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Formation of nonclassical and non-Gaussian states of a strong electromagnetic field
due to its interaction with free electrons produced by ionization of a target gas
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We consider an exactly solvable model describing the interaction of a quantized strong laser field with free
electrons produced in the ionization of a target gas by the field. The interaction is shown to strongly affect
the quantum state of the field. It squeezes and displaces the coherent state of a free laser field, which under
realistic experimental conditions can result in the formation of nonclassical and non-Gaussian field states with
a ring-shaped Wigner function. Our results demonstrate that the effect of the interaction with free electrons on
the quantum state of the ionizing laser field should be taken into account simultaneously with that of harmonic
generation and above-threshold ionization studied recently.
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I. INTRODUCTION

In studies of the interaction of strong infrared laser fields
with matter, which led to the emergence of attosecond physics
[1], the field is usually treated classically [2]. This is jus-
tified by the high photon numbers characterizing coherent
states representing such fields in quantum mechanics [3].
However, recently it has been recognized theoretically and
demonstrated experimentally that generation of high-order
harmonics (HHG) occurring when a strong laser pulse inter-
acts with a target gas affects the quantum state of the driving
field [4]. The very fact that quantum nature of the strong field
reveals itself in field observables and can be detected experi-
mentally was a surprise. We mention that the field of emitted
harmonics was treated quantum mechanically in previous
studies [5–8], but the laser field was generally considered
classical, with a few exceptions [9–11], since no quantum
effects associated with it were expected. The pioneering paper
[4] promoted the development of quantum-optical perspec-
tive in strong-field physics. This work has been elaborated
[12] and extended theoretically [13] to include the effect of
another fundamental strong-field process—above-threshold
ionization (ATI)—on the quantum state of the laser field. It
should be noted that the observation of nonclassical states
of a strong laser field in Refs. [4,12] became possible due
to new experimental techniques [14,15] introduced earlier to
test the prediction that HHG affects infrared photon counting
[16] and implementing so-called conditioning measurements
[17]. The quantum-optical paradigm of strong-field processes
summarizing these results is presented in reviews [18,19].
Other related recent theoretical developments include studies
of photon statistics resulting from the interaction of a strong
quantized field with a gas of two-level atoms [20], the effect of
correlations between atoms in the gas phase [21] and electrons
in the condensed phase [22] on the quantum state of the HHG
field, an effective photon-statistics force induced by quantum
fluctuations of the laser field [23], and squeezing of the laser
mode caused by the HHG process [24].

In this paper we investigate how the interaction with free
electrons produced by strong-field ionization of the target gas
affects the quantum state of the ionizing laser field. Note
that free electrons necessarily appear under conditions where
HHG and ATI processes occur, so their effect on the evolution
of the laser field should be taken into account simultaneously
with that of HHG and ATI studied in Refs. [4,12,13,24].
However, as far as we know, until now this effect has not
been investigated. We consider a model in which a quantized
electromagnetic field interacts with free electrons. This model
admits an exact treatment, which allows us to analyze the
effect of the electron-field interaction on the field state.

The paper is organized as follows. In Sec. II we intro-
duce our model. In Sec. III we exactly diagonalize the model
Hamiltonian and obtain its eigenvalues and eigenstates which
fully incorporate the effect of the electron-field interaction.
In Sec. IV we consider the dynamics of the system and show
how to average field observables over the momentum distribu-
tion of electrons. In Sec. V we discuss two field observables
which demonstrate nonclassicality and non-Gaussianity of the
field state. Section VI concludes the paper. Some formulas
from quantum optics used in the main text are summarized
in Appendix A. The gauge transformation of photoelectron
momentum distributions and a specific distribution resulting
from strong-field ionization are discussed in Appendixes B
and C, respectively.

II. MODEL HAMILTONIAN

As a strong laser pulse propagates through a target gas,
ionization of gas atoms occurs. This results in the appearance
of free electrons. We are interested in the effect that these elec-
trons produce on the quantum state of the laser field. To ana-
lyze the effect, we consider a system of N free electrons inter-
acting with a single mode of a quantized electromagnetic field
representing the laser field. The Hamiltonian of the system is

Ĥ = 1

2m

N∑
i=1

[
p̂i + e

c
Â(ri )

]2
+ h̄ω(â†â + 1/2), (1)
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where

Â(r) = A0ez(âeik·r + â†e−ik·r ) (2)

is the vector potential of the field and A0 =
√

2π h̄c2/ωV .
Here e > 0 is the absolute value of the electron charge,
ω = ck and k = kex are the frequency and wave vector of
the laser mode, â† and â are the creation and annihilation
operators for a photon in this mode obeying the commutation
relation [â, â†] = 1, and V is the quantization volume. The
laser pulse is assumed to propagate along the x axis and be
linearly polarized along the z axis, with ex and ez denoting
unit vectors in these directions.

The system described by Eq. (1) is still too complex to
allow an analytical treatment. We further simplify it by adopt-
ing the dipole approximation which holds for low-frequency
laser fields with a typical wavelength of λ ≈ 800 nm used in
strong-field physics [2]. In this approximation the exponents
in Eq. (2) can be replaced by unity. Such an approach was
used in Refs. [4,12,13]. However, while the wavelength is
certainly larger than the size of an atom, it is usually smaller
than the extent of the region where the laser-gas interaction
takes place. To account for this fact, we assign to each electron
a phase determined by its location in the interaction region,
that is, we substitute

Â(ri ) → A0ez(eiφi â + e−iφi â†). (3)

In the context of strong-field physics this substitution can be
justified as follows. As a result of tunneling ionization an elec-
tron is liberated with zero initial momentum. Its subsequent
motion is driven by the laser field and hence proceeds along
the polarization z axis, while its position in the transverse to
this axis direction remains unchanged. These assumptions are
consistent with the three-step model [25]. We have kri = kxi,
where xi is the x component of the coordinate ri of the ith
electron. Replacing xi with its value at the moment of ioniza-
tion, that is, with the x component Xi of the coordinate Ri of
the parent ion, we obtain Eq. (3) with φi = kXi. Substituting
Eq. (3) into Eq. (1) gives

Ĥ =
N∑

i=1

p̂2
i

2m
+ eA0

mc

N∑
i=1

(eiφi â + e−iφi â†) p̂iz

+ h̄ω

2
[(1 + ξ )(â†â + ââ†) + ξ (ηââ + η∗â†â†)]. (4)

Here

ξ = Ne2A2
0

mc2 h̄ω
= ω2

p

2ω2
, (5)

where

ω2
p = 4πnee2

m
(6)

is the plasma frequency squared for a given density ne = N/V
of electrons, and

η = 1

N

N∑
i=1

e2iφi = |η|eiφη . (7)

The Hamiltonian (4) defines our model treated in subsequent
sections. The model is characterized by one real ξ and one

generally complex η dimensionless parameter. Note that the
electron-field interaction is represented in Eq. (4) by terms
containing the electron charge e, i.e., by the second term in
the first line and terms ∝ ξ in the second line.

III. DIAGONALIZATION OF THE MODEL HAMILTONIAN

In this section we find eigenvalues and eigenstates of the
Hamiltonian (4). The derivation proceeds in two steps which
clarify the meaning of the two transformations involved.

Let us introduce shorthand notation

|P〉 =
N∏

i=1

|pi〉, P = (p1, . . . , pN ). (8)

Here |pi〉 are eigenstates of p̂i satisfying p̂i|pi〉 = pi|pi〉 and
normalized by 〈pi|p′

i〉 = (2π h̄)3δ(pi − p′
i ), and P is a 3N-

dimensional vector composed of pi. The Hamiltonian (4) can
be presented in the form

Ĥ =
∫

Ĥ (P)|P〉〈P| dP
(2π h̄)3N

, (9)

where Ĥ (P) is the momentum representation of Ĥ obtained
from Eq. (4) by substituting p̂i → pi. This operator acts only
on the field degrees of freedom and depends on P as a param-
eter. It is more convenient to deal with when discussing the
transformations.

A. Squeezing

We first diagonalize the quadratic in â and â† part of Ĥ (P)
given by the second line in Eq. (4). This can be done using
the Bogoliubov transformation [26]. Let us introduce new
operators

b̂ = u∗â + v∗â†, b̂† = uâ† + vâ. (10)

To preserve the commutation relation [b̂, b̂†] = 1, the param-
eters u and v of this transformation must satisfy

|u|2 − |v|2 = 1. (11)

Under this condition the inverse transformation is given by

â = ub̂ − v∗b̂†, â† = u∗b̂† − vb̂. (12)

We choose u to be real. To satisfy Eq. (11), we seek u and v

in the form

u = cosh ν, v = eiφη sinh ν, (13)

where φη is defined by Eq. (7). Substituting Eqs. (12) into
Eq. (4) and requiring that the coefficients of b̂b̂ and b̂†b̂†

vanish, we find

ν = 1

2
tanh−1 ξ |η|

1 + ξ
. (14)

The operator Ĥ (P) expressed in terms of b̂ and b̂† takes the
form

Ĥ (P) = P2

2m
+ h̄
(β∗b̂ + βb̂†) + h̄
(b̂†b̂ + 1/2), (15)
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where

β = eA0

mch̄


N∑
i=1

(e−iφi u − eiφiv)piz (16)

is a dimensionless quantity and


 = ω
√

1 + 2ξ + ξ 2(1 − |η|2) (17)

is a modified frequency of the laser mode which incorporates
the effect of the electron-field interaction. Note that β depends
on P, but we omit this dependence in the notation.

The Bogoliubov transformation (10) with the parameters
given by Eqs. (13) and (14) can be presented in the form

b̂ = Ŝ(ζ0)âŜ†(ζ0), b̂† = Ŝ(ζ0)â†Ŝ†(ζ0), (18)

where

Ŝ(ζ ) = exp

(
−ζ

2
â†â† + ζ ∗

2
ââ

)
(19)

is a unitary squeezing operator [27] and

ζ0 = e−iφην. (20)

Let |n〉, n = 0, 1, . . . , denote orthonormal n-photon Fock
states of the free field in the laser mode satisfying

â†â|n〉 = n|n〉. (21)

The corresponding squeezed states are defined by

|n〉b = Ŝ(ζ0)|n〉. (22)

It can be seen that

b̂†b̂|n〉b = n|n〉b. (23)

Thus squeezing does not change the number of photons in a
Fock state, but changes the photon frequency.

B. Displacement

Next, we eliminate the terms in Eq. (15) that are linear in b̂
and b̂†. To this end, we introduce new operators

ĉ = D̂b(−β )b̂D̂†
b(−β ) = b̂ + β, (24a)

ĉ† = D̂b(−β )b̂†D̂†
b(−β ) = b̂† + β∗, (24b)

where

D̂b(α) = exp(αb̂† − α∗b̂) (25a)

= Ŝ(ζ0)D̂(α)Ŝ†(ζ0) (25b)

and

D̂(α) = exp(αâ† − α∗â) (26)

are unitary displacement operators [27]. Substituting Eqs. (24)
into Eq. (15) gives

Ĥ (P) = P2

2m
− h̄
|β|2 + h̄
(ĉ†ĉ + 1/2). (27)

The displaced states are defined by

|n〉c = D̂b(−β )|n〉b. (28)

Using Eq. (23), we obtain

ĉ†ĉ|n〉c = n|n〉c. (29)

Thus the displacement changes neither the number of photons
in a Fock state nor the photon frequency.

C. Eigenvalues and eigenstates

Let us return to the Hamiltonian (4). It can be seen now that
its eigenstates and the corresponding eigenvalues are given by

|P, n〉 = |P〉|n〉c, (30a)

E (P, n) = P2

2m
− h̄
|β|2 + h̄
(n + 1/2). (30b)

The eigenstates factorize into a state of electrons |P〉 and a
state of the field |n〉c. Note, however, that |n〉c depends on P,
because β defined by Eq. (16) depends on P. The field states
can be expressed in terms of the original operators â and â†

acting on |n〉. By combining the transformations (22) and (28)
and using Eq. (A2), we obtain

|n〉c = D̂(α0)Ŝ(ζ0)|n〉, (31)

where

α0 = γ (−β, ζ0) = −β cosh ν + e−iφηβ∗ sinh ν (32)

and ζ0 is defined by Eq. (20). The composition of the squeez-
ing and displacement operators in Eq. (31) turns an n-photon
state of the free field with photon energy h̄ω into a state
containing n dressed photons with energy h̄
 created and an-
nihilated by the operators ĉ† and ĉ, respectively. The dressing
accounts for the electron-field interaction and results in de-
coupling of the electron and field subsystems. Equations (30)
generalize a similar result for a one-electron model considered
in Ref. [9].

IV. DYNAMICS OF THE SYSTEM

In this section we discuss the dynamics of the system
with the Hamiltonian (4) in the Schrödinger (Sec. IV A) and
Heisenberg (Sec. IV B) pictures. The discussion requires the
formulation of initial conditions for the evolution equations,
so let us specify our model in this respect. We assume that free
electrons are produced by ionization of the target gas due to
its interaction with the laser field at times t < 0. Starting from
t = 0 ionization is neglected, because either it is saturated
or leads to only a negligible increase of the number of free
electrons during the time interval in which the electron-field
interaction is considered. Since free electrons are produced
by strong-field ionization, they have a specific momentum
distribution discussed in Appendix C. We also show how to
perform averaging over this distribution, which is needed for
calculating field observables (Sec. IV C).

A. Evolution of an initial coherent state of the field

In quantum mechanics, the laser field is represented by a
coherent state [27]

|α〉 = D̂(α)|0〉. (33)

In the absence of electrons, the evolution of this state in time
would be given by

e−iωt â†â|α〉 = |e−iωtα〉. (34)
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We are interested in the effect of the electron-field interaction
on the dynamics of the field.

To investigate the effect, we have to consider the evolu-
tion of the whole system described by the time-dependent
Schrödinger equation (TDSE)

ih̄
∂|�(t )〉

∂t
= Ĥ |�(t )〉. (35)

We first discuss a solution |�(t ; P)〉 satisfying the initial con-
dition

|�(0; P)〉 = |P〉|α〉, (36)

which assumes that all electrons have definite momenta. This
solution is given by

|�(t ; P)〉 = e−iĤt/h̄|�(0; P)〉 = e−iE (P,0)t/h̄|P〉|ψ (t ; P)〉,
(37)

where

|ψ (t ; P)〉 = e−i
t ĉ† ĉ|α〉. (38)

Note that the state (37) is separable, that is, represented by
a product of states of the electronic and field subsystems.
However, the operators ĉ† and ĉ depend on P, and hence
so does the field state (38), therefore the subsystems are not
actually independent. The field state can be expressed in terms
of a coherent squeezed state defined by [27]

|α, ζ 〉 = D̂(α)Ŝ(ζ )|0〉. (39)

Indeed, from Eqs. (18) and (24) we have

e−i
t ĉ† ĉ = D̂(α0)Ŝ(ζ0)e−i
t â†âŜ†(ζ0)D̂†(α0). (40)

Substituting this and |α〉 = D̂(α)ei
t â†â|0〉 into Eq. (38) and
using Eqs. (A7) and (A8), we obtain

|ψ (t ; P)〉 = D̂(α0)Ŝ(ζ0)Ŝ†(e−2i
tζ0)D̂†(e−i
tα0)

× D̂(e−i
tα)|0〉. (41)

Using Eqs. (A2), (A4), and (A7), this can be transformed to
the form

|ψ (t ; P)〉 = eiϕ(t )|α(t ), ζ (t )〉, (42)

where

ζ (t ) = �(ζ0,−e−2i
tζ0), (43a)

α(t ) = α0 + γ (exp[i�(ζ0,−e−2i
tζ0) − i
t]

× (α − α0), ζ (t )), (43b)

ϕ(t ) = 1
2�(ζ0,−e−2i
tζ0) + Im[α0(α(t ) − α)∗]. (43c)

Equation (42) presents one of the main results of this paper. It
fully incorporates the effect of the electron-field interaction on
the state of the field in the present model. Note that ζ (0) = 0,
α(0) = α, and ϕ(0) = 0, so |ψ (0; P)〉 = |α〉, in agreement
with Eq. (38). Also note that in the absence of the electron-
field interaction ζ0 = α0 = 0, thus |ψ (t ; P)〉 = |e−iωtα〉, in
agreement with Eq. (34). We will see shortly (see Sec. V A)
that under typical experimental conditions the model param-
eters defining the state (42) satisfy ξ 	 1, |η| � 1, |β| ≈ 1,

and |α| 
 1. In this case the following approximations hold:

ζ (t ) ≈ 1
2ξη∗(1 − e−2iωt ), (44a)

α(t ) ≈ αe−iωt − iα∗ξη∗ sin(ωt ) − β(1 − e−iωt ), (44b)

where we have neglected the difference between 
 and ω

in the exponents. The last two terms in Eq. (44b) define
the displacement of α(t ) with respect to the corresponding
parameter αe−iωt for a free coherent state (34). Note that these
terms are quadratic (ξ ∝ e2) and linear (β ∝ e) in the electron-
field interaction, respectively. The squeezing parameter (44a)
is small but nonzero; as shown below this is essential for
nonclassicality of the state (42). We mention that another
mechanism associated with harmonic generation also result-
ing in displacement [4,12] and squeezing [24] of the laser
mode has been recently discussed.

To account for the fact that free electrons do not have def-
inite momenta but are characterized by a certain momentum
distribution, we need the solution of Eq. (35) with the initial
condition given by a superposition of states (36):

|�(0)〉 =
∫

C(P)|P〉|α〉 dP
(2π h̄)3N

. (45)

The coefficients in this superposition determine the momen-
tum distribution of electrons |C(P)|2. This distribution is
normalized by

〈�(0)|�(0)〉 =
∫

|C(P)|2 dP
(2π h̄)3N

= 1. (46)

Using Eq. (37), we obtain

|�(t )〉 =
∫

C(P)e−iE (P,0)t/h̄|P〉|ψ (t ; P)〉 dP
(2π h̄)3N

. (47)

In contrast to Eq. (37), in this state the electronic and field
subsystems are entangled.

B. Evolution of the field operators

An alternative way to describe the dynamics of the field
is to use the Heisenberg annihilation â(t ) and creation â†(t )
operators defined by

â(t ) = eiĤt/h̄âe−iĤt/h̄ = ei
t ĉ† ĉâe−i
t ĉ† ĉ (48)

and similarly for â†(t ). Note that this implies the initial condi-
tions â(0) = â and â†(0) = â† consistent with Eq. (36). From
Eqs. (12) and (24) we obtain

â = uĉ − v∗ĉ† − uβ + v∗β∗, (49a)

â† = uĉ† − vĉ − uβ∗ + vβ. (49b)

Thus

â(t ) = uĉe−i
t − v∗ĉ†ei
t − uβ + v∗β∗, (50a)

â†(t ) = uĉ†ei
t − vĉe−i
t − uβ∗ + vβ. (50b)

Using Eqs. (10) and (24), the operators ĉ and ĉ† here can
be expressed in terms of â and â†. Note that the Heisenberg
operators (50) depend on P.
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C. Averaging field observables over the electron momenta

For any field observable O(â, â†), its expectation value in
the state (47) can be calculated using either of the following
expressions:

〈�(t )|O(â, â†)|�(t )〉 =
∫

〈ψ (t ; P)|O(â, â†)|ψ (t ; P)〉|C(P)|2

× dP
(2π h̄)3N

(51a)

=
∫

〈α|O(â(t ), â†(t ))|α〉|C(P)|2

× dP
(2π h̄)3N

. (51b)

Thus the corresponding expectation value in the field state
(42) should be additionally averaged over the electron mo-
mentum distribution |C(P)|2. In our model electrons are
independent, therefore

|C(P)|2 =
N∏

i=1

f (pi ), (52)

where f (p) is a one-electron momentum distribution function
normalized by ∫

f (p)
dp

(2π h̄)3
= 1. (53)

This function describing free electrons produced by strong-
field ionization is presented in Appendix C. We note that the
matrix elements in Eqs. (51) depend on P only through the
quantity β defined by Eq. (16). This quantity is given by
a sum of components of electron momenta along the polar-
ization axis, piz, multiplied by constant (i.e., independent of
P) coefficients. According to the central limit theorem [28],
for sufficiently large number of electrons N the sum has a
normal distribution independently of the particular form of
the one-electron distribution f (p). Since β = βr + iβi is a
complex quantity, the distributions in its real βr and imaginary
βi parts should be considered separately. Taking into account
Eqs. (C21) and (C22), for any function g(β ) we thus obtain∫

g(β )|C(P)|2 dP
(2π h̄)3N

= 〈g(β )〉β, (54)

where

〈g(β )〉β ≡
∫

g(βr + iβi ) exp

(
− β2

r

�β2
r

− β2
i

�β2
i

)
dβrdβi

π�βr�βi

(55)

and the variances are given by

�β2
r = 2

(
eA0

mch̄


)2

�p2
z

N∑
i=1

[u cos φi − |v| cos(φi + φη )]2,

(56a)

�β2
i = 2

(
eA0

mch̄


)2

�p2
z

N∑
i=1

[u sin φi + |v| sin(φi + φη )]2.

(56b)

Note that 〈1〉β = 1. The sums over i in Eqs. (56) can be
calculated using Eq. (7). We present results in the form

�β2
r + �β2

i = 2ξω2


2
(u2 − 2u|v||η| cos 2φη + |v|2)χ, (57a)

�β2
r − �β2

i = 2ξω2


2
[u(u|η| − 2|v|) cos φη

+ |v|2|η| cos 3φη]χ, (57b)

from which �β2
r and �β2

i can be easily found. Here the factor
ω2/
2 is determined by ξ and |η| [see Eq. (17)], and

χ = �p2
z

mh̄ω
(58)

is an additional independent real dimensionless parameter of
our model characterizing the momentum distribution f (p) of
free electrons. These equations enable one to average the ma-
trix elements in Eqs. (51) over this distribution. We emphasize
that according to the central limit theorem this requires one
to know only the variance �p2

z of pz defined by Eq. (C22),
that is, the results are not sensitive to the detailed structure of
the function f (p). Accounting for this distribution is another
important result of this paper.

V. FIELD OBSERVABLES

We assume that the field eventually leaves the region occu-
pied by electrons and its quantum state can be detected experi-
mentally. In this section we discuss two field observables. The
variance of the photoelectron counting distribution discussed
in Sec. V B unambiguously indicates the nonclassicality of the
field state. The Wigner function discussed in Sec. V C shows
that this state is non-Gaussian. Both these modifications of the
field state compared to the coherent state of the free laser field
are caused by the electron-field interaction.

A. Estimation of model parameters

Before turning to the discussion and illustrative calcula-
tion of the observables, we need to estimate parameters of
our model corresponding to a typical experimental situation.
We begin with parameters characterizing the field. In typi-
cal strong-field experiments laser pulses with frequency ω ≈
0.057 a.u. (corresponding to the wavelength λ ≈ 800 nm)
and field amplitude F0 ≈ 0.1 a.u. (corresponding to the in-
tensity I ≈ 3.5 × 1014 W/cm2) are used. The coherent state
(34) corresponds to a classical field F(t ) = F0 sin(ωt − φα )ez

with the amplitude F0 = 2|α|ωA0/c and phase φα = arg α. To
estimate the value of |α| we need to know the quantization
volume V . For our purposes it is sufficient to note that in any
case V � λ3, which gives |α| � 3 × 105. The phase φα can be
arbitrary.

We now turn to the parameters ξ and η defining the
model Hamiltonian (4). The target gas is assumed to be un-
der normal conditions, which corresponds to the gas density
2.5 × 1019 cm−3. Strong-field ionization produces at most
one free electron per atom, which corresponds to ωp = 0.007
a.u. We thus obtain from Eq. (5) that 0 < ξ � 0.01. It is
seen from Eq. (7) that 0 � |η| � 1. This parameter can be
estimated more accurately as follows. Let L be the length of
the interaction region occupied by electrons in the direction
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of propagation of the laser pulse, that is, along the x axis
in our geometry, and let S be the area of its section in the
transverse direction, so LS = V . Let the target gas and hence
free electrons be uniformly distributed in this volume. Then,
substituting φi = kXi into Eq. (7), in the continuum limit we
obtain

η =
∫ L

0
e2ikX dX

L
= eikL sin kL

kL
. (59)

This shows that the phase φη of η can be arbitrary. It can be
controlled by varying the length of the interaction region or
the frequency of the laser field.

Next we estimate the electron momentum distribution pa-
rameter χ defined by Eq. (58). Using Eq. (C22) we find
�p2

z ∼ e2F 2
0 /ω2, therefore χ ≈ 80.

There remain several dependent parameters whose val-
ues are determined by the parameters specified above. From
Eqs. (13), (14), and (20) we obtain u ≈ 1 and |v| ≈ ν =
|ζ0| ≈ ξ |η|/2 � 0.005, where we have taken into account that
ξ 	 1. From Eqs. (57) we find �β2

r � 0.8 and �β2
i � 0.8.

It can be seen from Eq. (54) that |βr| ∼ �βr and |βi| ∼ �βi.
Finally, from Eq. (32) we have |α0| ≈ 0.9.

B. Nonclassicality of the field state

When photons emitted from the interaction region hit a
photodetector they are converted into photoelectrons. The
photon statistics is usually analyzed by measuring the photo-
electron counting distribution [29–31]. A sufficient condition
for nonclassicality of the field state is that the variance of this
distribution (counted from that for the Poisson distribution)

δ = �n2 − n (60)

is negative, where �n = n − n and the bar denotes averaging
over the distribution. The negativity of δ means that pho-
toelectron counts have a sub-Poissonian statistics, which is
impossible for a classical field [29–31]. Let us check whether
the quantum state of the field obtained in the preceding sec-
tion satisfies this criterion of nonclassicality.

The variance of the photoelectron counting distribution
(60) measured in a time interval (t, t + T ) by a detector with
efficiency ε is given by [31]

δ = ε2

[∫ t+T

t
dt1

∫ t+T

t1

dt2〈â†(t1)â†(t2)â(t2)â(t1)〉 +
∫ t+T

t
dt1

∫ t1

t
dt2〈â†(t2)â†(t1)â(t1)â(t2)〉 −

(∫ t+T

t
dt〈â†(t )â(t )〉

)2
]
,

(61)

where â(t ) and â†(t ) are the Heisenberg operators (50) and

〈. . . 〉 ≡ 〈〈α| . . . |α〉〉β (62)

denotes averaging over the state of the whole system, accord-
ing to Eqs. (51b) and (54). The normal and time ordering
required in Eq. (61) is explicit. Due to the integration over
time, we should retain in the integrand only terms that do
not depend on time, whose contribution to δ grows with T
as T 2. The contribution from oscillating terms proportional
to exp(±i
t ) and exp(±2i
t ) can be neglected for counting
intervals satisfying T 
 T
, where T
 = 2π/
. This leads to

δ = ε2T 2(u2 + |v|2)[(u2 + |v|2)(〈ĉ†ĉ†ĉĉ〉 − 〈ĉ†ĉ〉2)

+ |v|2(2〈ĉ†ĉ〉 + 1)]. (63)

Using Eqs. (10) and (24) and performing the averaging (62),
we obtain

δ = ε2T 2
[
A + B

(
�β2

r − �β2
i

) + C
(
�β2

r + �β2
i

)]
, (64)

where

A = 1
8 sinh(4ν)[(4|α|2 + 1) sinh(4ν) + 4|α|2 cosh(4ν)

× cos(φη + 2φα )], (65a)

B = 1
2 sinh(2ν) cosh2(2ν) cos φη, (65b)

C = 1
2 sinh2(2ν) cosh(2ν). (65c)

This is an exact result for the variance δ within the present
model. As shown in the previous subsection, under typical
experimental conditions we have |α| 
 1 and ξ 	 1. In this

case Eq. (64) can be simplified:

δ ≈ ε2T 2|α|2ξ |η|[2ξ |η| + cos(φη + 2φα )]. (66)

It can be seen now that δ becomes negative for certain com-
binations of the parameters ξ , η, and φα . Let us set φα = 0.
Then δ is negative in the interval φ(−)

η < φη < φ(+)
η , where

φ(±)
η ≈ π ± (π/2 − 2ξ |η|). (67)

The negativity of the variance δ corresponds to a sub-
Poissonian photoelectron counting distribution and therefore
a nonclassical photon statistics [29–31]. Note that the value of
δ in Eq. (66) is proportional to the product ξ |η|. We assume
that there are free electrons, hence ξ > 0 [see Eq. (5)]. In this
case the product can only become zero if η = 0. The same
product appears in the squeezing parameter (44a). This means
that nonzero values of η are essential for both squeezing and
formation of a nonclassical state of the field. The presence
of the phase φα in Eq. (66) indicates that the interval of φη,
where the field is nonclassical, can be controlled by varying
the phase of the laser field.

Let us illustrate the dependence of the variance δ on the
model parameters. We set |η| = 1, χ = 80, and α = 3 × 105

and consider δ as a function of ξ and φη. Figure 1 shows δ

divided by ε2T 2|α|2 calculated using Eqs. (64) and (65). The
variance turns to zero along the white lines and is negative in
the area between them. In this region of the parameters the
field state is nonclassical. The white lines are almost straight,
which indicates that the approximation in Eq. (66) works well.
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FIG. 1. The variance of the photoelectron counting distribution δ

[see Eqs. (60) and (64)] divided by ε2T 2|α|2 as a function of ξ and
φη = arg η. The other parameters are |η| = 1, χ = 80, and α = 3 ×
105. The variance turns to zero along the white lines and is negative
between them.

As can be seen from Eq. (7), the parameter η accounts
for the violation of the dipole approximation for the target
gas cloud considered as a whole. This happens if the cloud
size L in the direction of the laser pulse propagation (in the
x direction in the present geometry) becomes comparable
to or larger than the laser wavelength λ. For subwavelength
clouds, L 	 λ, all the phases φi = kXi in Eq. (7) are small.
In the dipole approximation they are neglected, which gives
η = 1. The same follows from Eq. (59) for kL 	 1. In this
case φη = 0, which lies beyond the region between the two
white lines in Fig. 2. Thus the dipole approximation used in
Refs. [4,12,13] does not account for the formation of non-
classical field states characterized by negative values of the
variance δ in the present model. As the cloud size L grows,

the parameter η becomes complex and varies according to
Eq. (59). Its phase φη as a function of kL can take any value
from 0 to 2π and the criterion of nonclassicality of the field
state δ < 0 can be satisfied.

C. Non-Gaussian Wigner function of the field

Another observable which helps to visualize the quantum
state of a field is the Wigner function [32]. Here we show that
the Wigner function of the field in the present model has a
non-Gaussian shape, which is of interest for applications in
quantum-information theory [33]. If the whole system is in the
state (47), the density matrix of the field subsystem is given by

ρ̂(t ) =
∫

〈P|�(t )〉〈�(t )|P〉 dP
(2π h̄)3N

. (68)

Using Eqs. (42) and (54), we obtain

ρ̂(t ) = 〈|α(t ), ζ (t )〉〈α(t ), ζ (t )|〉β . (69)

The corresponding Wigner function defined with respect to a
local oscillator with frequency ω0 (in a rotating frame) is [27]

W (z, t ) = 2

π2

∫
ez∗z′−zz′∗ 〈e−iω0t (z + z′)|ρ̂(t )

× |e−iω0t (z − z′)〉d2z′, (70)

where both z and z′ are complex and d2z′ = d (Rez′)d (Imz′).
Substituting here Eq. (69) gives

W (z, t ) = 〈W (z, t ′; β )〉β (71)

where W (z, t ; β ) is the Wigner function for the state (42)
given by [34,35]

W (z, t ; β ) = 2

π
exp{−2|[e−iω0t z − α(t )] cosh |ζ (t )|

+ ei arg ζ (t )[e−iω0t z − α(t )]∗ sinh |ζ (t )||2}. (72)

FIG. 2. Three-dimensional (top row) and two-dimensional (bottom row) plots of the Wigner function (73) for (a) η = 10−3, (b) η =
2 × 10−3, and (c) η = 10−2. The other parameters are ξ = 0.01, χ = 80, and α = 3 × 105.
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The Wigner function measurable in an experiment, e.g., using
the homodyne detection scheme [32], is obtained by averag-
ing Eq. (71) over a time interval (t, t + T ) of photodetector
counting, similarly to how it was done in Eq. (61):

W (z) = 1

T

∫ t+T

t
W (z, t ′)dt ′ = 1

T

∫ t+T

t
〈W (z, t ′; β )〉βdt ′.

(73)

The density matrix (69) in the present model is periodic in
time, ρ̂(t + T
) = ρ̂(t ). We set ω0 = 
, then the function
(72) is also periodic with the same period T
. Substituting
T = T
 makes the function (73) strictly independent of t .
The same independent of t result follows from Eq. (73) by
averaging over any counting interval satisfying T 
 T
.

We have calculated the Wigner function (73) for ξ = 0.01,
χ = 80, α = 3 × 105, and three values of η = 10−3, 2 ×
10−3, and 10−2. The results are shown in Fig. 2. To explain
these results we recall for reference that the Wigner function
for the coherent free field state (34) is given by [27]

w(z) = 2

π
exp(−2|z − α|2). (74)

This is a stationary Gaussian whose center is located at z =
α. The function (72) is a squeezed Gaussian whose center
moves along the trajectory z = ei
tα(t ). In Eq. (73) this mov-
ing Gaussian is averaged, first over the electron momentum
distribution for a given t [see Eq. (55)] and then over t .
For the present parameters α(t ) is approximately given by
Eq. (44b), so the center of the moving Gaussian is located at
z = α − 1

2α∗ξη∗(e2iωt − 1) − β(eiωt − 1), where |β| ≈ 1. Let
us first consider the situation shown in Fig. 2(c). In this case
1
2 |αξη| = 15, so 1

2 |αξη| 
 |β|. Then the center moves along
a circle centered at z − α = 1

2α∗ξη∗ = 15 of radius 1
2 |αξη| =

15. The width of the moving Gaussian is ≈1, so averaging
over time yields a ring-shaped Wigner function localized near
the circle |z − (α + 15)| = 15. For the parameters in Fig. 2(b)
we have 1

2 |αξη| = 3. This is still larger than |β|, so the same
argumentation applies, and we again see a ring-shaped Wigner
function localized near the circle |z − (α + 3)| = 3. The pa-
rameters in Fig. 2(a) are such that 1

2 |αξη| = 1.5. In this case
the ring shape is not so pronounced because the width of the
moving Gaussian is comparable to the radius of the ring. For
η = 0 the Wigner function has a Gaussian shape similar to
Eq. (74), slightly broadened because of averaging over the
electron momenta. We conclude that nonzero values of η are
crucial for obtaining a ring-shaped Wigner function in the
present model.

It is also instructive to consider the dependence of the
Wigner function on ξ . This parameter is proportional to the
electron density ne [see Eqs. (5) and (6)], which in turn
is proportional to the density of the target gas, and hence
it can be controlled by varying the gas pressure. As ex-
plained above, the ring-shaped structure reveals itself under
the condition 1

2 |αξη| > |β|, with 1
2 |αξη| giving the radius

of the ring. Therefore there exists a lower boundary of the
electron density for which the ring-shaped structure can be
observed. We have calculated the Wigner function (73) for
χ = 80 and α = 3 × 105 as in Fig. 2, η = 0.01, and four
values of ξ = 10−4, 10−3, 5 × 10−3, and 10−2 which for λ =

FIG. 3. One-dimensional cuts of the Wigner function (73) at
Im(z − α) = 0 multiplied by ξ for χ = 80 and α = 3 × 105, as in
Fig. 2, η = 0.01, and four values of ξ indicated in the figure. The
results for ξ = 10−2 (the blue line) show the cut of the Wigner
function presented in Fig. 2(c).

800 nm corresponds to the electron density ne = 3.5 × 1017,
3.5 × 1018, 1.7 × 1019, and 3.5 × 1019 cm−3, respectively.
Figure 3 shows one-dimensional cuts of the Wigner function
along the line Im(z − α) = 0 multiplied by ξ to bring the
results for different ξ to a common scale. For sufficiently
low electron densities (ξ = 10−4) the Wigner function has
a simple Gaussian shape similar to Eq. (74). As the density
increases (ξ = 10−3), a ring-shaped structure appears, which
is reflected in the appearance of the second maximum in the
cut shown in Fig. 3. The radius of the Wigner function ring,
and consequently the distance between the two maxima in
its cut, grow proportionally to the density as it increases fur-
ther (ξ = 5 × 10−3 and 10−2). These results demonstrate that
field states with a non-Gaussian ring-shaped Wigner function
can be formed for realistic electron densities. We mention
that strong-field experiments with multiatmosphere target gas
pressures (atomic density ≈1021 cm−3) were reported [36].

VI. CONCLUSION

A recent paper [4] has initiated the study of quantum
properties of strong laser fields used in attosecond physics.
There are three major processes whose effect on the quantum
state of the driving laser field can be expected: strong-field
ionization, harmonic generation, and the interaction with free
electrons produced by strong-field ionization. The first two
of them have been considered in Refs. [4,12,13,18,19,24]. In
this paper we have analyzed the third mechanism. We have
shown that the electron-field interaction can strongly affect
the quantum state of the laser field under realistic conditions
of strong-field experiments. Namely, it squeezes and displaces
the coherent state of a free laser field, which can result in
the formation of nonclassical and non-Gaussian field states.
This shows that the full theory of quantum strong-field effects
should take the electron-field interaction into account.

We mention that the present results may also have implica-
tions for quantum information processing. Squeezed states of
a strong laser field and non-Gaussian states with a ring-shaped
Wigner function measurable using homodyne detection may
find applications in quantum computations and communi-
cation with continuous variables [37,38]. Indeed, squeezed
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states are important in continuum-variable quantum computa-
tions as a part of a universal quantum gate to perform quantum
floating point computations [37]. While non-Gaussian field
states are a necessary building block to achieve quantum com-
putational advantages with continuum variables [33,39].
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APPENDIX A: FORMULAS FROM QUANTUM OPTICS

For completeness of the presentation, here we summarize
some formulas from quantum optics used in the main text. We
adopt the notation (19) and (26) from Ref. [27]. A product of
two displacement operators is given by [27]

D̂(α1)D̂(α2) = exp[iIm(α1α
∗
2 )]D̂(α1 + α2). (A1)

The squeezing and displacement operators can be permuted
using [27]

Ŝ(ζ )D̂(α) = D̂[γ (α, ζ )]Ŝ(ζ ), (A2)

where

γ (α, ζ ) = α cosh |ζ | − eiφζ α∗ sinh |ζ | (A3)

and φζ = arg ζ . A product of two squeezing operators can be
presented in the form [35] (the argument of the squeezing
operator in Ref. [35] has the opposite sign compared to that
in Ref. [27])

Ŝ(ζ1)Ŝ(ζ2) = Ŝ[�(ζ1, ζ2)] exp[i�(ζ1, ζ2)(â†â + 1/2)],

(A4)

where

�(ζ1, ζ2) = 1

2i
ln

(
1 + z1z∗

2

1 + z∗
1z2

)
, (A5a)

|�(ζ1, ζ2)| = tanh−1

∣∣∣∣ z1 + z2

1 + z∗
1z2

∣∣∣∣, (A5b)

arg �(ζ1, ζ2) = arg

(
z1 + z2

1 + z∗
1z2

)
, (A5c)

and

zi = eiφi tanh |ζi|, φi = arg ζi. (A6)

Note that �(ζ1, ζ2) is real, while �(ζ1, ζ2) is generally com-
plex. In the case φ1 − φ2 = nπ , n = 0,±1, . . . , we obtain
�(ζ1, ζ2) = 0 and �(ζ1, ζ2) = ζ1 + ζ2. Finally, for any real φ

we have

eiφâ†âD̂(α)e−iφâ†â = D̂(eiφα) (A7)

and

eiφâ†âŜ(ζ )e−iφâ†â = Ŝ(e2iφζ ). (A8)

APPENDIX B: GAUGE TRANSFORMATION
OF MOMENTUM DISTRIBUTIONS

Consider a quantum electron interacting with a classical
homogeneous time-dependent electric field. Let p̂ be the usual

canonical momentum of the electron; in the coordinate rep-
resentation p̂ = −ih̄∇. Its eigenstates are defined by p̂|p〉 =
p|p〉 and 〈p|p′〉 = (2π h̄)3δ(p − p′). Let P̂ = mv̂ be the kinetic
momentum, where

v̂ = d̂r
dt

= i

h̄
[Ĥ, r̂] (B1)

is the electron velocity and Ĥ is its Hamiltonian. In the
case of a homogeneous field the operators p̂ and P̂ com-
mute, and therefore have common eigenstates |p〉. Let P̂|p〉 =
P(p)|p〉, where P(p) denotes the corresponding eigenvalue.
Then P̂|p(P)〉 = P|p(P)〉, where p(P) is the inverse function
of P(p). Let the electron be in the state |ψ (t )〉. The canonical
momentum distribution in this state is defined by

w(p) = |〈p|ψ (t )〉|2. (B2)

Similarly, the kinetic momentum distribution is defined by

W (P) = |〈p(P)|ψ (t )〉|2. (B3)

It is well known that the function p(P) and the state |ψ (t )〉
depend on the gauge. Let us discuss the gauge dependence of
the distributions (B2) and (B3).

For definiteness, we consider two gauges commonly used
in strong-field physics. In the velocity gauge the field is de-
scribed by a four-potential (ϕv, Av ) = (0, A(t )). The electron
Hamiltonian is

Ĥv = 1

2m

[
p̂ + e

c
A(t )

]2
. (B4)

The kinetic momentum is given by

P̂v = p̂ + e

c
A(t ) → p(P) = P − e

c
A(t ). (B5)

The general solution of the TDSE with the Hamiltonian (B4)
can be presented in the form

|ψv (t )〉 =
∫

c(p) exp

(
− i

2mh̄

∫ t

0

[
p + e

c
A(t ′)

]2
dt ′

)
|p〉

× dp
(2π h̄)3

, (B6)

where c(p) is an arbitrary function. Thus

wv (p) = |〈p|ψv (t )〉|2 = |c(p)|2 (B7)

and

Wv (P) =
∣∣∣∣〈P − e

c
A(t )

∣∣∣∣ψv (t )

〉∣∣∣∣2

=
∣∣∣c[P − e

c
A(t )

]∣∣∣2
. (B8)

In the length gauge the field is described by a four-potential
(ϕl , Al ) = (−F(t )r, 0), where

F(t ) = −1

c

dA(t )

dt
. (B9)

The Hamiltonian is

Ĥl = p̂2

2m
+ eF(t )r̂. (B10)

The kinetic momentum is given by

P̂l = p̂ → p(P) = P. (B11)

023115-9



EVGENY S. ANDRIANOV AND OLEG I. TOLSTIKHIN PHYSICAL REVIEW A 110, 023115 (2024)

The state (B6) is represented by

|ψl (t )〉 = exp
[
i

e

ch̄
A(t )r̂

]
|ψv (t )〉. (B12)

Thus

wl (p) = |〈p|ψl (t )〉|2 =
∣∣∣c[p − e

c
A(t )

]∣∣∣2
(B13)

and

Wl (P) = |〈P|ψl (t )〉|2 =
∣∣∣c[P − e

c
A(t )

]∣∣∣2
. (B14)

Summarizing, we arrive at the following conclusions. First,
the canonical momentum distribution depends on the gauge
and

wl (p) = wv

[
p − e

c
A(t )

]
, (B15)

while the kinetic momentum distribution is gauge invariant,

Wv (P) = Wl (P). (B16)

This means, in particular, that only the latter is observable,
and the former is not. Second, in the length gauge the two
distributions coincide:

wl (p) = Wl (p). (B17)

APPENDIX C: MOMENTUM DISTRIBUTION
OF ELECTRONS PRODUCED

BY STRONG-FIELD IONIZATION

Free electrons discussed in the main text are produced in
the ionization of the target gas by the laser field. Here we de-
rive the one-electron momentum distribution f (p) introduced
in Sec. IV C. The Hamiltonian (1) corresponds to the velocity
gauge, and hence so does the Hamiltonian (4) obtained by
substituting Eq. (3). The momenta pi defining the argument
of f (p) are introduced in Eq. (8) as eigenvalues of canonical
momentum operators p̂i. Thus f (p) is the canonical momen-
tum distribution in the velocity gauge, using the terminology
of Appendix B.

To derive this distribution, let us consider the interaction of
the ith atom with the ionizing laser field. The atom is treated
in the single-active-electron approximation and described by
a spherically symmetric potential V (r), where r = ri − Ri is
the electron coordinate measured from the atomic nucleus.
The field is assumed to be classical and corresponding to the
coherent state |α〉 of the quantum field appearing in the initial
condition (36). It is described by

A(t ) = 〈e−iωtα|Â(ri )|e−iωtα〉 = A(t )ez (C1)

and

F(t ) = −1

c

d

dt
A(t ) = F (t )ez, (C2)

where Â(ri ) is given by Eq. (3). We obtain

A(t ) = cF0

ω
cos(ωt − φi − φα ), (C3a)

F (t ) = F0 sin(ωt − φi − φα ), (C3b)

where F0 = 2|α|ωA0/c and φα = arg α. The TDSE describing
the active electron in the dipole approximation and length

gauge reads

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
� + V (r) + eF (t )z

]
ψ (r, t ). (C4)

We assume that the field is smoothly turned on and at times
t > 0 is given by Eqs. (C3). The initial condition for Eq. (C4)
is specified by

ψ (r, t → −∞) = e−iE0t/h̄φ0(r), (C5)

where E0 and φ0(r) are the energy and wave function
of an initial bound state which for simplicity is assumed
to be an s state. For sufficiently low-frequency and high-
intensity fields considered in strong-field physics the solution
to Eqs. (C4) and (C5) can be found using the adiabatic theory
[40]. In this theory, the solution is constructed in the form
ψ (r, t ) = ψa(r, t ) + ψr (r, t ), where the adiabatic ψa(r, t )
and rescattering ψr (r, t ) parts of the wave function represent
bound and continuum parts of the electron state, respectively.
The rescattering part ψr (r, t ) accounts for the interaction
of the liberated electron with both the parent ion and the field.
The former interaction results in the appearance of a small
fraction of high-energy electrons and can be neglected for the
present purposes. In this approximation the continuum part
of the wave function is denoted by ψ (a)

r (r, t ). This function
describes a wave packet of liberated electrons which is driven
only by the field. The relation between ψr (r, t ) and ψ (a)

r (r, t )
is similar to that between an exact scattering state and the cor-
responding incident plane wave, respectively; for more details
see Ref. [40] where both functions were explicitly obtained.
Let us transform ψ (a)

r (r, t ) to the momentum representation:

ψl (p, t ) =
∫

ψ (a)
r (r, t )e−ipr/h̄dr. (C6)

Omitting the derivation based on the results of Ref. [40], we
obtain

ψl (p, t ) = eiπ/4(2π h̄)1/2
∑

i

A(p⊥; |F (ti )|)
|eF (ti )|1/2

e−iSi/h̄, (C7)

where

Si = p2
⊥

2m
(t − ti ) + 1

2m

∫ t

ti

(
pz − e

c
[A(t ) − A(t ′)]

)2
dt ′ + s(ti)

(C8)

and

s(t ) = E0t +
∫ t

−∞
[E (|F (t ′)|) − E0]dt ′. (C9)

Here p⊥ = (px, py), E (F ) = E (F ) − i
2�(F ) is the complex

energy and A(p⊥; F ) is the transverse momentum distribution
amplitude characterizing the Siegert state that originates from
the initial bound state (C5) in the presence of a static electric
field F = Fez [40,41], ti is the ionization time defined by

pz = e

c
[A(t ) − A(t ′)] → t ′ = ti < t, (C10)

and the summation in Eq. (C7) runs over all solutions of
Eq. (C10). According to Eq. (B12), the same wave packet in
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the velocity gauge is represented by

ψv (p, t ) = ψl

(
p⊥, pz + e

c
A(t ), t

)
. (C11)

The norm of this state gives the total probability of ionization
by time t . Let us introduce the differential ionization rate,

w(p) = 1

T
|ψv (p, T )|2

∣∣∣∣
T →∞

. (C12)

Using Eqs. (C7) and (C11), we obtain

w(p) = 4(h̄ω)2

eF (pz )
|A(p⊥; F (pz ))|2 cos2 �S

2h̄

∑
n�n0

× δ

(
p2

2m
+ Up − Ē − nh̄ω

)
. (C13)

Here

Ē − i

2
�̄ = 1

Tω

∫ Tω

0
E (|F (t )|) dt = 2

π

∫ F0

0

E (F )dF√
F 2

0 − F 2

(C14)

denotes the energy of the Siegert state averaged over the laser
period Tω = 2π/ω and n0 is the minimum integer satisfying
nh̄ω > Up − Ē . The other notation is defined by

F (pz ) = F0

√
1 − p2

z

p2
0

, Up = p2
0

4m
, p0 = eF0

ω
, (C15)

and

�S = 2(π − φ)

ω

(
p2

2m
+ Up

)
+ 3pz

2mω

√
p2

0 − p2
z

− 2

ω

∫ π

φ

E (F0 sin φ′) dφ′, (C16)

where φ = arccos(pz/p0). In arriving at Eq. (C13) we have
neglected ionization that occurs during turning on the field at
t < 0. Furthermore, we have assumed that T 
 Tω and T �̄ 	
h̄, which specifies the meaning of the limit in Eq. (C12) and
justifies neglecting the depletion. The cos2 factor in Eq. (C13)
describes the intracycle interference of two contributions with
ionization times belonging to the same optical cycle, while
the sum of δ functions describes the intercycle interference
resulting from the summation over many cycles in the inter-
val 0 < t < T . In the adiabatic regime [40] these factors are
rapidly varying functions of the electron momentum p. By
averaging them, we obtain the averaged differential ionization
rate,

w̄(p) = 2h̄ω

eF (pz )
|A(p⊥; F (pz ))|2. (C17)

Taking into account the relation [41]∫
|A(p⊥; F )|2 dp⊥

(2π h̄)2
= �(F )/h̄ (C18)

it can be seen that ∫
w̄(p)

dp
(2π h̄)3

= �̄/h̄. (C19)

Thus the momentum distribution we need is given by

f (p) = h̄�̄−1w̄(p). (C20)

It satisfies the normalization condition (53). Note that this
distribution is even in pz, because pz enters into Eq. (C17)
only through the function F (pz ) = F (−pz ) [see Eqs. (C15)],
therefore the average of pz vanishes:∫

pz f (p)
dp

(2π h̄)3
= 0. (C21)

Let us introduce the average of p2
z :∫

p2
z f (p)

dp
(2π h̄)3

= �p2
z . (C22)

It defines the parameters (57) needed for averaging over elec-
tron momenta.

To determine the particular shape of the distribution f (p)
we need to know how the functions �(F ) and A(p⊥; F ) de-
pend on F . At sufficiently weak fields this dependence is
known analytically from the weak-field asymptotic theory
[41]. We have

�(F ) = e2
κg2

00

2

(
4eκ

2

F

)2κ−1

exp

(
−2h̄2

κ
3

3meF

)
(C23)

and

|A(p⊥; F )|2 = 4π h̄κ�(F )

meF
exp

(
−κp2

⊥
meF

)
, (C24)

where κ = me2/h̄2
κ, κ = h̄−1√2m|E0|, and g00 is a dimen-

sionless coefficient appearing in the asymptotic tail of the
unperturbed wave function φ0(r) [41]. Using Eqs. (C23) and
(C24), we obtain

f (p) = N(
p2

0 − p2
z

)κ+1/2 exp

⎛⎜⎝− κp0

3meF0

3p2
⊥ + 2h̄2

κ
2√

p2
0 − p2

z

⎞⎟⎠,

(C25)

where N is a constant normalization coefficient. This function
is localized in a region limited by the interval −p0 < pz < p0

along the pz axis and having a radius p⊥ ∼ √
meF0/κ in the

transverse direction. In the adiabatic regime the ratio of the
transverse and longitudinal sizes of this region ω

√
m/κeF0 is

small, so the distribution has a cigarlike shape extended along
the pz axis.
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