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Hilbert space fragmentation from lattice geometry
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The eigenstate thermalization hypothesis describes how isolated many-body quantum systems reach thermal
equilibrium. However, quantum many-body scars and Hilbert space fragmentation violate this hypothesis and
cause nonthermal behavior. We demonstrate that Hilbert space fragmentation may arise from lattice geometry in
a spin- 1

2 model that conserves the number of domain walls. We generalize a known, one-dimensional, scarred
model to larger dimensions and show that this model displays Hilbert space fragmentation on the Vicsek fractal
lattice and the two-dimensional lattice. Using Monte Carlo methods, the model is characterized as strongly
fragmented on the Vicsek fractal lattice when the number of domain walls is either small or close to the maximal
value. On the two-dimensional lattice, the model is strongly fragmented when the density of domain walls is low
and weakly fragmented when the density of domain walls is high. Furthermore, we show that the fragmentation
persists at a finite density of domain walls in the thermodynamic limit for the Vicsek fractal lattice and the
two-dimensional lattice. We also show that the model displays signatures similar to Hilbert space fragmentation
on a section of the second-generation hexaflake fractal lattice and a modified two-dimensional lattice. We study
the autocorrelation function of local observables and demonstrate that the model displays nonthermal dynamics.

DOI: 10.1103/PhysRevA.110.023301

I. INTRODUCTION

Isolated, many-body, quantum systems are typically ther-
mal, and the microcanonical ensemble accurately describes
the expectation values of local observables at long times.
The eigenstate thermalization hypothesis (ETH) explains this
behavior from an ansatz about the matrix elements of local
observables [1–3]. The ETH has been verified by numerous
works (see Ref. [4] and references therein). However, several
mechanisms violate the ETH and, as a consequence, cause
nonthermal behavior.

Scarred models host a small number of ETH-violating en-
ergy eigenstates, called quantum many-body scars (QMBSs),
embedded in an otherwise thermal spectrum [5–7]. While scar
states are nonthermal, they only represent a weak violation of
the ETH. QMBSs date back to the discovery of analytic ex-
cited energy eigenstates in the Affleck-Kennedy-Lieb-Tasaki
model [8–10], and signatures of QMBSs were observed in
experiments with kinetically constrained Rydberg atoms [11].
Since the initial findings, numerous scarred models have been
discovered, e.g., Refs. [12–19], and QMBSs have been real-
ized in various experimental setups [20–25].

Hilbert space fragmentation (HSF) represents another
ETH-violating phenomenon where the Hilbert space is sep-
arated into dynamically disconnected subspaces even after
resolving all symmetries [6]. These subspaces are called
Krylov subspaces, and the number of subspaces grows ex-
ponentially with system size. The subspaces may vary in
size from one-dimensional “frozen configurations” to sub-
spaces with exponentially large dimensions. While the Krylov
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subspaces are not described by conventional quantum num-
bers associated with a symmetry of the Hamiltonian operator,
they may be labeled by “statistically localized integrals of
motion” [26] or commutant algebras [27]. HSF may represent
a weak or strong violation of the ETH, and the corresponding
model is denoted as, respectively, weakly or strongly frag-
mented [28]. When the largest Krylov subspace constitutes a
vanishingly small fraction of the relevant symmetry sector in
the thermodynamic limit, the model is strongly fragmented.
On the other hand, the model is weakly fragmented when
the size of a Krylov subspace converges to the dimension
of its symmetry sector in the thermodynamic limit. Although
HSF violates the ETH, the Krylov subspaces may thermal-
ize according to the Krylov-restricted ETH [29]. They may
also be integrable or many-body localized [30,31]. HSF has
been extensively studied in models with charge and dipole
conservation [28,29,32–34], but fragmentation also arises in
other settings [35–44]. HSF is linked to Stark many-body lo-
calization where the effective Hamiltonian conserves both the
charge and dipole moment [45,46]. Consequently, signatures
of HSF have been observed in experiments with the tilted
Fermi-Hubbard model [47,48].

The nature of fragmented models depends on the system
dimension. For instance, the t-Jz model displays HSF in one
dimension [26], but it is not fragmented in two dimensions
[27]. Likewise, while the pair-flip model displays HSF in
one dimension, it is scarred in dimensions larger than one
[27,49]. Hence, the presence of HSF in one dimension does
not guarantee its existence in higher dimensions. Several
works have, however, constructed models that are HSF in
dimensions larger than one [34,50–53]. These findings call
for a better understanding of the connection between HSF
and the number of spatial dimensions. Aside from analyzing
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fragmentation in integer dimensions, a general analysis would
naturally study HSF on fractal lattices. Fractal lattices have
a more complicated structure, and one may wonder whether
HSF can arise from the lattice geometry itself. If this is possi-
ble, then lattices may be constructed where HSF is present on
certain sublattices but not on other sublattices.

In this work, we generalize a known, domain-wall con-
serving, one-dimensional, scarred model [17] to lattices of
dimensions larger than one. While the one-dimensional model
hosts a few nonthermal scar states, the Hilbert space shat-
ters into numerous dynamically disconnected subspaces when
the model is placed in higher dimensions. We study the
model on the Vicsek fractal lattice, the two-dimensional lat-
tice, a section of the second-generation hexaflake fractal
lattice, and a modified two-dimensional lattice. We show
that the model displays HSF on the Vicsek fractal lattice
and the two-dimensional lattice. For the Vicsek fractal lattice,
the fragmentation is strong in symmetry sectors where the
number of domain walls is either close to zero or close to
the maximal number of domain walls. For the two-
dimensional lattice, the model is strongly fragmented when
the density of domain walls is low and weakly fragmented
when the density of domain walls is high. We also show
that the fragmentation persists at a finite domain wall density
in the thermodynamic limit on the Vicsek fractal lattice and
the two-dimensional lattice. We observe features similar to
HSF on a section of the second-generation hexaflake fractal
lattice and the modified two-dimensional lattice. Furthermore,
we find that the level of fragmentation depends on the lat-
tice geometry. This result is explained by lattice sites with
more than two nearest neighbors confining the movement of
domain walls. The combination of domain-wall conservation
and conservation of total magnetization was previously shown
to cause HSF in a one-dimensional system [35]. Furthermore,
domain-wall conservation has been shown to cause HSF on
the two-dimensional lattice with periodic boundary conditions
[50,51]. We show that domain-wall conservation also causes
HSF on other lattices with dimensions larger than one. We
demonstrate the nonthermal nature of the model by studying
the time-averaged autocorrelation function of a local observ-
able, and we compare the results with the Mazur bound.

In Sec. II, we take a one-dimensional, domain-wall con-
serving, scarred model as our starting point and generalize
the model to larger dimensional lattices. We present the
Vicsek fractal lattice, the hexaflake fractal lattice, the two-
dimensional lattice, and a modified two-dimensional lattice.
In Sec. III, we demonstrate that the model displays HSF
on the Vicsek fractal lattice and the two-dimensional lattice
by explicitly constructing an exponential number of Krylov
subspaces for both lattices. Furthermore, we observe that the
model displays characteristics similar to HSF on a section of
the second-generation hexaflake fractal lattice and a modified
two-dimensional lattice. We describe the mechanisms that re-
strict the movement of domain walls and cause fragmentation.
For the Vicsek fractal lattice, we estimate the dimensions of
the symmetry sectors with a small number of domain walls
using Monte Carlo importance sampling. We also estimate the
dimension of the largest Krylov subspace in each symmetry
sector. These results show that the largest Krylov subspace
represents a vanishingly small part of the full symmetry sector.

Hence, the model is strongly fragmented on the Vicsek fractal
lattice for a small number of domain walls. We extend this
result to symmetry sectors where the number of domain walls
is close to the maximal value. For the two-dimensional lattice,
we compute the dimensions of the Krylov subspaces and sym-
metry sectors exactly for various system sizes. Based on these
data, we characterize the model as strongly fragmented when
the density of domain walls is low and weakly fragmented
when the density of domain walls is high. In Sec. IV, we
study the long-time average of the autocorrelation function
of a local observable and compare the results with the Mazur
bound. While the time-averaged autocorrelation function does
not converge to the Mazur bound for the considered lattices,
the Mazur bound becomes tight when the Hamiltonian is
perturbed by a block-diagonal random matrix. In Sec. V, we
summarize the results.

II. MODEL

We take the model from Ref. [17] as our starting point.
Consider a one-dimensional lattice of length N with open
boundary conditions described by the Hamiltonian

H1D = λ

N−1∑
i=2

(
σ x

i − σ z
i−1σ

x
i σ z

i+1

) + �

N∑
i=1

σ z
i + J

N−1∑
i=1

σ z
i σ z

i+1,

(1)
where σ x

i and σ z
i are the Pauli x and z operators acting on

site i. The kinetic term σ x
i − σ z

i−1σ
x
i σ z

i+1 flips the spin on site
i if the sum of the spins on the two nearest neighbors, sites
i − 1 and i + 1, is zero. The second term in Eq. (1) represents
an energy contribution ascribed to the spin orientation in a
uniform magnetic field in the z direction with strength �. The
third term represents nearest-neighbor interactions along the
z direction with strength J . When two nearest-neighbor spins
are in different states, the edge connecting the two sites is de-
noted as a domain wall. The Hamiltonian operator conserves
the number of domain walls. This model has been shown to
host two towers of QMBSs [17].

We generalize the one-dimensional model from Eq. (1) to
higher-dimensional lattices while preserving its characteristic
features. In particular, the model should conserve the number
of domain walls. We consider the Hamiltonian

H = Hλ + Hz + Hzz (2)

with

Hλ = λ
∑

r

δ

( ∑
〈r,r′〉

σ z
r′

)
σ x

r , (3a)

Hz = �
∑

r

σ z
r , (3b)

Hzz = J
∑
〈r,r′〉

σ z
r σ z

r′ , (3c)

where 〈·, ·〉 refers to nearest-neighbor sites, and δ is the func-
tion given by δ(0) = 1 and δ(x) = 0 for x �= 0. The three-body
kinetic terms in Eq. (1) are, hence, generalized to the operator
Hλ consisting of many-body terms. The remaining terms in
Eqs. (3b) and (3c) are similar to the one-dimensional model.
We note that Eqs. (2) and (3) reduce to Eq. (1) for the
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(a) (b) (c) (d) (e) (f)

FIG. 1. Illustration of the considered lattices. Black dots show the lattice sites and red lines display nearest-neighbor edges. (a) The
first-generation Vicsek fractal lattice. (b) The second-generation Vicsek fractal lattice is obtained from generation one by substituting all lattice
sites with five new sites. (c) Similarly, the third-generation Vicsek fractal lattice is obtained from generation two by substituting all sites with
generation one Vicsek fractal lattices. (d) The second-generation hexaflake fractal lattice. We consider the lattice consisting of three connected
first-generation hexaflake fractal lattices (above the dashed line). (e) The two-dimensional lattice of size Lx × Ly = 5 × 4. (f) The modified
two-dimensional lattice constructed from four connected first-generation Vicsek fractal lattices.

one-dimensional lattice. Equation (3a) implies that sites with
an odd number of nearest neighbors display no dynamics.
Therefore, we generally study lattices where all sites not
on the lattice boundary have an even number of nearest
neighbors. Furthermore, we introduce additional sites along
the boundary such that boundary sites with an odd num-
ber of nearest neighbors get an even number of nearest
neighbors. We hereby ensure that all sites in the original
lattice are dynamically active. The newly added sites are
inactive and we generally choose them as spin down. We
consider open boundary conditions for all lattices throughout
this work. We study the Vicsek fractal lattice, a section of
the second-generation hexaflake fractal lattice, the two-
dimensional lattice, and a modified two-dimensional lattice.
Figure 1 displays the considered lattices. The figure also illus-
trates how the Vicsek fractal lattice of generation g is obtained
from generation g − 1 by substituting all lattice sites with
five new sites. All studied lattices have boundary sites with
an odd number of nearest neighbors and thus get additional
sites appended. Figure 2 illustrates the procedure of adding
inactive sites along the boundary for the second-generation
Vicsek fractal lattice.

III. HILBERT SPACE FRAGMENTATION

Fragmented models are characterized by the Hilbert space
separating into kinetically disconnected subspaces

H =
⊕

i

Ki, (4a)

Ki = span
({Hn|ψi〉|n = 0, 1, 2, . . .}), (4b)

where H is the full Hilbert space, Ki denotes a Krylov
subspace of dimension di, and |ψi〉 is a product state that
generates Ki. Let |s1 . . . sN 〉 be a simultaneous eigenket of the
spin operators in the z direction, i.e., {σ z

r /2} where σ z
r is the

Pauli z operator on site r. The Krylov subspace generated by
a state |s1 . . . sN 〉 may be computed by iterative lookup in the
matrix representation of the kinetic part of the Hamiltonian
Hλ. In essence, if 〈s′

1 . . . s′
N |Hλ|s1 . . . sN 〉 �= 0, then |s′

1 . . . s′
N 〉

belong to the same Krylov subspace as |s1 . . . sN 〉. Since the
Hamiltonian operator conserves the number of domain walls,
the Krylov subspaces may be constructed by considering each
symmetry sector separately.

In this section, we demonstrate that the model from Eq. (2)
displays HSF on certain lattices and we characterize the

fragmentation in various symmetry sectors. However, before
delving into this analysis, it is instructive to inspect the
fragmentation of the model for a single system size of the
considered lattices. We consider the second-generation Vicsek
fractal lattice with 25 dynamically active sites from Fig. 1(b),

FIG. 2. The second-generation Vicsek fractal lattice padded with
dynamically inactive sites along the boundary (dark red balls with
black outlines and downward-pointing arrows). The figure illustrates
a product state in the symmetry sector with ndw = 8 domain walls.
Four sites are spin up (blue balls with upward pointing arrows) and
the remaining sites are spin down (red balls). The sites inside the
green box are denoted as an “active arm.” These sites may flip their
spin and the domain walls may move around within the sublattice.
Note, however, that the spin-down site connected to the active arm
from the left (red ball at the center of the lattice) can not change its
state to spin up because three or more of its nearest neighbors are
always spin down. Therefore, this site effectively locks the dynamics
within the active arm and all spin-down sites outside the green box
can not be flipped. Similarly, the spin-up site inside the blue box is
dynamically inactive and can not be flipped. Product states where all
spins are dynamically inactive are denoted as “frozen states,” and we
construct an exponential number of such states in Appendix B.
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FIG. 3. The Hamiltonian in each symmetry sector for (a) the second-generation Vicsek fractal lattice illustrated in Fig. 1(b) with 25
dynamically active sites, (b) the section of the second-generation hexaflake fractal lattice illustrated in Fig. 1(d) with 21 dynamically active
sites, (c) the two-dimensional lattice illustrated in Fig. 1(e) of size Lx × Ly = 5 × 4, and (d) the modified two-dimensional lattice illustrated
in Fig. 1(f) with 20 dynamically active sites. Gray pixels represent nonzero matrix elements and white pixels correspond to vanishing matrix
elements. The figure illustrates the block-diagonal structure of the Hamiltonian operator due to Hilbert space fragmentation. ndw denotes the
number of domain walls characterizing the symmetry sector, and D ≡ Dndw denotes the dimension of the symmetry sector. For the Vicsek
fractal lattice, the Hamiltonian is only depicted up to ndw = 18 domain walls since the Krylov subspaces in the symmetry sector with ndw

domain walls have the same sizes as the Krylov subspaces in the symmetry sector with nmax
dw − ndw domain walls as discussed in Appendix A.

The red asterisks mark symmetry sectors containing just a single Krylov subspace that spans the full sector.

the section of the second-generation hexaflake fractal lattice
with 21 dynamically active sites from Fig. 1(d), the two-
dimensional lattice of size Lx × Ly = 5 × 4 from Fig. 1(e),
and the modified two-dimensional lattice with 20 dynamically
active sites from Fig. 1(f). The system sizes are chosen such
that the considered lattices consist of approximately the same
number of sites. Figure 3 displays the matrix representation
of the Hamiltonian operator in the basis {|s1 . . . sN 〉} for the
single system size of each lattice. We show each symmetry
sector separately, and the basis states are arranged to allow
the block-diagonal structure from Eq. (4). The gray pixels
represent nonzero matrix elements while white pixels repre-
sent vanishing matrix elements. For all considered lattices, we
generally observe that the Hilbert space shatters into numer-
ous Krylov subspaces. However, the degree of fragmentation

depends on the number of domain walls and the geometry of
the lattice.

A. Vicsek fractal lattice

The kinetic term in the Hamiltonian operator Hλ on the
Vicsek fractal lattice is invariant under the transformation
that inserts domain walls on edges where there is no do-
main wall and removes domain walls from edges where
there is a domain wall. Therefore, the size and number of
Krylov subspaces in the sector with ndw domain walls are
identical to the size and number of the Krylov subspaces
in the sector with nmax

dw − ndw domain walls, where nmax
dw is

the maximal number of domain walls on the Vicsek frac-
tal lattice of generation g. Without loss of generality, we
study sectors with less than or equal to half-filling of domain
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walls, i.e., ndw � nmax
dw /2. We further discuss this point in

Appendix A.
Figure 3(a) displays the Hamiltonian operator for the

second-generation Vicsek fractal lattice consisting of 25 dy-
namically active sites. We observe fragmentation within all
symmetry sectors, with the amount of fragmentation vary-
ing between sectors. The fragmentation is caused by lattice
sites with more than two nearest neighbors which may re-
strict the movement of domain walls. For instance, if all
domain walls are located within one “arm” of the Vicsek
fractal lattice, then the central spin can not be flipped, and
it will act as a blockade for the movement of the domain
walls as illustrated in Fig. 2. The dynamics of each Krylov
subspace is, therefore, restricted to isolated regions on the
lattice, with the remaining sites being frozen. Following this
line of thought, we prove in Appendix B that the model
displays HSF on the Vicsek fractal lattice. In the proof, we
construct an exponential number of one-dimensional Krylov
subspaces by trapping the domain walls in certain regions
of the lattice. We also show that the fragmentation per-
sists at finite domain-wall densities in the thermodynamic
limit.

Figure 3(a) illustrates that symmetry sectors with few
domain walls seem to consist of many small Krylov sub-
spaces. On the other hand, sectors with the number of domain
walls close to nmax

dw /2 seem dominated by one large Krylov
subspace. Hence, the Vicsek fractal lattice seems to dis-
play stronger fragmentation for fewer domain walls when
ndw � nmax

dw /2. We characterize the model as either weakly or
strongly fragmented by studying the largest Krylov subspace
in each symmetry sector. Let Hndw be the symmetry sector
with ndw domain walls, and let Dndw be the dimension of this
sector. Furthermore, let dmax

ndw
be the dimension of the largest

Krylov subspace in the sector with ndw domain walls. The
model is strongly fragmented if limg→∞(dmax

ndw
/Dndw ) = 0 and

weakly fragmented if limg→∞(dmax
ndw

/Dndw ) = 1. However, an
exact calculation of Dndw and dmax

ndw
is only feasible for small

system sizes, i.e., for generations g � 2. For larger genera-
tions, we utilize Monte Carlo importance sampling to estimate
these quantities. We outline the numerical procedure in Ap-
pendix C. Figure 4 displays the ratio dmax

ndw
/Dndw as a function

of the lattice generation g for different symmetry sectors ndw.
The symmetry sector with no domain walls ndw = 0 only con-
sists of the state with all spins down | ↓↓ . . . ↓〉. Therefore,
the ratio is unity for all generations. For all other considered
sectors, the ratio dmax

ndw
/Dndw decreases with increasing gener-

ation. These results indicate that the largest Krylov subspace
represents a vanishing small part of the full symmetry sector.
Therefore, the system displays strong fragmentation for sec-
tors with a small number of domain walls. We remark that
the domain wall density of the considered symmetry sectors
with ndw ∈ {0, 2, . . . , 10} domain walls goes to zero when the
generation is taken to infinity. Hence, the numerical results
in Fig. 4 do not characterize the fragmentation at nonzero
domain wall densities in the thermodynamic limit.

The above analysis concerns symmetry sectors with less
than or equal to half-filling of domain walls ndw � nmax

dw /2.
Recall that dmax

ndw
= dmax

n′
dw

and Dndw = Dn′
dw

with n′
dw = nmax

dw −
ndw. Therefore, the system also displays strong fragmentation

FIG. 4. The ratio between the dimension of the largest Krylov
subspace dmax

ndw
and the dimension of the symmetry sector Dndw as a

function of the generation g of the Vicsek fractal lattice. Each graph
corresponds to a fixed number of domain walls ndw. The data for
generation g = 1, 2 is exact while the data for generation g = 3, 4
is obtained using Monte Carlo importance sampling as described in
Appendix C. The symmetry sector with ndw = 0 domain walls is one
dimensional for all generations, and the ratio is unity. For all other
considered sectors, the ratio decreases with increasing generation
indicating that the system is strongly fragmented.

in symmetry sectors where the number of domain walls is
close to being maximal.

B. The two-dimensional lattice

Next, we study the model from Eq. (2) on the two-
dimensional lattice of size Lx × Ly = 5 × 4. Figure 3(c)
displays the Hamiltonian operator in each symmetry sector
as a block-diagonal matrix. The figure shows that symmetry
sectors with a small number of domain walls shatter into nu-
merous Krylov subspaces and the figure hints that the model
is fragmented on the two-dimensional lattice. We formally
prove this statement in Appendix D by computing a lower
bound on the number of Krylov subspaces. We show that
this lower bound scales exponentially with system size and,
hence, that the model displays HSF on the two-dimensional
lattice. We also demonstrate that the fragmentation persists at
a finite density of domain walls in the thermodynamic limit.
Figure 5(a) shows the number of Krylov subspaces for various
system sizes Lx × Ly and the lower bound from Appendix D.
The figure illustrates that the number of Krylov subspaces
scales exponentially with system size and that the number of
Krylov subspaces grows faster with system size than the lower
bound.

We characterize the fragmentation of the model on the
two-dimensional lattice by computing the Krylov subspaces in
certain symmetry sectors for different system sizes. Similarly
to the analysis in Sec. III A, we study the ratio between the di-
mension dmax

ndw
of the largest Krylov subspace in the symmetry

sector with ndw domain walls and the dimension Dndw of the
corresponding symmetry sector. The system size is varied by
extending one side of the lattice while keeping the length of
the other side fixed, e.g., the system sizes Lx × 4 for different
values of Lx. We also vary the system size by increasing the
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FIG. 5. (a) The number of Krylov subspaces as a function of
system size Lx × Ly. We vary the length of one side of the lattice
Lx while keeping the other side fixed at Ly = 2 (dark blue dots),
Ly = 3 (light blue triangles), and Ly = 4 (light red diamonds). We
also increase the length L of both sides simultaneously Lx × Ly =
L × L (dark red crosses). Notice that some data points are included
in more than one of these groups and have multiple markers, e.g.,
Lx × Ly = 2 × 2. The number of Krylov subspaces scales exponen-
tially with system size and is larger than the lower bound (dashed
line) obtained in Appendix D. (b)–(d) The ratio between the di-
mension of the largest Krylov subspace and the dimension of the
corresponding symmetry sector as a function of system size for
various densities of domain walls. We consider (b) one-quarter filling
ndw = nmax

dw /4, (c) half-filling ndw = nmax
dw /2, and (d) three-quarter

filling ndw = 3nmax
dw /4. The results indicate that the model is strongly

fragmented for a low density of domain walls and weakly fragmented
for a high density of domain walls.

length of both sides simultaneously, i.e., the square lattices
Lx × Ly = L × L for different values of L. Figures 5(b)–(d)
display the ratio dmax

ndw
/Dndw as a function of system size.

We consider symmetry sectors with a specific filling of do-
main walls, e.g., half-filling ndw = nmax

dw /2, and we round to

the nearest valid number of domain walls when necessary.
For one-quarter filling ndw = nmax

dw /4, we find that the ratio
dmax

ndw
/Dndw decreases with increasing system size both when

increasing the length of one side and when increasing both
sides simultaneously. This result indicates that the model dis-
plays strong fragmentation on the two-dimensional lattice for
a low density of domain walls. At half-filling ndw = nmax

dw /2,
the ratio decreases for system sizes Lx × 2 when increasing
Lx. However, the ratio increases for the lattices Lx × 3 and
Lx × 4 when increasing Lx and for the square lattices L × L
when increasing L. At three-quarter filling ndw = 3nmax

dw /4,
the ratio increases and approaches unity when increasing the
length of one side or both sides. This result indicates that
the model is weakly fragmented at a high density of domain
walls. Recall that sites with four or more nearest neighbors can
restrict the movement of domain walls by acting as blockades.
On the two-dimensional lattice, all sites have four nearest
neighbors and every site may, therefore, limit the movement
of the domain walls. Indeed, we find that the model is strongly
fragmented in symmetry sectors with a low density of domain
walls. However, we observe that the model is weakly frag-
mented in symmetry sectors with a high density of domain
walls. We interpret this result as sites failing to act as block-
ades when the density of domain walls is sufficiently large.

We remark that a model similar to Eq. (2) was previously
studied on the two-dimensional lattice with periodic boundary
conditions [50,51]. This model was proven to display HSF
when both side lengths of the lattice are a multiple of an
odd integer larger than one [50]. This argument also applies
to our model, but for completeness, we provide the proof in
Appendix D which is valid for all system sizes. The model
with periodic boundary conditions was also shown to dis-
play strong fragmentation for a low density of domain walls
and weak fragmentation for a high density of domain walls
[51]. However, the presence of respectively weak and strong
fragmentation for periodic boundary conditions does not guar-
antee the same fragmentation strength for open boundary
conditions. Indeed, the domain walls are more confined for
open boundary conditions and one might naively expect that
the model will display stronger fragmentation in this case.
Interestingly, we observe that the fragmentation displays the
same behavior as a function of domain-wall density for open
boundary conditions as for periodic boundary conditions.

C. Hexaflake fractal lattice and the modified
two-dimensional lattice

Finally, we consider the model on the section of the
second-generation hexaflake fractal lattice with 21 dynam-
ically active sites from Fig. 1(d) and the modified two-
dimensional lattice with 20 dynamically active sites from
Fig. 1(f). Figure 3(b) displays the Krylov subspaces in various
symmetry sectors for the section of the second-generation
hexaflake fractal lattice. All sites in this lattice have four or
six nearest neighbors and, similarly to the two-dimensional
lattice, every site may act as a blockade to the domain walls.
We observe somewhat similar fragmentation on the section of
the second-generation hexaflake fractal lattice as on the two-
dimensional lattice of size Lx × Ly = 5 × 4. In particular, we
observe that the model on the hexaflake fractal lattice is more
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fragmented in symmetry sectors with fewer domain walls as
compared to symmetry sectors with many domain walls.

The modified two-dimensional lattice is structurally simi-
lar to the Vicsek fractal lattice as it is constructed from four
first-generation Vicsek fractal lattices. It consists of sites with
four nearest neighbors which may act as blockades and sites
with two nearest neighbors that do not restrict the movement
of the domain walls. However, in contrast to the Vicsek frac-
tal lattice, the modified two-dimensional lattice introduces a
“loop”. Figure 3(d) illustrates the Krylov subspaces for each
symmetry sector on the modified two-dimensional lattice. We
observe that the model displays a smaller amount of fragmen-
tation on this lattice as compared to the second-generation
Vicsek fractal lattice. In particular, symmetry sectors with
ndw � 16 domain walls display no fragmentation. The re-
duced amount of fragmentation may be related to the presence
of a loop in the modified two-dimension lattice. Similarly,
the presence of loops in the two-dimensional lattice and
hexaflake fractal lattice may be related to the reduced frag-
mentation of the model on these lattices in symmetry sectors
with a large number of domain walls.

We emphasize that the results presented in this section con-
cern a single system size for the hexaflake fractal lattice and
the modified two-dimensional lattice and the observed behav-
ior may not generalize to larger system sizes.

IV. AUTOCORRELATION FUNCTION
OF LOCAL OBSERVABLES

The autocorrelation function of a local observable is an ef-
fective tool for characterizing systems exhibiting HSF [6,26–
28]. For a local operator O acting within a Hilbert space of di-
mension D, the infinite-temperature autocorrelation function
at time t is given by

A(t ) = 〈O(t )O(0)〉 = 1

DTr(eiHtOe−iHtO), (5)

where 〈·〉 = Tr(·)/D is the infinite-temperature expectation
value and H is the Hamiltonian operator governing the sys-
tem. Fragmented models are characterized by parts of the
system acting as blockades and thereby restricting the move-
ment within the system. A local observable is, therefore,
correlated with itself at later times because the full system
is not explored freely. In contrast, thermal systems do not
retain local information about their initial state and the au-
tocorrelation functions of local observables vanish. These
considerations are formally captured by the Mazur inequality
which provides a lower bound on the long-time average of the
autocorrelation function [54–56]. The time-averaged autocor-
relation function is given by

Ā(T ) = 1

T

∫ T

0
A(t ) dt . (6)

Consider a model described by the Hamiltonian H with a
set of conserved quantities {Ii}, i.e., [Ii, H] = 0. The Mazur
bound is then given by

MO =
∑

i j

〈O†Ii〉[C−1]i j〈I†
j O〉, (7)

with Ci j = 〈I†
i I j〉. The time-averaged autocorrelation function

satisfies the Mazur inequality

MO � lim
T →∞

Ā(T ). (8)

For a thermal system, the Mazur bound is close to zero, and
the infinite-time average of the autocorrelation function of
generic observables vanishes. On the other hand, the Mazur
bound for integrable systems may be significantly differ-
ent from zero, and the infinite-time-averaged autocorrelation
function does not relax to zero. The autocorrelation function
may, therefore, identify nonthermal behavior.

Equation (7) may be simplified by diagonalizing Ci j , i.e.,
choosing {Ii} such that 〈I†

i I j〉 = δi j . Then the Mazur bound re-
duces to MO = ∑

i |〈I†
i O〉|2. Equation (8) is trivially satisfied

when the set of conserved quantities is taken as the projections
onto the energy eigenstates, i.e., Ii ∝ |Ei〉〈Ei| where {|Ei〉}
is the set of energy eigenstates. However, the Mazur bound
may be finite with only a few terms |〈I†

i O〉|2 contributing
significantly to MO. In this case, the finite autocorrelation
of O may be attributed directly to the conserved quantities
contributing significantly to MO.

For fragmented models, the projection operators onto the
Krylov subspaces {Pi} is a set of conserved quantities. The
projection operators satisfy 〈P†

i P j〉 = δi jdi/Dndw where di is
the dimension of the ith Krylov subspace, Dndw is the di-
mension of the symmetry sector with ndw domain walls, and
δi j is the Kronecker delta. We consider the observable s̃z

r =
sz

r − 〈sz
r〉 related to the spin- 1

2 operator sz
r = σ z

r /2 at position
r. The Mazur bound is given by

Ms̃z
r = 1

Dndw

∑
i

Tr
(
Pi s̃z

r

)2

di
. (9)

We compute the time-averaged autocorrelation function
for the one-dimensional lattice, the second-generation Vicsek
fractal lattice, a section of the second-generation hexaflake
fractal lattice, the two-dimensional lattice, and the modified
two-dimensional lattice. We study two symmetry sectors for
the one-dimensional lattice and a single symmetry sector for
all other considered lattices. We consider parameter values
λ = J = 1 and � = 0.1 in all cases. Figure 6 displays the
time-averaged autocorrelation function and the corresponding
Mazur bound. In the one-dimensional, scarred model, the
time-averaged autocorrelation function converges to a value
close to zero. This behavior is expected for a model where
the majority of energy eigenstates are thermal. On the four
lattices with dimensions larger than one, the Mazur bound is
larger than zero and, consequently, the autocorrelation func-
tion converges to a finite value. Hence, the model displays
nonthermal behavior on these lattices and the system retains
some memory of its initial state. We remark that the Mazur
bound is not tight for the considered lattices with dimensions
larger than one. However, in Appendix E, we show that the
Mazur bound becomes tight when the Hamiltonian is per-
turbed in each Krylov subspace by a random matrix drawn
from the Gaussian orthogonal ensemble.
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FIG. 6. The time average of the autocorrelation function for
the four considered lattices and two symmetry sectors on the one-
dimensional lattice of N sites. We consider the symmetry sector
ndw = 6 (Dndw = 5472) for the second-generation Vicsek fractal
lattice, ndw = 14 (Dndw = 7680) for the section of the second-
generation hexaflake fractal lattice, ndw = 14 (Dndw = 5323) for the
two-dimensional lattice, and ndw = 6 (Dndw = 3492) for the modified
two-dimensional lattice. We consider the autocorrelation function of
the operator s̃z

r = sz
r − 〈sz

r〉 for the site r illustrated in the inset (inside
red circle). We find similar results for other sites. In all cases, we
consider parameters λ = J = 1 and � = 0.1. The horizontal lines
show the Mazur bound obtained from the projection operators onto
the Krylov subspaces.

V. CONCLUSION

We generalized a known, one-dimensional, scarred model
to higher-dimensional lattices. The model displays HSF on
the Vicsek fractal lattice and the two-dimensional lattice,
with the Hilbert space shattering into an exponential number
of one-dimensional Krylov subspaces for both lattices. For
the Vicsek fractal lattice, we demonstrated that the largest
Krylov subspace constitutes a vanishingly small fraction of
the symmetry sector when the number of domain walls is
close to zero or close to being maximal. Therefore, the model
is strongly fragmented on the Vicsek fractal lattice in these
symmetry sectors. For the two-dimensional lattice, the model
is strongly fragmented for a low density of domain walls and
weakly fragmented for a high density of domain walls. For
the Vicsek fractal lattice and the two-dimensional lattice, we
also showed that the fragmentation persists at a finite domain-
wall density in the thermodynamic limit. The model displays
features similar to HSF on a section of the second-generation
hexaflake fractal lattice and a modified two-dimensional lat-
tice. We studied the time-averaged autocorrelation function of

the z component of a single spin and compared it with the
corresponding Mazur bound. We demonstrated that the model
displays nonthermal dynamics on all the considered lattices
with dimensions larger than one by observing a finite value
of the long-time average of the autocorrelation function. We
also showed that the Mazur bound becomes tight when the
Hamiltonian is perturbed by a block-diagonal random matrix.
This work demonstrates that Hilbert space fragmentation may
arise solely from the conservation of the number of domain
walls in dimensions larger than one and that the nature of the
fragmentation depends on the lattice geometry.
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APPENDIX A: DOMAIN WALL: DOMAIN-WALL
ABSENCE SYMMETRY

The Vicsek fractal lattice is bipartite and we denote the
two parts by A and B. Let A be the part containing all the
dynamically active sites on the boundary of the Vicsek fractal
lattice. Recall that we introduced additional spin-down sites
along the boundary of the Vicsek fractal lattice in Sec. II to
ensure all sites in the original lattice have an even number of
nearest neighbors. We note that part A does not contain any of
these dynamically inactive sites. We consider the operator

T =
⊗
r∈A

σ x
r , (A1)

where σ x
r is the Pauli x operator acting on site r. Recall that a

domain wall is an edge between two nearest-neighbor sites
of opposite spin orientations along the z direction, i.e., ↑↓
or ↓↑. We consider a lattice edge to be empty if no domain
wall is present and an edge to be occupied if a domain wall
is present. The operator T removes all domain walls from
occupied edges and inserts domain walls on empty edges.
One may show by direct calculation that T commutes with
the kinetic part of the Hamiltonian for any generation of the
Vicsek fractal lattice [T, Hλ] = 0. Note, however, that the
remaining terms in the Hamiltonian operator do not commute
with T . The sizes of the Krylov subspaces in the sector with
ndw domain walls are identical to the sizes of the Krylov
subspaces in the sector with nmax

dw − ndw domain walls where
nmax

dw is the maximal number of domain walls. To illustrate this
point, consider a state |ψ〉 with ndw domain walls generating
the Krylov subspace K. The corresponding state |ψ ′〉 = T |ψ〉
obtained by removing domain walls from occupied edges
and inserting domain walls on empty edges has nmax

dw − ndw

domain walls. This state generates a different Krylov subspace
K′. Since T represents a one-to-one correspondence between
K and K′, the Krylov subspaces have identical dimensions
dim(K) = dim(K′). Using this fact, we may, without loss of
generality, only consider symmetry sectors with the number
of domain walls ndw � nmax

dw /2 on the Vicsek fractal lattice.
We remark that the hexaflake fractal lattice, the two-

dimensional lattice, and the modified two-dimensional lattice
are also bipartite and each lattice may be separated into two
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parts A and B. However, for these lattices, both parts A and
B contain some of the dynamically inactive, spin-down sites
introduced as padding to the lattices in Sec. II. Consequently,
the kinetic part of the Hamiltonian is not invariant under
T , and we generally consider all symmetry sectors for these
lattices.

APPENDIX B: CONSTRUCTION OF AN EXPONENTIAL
NUMBER OF KRYLOV SUBSPACES ON THE VICSEK

FRACTAL LATTICE

We prove that the model in Eq. (2) displays Hilbert
space fragmentation on the Vicsek fractal lattice by explic-
itly constructing a set of Krylov subspaces. We focus on
one-dimensional Krylov subspaces and demonstrate that the
number of such subspaces scales exponentially with the sys-
tem size. We also show that the fragmentation persists at a
finite domain-wall density in the thermodynamic limit.

Consider the Vicsek fractal lattice of generation one. There
exist several “frozen states” where all spins are dynamically
inactive. We aim to construct one-dimensional Krylov sub-
spaces for generation g > 1 by utilizing the frozen states from
generation one. In the following, we consider the Vicsek frac-
tal lattice of generation g to consist of 5g−1 first-generation
fractal lattices. We also consider two first-generation fractals
to be nearest neighbors if they contain spins that are nearest
neighbors. A first-generation fractal has one, two, or four
other first-generation fractals as nearest neighbors as illus-
trated in Fig. 7. In particular, there are 5g−2 first-generation
fractals with four nearest neighbors. On these first-generation
fractals, we choose all sites to be spin down. The remain-
ing 4 × 5g−2 first-generation fractals have either one or two
nearest neighbors, and they allow at least three frozen config-
urations as illustrated in Fig. 7. We construct one-dimensional
Krylov subspaces as the tensor product of frozen states on
these first-generation fractals. There are at least 34×5g−2 =
34N/25 such one-dimensional Krylov subspaces where N = 5g

is the total number of sites. The number of Krylov subspaces,
hence, grows exponentially with system size, and the model
from Eq. (2) displays Hilbert space fragmentation on the Vic-
sek fractal lattice.

Next, we show that the fragmentation persists at a finite
density of domain walls in the thermodynamic limit. Similarly
to the previous paragraph, we consider the Vicsek fractal lat-
tice of generation g to consist of 5g−1 first-generation Vicsek
fractal lattices. The 4 × 5g−2 first-generation fractals with one
or two nearest neighbors may be chosen from at least three
frozen spin configurations as illustrated in Fig. 7. One of these
configurations does not introduce any domain walls since all
sites are spin down. The remaining configurations have one
spin up which introduces two domain walls. By choosing m
first-generation fractals as a frozen configuration with a single
spin up and all other first-generation fractals as spin down, we
construct a frozen state with ndw = 2m domain walls where
m = 0, 1, . . . , 4 × 5g−2. The number of ways to choose the m
first-generation fractal lattices is given by the binomial coef-
ficient

(4×5g−2

m

)
. Furthermore, for each first-generation fractal,

there are at least two frozen configurations with a single spin
up. Therefore, the number of frozen states with ndw = 2m

∈

∈

∈
{

}
, ,

,

{ }

{ }, ,

FIG. 7. A part of the Vicsek fractal lattice of generation g = 3.
We consider the lattice to consist of generation-one fractal lattices.
Some generation-one fractals are nearest neighbors with four other
generation-one fractals (gray sites). We choose all sites to be spin
down in these generation-one fractals. For generation-one fractals
with two nearest neighbors, the spins are chosen among the three
frozen configurations shown in the figure. For generation-one fractals
with one nearest neighbor, we choose the spins among the four frozen
configurations shown in the figure. We construct an exponential
number of eigenstates of the Hamiltonian as the tensor product of
these frozen configurations on the generation-one fractals.

domain walls is at least(
4N/25

ndw/2

)
2ndw/2, (B1)

where N = 5g is the number of sites. We aim to determine
the number of frozen states at a fixed density of domain
walls ρdw = ndw/nmax

dw where nmax
dw is the maximum number of

domain walls on the Vicsek fractal lattice. Before rewriting
Eq. (B1) in terms of the domain-wall density ρdw, we deter-
mine the maximum number of domain walls nmax

dw .
The Vicsek fractal lattice is bipartite and the maximum

number of domain walls is obtained by choosing all sites
in one part as spin down and all sites in the other part as
spin up. In this case, all nearest-neighbor edges are occupied
by a domain wall. Hence, the maximum number of domain
walls is equal to the number of nearest-neighbor edges. In
the following, we explicitly include the generation g in the
notation, i.e., nmax

dw,g is the maximum number of domain walls
on the Vicsek fractal lattice of generation g. We determine
the number of nearest-neighbor edges recursively. The Vicsek
fractal lattice of generation g + 1 is constructed by connecting
five Vicsek fractal lattices of generation g as illustrated in
Figs. 1(a)–1(c). The number of nearest-neighbor edges for
generation g + 1 is, therefore, five times that for generation
g minus four corresponding to where the fractals of genera-
tion g are connected. The maximum number of domain walls
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follows the same relationship

nmax
dw,g+1 = 5nmax

dw,g − 4. (B2)

The solution to the recursive relation with the initial condition
nmax

dw,g=1 = 8 is given by

nmax
dw,g = 7 × 5g−1 + 1. (B3)

Inserting Eq. (B3) and ρdw = ndw/nmax
dw into Eq. (B1), we

obtain a lower bound on the number of frozen states at
domain-wall density ρdw:(

4N/25

ρdw(7N/5 + 1)/2

)
2ρdw(7N/5+1)/2. (B4)

Recall that the number of domain walls for the considered
frozen states is given by ndw = 2m with m = 0, 1, . . . , 4 ×
5g−2. Therefore, the expression in (B4) is valid for all domain-
wall densities up to

ρdw = 8 × 5g−2

7 × 5g−1 + 1
−−−→
g→∞

8

35
. (B5)

Equations (B4) and (B5) demonstrate that the fragmentation
persists at all domain-wall densities ρdw � 8

35 in the thermo-
dynamic limit since the number of Krylov subspaces scales
exponentially with system size at these domain-wall densities.

APPENDIX C: ESTIMATION OF SECTOR SIZES
AND KRYLOV SUBSPACE DIMENSIONS

Let |s1 . . . sN 〉 with si ∈ {− 1
2 , 1

2 } be a simultaneous eigen-
ket of the Pauli z operators {σ z

r }. We consider the indicator
function 1ndw which signals whether |s1 . . . sN 〉 belongs to the
symmetry sector with ndw domain walls

1ndw (|s1 . . . sN 〉) =
⎧⎨⎩1, if |s1 . . . sN 〉 has ndw

domain walls
0, otherwise.

(C1)

The dimension of the symmetry sector with ndw domain walls
is given by

Dndw =
∑

s1,...,sN

1ndw (|s1 . . . sN 〉), (C2)

where the sum covers all 2N possible configurations of the
N spins. Equation (C2) is impractical to evaluate numerically
for large system sizes since the sum contains an expo-
nential number of terms. We circumvent this problem by
employing Monte Carlo importance sampling. We randomly
draw NMC  2N product states {|ψi〉}NMC

i=1 that are simultane-
ous eigenkets of the Pauli z operators. Each product state
is drawn independently from the probability distribution Pp

parametrized by p ∈ [0, 1]:

Pp(|s1 . . . sN 〉) =
N∏

i=1

p1/2+si (1 − p)1/2−si . (C3)

In other words, we draw each spin independently with proba-
bility p of being spin up and probability 1 − p of being spin
down. The sector size is estimated by

D̃ndw = 1

NMC

NMC∑
i=1

1ndw (|ψi〉)

Pp(|ψi〉)
, (C4)

and the estimate of the variance of D̃dw is given by

σ 2 = 1

NMC(NMC − 1)

NMC∑
i=1

[
1ndw (|ψi〉)

Pp(|ψi〉)
− D̃ndw

]2

. (C5)

For each generation g and symmetry sector ndw, we sample
from the probability distribution Pp which minimizes the vari-
ance, i.e., we perform a grid search and choose the p that
yields the smallest variance.

After computing D̃ndw , we estimate the dimension of the
largest Krylov subspace in this sector. The largest Krylov
subspace is determined from an exhaustive search of the full
sector. We randomly draw a product state with ndw domain
walls. We determine in which Krylov subspace the state re-
sides and record the dimension of this subspace. We repeat
this procedure until D̃ndw − d̃max

ndw
different product states have

been found where d̃max
ndw

is the size of the largest Krylov
subspace found so far. The dimension of the largest Krylov
subspace is then estimated by d̃max

ndw
after the search finishes.

APPENDIX D: CONSTRUCTION OF AN EXPONENTIAL
NUMBER OF KRYLOV SUBSPACES

ON THE TWO-DIMENSIONAL LATTICE

We demonstrate that the model in Eq. (2) displays HSF
on the two-dimensional lattice by constructing an exponential
number of one-dimensional Krylov subspaces. We consider
the two-dimensional lattice of size Lx × Ly given by

L = {
(x, y)|x, y ∈ Z, 0 � x < Lx, 0 � y < Ly

}
. (D1)

We remark that the lattice L only contains the dynamically
active sites and, hence, does not contain the extra sites intro-
duced in Sec. II to ensure all sites in the original lattice have
an even number of nearest neighbors. We also consider the
sublattice L′ ⊂ L given by

L′ = {(n, 2n + 5m)|n, m ∈ Z, 0 � n < Lx,

0 � 2n + 5m < Ly}. (D2)

Figure 8 illustrates the lattice L and the sublattice L′. The sites
contained in L′ form a pattern on the lattice L that repeats in
the x and y directions with a period of 5, i.e., if (x, y) ∈ L′ and
0 � x ± 5 < Lx then (x ± 5, y) ∈ L′ and, similarly, if (x, y) ∈
L′ and 0 � y ± 5 < Ly, then (x, y ± 5) ∈ L′.

We aim to construct an exponential number of product
states that are exact energy eigenstates of the Hamiltonian
operator in Eq. (2). We consider product states of the form
|s1s2 . . . sLxLy〉 where si ∈ {− 1

2 , 1
2 } is the spin along the z direc-

tion on site i. These product states are eigenstates of Eqs. (3b)
and (3c) for all values of the spins {si}LxLy

i=1 . We ensure the
product states are eigenstates of the full Hamiltonian operator
by choosing the spins such that the kinetic term in Eq. (3a)
annihilates the product states. We take all sites in L \ L′ to
be spin down where L \ L′ is the set difference, i.e., the sites
contained in L but not in L′. We choose the sites in L′ freely
as either spin down or spin up. Recall that the kinetic term in
Eq. (3a) flips a spin if the sum of the magnetization of its near-
est neighbors is zero. When choosing the spins as described
above, the sum of the magnetization of the nearest neighbors
is either −2 or −1 for all sites. Therefore, all product states
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FIG. 8. The two-dimensional lattice L of size Lx × Ly (light red
and blue circles). The lattice is padded with extra sites along its
boundary (dark red circles) to ensure all sites in the original lattice
have an even number of nearest neighbors. The extra sites are dy-
namically inactive and we choose them to be spin down. The lattice
L does not contain the dynamically inactive sites. The sublattice
L′ ⊂ L (blue circles) form a 5-periodic pattern on L in the x and y
directions. The lattice L is separated into four parts LA, LB, LC , and
LD (gray boxes). Part LA is a rectangular lattice where both sides are
a multiple of 5. Part LB contains no sites when mod5(Lx ) = 0 and
LC contains no sites when mod5(Ly ) = 0. When parts LB and LC are
nonempty, they are rectangular lattices where one side is a multiple
of 5. Part LD is empty when mod5(Lx ) = 0 or mod5(Ly ) = 0. When
part LD is not empty it is a rectangular lattice where neither side is a
multiple of 5.

of this form are eigenstates of the full Hamiltonian operator.
Since the sites in L′ may be chosen as either spin down or spin
up, the number of such product states is given by 2|L′| where
|L′| is the number of sites in L′.

We proceed by determining a lower bound on the number
of sites in L′. First, we introduce some notation. Let mod5(L)
be L modulo 5, i.e., the remainder after dividing L by 5.
Furthermore, let �·� be the function that rounds down to the
nearest integer and notice that the expression 5�L/5� rounds
L down to the nearest multiple of 5. We separate the lattice L
into four parts as illustrated in Fig. 8:

LA = {(x, y) ∈ L | x < 5�Lx/5�, y < 5�Ly/5�}, (D3)

LB = {(x, y) ∈ L | 5�Lx/5� � x, y < 5�Ly/5�}, (D4)

LC = {(x, y) ∈ L | x < 5�Lx/5�, 5�Ly/5� � y}, (D5)

LD = {(x, y) ∈ L | 5�Lx/5� � x, 5�Ly/5� � y}. (D6)

We also define the sites from L′ in each of these parts by L′
X =

L′ ∩ LX with X ∈ {A, B,C, D}. The number of sites in L′ is

given by

|L′| = |L′
A| + |L′

B| + |L′
C | + |L′

D|. (D7)

Part LA represents a rectangular lattice with sides 5�Lx/5� and
5�Ly/5� where both side lengths are a multiple of 5. Recall
that the sites in L′ form a pattern on the lattice L with period
5 along the x and y directions. Therefore, any horizontal
sequence of five sites in L, i.e., (x, y), (x + 1, y), . . . , (x +
4, y) ∈ L, contains exactly one site in L′. Similarly, any verti-
cal sequence of five sites in L also contain exactly one site in
L′. Hence, the number of sites in L′

A is given by

|L′
A| = 5

⌊
Lx

5

⌋⌊
Ly

5

⌋
. (D8)

Part LB is a rectangular lattice with side lengths mod5(Lx ) and
5�Ly/5�. Since the length of one side is a multiple of 5, the
number of sites in L′

B is given by

|L′
B| = mod5(Lx )

⌊
Ly

5

⌋
. (D9)

Finally, part LC forms a rectangle with side lengths mod5(Ly)
and 5�Lx/5�. Again, one side length is a multiple of 5 and the
number of sites in L′

C is given by

|L′
C | =

⌊
Lx

5

⌋
mod5(Ly). (D10)

Inserting Eqs. (D8)–(D10) into Eq. (D7), we find

|L′| = LxLy

5
− 1

5
mod5(Lx ) mod5(Ly) + |L′

D|, (D11)

where we have utilized that 5�L/5� = L − mod5(L). We
consider all possible values of mod5(Lx ), mod5(Ly) ∈
{0, 1, 2, 3, 4} and find that the expression
− mod5(Lx ) mod5(Ly)/5 + |L′

D| is always larger than or
equal to − 2

5 . Hence, we find the lower bound on the number
of sites in L′ given by

|L′| � LxLy − 2

5
. (D12)

In total, we find that the number of sites in L′ scales
linearly with the system size. Therefore, the number of one-
dimensional Krylov subspaces is larger than 2(LxLy−2)/5 and,
hence, grows exponentially with system size. In summary,
the model from Eq. (2) displays HSF on the two-dimensional
lattice.

We show that the fragmentation persists at a finite density
of domain walls in the thermodynamic limit. We follow the
same approach as in Appendix B and utilize the frozen con-
figurations constructed in the previous paragraph. We consider
product states where all sites are spin down except the sites
in L′ which we choose as either spin down or spin up. By
choosing m sites in L′ as spin up, we construct a frozen
state with ndw = 4m domain walls where m = 0, 1, . . . , |L′|.
The binomial coefficient

(|L′|
m

)
counts the number of ways of

choosing m sites from L′. Using the inequality (D12), we
obtain a lower bound on the number of frozen states with ndw

domain walls (
(N − 2)/5

ndw/4

)
, (D13)
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where N = LxLy is the number of sites. Before rewriting
this expression in terms of the domain-wall density ρdw =
ndw/nmax

dw , we determine the maximum number of domain
walls nmax

dw on the two-dimensional lattice.
The maximum number of domain walls is obtained by

choosing every other site as spin up and the remaining sites
as spin down. Concretely, we choose the lattice sites L̃ =
{(x, x + 2�) ∈ L | x, � ∈ Z} as spin up and the remaining
sites as spin down. Recall that the two-dimensional lattice
is padded with extra sites as illustrated in Fig. 8 and we
refer to these sites as the dynamically inactive sites. For
the spin configuration where all sites in L̃ are spin up and
the remaining sites are spin down, the number of domain
walls between dynamically active sites is given by 2LxLy −
Lx − Ly. The number of domain walls between the dynami-
cally active sites and the dynamically inactive sites depends
on the size of the lattice. If Lx and Ly are odd, there are
Lx + Ly + 2 domain walls between these sites. Otherwise,
there are Lx + Ly domain walls. We cover both scenarios by
writing the number of domain walls between the dynami-
cally active sites and the dynamically inactive sites according
to Lx + Ly + 2 mod2(Lx ) mod2(Ly). We use the notation μ =
mod2(Lx ) mod2(Ly) in the following to keep the expressions
concise. The maximum number of domain walls is given by

nmax
dw = 2(N + μ). (D14)

We determine a lower bound on the number of frozen states
at domain-wall density ρdw by inserting the expression ρdw =
ndw/nmax

dw and Eq. (D14) into Eq. (D13) and using Stirling’s
approximation for the factorial x! ≈ √

2πxxx exp(−x) which
is valid in the limit x → ∞:(

(N − 2)/5

ρdw(N + μ)/2

)

−−−→
N→∞

1√
2πN 10

√
5

(
2

ρdw

) 1+μρdw
2

(
10

2 − 5ρdw

) 1−5μρdw
10

×
⎡⎣ 1

5
√

5

(
2

ρdw

) ρdw
2

(
10

2 − 5ρdw

) 2−5ρdw
10

⎤⎦N

. (D15)

For the domain-wall densities ρdw ∈ (0, 2
5 ), the expression

in the square brackets in the third line of Eq. (D15) lies in
the interval (1,

5
√

2). Hence, the number of frozen states at a
fixed domain-wall density scales exponentially with system
size for these domain-wall densities. The number of domain
walls of the considered frozen states is given by ndw = 4m
with m = 0, 1, . . . , |L′|. Using the inequality (D12), we find
that the frozen states exist at least up to domain-wall density

ρdw = 4|L′|
nmax

dw

� 2

5

N − 2

N + μ
−−−→
N→∞

2

5
(D16)

in the thermodynamic limit. Equations (D15) and (D16) show
that the fragmentation persists in the thermodynamic limit at
a finite density of domain walls up to at least ρdw = 2

5 .

APPENDIX E: PERTURBING THE HAMILTONIAN
WITH A RANDOM MATRIX

In Sec. IV, we observe that the time-averaged autocorrela-
tion function does not converge to the Mazur bound obtained
from the projection operators onto the Krylov subspaces. In
this Appendix, we demonstrate that the Mazur bound becomes
tight when the Hamiltonian operator is perturbed. We perturb
the Hamiltonian operator by a block-diagonal matrix whose
blocks are drawn from the Gaussian orthogonal ensemble
(GOE). The GOE consists of symmetric matrices where the
entries follow the normal distribution N(μ, σ 2). The diago-
nal entries have zero mean and variance σ 2 = 2, i.e., Gii ∼
N(0, 2), while the off-diagonal entries have zero mean and
unit variance, i.e., Gi j ∼ N(0, 1) for i �= j. The entries are
independent up to the symmetry requirement, i.e., Gi j = Gji

[57]. The block-diagonal structure is chosen to overlap with
that of the kinetic term of the Hamiltonian to conserve the
HSF. The Hamiltonian is given by

H ′ = H + HGOE = Hλ + Hz + Hzz + HGOE, (E1)

where the terms Hλ, Hz, and Hzz are defined in Eq. (3) and
HGOE = εG, where G is a block-diagonal matrix of GOE
matrices and ε ∈ R is a strength parameter. We characterize
the strength of the perturbation by the ratio of the Frobenius
norms. Figure 9 shows that the time-averaged autocorrelation
function for the chosen spin operator converges to the Mazur
bound when the Hamiltonian is perturbed.

10−2 10−1 100 101 102

Time T

0.05

0.10

0.15

0.20

0.25

Ā(
T

)

Nonperturbed
|HGOE|

|H| ≈ 0.002

≈ 0.041
≈ 0.082
≈ 0.161
≈ 0.239

FIG. 9. The time-averaged autocorrelation function on the Vic-
sek fractal lattice for the perturbed Hamiltonian from Eq. (E1).
The size of the perturbation is characterized by the ratio between
the Frobenius norm of the perturbation matrix |HGOE| to that of
the nonperturbed Hamiltonian |H |. The dashed line displays the
Mazur bound obtained from the projection operators onto the Krylov
subspaces.

[1] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E
50, 888 (1994).

[2] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

023301-12

https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevA.43.2046


HILBERT SPACE FRAGMENTATION FROM LATTICE … PHYSICAL REVIEW A 110, 023301 (2024)

[3] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[4] A. P. Luca D’Alessio, Y. Kafri and M. Rigol, From quantum
chaos and eigenstate thermalization to statistical mechanics and
thermodynamics, Adv. Phys. 65, 239 (2016).

[5] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body
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Observation of many-body scarring in a Bose-Hubbard quan-
tum simulator, Phys. Rev. Res. 5, 023010 (2023).

[24] H. Zhou, H. Gao, N. T. Leitao, O. Makarova, I. Cong, A. M.
Douglas, L. S. Martin, and M. D. Lukin, Robust Hamiltonian
engineering for interacting qudit systems, arXiv:2305.09757.

[25] E. J. Gustafson, A. C. Y. Li, A. Khan, J. Kim, D. M.
Kurkcuoglu, M. S. Alam, P. P. Orth, A. Rahmani, and T.
Iadecola, Preparing quantum many-body scar states on quantum
computers, Quantum 7, 1171 (2023).

[26] T. Rakovszky, P. Sala, R. Verresen, M. Knap, and F. Pollmann,
Statistical localization: From strong fragmentation to strong
edge modes, Phys. Rev. B 101, 125126 (2020).

[27] S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation
and commutant algebras, Phys. Rev. X 12, 011050 (2022).

[28] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann,
Ergodicity breaking arising from hilbert space fragmentation
in dipole-conserving Hamiltonians, Phys. Rev. X 10, 011047
(2020).

[29] S. Moudgalya, A. Prem, R. Nandkishore, N. Regnault, and
B. A. Bernevig, Thermalization and its absence within Krylov
subspaces of a constrained Hamiltonian, in Memorial Vol-
ume for Shoucheng Zhang (World Scientific, Singapore, 2021),
pp. 147–209.

[30] G. De Tomasi, D. Hetterich, P. Sala, and F. Pollmann, Dynamics
of strongly interacting systems: From Fock-space fragmenta-
tion to many-body localization, Phys. Rev. B 100, 214313
(2019).

[31] L. Herviou, J. H. Bardarson, and N. Regnault, Many-body local-
ization in a fragmented Hilbert space, Phys. Rev. B 103, 134207
(2021).

[32] S. Pai, M. Pretko, and R. M. Nandkishore, Localization in
fractonic random circuits, Phys. Rev. X 9, 021003 (2019).

[33] A. Morningstar, V. Khemani, and D. A. Huse, Kinetically
constrained freezing transition in a dipole-conserving system,
Phys. Rev. B 101, 214205 (2020).

[34] V. Khemani, M. Hermele, and R. Nandkishore, Localization
from Hilbert space shattering: From theory to physical realiza-
tions, Phys. Rev. B 101, 174204 (2020).

[35] Z.-C. Yang, F. Liu, A. V. Gorshkov, and T. Iadecola, Hilbert-
space fragmentation from strict confinement, Phys. Rev. Lett.
124, 207602 (2020).

[36] K. Lee, A. Pal, and H. J. Changlani, Frustration-induced emer-
gent Hilbert space fragmentation, Phys. Rev. B 103, 235133
(2021).

[37] D. Hahn, P. A. McClarty, and D. J. Luitz, Information dynamics
in a model with Hilbert space fragmentation, SciPost Phys. 11,
074 (2021).

[38] C. M. Langlett and S. Xu, Hilbert space fragmentation and exact
scars of generalized Fredkin spin chains, Phys. Rev. B 103,
L220304 (2021).

[39] B. Mukherjee, Z. Cai, and W. V. Liu, Constraint-induced break-
ing and restoration of ergodicity in spin-1 PXP models, Phys.
Rev. Res. 3, 033201 (2021).

023301-13

https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1146/annurev-conmatphys-031620-101617
https://doi.org/10.1016/0375-9601(89)90921-3
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevB.100.184312
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevLett.124.180604
https://doi.org/10.1103/PhysRevB.102.075132
https://doi.org/10.1103/PhysRevB.102.085120
https://doi.org/10.1103/PhysRevB.101.024306
https://doi.org/10.1103/PhysRevB.104.104410
https://doi.org/10.1103/PhysRevB.104.L121103
https://doi.org/10.1126/science.abg2530
https://doi.org/10.1103/PhysRevResearch.4.043027
https://doi.org/10.1038/s41567-022-01784-9
https://doi.org/10.1103/PhysRevResearch.5.023010
https://arxiv.org/abs/2305.09757
https://doi.org/10.22331/q-2023-11-07-1171
https://doi.org/10.1103/PhysRevB.101.125126
https://doi.org/10.1103/PhysRevX.12.011050
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevB.100.214313
https://doi.org/10.1103/PhysRevB.103.134207
https://doi.org/10.1103/PhysRevX.9.021003
https://doi.org/10.1103/PhysRevB.101.214205
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevLett.124.207602
https://doi.org/10.1103/PhysRevB.103.235133
https://doi.org/10.21468/SciPostPhys.11.4.074
https://doi.org/10.1103/PhysRevB.103.L220304
https://doi.org/10.1103/PhysRevResearch.3.033201


HARKEMA, IVERSEN, AND NIELSEN PHYSICAL REVIEW A 110, 023301 (2024)

[40] B. Mukherjee, D. Banerjee, K. Sengupta, and A. Sen, Minimal
model for Hilbert space fragmentation with local constraints,
Phys. Rev. B 104, 155117 (2021).

[41] W.-H. Li, X. Deng, and L. Santos, Hilbert space shattering and
disorder-free localization in polar lattice gases, Phys. Rev. Lett.
127, 260601 (2021).

[42] A. Bastianello, U. Borla, and S. Moroz, Fragmentation and
emergent integrable transport in the weakly tilted Ising chain,
Phys. Rev. Lett. 128, 196601 (2022).

[43] J. Richter and A. Pal, Anomalous hydrodynamics in a class
of scarred frustration-free Hamiltonians, Phys. Rev. Res. 4,
L012003 (2022).

[44] P. Brighi, M. Ljubotina, and M. Serbyn, Hilbert space fragmen-
tation and slow dynamics in particle-conserving quantum east
models, SciPost Phys. 15, 093 (2023).

[45] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Exper-
imental probes of Stark many-body localization, Phys. Rev. B
102, 054206 (2020).

[46] E. V. H. Doggen, I. V. Gornyi, and D. G. Polyakov, Stark many-
body localization: Evidence for Hilbert-space shattering, Phys.
Rev. B 103, L100202 (2021).

[47] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. Hebbe
Madhusudhana, I. Bloch, and M. Aidelsburger, Observing non-
ergodicity due to kinetic constraints in tilted Fermi-Hubbard
chains, Nat. Commun. 12, 4490 (2021).

[48] T. Kohlert, S. Scherg, P. Sala, F. Pollmann, B. H.
Madhusudhana, I. Bloch, and M. Aidelsburger, Exploring

the regime of fragmentation in strongly tilted Fermi-Hubbard
chains, Phys. Rev. Lett. 130, 010201 (2023).

[49] L. Caha and D. Nagaj, The pair-flip model: a very entangled
translationally invariant spin chain, arXiv:1805.07168.

[50] A. Yoshinaga, H. Hakoshima, T. Imoto, Y. Matsuzaki, and R.
Hamazaki, Emergence of Hilbert space fragmentation in Ising
models with a weak transverse field, Phys. Rev. Lett. 129,
090602 (2022).

[51] O. Hart and R. Nandkishore, Hilbert space shattering and dy-
namical freezing in the quantum Ising model, Phys. Rev. B 106,
214426 (2022).

[52] A. Khudorozhkov, A. Tiwari, C. Chamon, and T. Neupert,
Hilbert space fragmentation in a 2D quantum spin system with
subsystem symmetries, SciPost Phys. 13, 098 (2022).

[53] A. Chattopadhyay, B. Mukherjee, K. Sengupta, and A. Sen,
Strong Hilbert space fragmentation via emergent quantum
drums in two dimensions, SciPost Phys. 14, 146 (2023).

[54] P. Mazur, Non-ergodicity of phase functions in certain systems,
Physica (Amsterdam) 43, 533 (1969).

[55] M. Suzuki, Ergodicity, constants of motion, and bounds for
susceptibilities, Physica (Amsterdam) 51, 277 (1971).

[56] A. Dhar, A. Kundu, and K. Saito, Revisiting the Mazur bound
and the Suzuki equality, Chaos, Solitons Fractals 144, 110618
(2021).

[57] G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction
to random matrices, Cambridge Studies in Advanced Mathemat-
ics (Cambridge University Press, Cambridge, 2009).

023301-14

https://doi.org/10.1103/PhysRevB.104.155117
https://doi.org/10.1103/PhysRevLett.127.260601
https://doi.org/10.1103/PhysRevLett.128.196601
https://doi.org/10.1103/PhysRevResearch.4.L012003
https://doi.org/10.21468/SciPostPhys.15.3.093
https://doi.org/10.1103/PhysRevB.102.054206
https://doi.org/10.1103/PhysRevB.103.L100202
https://doi.org/10.1038/s41467-021-24726-0
https://doi.org/10.1103/PhysRevLett.130.010201
https://arxiv.org/abs/1805.07168
https://doi.org/10.1103/PhysRevLett.129.090602
https://doi.org/10.1103/PhysRevB.106.214426
https://doi.org/10.21468/SciPostPhys.13.4.098
https://doi.org/10.21468/SciPostPhys.14.6.146
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1016/j.chaos.2020.110618

