulations. The great advantage compared to the methods of
Refs. [26–28] is that the allowed cavity-mode wave vectors
can be selected with considerable freedom such that, e.g.,
modes with incommensurate transverse wavelengths can be
excited, leading to complex dynamics.

Another advantage stems from the fact that the self-
organization mechanism does not rely on collective superra-
diant enhancement of scattering into an optical cavity mode
orthogonal to the pump laser [29] and the spatial period of the
patterns can be made several times larger than the pump wave-
length. Experimental realization of BEC self-organization at
such length scales would offer considerable advantages in
terms of optical control and monitoring of the system dynam-
ics as compared to the superradiant cases described in [1,2],
where the spatial periods are near the diffraction limit.

II. SYSTEM HAMILTONIAN

The setup consists of a BEC placed inside a nearly de-
generate ring cavity, with a laser of frequency ω driving an
on-axis cavity mode with pump rate η. For strong BEC con-
finement along the y and z axes, the cloud has a cigar shape
and can be approximated as one dimensional. Moreover, for
pattern length scales several times larger than the light’s wave-
length, the paraxial approximation holds and the reflection of
intracavity light from the BEC can be neglected, i.e., only
diffracted waves at a small angle to the pump beam direction
are considered.

Using the Fourier filtering technique for photons inside the
cavity [15,30], one can tailor the configuration of the allowed
cavity sideband modes. The cavity operator is then given by

Ê (x) = â0 +
∑
q j∈S

(â j+eiq j x + â j−e−iq j x ), (1)

where â0 is the annihilation operator of the on-axis mode and
â j± are the annihilation operators of the diffracted sideband
modes with transverse wave numbers ±q j = ±2π/� j . The
sum goes over q j values belonging to a discrete and finite
set S.

The effective many-body Hamiltonian for the atomic and
cavity degrees of freedom can be derived from the Jaynes-
Cummings model, as described in Appendix A. This effective
Hamiltonian has the form (h̄ = 1)

Ĥeff = − �câ†
0â0−

∑
j

�c, j (â
†
j+â j+ + â†

j−â j−) + iη(â†
0 − â0)

+
∫

ψ̂†(x)

(
− 1

2m

∂2

∂x2
+ V1(x) + U0Ê†(x)Ê (x)

)

× ψ̂ (x)dx, (2)

where ψ̂ (x) is the atomic field operator, V1(x) is the external
potential, m is the mass of an atom, �c = ω − ω0 and �c, j =
ω − ωc, j are the pump detunings from the on-axis and jth
sideband cavity mode, respectively, U0 = g2

0/�a is the single-
atom light shift, �a = ω − ωa is the laser-atom detuning, and

g0 is the atom-cavity coupling strength. The number of atoms
N in the following calculations is kept constant throughout the
dynamical evolution.

The Hamiltonian describing the effective atom-atom inter-
action mediated by diffractive coupling via the cavity photons
is given by

Ĥeff,at =
∫

ψ̂†(x)

(
− 1

2m

∂2

∂x2
+ V1(x)

)
ψ̂ (x)dx

+ 1

2

∫
ψ̂†(x′)ψ̂†(x)V2(x, x′)ψ̂ (x)ψ̂ (x′)dxdx′, (3)

where the effective atom-atom interaction is given by

V2(x, x′) = 4U 2
0 η2

�̄2
c + κ2

∑
q j∈S

�̄c, j

�̄2
c, j + κ2

cos[q j (x − x′)], (4)

with �̄c = ω − ω0 − NU0 and �̄c, j = ω − ωc, j − NU0. The
effective atom-atom interaction V2(x, x′) can thus be con-
trolled by Fourier filtering to select a desired set of
modes S.

In the following, we first explore the simple case of two
cavity sidebands, where global all-to-all coupling between the
atoms occurs. We demonstrate how such a setup can be used
to simulate the phenomenon of supersolidity. We extend these
studies to a multimode situation with eight cavity sidebands,
which enables us to explore the relationship between com-
mensurability of the cavity modes and the atomic ground-state
solution.

III. SUPERSOLID PROPERTIES
OF SELF-ORGANIZED STRIPE STATES

Supersolids are an intriguing phase of matter with coex-
isting spatial order and superfluidity. The phenomenon has
been studied theoretically over the past 50 years [31–37];
however, conclusive experimental observations in the context
of condensed-matter physics are still lacking [38,39].

Several experiments have recently shown that novel
insights into supersolidity can be gleaned by quantum sim-
ulation with ultracold atoms [2,40,41]. For a Bose-Einstein
condensate (BEC), the global U(1) phase symmetry is spon-
taneously broken by condensation [42], and spontaneous
breaking of the continuous spatial (translational and/or
rotational) symmetry via crystallization can lead to super-
solidity. The types of interactions employed for simulating
supersolidity in BECs range from cavity-photon-mediated
[4,6,7,28,43,44] and strong magnetic dipolar [45–51] to syn-
thetic spin-orbit coupling [52]. Although such analog systems
provide only simplified versions of the actual interactions
present in condensed-matter materials, their study can add
valuable insight into the properties of the elusive supersolid
phase [43].

Below we study photon-mediated supersolidity of the self-
organized stripe states in the ring cavity setup, depicted in
Fig. 1(a). The cavity operator is now given by

Êst(x) = â0 + â+eiqcx + â−e−iqcx, (5)

where â0 is the on-axis mode and â± are the sideband
mode photonic annihilation operators. The two sidebands
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FIG. 1. Self-organization and supersolidity in the configuration
with three cavity modes. (a) An effectively one-dimensional ultra-
cold Bose-Einstein condensate is placed inside a ring cavity with a
linewidth κ , which is pumped by coherent on-axis light with drive
amplitude η (blue arrow). A Fourier filtering (FF) stage ensures
propagation of only three cavity modes. Upon self-organization, the
BEC density distribution |ψ (x)|2 orders into a stripe pattern with a
pattern phase displacement �x, which can be defined as the distance
of the first maximum from the origin x = 0. The value of �x is
selected via spontaneous symmetry breaking for a particular pattern
realization and depends on the atomic sideband phase argφ. The
pattern length scale �c is tunable via Fourier filtering. The effective
potential for the atoms V (φ) as a function of the complex parameter
φ has (b) a circular paraboloid shape at laser pump strengths below
the self-organization threshold (η = 0.9ηc) and (c) a sombrero shape
above threshold (η = 1.5ηc), which is a direct consequence of the
U(1) translational symmetry of the system Hamiltonian. The dashed
line indicates the potential minima at |φ0| = 0.373. The other param-
eters are (�̄c, �̄

′
c, u0 ) = (2, −1, −1)ωR.

have transverse wave numbers ±qc = ±2π/�c and detunings
�′

c = ω − ω′
0.

The many-body Hamiltonian is here given by

Ĥst = Ĥph,st +
∫

ψ̂†(x)Ĥ (1)
at,stψ̂ (x)dx, (6)

where Ĥph,st = −�câ†
0â0 − �′

c(â†
+â+ + â†

−â−) + iη(â†
0 − â0)

and the single-atom Hamiltonian is given by

Ĥ (1)
at,st = − 1

2m

∂2

∂x2
+ U0[â†

0â0 + â†
+â+ + â†

−â− + (â†
0â+

+ â†
−â0)eiqcx + (â†

0â− + â†
+â0)e−iqcx + â†

−â+e2iqcx

+ â†
+â−e−2iqcx]. (7)

Note that Ĥst is symmetric to continuous translations by dis-
tance d along the x axis, i.e., transformations of the form
ψ̂ (x) → ψ̂ (x + d ) and Ê (x) → Ê (x + d ). In the thermody-
namic mean-field limit, the continuous translational symmetry
is spontaneously broken by the system selecting a random
relative phase between the cavity sideband modes, and the
phase of the periodic atomic density distribution. Note that
in this case V2(x, x′) varies spatially as cos[qc(x − x′)]. This
is analogous to the case of superradiant self-organization in a
ring cavity [44].

Simultaneous breaking of the global U(1) phase symmetry
by Bose-Einstein condensation [42] and the U(1) translational
symmetry by photon-mediated structuring into a density pat-
tern means that the self-organized state of the BEC can display
supersolid properties [43], as studied below. For the fully
quantum description, this U(1) translational symmetry of Ĥst

leads to the preservation of transverse momentum of photons
and atoms by the nonlinear scattering processes, which in the
transient regime can lead to quantum correlations [53].

A. Three-mode optomechanical model

In the three-mode optomechanical model [54], the ψ̂ (x) for
this setup given is by

ψ̂ (x) = 1√
L

(b̂0 + b̂+eiqcx + b̂−e−iqcx ), (8)

where b̂ j is the bosonic annihilation operator of the jth trans-
verse atomic momentum mode and L is the length of the one-
dimensional cloud. Inserting relations (5) and (8) into (6) and
performing the integration over the BEC cloud length L, one
obtains the three-mode Hamiltonian Ĥ3M = Ĥ0 + ĤFWM. The
noninteracting part is Ĥ0 = −�̄câ†

0â0 − �̄′
c(â†

+â+ + â†
−â−) +

ωR(b̂†
+b̂+ + b̂†

−b̂−) + iη(â†
0 − â0), where �̄c = �c − NU0,

�̄′
c = �′

c − NU0, and ωR = q2
c/2m is the transverse photon-

recoil energy, while the four-wave mixing part ĤFWM has the
form

ĤFWM = U0[(â†
+b̂†

− + â†
−b̂†

+)â0b̂0 + â†
0(b̂†

+â+ + b̂†
−â−)b̂0

+ â†
+â−b̂†

−b̂+] + H.c. (9)

The details of the derivation of the Hamiltonian Ĥ3M are given
in [53].

We now derive the expression for the expectation value
of the Hamiltonian, also called the effective potential V (φ)
for a complex order parameter φ [5,48,55], from the micro-
scopic Hamiltonian Ĥ3M in the mean-field thermodynamic
limit, where 〈Ô1Ô2Ô3Ô4〉 → 〈Ô1〉〈Ô2〉〈Ô3〉〈Ô4〉.

Writing 〈â j〉 → √
Nα j and 〈b̂ j〉 → √

Nβ j and neglecting
the fourth-order terms in the sidebands, which is justified near
the self-organization threshold, one can calculate the energy
in the photon-atom system in the mean-field limit

〈Ĥ3M〉/N = − �̄c|α0|2 − �̄′
c(|α+|2 + |α−|2)+i

η√
N

(α∗
0 − α0)

+ ωR(|β+|2 + |β−|2) + u0[α0β0(α∗
+β∗

− + α∗
−β∗

+)

+ α∗
0β0(α+β∗

+ + α−β∗
−) + c.c.], (10)

with u0 = NU0. As |�̄c|, |�̄′
c| 	 ωR, the photonic degrees of

freedom adiabatically follow the atomic ones, and by setting
∂〈Ĥ3M 〉

∂α∗
i

= 0 we adiabatically eliminate them to get

α0 = iη√
N�̄c

, α± = u0

�̄′
c

α0β0(β± + β∗
∓), (11)

where we have chosen a real-valued β0 =√
1 − |β+|2 − |β−|2, while for α0 we have neglected the

terms proportional to u0

�̄′
c
α

(∗)
± β

(∗)
± , as |u0| � |�̄′

c| and η is near

the self-organization threshold. Writing ∂〈Ĥ3M 〉
∂β∗±

= 0, one finds
that in equilibrium β+ = β∗

−.
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We now introduce the complex mean-field order param-
eter φ = φ1 + iφ2 = β+ = β∗

−. Inserting the relations (11)
into the expression (10), one finds that the effective poten-
tial V (φ) = 〈Ĥ3M〉eq/N is rotationally symmetric and has a
Coleman-Weinberg form [56–58] for a homogeneous (long-
wavelength) order parameter φ, given by

V (φ) = h0 + h1|φ|2 + h2

2
|φ|4, (12)

with the parameters

h0 = η2

N�̄c
, h1 = 2ωR

(
1 − η2

η′2
c

)
, h2 = 8ωR

η2

η′2
c

, (13)

where the critical pump strength η′
c is given by η′

c =√
−ωR�̄′

c�̄
2
c/4NU 2

0 . Note that η′
c is equal to the critical pump

strength ηc [53],

ηc =
√

−ωR
(
�̄2

c + κ2
)(

�̄′2
c + κ2

)
4NU 2

0 �̄′
c

, (14)

for vanishing cavity-photon decay rate κ . As show in
Figs. 1(c) and 1(d), for h1 > 0 (η < η′

c), V (φ) is a paraboloid,
while for h1 < 0 (η > η′

c) it deforms into a sombrero shape,
with minima at |φ| = φ0, where

φ0 =
√

−h1

h2
= 1

2

√
1 − η′2

c

η2
. (15)

The sombrero shape of V (φ) above the self-organization
threshold is a direct consequence of the continuous trans-
lational symmetry of the Hamiltonian. After spontaneous
breaking of this U(1) translational symmetry, the system
Hamiltonian can support the existence of two collective ex-
citations: one gapless related to fluctuations at constant |φ|
(Goldstone or phase mode) and one with a finite-energy gap
related to fluctuations at a constant arg φ (Higgs or amplitude
mode) [5,48,55]. The simultaneous presence of Goldstone and
Higgs modes is characteristic of supersolidity and is deter-
mined below by calculating the collective excitation spectrum
using Bogoliubov–de Gennes theory.

The dynamical equations for the cavity photons and the
three atomic modes can be calculated by considering the
Lindblad-like evolution equations for the photon mode fields
α0(t ) and α±(t ) and the Heisenberg equation for the three
atomic motional modes β0(t ) and β±(t ), which leads to [53]

∂α0

∂t
= (i�̄c − κ )α0 − iu0[(β∗

+α+ + β∗
−α−)β0

+ β∗
0 (α+β− + α−β+)] + η√

N
,

∂α±
∂t

= (i�̄′
c − κ )α± − iu0[(β∗

∓β0 + β∗
0 β±)α0 + α∓β∗

∓β±]

(16)

and
∂β0

∂t
= −iu0[α∗

0 (α+β− + α−β+) + (α∗
+β+ + α∗

−β−)α0)],

∂β±
∂t

= −iωRβ± − iu0[(α∗
∓α0 + α∗

0α±)β0 + α∗
∓α±β∓].

(17)

FIG. 2. Dynamical evolution after switching on the pump laser
for (a) the atomic probability density |ψ (x, t )|2 and (b) the electric-
field intensity profile I (x, t ), normalized to the steady-state value of
the on-axis mode intensity I0 = |α0

0 |2. The on-axis intracavity field
initially grows on the scale of approximately 1/κ (not discernible)
and approximately reaches its steady-state value α0

0 . This homoge-
neous solution is not stable and stripe patterns begin to form, with the
system undergoing sloshing oscillations before reaching the steady
state, where the atoms are bunched into maxima of light intensity,
due to �a < 0. The phase of the self-organized pattern was set to 0
for clarity, but can attain any value between 0 and 2π due to contin-
uous translational symmetry of Ĥeff. The simulation parameters are
η = 1.5ηc and (�̄c, �̄

′
c, u0, κ ) = (10, −5, −1, 5)ωR.

These equations can be used to study the dynamics of the
system near the instability threshold ηc.

In Fig. 2 we plot the temporal evolution of atomic
probability distribution along the x axis, given by |ψ (x, t )|2 =
|β0(t ) + β+(t ) exp(iqcx) + β−(t ) exp(−iqcx)|2/L, and the
photon field profile, given by the intensity I (x, t ) =
|α0(t ) + α+(t ) exp(iqcx) + α−(t ) exp(−iqcx)|2, calculated
by solving Eqs. (16) and (17). After switching on the
pump laser at t = 0, the atomic probability distribution is
homogeneous and the α0 quickly increases to approximately
its steady-state value after a time 1/κ . This homogeneous
solution soon becomes unstable and the stripe pattern begins
to form. At the onset of the instability, the system undergoes
sloshing motion, marked by continuous oscillation between
the bunched and homogeneous atomic and electric-field
pattern, studied, e.g., in [59]. After the oscillations decay, a
striped steady state is reached, with atoms bunching into the
peaks of the electric-field intensity due to the drive being red
detuned from the optical transition of the atoms, i.e., U0 < 0.

B. Gross-Pitaevskii-type equation

Following the approach of [44,60], here we move away
from the three-mode model, which leads to equations of the
Gross-Pitaevskii type for the atomic wave function. Using the
same approximations as above with the Hamiltonian Ĥst, we
get the dynamical equations for the photon mode fields α0(t )
and α±(t ) and atomic wave function ψ (x, t ),

∂α0

∂t
= (i�̄c − κ )α0 − iu0(α+I+ + α−I−) + η√

N
,

∂α±
∂t

= (i�̄′
c − κ )α± − iu0(α0I∓ + α∓I2∓),

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
+ u0[|α0|2 + |α+|2 + |α−|2
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FIG. 3. Steady-state values of (a) |α0
±| and (b) |I0

±| and |I0
2±|

versus η. The insets depict the (a) intracavity electric-field inten-
sity I (x)/I0 and (b) probability distribution |ψ0(x)|2, where in (i)
η = 1.2ηc and in (ii) η = 1.8ηc, with the phase of the self-organized
pattern set to 0 for clarity. The solid lines in all plots represent the
results for the steady-state solutions of Eqs. (18), while the dashed
lines are for the solutions of the three-mode model, where I0

± =
β0

∓(β0
0 )∗ + β0

0 (β0
±)∗ and I0

2± = β0
∓(β0

±)∗. The simulation parameters
are (�̄c, �̄

′
c, u0, κ ) = (119, −89, −1, 50)ωR.

+ (α∗
0α− + α∗

+α0)e−iqcx + α∗
+α−e−2iqcx

+ (α∗
0α+ + α∗

−α0)eiqcx + α∗
−α+e2iqcx]ψ, (18)

where the integrals I± = ∫
e±iqcx|ψ (x, t )|2dx and I2± =∫

e±2iqcx|ψ (x, t )|2dx quantify the ordering of atoms into the
optical potential minima.

We find the stationary ground-state solution e−iμ0tψ0(x)
of Eqs. (18) by self-consistently solving the equations via
setting ∂tα j = 0 for j = 0,± and i∂tψ = μψ [28]. Neglect-
ing the BEC medium boundary effects, the �c periodicity of
the optical potential arising from the cavity-photon modes in
Eq. (5) allows us to solve the equations on a box of length �c,
applying periodic boundary conditions.

In Fig. 3 we compare the steady-state results for the three-
mode model and the full system of equations (18). Both the
sideband fields α0

± and the integrals I0
± and I0

2± vanish below
threshold. For pump rates η � ηc, the quantities acquire finite
values, which are approximately equal for the three-mode
model and Eqs. (18). For these η values, both the electric-field
intensity distributions and the probability distributions are
also approximately equal for the two models. The three-mode
model gives thus a very good approximation of the system
behavior in this regime.

Increasing η higher above threshold, the modulation depth
of the self-organized cavity-photon standing wave becomes
quadratically larger, which can be seen from the inset of

Fig. 3(a) by noting that I0 ≈ η2/N/(�̄2
c + κ2). The atoms are

thus more strongly localized in the optical potential wells and
their probability distribution |ψ0(x)|2 becomes noticeably dif-
ferent from the prediction for the three-mode approximation.
This is also reflected in the increase of discrepancy of the
|α0

±|, |I0
±|, and |I0

2±| values for the two models. Including
higher-order atomic momenta thus becomes necessary for
quantitatively describing the steady-state system behavior for
large η/ηc values.

C. Collective excitation spectrum

We use here the Bogoliubov–de Gennes approach
outlined in [28,54,60] to calculate the collective ex-
citation spectrum. We consider solutions of the forms
ψ (x, t ) = e−iμ0t [ψ0(x) + δψ (x, t )] and α j (t ) = α0

j + δα j (t ),
where δψ (x, t ) = δψ+(x)e−i�t + [δψ−(x)]∗ei�∗t and
δα j (t ) = δα+

j e−i�t + (δα−
j )∗ei�∗t for j = 0,±. Inserting

these relations into Eqs. (18) and collecting the e−i�t and ei�∗t

terms, the collective excitation spectrum is now determined
by the eigenvalue equation

M̂R = �R, (19)

with the non-Hermitian excitation matrix M̂ given by Eq. (C3)
and the excitation vector defined as

R = [δα+
0 , δα−

0 , δα+
+, δα−

+, δα+
−, δα−

−, δψ+(x), δψ−(x)].

(20)

We numerically calculate the spectrum of M̂ by using a spatial
grid of length �c with 256 points and periodic boundary
conditions. Due to the symmetry properties of M̂, its eigenval-
ues appear in pairs with equal imaginary parts and real parts
with opposite signs [54,60]; we plot here only the part of the
spectrum with positive real parts.

In Fig. 4 we plot the first six eigenvalues of M̂ for scanning
η, excluding the zero-frequency mode, which gives rise to
phase diffusion of the homogeneous part of the condensate
for all η [61]. At η � ηc, the collective condensate mode
pairs have frequencies ωR, 4ωR, and 9ωR, which correspond
to the spectrum of a condensate in a box [60]. The lowest-
energy cavity-photon modes have, for the parameters used, a
frequency of approximately −�̄′

c = 89ωR, which is not within
the range of the plot.

Near the self-organization threshold pump rate ηc, the two
lowest mode frequencies approach zero, and moving beyond
ηc leads to the splitting of the modes into a gapless mode,
indicating a phase (Goldstone) mode, and a mode with a finite-
energy gap. The frequency of the finite-gap mode vanishes
for η → ηc, indicating an amplitude (Higgs) mode excitation
with fluctuations in the strength of the atomic density modula-
tion [55]. The simultaneous presence of Goldstone and Higgs
modes in the collective excitation spectrum is a signature of
BEC supersolidity [5,48]. In contrast to the model of [5,62],
the continuous translational symmetry here is exact such that
no finite gap appears for the Goldstone mode.

Note that the cavity-photon decay with rate κ may cause
finite values of the decay rates −Im(�) of the collective
excitations. However, for the Goldstone mode the decay rate is
finite only for η < ηc and the damping vanishes above thresh-
old (see the inset of Fig. 4). This can be explained by the fact
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IVOR KREŠIĆ PHYSICAL REVIEW A 110, 023302 (2024)

FIG. 4. Real parts of the six lowest eigenvalues of the collective
excitation matrix M̂ vs pump rate η. The plotted modes represent
condensate density excitations at frequencies ωR, 4ωR, and 9ωR for
η � ηc, and the lowest-energy photon modes appear at Re(�) =
−�̄′

c = 89ωR. Above threshold, one of the two lowest modes be-
comes gapless (blue solid line), indicating Goldstone mode behavior,
while the other mode obtains an energy gap increasing with η

(orange dashed line), indicating Higgs mode behavior, as a direct
consequence of spontaneous breaking of the U(1) translational sym-
metry of the Hamiltonian Ĥeff by self-organization [5,48]. The inset
shows that the decay rate −Im(�) of the Goldstone mode vanishes
above threshold, as a consequence of the fact that the continuous
translational symmetry of the system equations is not broken by
cavity-photon decay at rate κ . The simulation parameters are given
in the caption of Fig. 3.

that cavity-photon decay does not break the U(1) translational
symmetry of the Lindblad evolution equations for the photon
modes [53] such that finite κ will not dampen the Goldstone
mode appearing after spontaneous symmetry breaking of U(1)
translational symmetry in the thermodynamic limit. The same
feature is also present in the model studied in [44].

IV. COMMENSURATE AND INCOMMENSURATE
MODES IN A MULTIMODE CAVITY

The great majority of work on quantum simulation with
atoms coupled to optical resonators has involved coupling
to a single or two cavity modes, which gives rise to global
interaction between the atoms [2]. However, many of the
Hamiltonians of interest to the condensed-matter physics
community, such as models of the glassy phase [63–65]
or frustrated magnetism [66], rely on more exotic types of
interaction.

We study here a simple example where the effective atom-
atom interaction has a more complex spatial profile compared
to the global interaction case described in the preceding sec-
tion. This modification is achieved by tailoring the distribution
of multiple sideband modes circulating inside the cavity. The
Gross-Pitaevskii-type equation for the atoms is now given by

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
+ V1(x)ψ

+ u0

(
|α0|2 +

∑
q j∈S

[|α j+|2 + |α j−|2

+ (α∗
0α j− + α∗

j+α0)e−iq j x + α∗
j+α j−e−2iq j x

+ (α∗
0α j+ + α∗

j−α0)eiq j x + α∗
j−α j+e2iq j x]

)
ψ, (21)

where V1(x) is an external box-shaped potential, which leads
to hard-wall boundary conditions for ψ (x) at the edges
of the system. As the on-axis mode is driven by a pump
laser, we approximate it here by α0 � iη/

√
N (�̄c + iκ ) (see

Appendix B). For large κ and/or |�̄c, j |, and |�a| values,
sideband modes can then be adiabatically eliminated and ap-
proximated by

α j± � U0α0

�̄c, j + iκ

∫
e∓iq j x|ψ (x)|2dx, (22)

as also shown in Appendix B.
For the configurations studied here, nine cavity modes

are selected by Fourier filtering. In the first example,
the wave numbers are commensurate and given by qj =
(1, 0.5, 0.25, 0.125)qc. The probability distribution for a re-
alization of the ground-state wave function ψ0(x) is shown
in Fig. 5(a). For these commensurate transverse wavelengths,
the sideband cavity modes constructively interfere at length
scales of 8�c, which is also the periodicity of the minima of
the atom-atom interaction profile V2(x, x′). The atoms can thus
order into a droplet array of periodicity 8�c, which simulta-
neously increases the diffraction into all of the allowed cavity
modes and minimizes the atomic potential energy.

In contrast, when the modes are incommensurate, such
ordering in ψ0(x) does not occur, as shown in the example
in Fig. 5(b), where q j = (1, 0.775, 0.575, 0.225)qc. Here a
single constructive interference peak between all of the al-
lowed modes occurs for |x − x′| = 0. It is thus not possible
to simultaneously enhance the scattering into all cavity modes
for atoms arranged in a periodic array. The ground-state solu-
tion is now a single-droplet state. Detunings �c, j depend on
the diffractive phase shifts of the sideband modes propagating
in the system [12,53]. In Fig. 5 we plot the case for which
�̄c, j is equal for all sidebands and the case for which �̄c, j

depends on q j . For the latter case, near cavity degeneracy the
quadratic relationship ωc, j − ω0 ∝ q2

j holds [21,53], which is
used here to determine the detunings �̄c, j . The two cases have
the same ground-state solutions. The depth of the V2(x, x′)
minima is larger for the parameters of the case with variable
�̄c, j such that the localization of the atoms at the optical
potential minima is stronger here. Using wave-front-shaping
elements inside the cavity feedback loop, the cavity sideband
phase shifts can be controlled in order to tailor the distribution
of �̄c, j values and, in combination with selecting the q j distri-
bution, engineer the shape of V2(x, x′), which is an intriguing
prospect for applications in quantum simulation.

V. CONCLUSION

A method for providing tailored photon-mediated atom-
atom interaction in a BEC was studied theoretically and
numerically. The method is based on diffractive coupling
by electromagnetic modes of a ring cavity. In the first ex-
ample of self-organization into stripe states, it was shown
how the continuous translational symmetry of the system
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FIG. 5. Results for a multimode cavity with nine cavity modes.
(a) Plot of |ψ0|2 for commensurate cavity modes with qj =
(1, 0.5, 0.25, 0.125)qc (blue, constant �̄c, j ; orange, variable �̄c, j).
(b) Plot of |ψ0|2 for incommensurate cavity modes with qj =
(1, 0.775, 0.575, 0.225)qc (blue, constant �̄c, j ; orange, variable
�̄c, j). The left inset shows the atom-atom interaction profile V2(x, x′)
with U0 → u0 (blue, constant �̄c, j ; orange, variable �̄c, j). The right
inset shows cosine functions for modes with different qj values
(red, q1; green, q2; orange, q3; blue, q4). The simulation parameters
are (�̄c, �̄

′
c, u0, κ ) = (3, −2, −0.1, 20)ωR and (a) η = 290ωR (blue)

and η = 270ωR (orange) and (b) η = 430ωR (blue) and η = 350ωR

(orange). For constant �̄c, j the value is �̄c, j = �̄′
c. For variable

�̄c, j the value is changed as �̄c, j = �̄c − (qj/q4)2κ/4. Hard-wall
boundary conditions were imposed at the system ends at x = ±20.

Hamiltonian is manifested in the sombrero shape of the ef-
fective mean-field potential for the atomic degrees of freedom
above the self-organization threshold. This symmetry is spon-
taneously broken in the thermodynamic limit, by the system
selecting a particular phase for the steady-state sinusoidal
pattern in the atomic density and intracavity light field pro-
file. Supersolid properties are exhibited by the simultaneous
presence of Goldstone and Higgs modes in the numerically
calculated collective excitation spectrum. The calculations

corroborate previous remarks regarding supersolidity of op-
tomechanical patterns in a BEC, observed for simulations in
the single retroreflecting mirror configuration [10], which is
a setup similar to the ring cavity scheme [12]. It should be
readily possible to extend the problem into two-dimensional
geometries, where an additional rotational U(1) symmetry
will be broken by self-organization, which relates to the re-
cent interest in supersolidity of dipolar condensates in two
dimensions [49,50].

For highly elongated clouds [67,68], spatial features can
be tuned to values of tens of microns, which would enable real
space monitoring of the condensate dynamics. This also opens
the possibility of modifying the photon-mediated interatomic
interaction by placing optical elements with spatially tailored
profiles within the optical feedback loop of the cavity.

Going beyond global all-to-all atom-atom coupling occur-
ring for three cavity modes, we also studied the case of a
multimode cavity with a tailored distribution of photonic side-
bands. For commensurate transverse wave numbers q j , the
ground state is a droplet array, which simultaneously enhances
scattering into all of the allowed cavity modes. In contrast,
for incommensurate modes only one atom-atom potential
minimum occurs, at |x − x′| = 0. The resulting ground-state
solution is a single-droplet state. These example situations
demonstrate the versatility of the proposed experimental
setup. A wide variety of interaction profiles V2(x, x′) can be
implemented in this context, which may lead to nonequi-
librium realizations of models of spin glasses [63–65] or
frustrated magnetism [66].
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APPENDIX A: DERIVATION OF THE EFFECTIVE HAMILTONIAN

The effective Hamiltonian (2) can be derived from the Jaynes-Cummings model, similarly to the procedure given in
Refs. [28,70]. We describe the atom-light interaction within the domain of paraxial approximation, where only forward-directed
scattering of light by the condensate can occur, such that only counterclockwise- or clockwise-propagating modes can be excited
by the instability. We can thus concentrate on a one-dimensional model, where the cavity-mode operator at the BEC medium is
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given by

Ê (x) = â0 +
∑
q j∈S

(â j+eiq j x + â j−e−iq j x ), (A1)

where â0 is the annihilation operator of the on-axis plane wave mode and â j± are the annihilation operators of the diffracted
sidebands with transverse wave numbers ±qj = ±2π/� j . The allowed sideband wave numbers qj are part of a bounded discrete
set S, and the values contained within S can be experimentally tailored via Fourier filtering [15,30].

In the dipole and rotating-wave approximations, the single-atom Jaynes-Cummings Hamiltonian of the system is given by
(h̄ = 1)

Ĥ(1) = − 1

2m

∂2

∂x2
+ ωaσ̂ee +

⎡
⎣

⎛
⎝g0â0 +

∑
q j∈S

g j (â j+eiq j x + â j−e−iq j x )

⎞
⎠σ̂eg + H.c.

⎤
⎦

+ Ve(x)σ̂ee + Vg(x)σ̂gg + ω0â†
0â0 +

∑
j

ω j (â
†
j+â j+ + â†

j−â j−) + iη(â†
0e−iωt − â0eiωt ), (A2)

where m is the mass of the atom; ωa, ω, and ω j are the frequencies of the atomic two-level transition, the drive laser, and the jth
cavity mode, respectively; g j is the atom-cavity coupling strength of the jth mode; σ̂kk′ = |k〉〈k′| is the atomic optical transition
operator; Vg,e(x) are the external trapping potentials for atoms in the ground and excited states, respectively; η ∈ R is the laser
pump rate; and the sum over j implies Fourier filtering of qj was performed. In the following we approximate all gj values by
g0 ∈ R. Note that here we approximate the direct atom-atom scattering in the BEC to be sufficiently small to be neglected, i.e.,
the phenomena studied in this article are based only on photon-mediated interaction between the atoms.

The Hamiltonian (A2) can be converted into a time-independent form

ˆ̃H(1) = ÛĤ(1)Û † + i(∂tÛ )Û †

= − 1

2m

∂2

∂x2
− �aσ̂ee + [g0Ê (x)σ̂eg + H.c.] + Ve(x)σ̂ee + Vg(x)σ̂gg − �câ†

0â0 −
∑

j

�c, j (â
†
j+â j+ + â†

j−â j−) + iη(â†
0 − â0),

(A3)

where �a = ω − ωa, �c = ω − ω0, and �c, j = ω − ω j , by using

Û = exp

⎡
⎣iωt

⎛
⎝σ̂ee + â†

0â0 +
∑

j

(â†
j+â j+ + â†

j−â j−)

⎞
⎠

⎤
⎦. (A4)

The corresponding many-body Hamiltonian of the system is given by

Ĥ =
∫

�̂†
g (x)

(
− 1

2m

∂2

∂x2
+ Vg(x)

)
�̂g(x)dx +

∫
�̂†

e (x)

(
− 1

2m

∂2

∂x2
+ Ve(x) − �a

)
�̂e(x)dx

+
∫

[g0�̂
†
e (x)Ê (x)�̂g(x) + H.c.]dx − �câ†

0â0 −
∑

j

�c, j (â
†
j+â j+ + â†

j−â j−) + iη(â†
0 − â0), (A5)

where

[�̂k (x), �̂†
k′ (x′)] = δ(x − x′)δk,k′ ,

[�̂k (x), �̂k′ (x′)] = [�̂†
k (x), �̂†

k′ (x′)] = 0. (A6)

The Heisenberg equation for �̂e(x) is given by

i
∂�̂e(x)

∂t
=

(
− 1

2m

∂2

∂x2
+ Ve(x) − �a

)
�̂e(x) + g0Ê (x)�̂g(x). (A7)

In the limit of large �a, the excited-state dynamics reaches steady state much more quickly than the ground state. The kinetic
energy and external potential terms can be neglected in comparison to �a, and �̂e(x) can be adiabatically eliminated to give

�̂e(x) � 1

�a
g0Ê (x)�̂g(x). (A8)
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The Heisenberg equations for the cavity operators â0 and â j (including a phenomenological cavity decay constant κ) and the
atomic field �̂g(x) ≡ ψ̂ (x) can be derived from (A5), which after inserting (A8) leads to

∂ â0

∂t
= (i�c − κ )â0 − iU0

∫
ψ̂†(x)Ê (x)ψ̂ (x)dx + η,

∂ â j±
∂t

= (i�c, j − κ )â j± − iU0

∫
ψ̂†(x)Ê (x)e∓iq j xψ̂ (x)dx,

∂ψ̂ (x)

∂t
=

(
− 1

2m

∂2

∂x2
+ V1(x) + U0Ê†(x)Ê (x)

)
ψ̂ (x). (A9)

Equations (A9) can be derived from the Heisenberg equation with the effective Hamiltonian Ĥeff given by

Ĥeff = −�câ†
0â0 −

∑
j

�c, j (â
†
j+â j+ + â†

j−â j−) + iη(â†
0 − â0)

+
∫

ψ̂†(x)

(
− 1

2m

∂2

∂x2
+ V1(x) + U0Ê†(x)Ê (x)

)
ψ̂ (x)dx. (A10)

APPENDIX B: PHOTON-MEDIATED INTERATOMIC INTERACTION

In the limit of large |�c, j | and/or κ , the cavity-photon operators can be adiabatically eliminated. The system can then be
described by a Hamiltonian of the form

Ĥeff,at =
∫

ψ̂†(x)

(
− 1

2m

∂2

∂x2
+ V1(x)

)
ψ̂ (x)dx + 1

2

∫
ψ̂†(x′)ψ̂†(x)V2(x, x′)ψ̂ (x)ψ̂ (x′)dx dx′, (B1)

where V2(x, x′) is the effective atom-atom interaction mediated by cavity photons.
To determine the form of V2(x, x′), we first adiabatically eliminate the on-axis mode, which leads to

â0 � iη

�̄c + iκ
+ O

(
1

�a

)
, (B2)

where �̄c = ω − ω0 − NU0 and we neglect the terms O(1/�a). As the on-axis mode is driven by a laser, one can approximate â0

by 〈â0〉 → √
Nα0, where α0 � iη/

√
N (�̄c + iκ ) [53]. The sideband cavity-photon operators can then be adiabatically eliminated

to give

â j± � U0

√
Nα0

�̄c, j + iκ

∫
e∓iq j xψ̂†(x)ψ̂ (x)dx + O

(
1

�2
a

)
, (B3)

where �̄c, j = ω − ω j − NU0 and we neglect the O(1/�2
a) terms. Inserting expressions (B2) and (B3) into the Heisenberg

equation (A9) for ψ̂ (x) leads to

∂ψ̂ (x)

∂t
=

(
− 1

2m

∂2

∂x2
+ V1(x) +

∫
ψ̂†(x′)V2(x, x′)ψ̂ (x′)dx′

)
ψ̂ (x), (B4)

where the atom-atom interaction is given by

V2(x, x′) = η2

�̄2
c + κ2

⎛
⎝U0

N
+ 4U 2

0

∑
q j∈S

�̄c, j

�̄2
c, j + κ2

cos[q j (x − x′)]

⎞
⎠, (B5)

and the constant first term in (B5) can be neglected. An effective atom-only Hamiltonian for this case is then given by Eq. (B1).

APPENDIX C: EXCITATION MATRIX M̂

Inserting ψ (x, t ) = e−iμ0t [ψ0(x) + δψ (x, t )] and α j (t ) = α0
j + δα j (t ), for j = 0,±, into Eqs. (18), the dynamical

equations are

∂δα0

∂t
= (i�̄c − κ )δα0 − iu0

(
I0

+δα+ + I0
−δα− +

∫
A0(ψ0δψ

∗ + ψ∗
0 δψ )dx

)
,

∂δα±
∂t

= (i�̄′
c − κ )δα± − iu0

(
I0

∓δα0 + I0
2∓δα∓ +

∫
A±(ψ0δψ

∗ + ψ∗
0 δψ )dx

)
,

i
∂δψ

∂t
= (H0 − μ0)δψ + u0ψ0(A0δα

∗
0 + A∗

0δα0 + A+δα∗
+ + A∗

+δα+ + A−δα∗
− + A∗

−δα−), (C1)
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where A0 = α0
+eiqcx + α0

−e−iqcx, A± = α0
0e∓iqcx + α0

∓e∓2iqcx, and the Hamiltonian H0 is given by

H0 = − 1

2m

∂2

∂x2
+ u0

{[(
α0

0

)∗
α0

+ + (α0
−)∗α0

0

]
eiqcx + [(

α0
0

)∗
α0

− + (α0
+)∗α0

0

]
e−iqcx + (α0

−)∗α0
+e2iqcx + (α0

+)∗α0
−e−2iqcx

}
. (C2)

Writing δψ (x, t ) = δψ+(x)e−i�t + [δψ−(x)]∗ei�∗t and δα j (t ) = δα+
j e−i�t + (δα−

j )∗ei�∗t and collecting the e−i�t and ei�∗t

terms, we get the equations

�δα+
0 = (−�̄c − iκ )δα+

0 + u0

(
I0

+δα+
+ + I0

−δα+
− +

∫
A0(ψ0δψ

− + ψ∗
0 δψ+)dx

)
,

�δα−
0 = (�̄c − iκ )δα−

0 − u0

(
(I0

+)∗δα−
+ + (I0

−)∗δα−
− +

∫
A∗

0(ψ0δψ
− + ψ∗

0 δψ+)dx

)
,

�δα+
+ = (−�̄′

c − iκ )δα+
+ + u0

(
I0

−δα+
0 + I0

2−δα+
− +

∫
A+(ψ0δψ

− + ψ∗
0 δψ+)dx

)
,

�δα−
+ = (�̄′

c − iκ )δα−
+ − u0

(
(I0

−)∗δα−
0 + (

I0
2−

)∗
δα−

− +
∫

A∗
+(ψ0δψ

− + ψ∗
0 δψ+)dx

)
,

�δα+
− = (−�̄′

c − iκ )δα+
− + u0

(
I0

+δα+
0 + I0

2+δα+
+ +

∫
A−(ψ0δψ

− + ψ∗
0 δψ+)dx

)
,

�δα−
− = (�̄′

c − iκ )δα−
− − u0

(
(I0

+)∗δα−
0 + (

I0
2+

)∗
δα−

+ +
∫

A∗
−(ψ0δψ

− + ψ∗
0 δψ+)dx

)
,

�δψ+ = (H0 − μ0)δψ+ + u0ψ0(A0δα
−
0 + A∗

0δα
+
0 + A+δα−

+ + A∗
+δα+

+ + A−δα−
− + A∗

−δα+
− ),

�δψ− = −(H0 − μ0)δψ− − u0ψ
∗
0 (A0δα

−
0 + A∗

0δα
+
0 + A+δα−

+ + A∗
+δα+

+ + A−δα−
− + A∗

−δα+
− ). (C3)

Equation (C3) is an eigenvalue problem that can readily be written in matrix form M̂R = �R, where R is given by Eq. (20).
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[14] G. Labeyrie, I. Krešić, G. R. M. Robb, G.-L. Oppo, R. Kaiser,
and T. Ackemann, Optica 5, 1322 (2018).

[15] G. Labeyrie, J. G. M. Walker, G. R. M. Robb, R. Kaiser, and T.
Ackemann, Phys. Rev. Lett. 132, 143402 (2024).

[16] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[17] W. J. Firth, J. Mod. Opt. 37, 151 (1990).
[18] W. J. Firth and C. Paré, Opt. Lett. 13, 1096 (1988).
[19] E. Tesio, G. R. M. Robb, T. Ackemann, W. J. Firth, and G.-L.

Oppo, Phys. Rev. A 86, 031801(R) (2012).
[20] A. C. Boquete, G. Baio, G. Robb, G.-L. Oppo, P. Griffin, and T.

Ackemann, J. Phys.: Conf. Ser. 1919, 012014 (2021).
[21] A. Esteban-Martín, J. García, E. Roldán, V. B. Taranenko, G. J.

de Valcárcel, and C. O. Weiss, Phys. Rev. A 69, 033816 (2004).
[22] A. Esteban-Martín, V. B. Taranenko, J. García, G. J. de

Valcárcel, and E. Roldán, Phys. Rev. Lett. 94, 223903 (2005).
[23] M. Kreuzer, W. Balzer, and T. Tschudi, Appl. Opt. 29, 579

(1990).
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