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Coherent-population-trapping resonance in vapor cell is a quantum interference effect that appears in the
two-photon transitions between the ground-state hyperfine levels of alkali-metal atoms and is often utilized in
miniature and centimeter-scale clock devices. To quantitatively understand and predict the performance of this
phenomenon, it is necessary to consider the transitions and relaxations between all hyperfine Zeeman sublevels
involved in the different excitation processes of the atom. In this paper, we constructed a computational multilevel
atomic model of the Liouville density-matrix equation for 32 Zeeman sublevels involved in the D1 line of
133Cs irradiated by two frequencies with circularly polarized components and then simulated the amplitude
and shape of the resonance spectrum of the transmitted light through centimeter-scale Cs-vapor cells. We show
that the numerical solutions of the equation and analytical investigations adequately explain a variety of the
characteristics observed in the experiment.
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I. INTRODUCTION

Coherent-population-trapping (CPT) resonance is a quan-
tum interference phenomenon observed using a two-photon
�-type transition between the ground hyperfine Zeeman sub-
levels of an alkali-metal atom [1,2]. Thanks to its high Q
factor at the microwave transition, it is currently utilized as
a key spectroscopic technique for creating portable atomic
clock devices [3]. In more than 20 years following the first
detection of CPT resonance in vapor cells [4,5] and proposal
for microfabricated atom vapor cells [6–8], ongoing advance-
ments have led to the development of miniature atomic clocks
using silicon micromachining and semiconductor laser tech-
nology [9], the achievement of high contrast signals [10],
and increased robustness of the resonance frequency to fluc-
tuations in the external environment and the excitation light
itself [11,12].

The optical excitation scheme originally utilized in the
CPT clock is a circular polarization for bichromatic ex-
citation lights, σ−-σ− or σ+-σ+, but such polarization
pumps a significant fraction of the atoms into Zeeman edge
(trap) states, thus reducing the contrast of the CPT sig-
nal. To prevent this reduction, excitation schemes such as
push-pull optical pumping [13], counterpropagating σ+-σ−
polarization [14], a pair of orthogonal linear polarizations
(Lin ⊥ Lin) [15], or a pair of parallel linear polarizations
(Lin ‖ Lin) [16] have been proposed. The first three meth-
ods produce the CPT resonance between two hyperfine states
|Fg = 3, m = 0〉 and |Fe = 4, m = 0〉 on each leg of the �

scheme, namely (0, 0) CPT resonance [17]. This resonance is

essentially a double-� scheme, in which a dark state common
to the two � schemes exists [18]. In contrast, no (0, 0) CPT
resonance occurs in the fourth method because the dark state
for one � scheme is the bright state for the other. Instead,
two CPT resonances are produced between |Fg, m = −1〉
and |Fe, m = 1〉 and between |Fg, m = 1〉 and |Fe, m = −1〉,
namely (−1, 1) and (1,−1) CPT resonances. These doublet
resonances split in frequency due to the second-order Zeeman
effect [19]. The relationship between the CPT resonance and
excitation polarization scheme on 133Cs atoms has been stud-
ied by Liu et al. [17].

In our previous work [20], we showed that the amplitudes
of the (−1, 1) and (1, −1) CPT resonances excited with
Lin ‖ Lin polarization increase approximately in proportion to
the excitation intensity, while in contrast, the amplitude of the
(0, 0) CPT resonance excited with σ−-σ− polarization mod-
erately saturates. We claimed that the former is best described
by a simple three-level model and the latter by a four-level
model with a trap state. Up to now, the symmetry, width, and
frequency shift of the resonance spectrum related to the op-
tical detuning of the excitation lights were investigated using
few-level models [21,22]. However, a model that includes all
Zeeman sublevels will be effective for quantitatively under-
standing the amplitude, the width, and the shape of the CPT
resonances [23]. These behaviors of the CPT spectrum can
be better understood by solving the Liouville density-matrix
equation taking into account 32 Zeeman sublevels related to
the D1 line of 133Cs.

When constructing a model with 32 Zeeman sublevels, it is
necessary to configure a detailed relaxation process between
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FIG. 1. Hyperfine Zeeman structure of the D1 line of 133Cs. Values are expressed in the unit of angular frequency. |1〉 − |7〉, |8〉 − |16〉,
|17〉 − |23〉, and |24〉 − |32〉 are the magnetic sublevels of 6S1/2F = 3, 6S1/2F = 4, 6P1/2F ′ = 3, and 6P1/2F ′ = 4, respectively, labeled in
order of magnetic quantum number mF from −F to F . ω0

g and ω0
e are unperturbed energies of 6S1/2F = 3 and 4, respectively. ωi0 is the

medium energy between the unperturbed energies of 6P1/2F ′ = 3 and 4. �hfs and �′
hfs are the hyperfine splitting energies of 6S1/2 and 6P1/2,

respectively. ω1 and ω2 are frequencies of the excitation lights in a unit of angular frequency. �R and �opt are the Raman detuning and the
common detuning, respectively, which are defined in the paper. � and γp are the decay rate of 6P1/2 (excited) states and 6S1/2 (ground) states,
respectively.

16 ground levels, though it is simple in the three-level model
because there are only two ground levels. In 2017, Warren
et al. developed an atomic model using the Liouville density-
matrix equation taking into account all 16 relevant Zeeman
sublevels in the D1 line of 87Rb atoms and compared the
calculated results with the corresponding experimental results
for excitation with three different polarization configurations
[24]. They assumed a uniform relaxation process between the
magnetic sublevels of the ground states. In an alternative ap-
proach, Matsuda et al. utilized the magnetic dipole relaxation
between the magnetic sublevels of the ground states in the D1

line of 133Cs atoms [25].
We make two key contributions in the current paper.

First, we construct a multilevel atomic model of the Li-
ouville density-matrix equation [23–26] for studying CPT
resonances formed by the bichromatic lights of various ex-
citation schemes in the manifold of 133Cs atoms. Second,
using the constructed model, we simulate the amplitude and
shape of the CPT resonance excited by different polariza-
tions, frequencies, and intensities of the excitation lights,
and elucidate the underlying mechanisms by comparing them
with the corresponding experimental results. In Sec. II A, we
derive the multilevel atomic model using the density-matrix
equation, and in Sec. II B, we show the formulations for
the line shape, width, and light shift of the CPT resonance
spectrum guided from the present multilevel atomic model.
Section III describes our experimental setup and Cs-vapor
cells with buffer gas. In Sec. IV, we compare the experimental
results with the calculated results. Section IV A reports how
the Zeeman CPT spectra with different buffer gas pressures
vary due to the relaxation process. Section IV B shows that
the amplitude of the first-order Zeeman CPT spectra depends
on the common detuning frequency of the excitation light. In
Sec. IV C, we clarify that the (m, m) CPT resonance appears
for Lin ‖ Lin excitation [except for (0, 0)] in the second-order

Zeeman CPT spectrum and discuss the required condi-
tions to prohibit the CPT resonances of double-� schemes.
Section IV D explains how the amplitude of the CPT reso-
nance for σ−-σ− excitation saturates while that for Lin ‖ Lin
excitation increases in proportion to the excitation intensity
depending on the variation of the population in the trap state.
We conclude in Sec. V with a brief summary. The Appendix
provides additional detail on how the shape of the CPT spec-
trum is rigorously derived from the 32-level model.

II. FORMULATION AND CALCULATION

A. Liouville equations for the CPT spectrum

We aim to construct a multilevel atomic model including
all the Zeeman sublevels in the D1 transition of 133Cs so as
to theoretically investigate the CPT resonances excited with
various polarizations. Figure 1 shows the energy structure of
the hyperfine Zeeman sublevels in the D1 line of 133Cs under
a magnetic field as a perturbation together with the definition
of the energy detuning of the bichromatic excitation lights for
the CPT resonance, whose angular frequencies are ω1 and ω2.
In this paper, all quantities of the energy detuning and energy
levels are given in the unit of angular frequency. We designate
sublevels belonging to 6S1/2F = 3, F = 4, and 6P1/2F ′ = 3
or F ′ = 4 as g, e, and i, respectively. The unperturbed energies
of the hyperfine ground states, 6S1/2F = 3 and F = 4, are
represented as ω0

g and ω0
e , respectively. ωi0 is the mean energy

between the unperturbed energies of 6P1/2F ′ = 3 and F ′ = 4.
We define the propagation direction of the bichromatic lights
as along the z axis and the quantized magnetic field with
strength B as applied along the direction of the light propaga-
tion. We also define energies of the Zeeman sublevels under
the magnetic field B as ωB

g , ωB
e , and ωB

i , which are shifted
by the Zeeman effect according to Breit-Rabi’s formula [19].
Then, there are 32 Zeeman sublevels in the hyperfine ground
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states, 6S1/2F = 3 and F = 4, and in the hyperfine excited
states, 6P1/2F ′ = 3 and F ′ = 4, some of which are coupled by
the D1 transition depending on the polarization of excitation
lights. As shown in Fig. 1, Zeeman sublevels are designated
from 1 to 32 in order of the magnetic quantum numbers mF

from −F to F , and from g to i.
The two photons ω1 and ω2(<ω1) induce a three-level

�-type CPT resonance between the two hyperfine levels in
the ground state and an excited level. The energy detuning
of ω1 from the related D1 transition energy is �1 = ω1 −
(ωi0 − ω0

g ). Similarly, that of ω2 is �2 = ω2 − (ωi0 − ω0
e ).

The Raman detuning of ω1-ω2 from the ground hyperfine
splitting (�hfs = ω0

e−ω0
g ) is given by �R = (ω1-ω2) − �hfs.

In the CPT resonance experiment, generally, the positive first
and negative first sidebands generated from a single laser
source by modulating at a frequency of (�hfs + �R)/2 are
used as the two photons ω1 and ω2. As shown in Fig. 1,
we define the common detuning �opt as �opt = �1 − �R

2 =
�2 + �R

2 .
The system with a set of the orthonormal quantum states

|1〉 − |32〉 corresponding to the 32 magnetic sublevels of a
Cs atom (presented in Fig. 1) is described by the Heisenberg
equation of the density-matrix component ρ and the interac-
tion Hamiltonian H, as

∂

∂t
ρ = 1

ih̄
[H, ρ] (1)

where h̄ is the Planck constant divided by 2π . The coupling of
the atomic states to two coherent radiation fields is described
within the rotating wave approximation, as

1

h̄
H =

32∑
l=1

δl |l〉〈l| − 1

2

16∑
s=1

32∑
t=17

(�st|s〉〈t | + �∗
st|t〉〈s|) (2)

where

δl =

⎧⎪⎨
⎪⎩

ωB
l − ω0

g + �R
2 l = 1, . . . , 7

ωB
l − ω0

e − �R
2 l = 8, . . . , 16

ωB
l − ωi0 − �opt l = 17, . . . , 32

. (3)

Here, the coupling term �st = 〈s|(−d · E)/h̄|t〉 = �∗
ts is the

Rabi frequency, where d is the electric dipole moment and E
is the electric field of the excitation lights.

First, as the excitation light we consider a circularly polar-
ized σ+ light with the amplitude of E (t ), which propagates
along the z axis. The Rabi frequency for σ+ excitation light is
defined as

�σ+
st = −E (t )

h̄
dFF ′ 〈F ′, m′

F |F, 1, mF , 1〉. (4)

Similarly, for a circularly polarized σ− light, the Rabi fre-
quency is defined as

�σ−
st = −E (t )

h̄
dFF ′ 〈F ′, m′

F |F, 1, mF ,−1〉. (5)

Here, F and F ′ are the total angular momenta of |s〉 and |t〉,
respectively. mF and m′

F are the magnetic quantum numbers
of |s〉 and |t〉, respectively. dFF ′ is the reduced matrix element
of the dipole moment operator between levels whose total
angular momenta are F and F ′, and 〈F ′, m′

F |F, 1, mF ,±1〉 is

the Clebsch-Gordan coefficient. These values for the Cs atom
are given in [27].

Next, as the excitation light E(t ), we consider the linearly
polarized light with the amplitude of E (t ) whose polarization
forms an angle θ with the x axis in the xy plane. The linearly
polarized electric field is rewritten by the superposition of two
circular polarizations σ+ and σ− using the spherical vector
basis e±1 = ∓(ex ± iey)/

√
2, as

Elin(t, θ ) = E (t )(ex cos θ + ey sin θ )

= E (t )√
2

(−e−iθ e+1 + eiθ e−1). (6)

Using Eqs. (4) and (5), the Rabi frequency of the linear polar-
ized light is rewritten as

�lin
st = −e−iθ

√
2

�σ+
st + eiθ

√
2
�σ−

st . (7)

In the CPT resonance, the bichromatic excitation lights of
ω1 and ω2 interact with two ground hyperfine states and one
excited state by a �-type scheme. The bichromatic Rabi fre-
quency in this case is also composed of two Rabi frequencies
�1st[E1(t )] and �2st[E2(t )], where E1(t ) and E2(t ) are the
amplitudes of the excitation lights of ω1 and ω2, respectively.
Since the detuned frequency component disappears due to
the rotating wave approximation, �2st (�1st ) disappears for
s = 1, . . . , 7(8, . . . , 16).

Let us assume the direction of the electric field of ω1 is
parallel to the x axis, while that of ω2 forms an angle θ with
the x axis in the xy plane. The coupling term is then written as

�lin
st =

⎧⎨
⎩

�1
lin
st = − 1√

2
�1

σ+
st + 1√

2
�1

σ−
st s = 1, . . . , 7

�2
lin
st = − e−iθ√

2
�2

σ+
st + eiθ√

2
�2

σ−
st s = 8, . . . , 16

.

(8)

In the Lin ‖ Lin polarization scheme, we adopt �2
lin
st with θ =

0. In the Lin ⊥ Lin polarization scheme, which corresponds
to the push-pull scheme, we adopt �2

lin
st with θ = π/2.

The evolution of the atomic system is governed by the
Liouville equation, namely, the equation of motion for the
density operator ρ̂ = ∑32

l=1

∑32
m=1 ρlm|l〉〈m|, as follows:

∂

∂t
ρ̂ = − i

h̄
(Ĥ ρ̂ − ρ̂Ĥ ) − i

h̄
(Ĥ ′

�ρ̂ + ρ̂Ĥ ′
� ) + �̂, (9)

where a non-Hermitian operator Ĥ ′
� and a source matrix �̂

are added to reflect the relaxation process. Ĥ ′
� accounts for

the decays of atomic states by defining

i

h̄
Ĥ ′

� = − i

2

32∑
l=1

�l |l〉〈l| = − i

2

(
γp

16∑
l=1

|l〉〈l| + �

32∑
l=17

|l〉〈l|
)

,

(10)

where �l is the total decay rate of a sublevel |l〉 and is a
value that depends on several experimental parameters (e.g.,
the pressure of buffer gas, temperature, and the coating sit-
uation of the cell wall). For simplicity, we assume that all
excited states have the same decay rate �, namely, �l = � for
l = 17, . . . , 32, which can be estimated from the profile of
the absorption spectrum. Similarly, the relaxation rates of all
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FIG. 2. Schematic diagrams of the relaxation mechanism be-
tween ground levels. (a) The uniform relaxation process. (b) The
magnetic dipole relaxation process.

ground hyperfine states are assumed to be γp, namely, �l = γp

for l = 1, . . . , 16, which is estimated from the width of the
CPT spectrum.

On the other hand, the source matrix �̂ contains nonzero
diagonal elements that account for the influx of atoms decay-
ing from other states, as follows:

�̂ =
32∑

l=1

�l (�1ρ11, �2ρ22, . . . , �32ρ3232)|l〉〈l|. (11)

�l represents the total influx rate of |l〉, which is a function
of the product of decay rate �m and the population ρmm of
state |m〉. We ignore the influx rates into the excited states
because these are by far smaller than those into the ground
states; �l = 0 for l = 17, . . . , 32. We assume that the decay
process from an excited state |n〉 to a ground state |m〉 is
governed by cesium-nitrogen collisions, which would have
the dipole-quadrupole interaction, whose decay rates are set
to be proportional to the 2/3 power of the normalized dipole
matrix element [28]. As for the relaxation between magnetic
sublevels of the ground states, we consider two different pro-
cesses, depending on the experimental conditions. One is a
uniform relaxation process [24] [illustrated in Fig. 2(a)] that
is mainly caused by diffusion of Cs atoms, namely collisional
relaxation between Cs and wall surfaces, and the replacement
of atoms in the optical path with those in thermal equilibrium
outside the optical path. The source matrix for the uniform
relaxation process �

(uni)
l is written as

�
(uni)
l =

16∑
m = 1,m 
= l

1

15
γ (uni)

p ρmm+
32∑

n = 17

T 2/3
nl∑16

k = 1 T 2/3
nk

�ρnn

for l = 1, . . . , 16, (12)

where γ (uni)
p is the decay rate of a ground state |m〉 for

m = 1, . . . , 16. The first and second terms represent the in-
fluxes from ground states other than itself and from the excited
states, respectively. Tnl is the normalized dipole matrix ele-
ment, which satisfies

∑16
l=1 T 2

nl = 1.
The other relaxation process is caused by the spin-

exchange collision between Cs atoms and the collision of Cs
atoms with the buffer gas, where the angular momentum of
the buffer gas causes a similar action to that of a random

magnetic field on the Cs atoms [29,30]. Here we represent this
repopulation process as the magnetic dipole relaxation. The
transition distribution in its source matrix �

(M1)
l is propor-

tional to the square of the Clebsch-Gordan coefficient [25]:

�
(M1)
l =

16∑
m = 1,m 
= l

T̃ 2
nlγ

(M1)
p ρmm +

32∑
n = 17

T 2/3
nl∑16

k = 1 T 2/3
nk

�ρnn

for l = 1, . . . , 16. (13)

Here, T̃ 2
ml = T 2

ml/(1−T 2
mm), which satisfies

∑16
l=1,l 
=m T̃ 2

ml = 1.
It will be necessary to estimate how these processes contribute
to the relaxation in the experimental system.

The Liouville equation (9) for each matrix element is writ-
ten as

∂

∂t
ρlm = 〈l| ∂

∂t
ρ̂|m〉 = −

[
�l + �m

2
+ i(δl − δm)

]
ρlm

+ i

2

32∑
u=1

(�luρum − ρlu�um) + �lδlm, (14)

where δlm is Kronecker’s symbol. These equations are re-
arranged as a vector matrix equation in the form ∂

∂t ρ =
Mρ, where ρ is a vector consisting of 1024 elements ρlm

and M is a (1024×1024) matrix consisting of the coef-
ficients of ρlm generated from the right side of Eq. (14).
We developed a computational program to calculate steady-
state solutions for ρlm by equating ∂

∂t ρ to zero using the

condition
∑32

m=1 ρmm = 1 for a closed atomic system. From
Eqs. (11)–(14), �l should be written to satisfy the population
conservation,

∑32
m=1

∂
∂t ρmm = 0.

In this calculation of the Liouville equation with a mul-
tilevel model, we ignore other sideband lights except for
the positive and negative first-order sidebands, and we set
E1(t ) = E2(t ) = E (t )/

√
2 for simplicity. At the steady-state

condition of Eq. (14), the population of an excited state
|n〉(n = 17, . . . , 32), ρnn, is written as

ρnn = −
16∑

l=1

Im(�nlρln)

�n
. (15)

Then, the difference between the sums of the populations of
the excited states

∑32
n=17 ρnn on resonance and off resonance is

proportional to the experimentally observed amplitude of the
CPT resonance.

B. Line shape, width, and light shift

We reveal how the formulations for the line shape, width,
and light shift of the CPT resonance spectrum are guided from
the present multilevel atomic model. Here, we assume that the
lower ground level |g〉(g = 1, . . . , 7) and the upper ground
level |e〉(e = 8, . . . , 16) constitute the CPT resonance. As a
necessary condition for CPT resonance to be observed, there
exists at least one excited level |i〉(i = 17, . . . , 32) such that
the Rabi frequency determined by the given excitation light
is �gi 
= 0 and �ei 
= 0. Substituting l = g and m = e into
Eq. (13), the coherence ρge excited between the ground-state
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sublevels, |g〉 and |e〉, can be written as[
�g + �e

2
+ i(δg − δe)

]
ρge = i

2

32∑
u=17

(�guρue − �∗
euρgu), (16)

where u refers to one of the excited levels.
Since �u = � � �g or �e for any of the excited levels |u〉(u = 17, . . . , 32), we define optical decoherence as γ f = �

2
∼=

�u+�g

2
∼= �u+�e

2 . ρue and ρgu are then written as

ρue = i

2

�∗
guρge + ∑16

s=1,s 
=g �∗
suρse − ∑32

t=17 �∗
etρut

γ f + i(δu − δe)
,

ρgu = i

2

−�euρge + ∑32
t=17 �gtρtu − ∑16

s=1,s 
=g �suρgs

γ f − i(δu − δg)
. (17)

We substitute these into the right-hand side of Eq. (16) and transfer the term containing ρge to the left-hand side. Then, ρge is
solved to be

ρge =
− 1

4

∑32
u=17

[
�gu

(∑16
s=1,s 
=g �∗

suρse−
∑32

t=17 �∗
et ρut

)
γ f +i(δu−δe ) + �∗

eu

(∑16
s=1,s 
=g �suρgs−

∑32
t=17 �gt ρtu

)
γ f −i(δu−δg)

]
�width + i(δg − δe − �LS)

(18)

where

�width = �g + �e

2
+ 1

4

32∑
u=17

[
|�gu|2γ f

γ 2
f + (δu − δe)2 + |�ue|2γ f

γ 2
f + (δu − δg)2

]
(19)

and

�LS = −1

4

32∑
u=17

[
− |�gu|2(δe − δu)

γ 2
f + (δu − δe)2 + |�ue|2(δg − δu)

γ 2
f + (δu − δg)2

]
. (20)

By replacing the numerator on the right side of Eq. (18) with C, namely

C = − γ f

4
[
γ 2

f + (�opt + �′
hfs/2)2]

[
(ρgg + ρee) + i(ρgg − ρee)

�opt + �′
hfs/2

γ f

] 23∑
u=17

�gu�
∗
eu

− γ f

4
[
γ 2

f + (�opt − �′
hfs/2)2]

[
(ρgg + ρee) + i(ρgg − ρee)

�opt − �′
hfs/2

γ f

] 32∑
u=24

�gu�
∗
eu, (21)

the real part of ρge, Re(ρge), which determines the shape of the CPT resonance curve in the case where �1�2 is a real number,
becomes

Re(ρge) = − Re(C)�width

�width
2 + (δg − δe − �LS )2 + Im(C)(δg − δe − �LS )

�width
2 + (δg − δe − �LS )2 . (22)

Here, Re(C) and Im(C) are the real part and the imaginary
part of C. The line shape of the CPT resonance as a function
of δg-δe is composed of the sum of the symmetric Lorentzian
function (first term) and the antisymmetric Lorentzian func-
tion (second term), with the width �width and the light shift
�LS . This line shape matches that obtained for the three-level
model, except for their amplitudes [Re(C) and Im(C)]. Thus,
we can derive the line shape, width, and light shift of the CPT
resonance for the multilevel atomic model. Equation (21) is
the simplified form of C in a condition where CPT resonance
frequencies are resolved clearly by the magnetic field and the
frequencies of the excitation lights are tuned to the excited
state 6P1/2F ′ = 3 or 4. Note that the term �opt + �′

hfs/2 (or
�opt − �′

hfs/2) is nearly zero when the excitation lights are

tuned to F ′ = 3 (or 4) levels. When the excitation lights are
detuned, asymmetry in the CPT spectrum appears, as reported
in [21,22,31,32]. A rigorous derivation of the CPT spectrum
in the 32-level model is presented in the Appendix.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 3, which is nearly
identical to the one described in our previous paper [20].
Magnetic materials were carefully removed from the vicinity
of the cell to reduce the inhomogeneous magnetic field and
the width of the magnetic-field-sensitive CPT resonance. The
residual inhomogeneity of the magnetic field is estimated to be
less than 0.3 µT. We utilized three Cs-vapor cells filled with
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FIG. 3. Experimental setup. VOA, variable optical attenuator;
HWP, half-wave plate; PBS, polarizing beam splitter; QWP, quarter-
wave plate; PD, photodetector.

different pressures of nitrogen buffer gas. The Cs-vapor cells
were used at room temperature and not actively controlled by
heating devices. The buffer gas pressure for each cell was
determined from the measured value of the CPT resonance
frequency shift based on the reported value of the buffer gas
shift [33]. The length of the cells was 25 mm. The pressure and
shape of used Cs-vapor cells are listed in Table I, together with
the decay rate of the ground states γp and the excited-state
relaxation rate �, whose values are necessary to calculate
the CPT resonance. γp was determined experimentally from
the CPT resonance width when the excitation light intensity
is close to zero (see Sec. IV D). We also estimated γp from
Eqs. (3.5.6) and (3.6.98) in Ref. [30] using the pressure of
the buffer gas, the configuration of the cell, the diffusion
coefficient, and temperature. We confirmed that the estimated
values of γp were consistent with experimental values in the
order of magnitudes. The excited-state relaxation rate � was
determined from the width (full width at half maximum) of
the absorption spectrum, which results from the convolution
of collision broadening and Doppler broadening [34]. The
width of the Doppler broadening at room temperature is about

TABLE I. The pressure and shape of the gas cells used in the
present experiments with the decay rate of the ground states γp

and the decay rate of the excited states �, which are determined
experimentally. The length of the cells is 25 mm. Uncertainties are
given by a standard deviation.

Parameter Cell 1 Cell 2 Cell 3

N2 pressure (kPa) 0.09 ± 0.01 1.35 ± 0.05 11.5 ± 0.4

Shape Square Circle Square
Cross section 20×20 mm2 10-mm radius 20×20 mm2

γp/2π (kHz) 24.5 ± 0.8 0.107 ± 0.006 0.081 ± 0.006
�/2π (GHz) 0.38 ± 0.03 0.51 ± 0.03 1.69 ± 0.18

360 MHz. In the present paper, uncertainties are given by a
standard deviation.

The Cs Cell was irradiated by a distributed Bragg reflector
laser beam, whose wavelength was tuned to the vicinity of
transition from 6S1/2 to 6P1/2F ′ = 3 or 4 in the D1 line of
133Cs. The laser light was modulated by an electro-optic mod-
ulator driven with a modulation frequency fm set to around
one-half of the hyperfine frequency splitting. The positive
first-order and negative first-order sideband frequencies were
used as bichromatic excitation lights ω1 and ω2, whose in-
tensities are identical. The polarization of excitation light
was changed to circular polarization or linear polarization
using a quarter-wave plate. The frequency-modulated light
was expanded to be a 7.2-mm-diameter beam at the center of
a Cs-vapor cell and passed through the cell. The intensity of
laser beam used in this experiment was less than 15 µW/mm2,
which is at most 20% of the saturation intensity of the D1

line [27].
The spectrum, amplitude, and width of the CPT resonance

were measured as a function of detuning frequency, which is
the difference from the center modulation frequency of the
(0,0) resonance. The measured CPT amplitudes were defined
by the difference of the transmitted beam intensity between on
resonance (peak) and far-off resonance in μW/mm2, which
are compared to the CPT amplitude calculated using Eq. (15)
with the experimental values of γp and �.

IV. RESULTS AND DISCUSSION

A. Dependence of the CPT spectrum on buffer-gas pressures

Figures 4(a)–4(c) show the experimental CPT spectra ob-
served in three gas cells with different buffer gas pressures
of 0.09, 1.35, and 11.5 kPa excited by circular polarization
tuned to F ′ = 4 levels. These are spectra with seven Zeeman
peaks, which correspond to the (m, m) resonance between
two ground levels of |F = 3, mF = m〉 and |4, m〉 from m =
−3 to + 3, respectively. The experimental results show how
greatly the width and the peak amplitude pattern of the CPT
resonance vary with the gas pressure of the cell. Some ex-
perimental spectra show an asymmetric feature, because the
scan speed of the frequency is too fast. In cells with higher
buffer gas pressure, the width of the CPT resonance becomes
narrower. As for the amplitude distribution of the CPT spec-
tra, the CPT resonance of (−3, −3) in the high-pressure
cell becomes more significant, which may suggest that the
population distribution among the ground states is different
depending on the buffer gas pressure.

Warren et al. calculated the CPT spectrum of 87Rb vapor
with 10-Torr (1.3-kPa) Ne buffer gas at 53 ◦C using “the
uniform relaxation” represented in Eq. (12) as a source matrix
[23]. In a different approach, Matsuda et al. calculated the
CPT spectrum of 133Cs vapor with 10-kPa Ne-Ar buffer gas
at 80 ◦C using “the magnetic dipole relaxation” represented
in Eq. (13) [25]. The two relaxations are illustrated in Fig. 2.
Here we show that such a difference in the intensity distri-
bution will be explained by a ratio of the combination of the
two relaxation processes. We assume that the relaxation rate
of the ground states γp is the sum of the relaxation rates of the
two processes γ (uni)

p and γ (M1)
p , namely, γp = γ (uni)

p + γ (M1)
p .
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FIG. 4. Zeeman CPT spectra excited with circularly polarized
lights σ−-σ− tuned to the F ′ = 4 levels at B = 22.7 µT observed
in three cells at different N2 pressures. The excitation intensities are
I1 = I2 = 6.6 µW/mm2. The scan speed of the frequency was 600
kHz/s. (a)–(c) Experimental spectra in (a) cell 1, 0.09 kPa; (b) cell
2, 1.35 kPa; and (c) cell 3, 11.5 kPa. (d)–(f) Calculated spectra with
the corresponding parameters for each gas cell of (d) cell 1, (e) cell
2, and (f) cell 3. r is the ratio of the uniform relaxation to the total
relaxation.

If we define the ratio of the uniform relaxation to the total
relaxation as r, the ratio of the magnetic dipole relaxation
is (1−r)γp. Then, the source matrix for the total relaxation
process is written as follows:

�
(uni+M1)
l =

16∑
m = 1,m 
= l

[
1

15
r + T̃ 2

nl (1−r)

]
γpρmm

+
32∑

n = 17

T 2/3
nl∑16

k = 1 T 2/3
nk

�ρnn for l = 1, . . . , 16.

(23)

As stated in Sec. III, the values of γp and � in Table I
were determined experimentally from the CPT spectra and
the absorption spectra measured for each cell, respectively.
Substituting Eq. (23) into Eq. (14), we calculated the Zeeman
CPT spectrum for each cell so as to fit to the experimental
results by changing r as a fitting parameter. Figures 4(d)–
4(f) show the CPT spectra calculated using r = 1.00, 0.60,
and 0.30 for the buffer gas pressures of 0.09, 1.35, and 11.5
kPa, respectively. The magnitude of the CPT amplitude for
calculation is defined so that the CPT amplitude of the (0,0)
resonance for 1.35 kPa is equal to the experimental one. Note
that the buffer gas shift, which is clearly seen in cell 3, is
not included in the present calculation. The three calculated
amplitude patterns of the CPT spectrum nearly reproduce

FIG. 5. Zeeman CPT spectra in cell 2 at B = 22.7 µT. N2 pres-
sure is 1.35 kPa (cell 2), and the excitation intensities are I1 = I2 =
6.6 µW/mm2. The scan speed of the frequency was 600 kHz/s. (a),
(b) Experimental [blue (gray) dot] and calculated [red (light gray)
line] CPT spectra excited with circularly polarized light σ− − σ−

tuned to (a) F ′ = 4 and (b) F ′ = 3 levels. (c) CPT spectra excited
with Lin ‖ Lin schemes tuned to F ′ = 3 level. (d) Lin ⊥ Lin
scheme tuned to F ′ = 4 level. Calculations are executed with r =
0.6, �/2π = 0.51 GHz, and γp/2π = 0.107 kHz at B = 139 µT.
The amplitude of the calculated (0,0) CPT resonance excited with
circularly polarized light σ−-σ− tuned to F ′ = 4 is normalized to
the experimental one.

those for the corresponding experimental ones, although the
calculated spectrum width for cell 1 is somewhat narrower
than the experimental width. Thus, the linewidth of CPT
resonance irradiated at a few µW/mm2 becomes wider as
� is smaller. In the present calculation using the multilevel
model, the calculated amplitude pattern was able to reproduce
the experimental pattern in each cell, but relative amplitudes
between different cells are somewhat different between them.
In order to discuss this more precisely, it will be necessary
to consider the shape of the cell and the variation along the
length of the cell.

B. First-order Zeeman CPT spectrum

In the rest of this paper, we will discuss CPT spectrum
for cell 2 (1.35 kPa). First, we study how the patterns of
the Zeeman CPT spectra are related to the excitation level
of F ′ = 3 or 4 and the polarization scheme of the excitation
lights. In Fig. 5, blue dots indicate the observed CPT spec-
tra and red solid lines indicate the calculated correspondent
spectra for r = 0.6. Then, the calculated peak amplitude of
the (0, 0) resonance excited with circularly polarized lights
σ−-σ− whose frequencies are tuned to F ′ = 4 is defined as
being equal to the experimental one, as shown in Fig. 5(a).
Figures 5(a) and 5(b) show the CPT spectra excited by σ−-σ−
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FIG. 6. The population of two ground states [blue (gray) trian-
gle] and the product of Rabi frequencies [red (light gray) star] for the
CPT resonance tuned to (a) F ′ = 4 and (b) F ′ = 3 levels. The indices
g, e, and i in the product of Rabi frequencies indicate the two ground
levels and the excited level of the corresponding � transition.

tuned to F ′ = 4 and 3, respectively. The (−3, −3) resonance
in Fig. 5(a) produces the largest signal. In contrast, a roughly
antisymmetric pattern is observed in Fig. 5(b), where the (0, 0)
resonance is the largest, and the (m, m) resonance with a
positive value of m is larger than that with a negative value.
We find the patterns obtained by calculation fairly match the
experimental patterns, except that the observed (−m, −m)
resonances become smaller than the calculated results as the
value of m increases. This is presumably due to the spatial in-
homogeneity of the magnetic field in the experimental system.

The amplitude of the Zeeman CPT spectra is determined
by the sum of populations of the ground states related to
the CPT resonance, and the product of two Rabi frequencies
corresponding to the � scheme, as shown in Eq. (21). For
each resonance signal excited to F ′ = 4 and 3 levels, the
former and latter are respectively shown by blue triangles
and red stars in Figs. 6(a) and 6(b). Though the distribution
of the sum of the populations is similar regardless of F ′ = 4
and 3 levels, the pattern of the product of Rabi frequencies
is different for the two excitations depending on the values
of their Clebsch-Gordan coefficients. Here, we note that the
(−3, −3) resonance excited to F ′ = 3 is observed in both the
numerical and experimental results even though the product of
the Rabi frequencies is zero, which is due to the contribution
from the detuned excitation to F ′ = 4 levels.

We also calculated the Zeeman CPT spectra excited with
the Lin ‖ Lin polarization scheme to F ′ = 3 levels, and with
the Lin ⊥ Lin polarization scheme to F ′ = 4 levels. They are
shown by red solid lines in Figs. 5(c) and 5(d), respectively,
with relative values to the calculated peak amplitude of the (0,
0) resonance excited by σ−-σ− tuned to F ′ = 4. In Fig. 5(c),
the present experimental result is also overlaid with blue dots.

The calculated pattern is almost identical to that observed
experimentally. The pattern of Fig. 5(d) was already shown by
the experiment with the push-pull optical pumping [17]. We
summarize the measured and calculated peak amplitudes of
the CPT resonance excited with different schemes in Table II.
The calculated ratios are in fairly good agreement with the
experimental ratios. We confirm using the present multilevel
model that the Lin ⊥ Lin polarization scheme produces the
largest amplitude of the (0, 0) CPT resonance in the D1 tran-
sition of 133Cs atoms.

C. Second-order Zeeman CPT spectrum

Depending on the strength of the quantized magnetic field,
each Zeeman CPT spectrum is split into three �-scheme reso-
nances of (m, m), (m−1, m + 1), and (m + 1, m−1) due to the
second-order Zeeman effect. The resonances of (m−1, m + 1)
and (m + 1, m−1) via m′

F = m are created by the excitation
scheme of the linear-linear polarization, whereas the (m, m)
resonance is created by two σ+ polarizations via m′

F =
m + 1, or two σ− polarizations via m′

F = m−1. For such
a double-� scheme of the (m, m) resonance generated by
the linear-linear polarization, Liu et al. derived the condition
where a dark state common to the two � schemes exists [17],
as follows:

e2iθ = �2
σ+
s′t �1

σ−
st ′

�1
σ+
st �2

σ−
s′t ′

. (24)

Here, we define level |s〉 as F = 3 and mF = m, |s′〉 as F = 4
and mF = m, |t〉 as F ′ = 3 and mF = m + 1, and |t ′〉 as F ′ =
3 and mF = m−1. θ is the angle between two electric fields.

Conversely, when the dark state for a transition is the bright
state for the other transition, the two � schemes act to weaken
each other. The condition is as follows:

e2iθ = −�1
σ+
st �1

σ−
st ′

�2
σ+
s′t �2

σ−
s′t ′

. (25)

In the case of m = 0 in the D1 transition of 133Cs, Eq. (24)
becomes e2iθ = −1. Therefore, in the Lin ⊥ Lin (or push-pull)
scheme with θ = π/2, a common dark state exists and the
(0, 0) CPT resonance occurs, along with (−1, 1) and (1, −1)
[17]. In contrast, in the Lin ‖ Lin scheme with θ = 0, no (0, 0)
CPT resonance occurs, since the dark state for one � scheme
becomes the bright state for the other. Note that in the case of
m 
= 0, Eq. (25) is still satisfied in the Lin ‖ Lin scheme with
θ = 0 and E1 = E2.

We measured in precisely the second-order Zeeman split-
ting of seven CPT resonances [Fig. 5(c)] observed in the
Lin ‖ Lin scheme. The blue dots in Fig. 7 indicate exper-
imental spectra in the vicinity of the (m, m) resonances for

TABLE II. The amplitude ratio of the CPT resonances excited with different schemes at I1 = I2 = 6.6 µW/mm2.

Parameter σ−-σ− σ−-σ− Lin ‖ Lin Lin ⊥ Lin

Excitation levels F ′ = 4 F ′ = 3 F ′ = 3 F ′ = 4
CPT resonance (0, 0) (0, 0) (−1, 1) and (1, −1) (0, 0)
Relative amplitude of experiment 1.0 0.44 3.6
Relative amplitude of calculation 1.0 0.47 3.2 17
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FIG. 7. Calculated [red (light gray) line] and experimental [navy (gray) dot] CPT spectra in cell 2 near the (m, m) resonance for m =
−3, . . . , +3, by Lin ‖ Lin excitation tuned to F ′ = 3 levels at B = 285 µT. The excitation intensities are I1 = I2 = 1.2 µW/mm2. The scan
speed of the frequency was 80 kHz/s. Calculations are executed with r = 0.6, �/2π = 0.51 GHz, and γp/2π = 0.107 kHz. The amplitude of
the calculated CPT spectra are shown with the normalization so that the calculated peak amplitude of the (−1, 1) resonance is identical to the
experimental one.

m = −3, . . . + 3 excited to F ′ = 3 levels with the Lin ‖ Lin
polarization. Except for m = 0, we can clearly observe the
(m, m) resonances. The amplitude of the (m, m) resonance
increases as the absolute value of m increases. We also cal-
culated the CPT spectrum using the multilevel model with
the normalization so that the calculated peak amplitude of the
(−1, 1) resonance is identical to the experimental one. The
calculated signal is overlaid by red solid lines in Fig. 7, and
we find that spectra of the (−1, 1) and (1, −1) resonances
agree fairly well with the experimental ones. As the value of
m increases, the peak amplitude in the experimental spectra
becomes smaller than the calculated ones. As we already
stated, it occurs due to the inhomogeneity of the magnetic

field, which is estimated to be less than 0.3 µT. Furthermore,
we confirm that the (m, m) resonances, except for m = 0,
occur in the calculated spectrum. The fact that the (m, m)
resonance except for m = 0 is not forbidden in experiment and
calculation suggests that an additional condition is required in
the double-� scheme to suppress the (m, m) resonance. We
explain this as follows.

As written in Eq. (15), a measure of transparency is∑32
n=17

∑16
l=1 Im(�nlρln). Here, we consider a double-�

scheme composed of the ground-state pair, |g〉 and |e〉, and
the excited states associated with σ+ and σ− polarizations,
|n+〉 and |n−〉. The contribution of this double-� scheme to
transmittance is given by the following:

Im(�n+gρgn+ + �n−gρgn− ) = Im

[
i�n+g

∑32
v=17 �gvρvn+ − ∑16

u=1 �un+ρgu

�g + �n+ + 2i(δg − δn+ )
+ i�n−g

∑32
v=17 �gvρvn− − ∑16

u=1 �un−ρgu

�g + �n− + 2i(δg − δn− )

]

∼= − 1

4γ f
{(|�gn+|2 + |�gn−|2)ρgg + Re[(�∗

gn+�en+ + �∗
gn−�en− )ρge]}. (26)

Here, we assume the frequencies of the excitation lights are tuned to both the n+ and n− levels, such that |δg − δn±| � γ f .
Similarly,

Im(�n+eρen+ + �n−eρen− ) ∼= − 1

4γ f
{(|�en+|2 + |�en−|2)ρee + Re[(�∗

gn+�en+ + �∗
gn−�en− )ρge]}. (27)

The term associated with ρgg or ρee is the contribution of one-photon absorption. From Eqs. (21) and (22), the term associated
with ρge is written as follows:

Re[(�∗
gn+�en+ + �∗

gn−�en− )ρge] = Re[(�∗
gn+�en+ + �∗

gn−�en− )C]�width

�width
2 + (δg − δe − �LS )2 + Im[(�∗

gn+�en+ + �∗
gn−�en− )C](δg − δe − �LS )

�width
2 + (δg − δe − �LS )2

∼= −ρgg + ρee

4γ f

�width

�width
2 + (δg − δe − �LS )2 |�∗

gn+�en+ + �∗
gn−�en−|2. (28)

Therefore, the amplitude of the CPT resonance depends on the
square of �∗

gn+�en+ + �∗
gn−�en− ≡ �σ+

1st �
∗σ+
2s′t + �σ−

1st ′�
∗σ−
2s′t ′ .

This value is zero for m = 0 but is proportional to 0.0065,
0.021, and 0.027 for m = ±1, ±2, ±3, respectively. Thus,

in order to prohibit the (m, m) CPT resonance excited to
F ′ = 3 levels with the linear-linear polarization in case of the
double-� scheme,

∑23
u=17 �gu�

∗
eu = 0 is required in addition

to the conditions of θ = 0 and E1 = E2. This condition is
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equivalent to

�1
σ+
st �∗σ+

2s′t = −�1st ′ σ−�∗σ−
2s′t ′ . (29)

D. Dependence of CPT resonance on excitation intensity

In our previous paper [20], we showed that the ampli-
tude of the (−1, 1) and (1, −1) resonances excited with the
Lin ‖ Lin polarization increases approximately in proportion
to the excitation intensity, while the amplitude of the (0, 0)
resonance excited with σ−-σ− polarization moderately satu-
rates. We concluded that the former can be described by the
simple three-level model and the latter by the four-level model
with a trap state. However, such behaviors should be explained
by one complete equation that considers all sublevels related
to the D1 line of 133Cs. In this section, we compare the ex-
perimental results of the dependency of the (−1, 1) and the
(0, 0) resonances on excitation intensity with the calculated
ones using the present multilevel model.

The width and the amplitude of the (0, 0) resonance excited
with σ−-σ− polarization tuned to F ′ = 3 and 4 levels and
those of the (−1, 1) resonance excited with the Lin ‖ Lin
polarization tuned to F ′ = 3 and 4 levels were measured for
cell 2 (N2: 1.35 kPa) and plotted as a function of the excitation
intensity in Fig. 8, by green (light gray) circles, blue (gray)
squares, red (light gray) triangles, and magenta (gray) stars,
respectively. Figure 8(a) shows the measured widths of those
resonances as a function of the excitation intensity, together
with the calculated widths using the multilevel model with the
values of �/2π = 0.51 GHz and γp/2π = 0.107 kHz. The
pink (light gray) shaded area of the calculated width for exci-
tation with the Lin ‖ Lin polarization tuned to F ′ = 3 shows
the uncertainty of ±4%. The calculated widths for excitation
with the Lin ‖ Lin polarization are in good agreement with
the experimental widths. This fact was already ascertained in
the spectra of the (−1, 1) and (1, −1) resonance of Fig. 7(d).
On the other hand, the calculated widths for excitation with
the σ−-σ− polarization are wider than the experimental width
by three times the uncertainty; however, the tendency of the
width against the excitation intensity is similar. It is found that
the width excited by the Lin ‖ Lin polarization is wider than
that excited by the σ−-σ− polarization and the width excited
to F ′ = 4 is wider than that excited to F ′ = 3. According to
Eq. (19), the width of CPT resonance becomes γp at the exci-
tation intensity of almost zero, but it increases approximately
with the slope due to the reciprocal of � as intensity increases,
as stated in Sec. IV A. Thus, the experimental decay rate of the
ground states γp/2π = 0.107 ± 0.006 kHz was obtained from
the CPT resonance width when the excitation light intensity is
close to zero.

Figure 8(b) shows the comparison of the experimental
and calculated amplitudes of CPT resonance. The amplitudes
excited by the Lin ‖ Lin polarization tuned to F ′ = 3 and 4
increase proportionally with intensity, as shown by red (light
gray) triangles and magenta (gray) stars, respectively. The
magnitude of the experimental CPT amplitude is on the order
of nW/mm2 for incident light of a few µW/mm2. The calcu-
lated amplitude excited with the Lin ‖ Lin scheme to F ′ = 3 is
fitted to the experimental one, and as shown in red line agrees
quite well with the experimental values within the uncertainty

FIG. 8. Measured and calculated widths and amplitudes of the
(0, 0) or (−1, 1) resonance for different polarization and excitation
levels as a function of the excitation intensity I at B = 139 µT. The
scan speed of the frequency was 100 kHz/s. N2 pressure is 1.35 kPa
(cell 2). Calculations are executed with r = 0.6, �/2π = 0.51 GHz,
and γp/2π = 0.107 kHz. (a), (b) The widths (a) and intensities (b)
of the CPT resonances as a function of the excitation intensity. The
calculated amplitude excited with the σ−-σ− scheme is normalized
to the experimentally measured amplitude tuned to F ′ = 4 levels,
while the calculated amplitude excited with the Lin ‖ Lin scheme
is normalized to the experimentally measured amplitude tuned to
F ′ = 3 levels. Green (light gray) circle (measured) and dotted line
(calculated): The (0, 0) resonance excited with the σ−-σ− scheme
tuned to F ′ = 3 levels. Blue (gray) square (measured) and dashed
line (calculated): The (0, 0) resonance excited with the σ− − σ−

scheme tuned to F ′ = 4 levels. Red (light gray) triangle (measured)
and solid line (calculated): The (−1, 1) resonance excited with the
Lin ‖ Lin scheme tuned to F ′ = 3 levels. Magenta (gray) star (mea-
sured) and dash-dot line (calculated): The (−1, 1) resonance excited
with the Lin ‖ Lin scheme tuned to F ′ = 4 levels.

(±20%) of the calculated amplitude, which are shown by the
pink (light gray) and shaded area. Then the calculated am-
plitude excited by the Lin ‖ Lin scheme to F ′ = 4 in magenta
line agrees with the experimental values similarly. Contrary to
this, the calculated amplitude excited with the σ−-σ− scheme
was about twice the calculated amplitudes excited with the
Lin ‖ Lin scheme. Therefore, the calculated amplitude excited
with the σ−-σ− scheme to F ′ = 4 is also fitted to the measure-
ment data, as shown in blue line. Then, we confirm that the
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FIG. 9. The calculated population of trap states for several exci-
tation schemes as a function of excitation intensity. Calculations are
executed with r = 0.6, �/2π = 0.51 GHz, and γp/2π = 0.107 kHz
at B = 139 µT, which are optimal values for cell 2. Green (light gray)
dotted line: The (0, 0) resonance excited with the σ−-σ− scheme
tuned to F ′ = 3 levels. Blue (gray) dashed line: The (0, 0) resonance
excited with the σ−-σ− scheme tuned to F ′ = 4 levels. Red (light
gray) solid line: The (−1, 1) resonance excited with the Lin ‖ Lin
scheme tuned to F ′ = 3 levels. Magenta (gray) dash-dot line: The
(−1, 1) resonance excited with the Lin ‖ Lin scheme tuned to F ′ = 4
levels.

relative relationships between F ′ = 4 and 3 are in good agree-
ment with the experimental values. Similar to our previous
results [20], the amplitude of the CPT resonance excited with
σ−-σ− polarization saturates as excitation intensity increases.
On the other hand, that excited with Lin ‖ Lin polarization
is increasing in proportion to the excitation intensity because
the excitation intensity is less than the saturation intensity
of the D1 line. For reference, we note that the absorbed in-
tensity of a cell irradiated at I = 2.5 µW/mm2 was 0.24 and
0.36 µW/mm2 for excitation by the σ−-σ− polarization tuned
to F ′ = 4 and by the Lin ‖ Lin polarization tuned to F ′ = 3,
respectively.

To investigate the difference between dependencies on the
excitation intensity for σ−-σ− excitation and Lin ‖ Lin ex-
citation, we calculated the population of trap states using the
32-level model. The state |8〉 in Fig. 1 is a trap state for the
excitation to F ′ = 4 levels, and states |1〉, |8〉, and |9〉 are trap
states for the excitation to F ′ = 3 levels. The populations of
the trap states for several excitation schemes are shown in
Fig. 9 as a function of the excitation intensity. In the case
of no excitation light, the populations of the ground states
are thermally equivalent, namely the population of the trap
state is 19% for F ′ = 3 and 6.3% for F ′ = 4. For σ−-σ−
excitation, the population of the trap state increases as the
intensity increases and reaches 60% at more than 3 µW/mm2.
In contrast, that for Lin ‖ Lin excitation does not depend on
the excitation intensity and is almost constant. These findings
clarify that the CPT amplitude for σ−-σ− excitation saturates
while the CPT amplitude for the Lin ‖ Lin excitation increases
in proportion to the excitation intensity. The population of
the trap state for the Lin ⊥ Lin excitation to F ′ = 4 levels
versus excitation intensity is almost the same as that for Lin
‖ Lin excitation to the F ′ = 4 levels. The reason why the

calculated CPT amplitude for σ−-σ− excitation deviates from
the experimental one to some extent may be that it reflects the
real population of the trap state.

Thus, the phenomena explained separately using the sep-
arate equations of a three-level system and four-level system
in the previous paper can be explained uniformly by calcu-
lation using the equations of the multilevel model. As stated
above, many phenomena can be calculated using the present
multilevel model. However, there is not a complete agree-
ment between the experimental data and the calculated results
using the present model. There are several things that need
to be considered for improvement. It would be necessary to
add spatial characteristics that reflect the Gaussian intensity
distribution of the excitation light, the attenuation of light
in the thickness direction of the gas cell, saturation effect
of the light, the spatial nonuniformity of the magnetic field,
and so on. Although we used a frequency-modulated light
for the excitation of Cs atoms in the present experiment, we
took into consideration the positive first sideband and the
negative first sideband frequencies as bichromatic light in the
present model. More precisely, the interactions with a carrier
frequency and other higher-order sideband frequencies should
be included in the model.

V. CONCLUSION

We constructed a computational multilevel atomic model
of the Liouville density-matrix equation to investigate the
CPT resonances excited by the bichromatic lights of various
excitation schemes between the ground hyperfine levels. The
model contains 32 Zeeman sublevels on the D1 line of 133Cs
atoms. We also derived formulations for the line shape, width,
and light shift of the CPT resonance spectrum analytically
from the present multilevel atomic model. By calculating
the model numerically with the experimentally determined
decay rates of the ground and excited states, the amplitude
and shape of the CPT resonance were obtained for different
excitations by circular or linear polarization. We confirmed
that the calculations accurately reproduced the experimen-
tal spectra observed in Cs-vapor cells and elucidated the
mechanism underlying various characteristics. Specifically,
we found that the Zeeman CPT spectra with different buffer
gas pressures vary due to the relaxation process. Calculation
using the present model confirmed that the observed pattern of
the first-order Zeeman CPT spectra varies depending on the
excitation scheme of polarization and the excitation level of
F ′ = 3 or 4. The (m, m) CPT resonance [except for (0, 0)] ap-
pears in the second-order Zeeman CPT spectrum in the Lin ‖
Lin excitation, which demonstrates the need for an additional
condition to prohibit the CPT resonance. We also clarified that
the amplitude for σ−-σ− excitation saturates while that for
Lin ‖ Lin excitation increases in proportion to the excitation
intensity coincident with a variation of the population of the
trap state. The qualitative saturation in σ−-σ− excitation can
be reproduced by calculation with the four-level model. How-
ever, with the 32-level model, we can further reproduce the
relative difference between the excited levels F ′ = 3 and 4,
and the difference between other excitation schemes, such as
the Lin ⊥ Lin polarization scheme. Thus, using the present
32-level model, we can know the features such as width,
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amplitude, and symmetry of the CPT resonance under various
specifications.

These findings indicate that our computational multilevel
model can help clarify the phenomena of the CPT reso-
nance and promote the development of miniature atomic clock
devices. To further improve the multilevel atomic model,
it would be necessary to add spatial characteristics of the
Gaussian intensity distribution of the excitation light, the at-
tenuation of light in the thickness direction, the saturation
effect of one-photon absorption, the spatial nonuniformity of

the magnetic field, the interaction with extra sideband lights,
and so on.
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APPENDIX: CPT SPECTRUM IN THE 32-LEVEL MODEL

Here we consider the shape of the CPT spectrum using the 32-level model. First, we introduce shorthand symbols to
represent symmetric and asymmetric Lorentz functions, namely, S (x,w) = w

x2+w2 and A(x,w) = x
x2+w2 = S (x,w) ∗ x/w. We

can find (w ± ix)−1 = S (x,w) ∓ iA(x,w). From the Liouville equation in Eq. (14), for indices g = 1, . . . , 7 and i = 17, . . . , 32,
Im(�giρig) is written as follows:

Im(�giρig) = S (δi − δg, γ f )

2

[
|�gi|2(ρgg − ρii ) + Re

(
16∑

v=8

�vi�igρgv

)
− δi − δg

γ f
Im

(
16∑

v=8

�vi�igρgv

)]
. (A1)

For simplicity, we ignore the coherence between any two magnetic sublevels in the same hyperfine state. In a similar manner,
for indices e = 8, . . . , 16 and i = 17, . . . , 32, Im(�eiρie) is written as follows:

Im
(
�eiρie

) = S (δi − δe, γ f )

2

[
|�ei|2(ρee − ρii ) + Re

(
7∑

v=1

�ei�ivρve

)
− δi − δe

γ f
Im

(
7∑

v=1

�ei�ivρve

)]
. (A2)

Here, we define transmittance T as T = 1−α
∑32

n=17

∑16
l=1 ρiiIm(�lnρnl ), where α = Natom h̄ω�

(I1+I2 )Sbeam
. Natom, h̄ω, and Sbeam are the

number of interacting atoms, the energy of a photon of the excitation light, and the cross section of the beam, respectively. Thus,
T can be written as

T = 1 −
32∑

i′=17

16∑
l ′=1

F1(l ′, i′) +
7∑

g′=1

16∑
e′=8

F2(g′, e′), (A3)

F1(l, i) = α

2�
S (δi, γ f )|�li|2(ρll − ρii ), F2(g, e) = − α

2�

32∑
i=17

S (δi, γ f )Re[�ei�igρge], (A4)

where S (δi-δg, γ f ) ∼= S (δi-δe, γ f ) is replaced with S (δi, γ f ). We also assume |δg-δe| � γ f , as this is satisfied in typical situations
for CPT resonance measurements. F1(l, i) represents the one-photon absorption from |l〉 to |i〉. F2(g, e) represents the CPT
spectrum corresponding to the resonance state of |g〉 and |e〉. We now focus on the details of the CPT spectrum, F2(g, e). From
Eq. (18),

−Re(�ig�eiρge) = S (�ge−LS,�ge−w )Re(M) + A(�ge−LS,�ge−w )Im(M), (A5)

M ∼= 1

4

32∑
u=17

S (δu − γ f )�ig�ei�gu�ue

[(
1 − i

δu − δe

γ f

)
ρee +

(
1 + i

δu − δg

γ f

)
ρgg

]
. (A6)

Here, we denote �ge−LS = δg-δe-�LS and �ge−w = �width. In cases of σ−σ , Lin ‖ Lin, or Lin ⊥ Lin excitations, one of the real
or imaginary parts of �ig�ei is zero for any values of g = 1, . . . , 7, e = 8, . . . , 16, and i = 17, . . . , 32, which can be confirmed
from Eq. (8). Thus, �ig�ei�gu�ue is a real value.

Since the Zeeman shift is negligibly small relative to the hyperfine splitting between 6P1/2F ′ = 3 and 4 levels (�′
hfs in

Fig. 1), we can rewrite S (δu, γ f ) = S (δF ′=3 = �opt + �′
hfs
2 , γ f ) for u = 17, . . . , 23 and S (δu, γ f ) = S (δF ′=4 = �opt − �′

hfs
2 , γ f )

for u = 24, . . . , 32. When the excitation lights are tuned closely to either of the F ′ = 3 or 4 levels and �′
hfs

2 � γ 2
f is satisfied, we

can assume S (δF ′=4, γ f ) <� S (δF ′=3, γ f ) or S (δF ′=3, γ f ) � S (δF ′=4, γ f ), respectively. Finally, we obtain the CPT spectrum in
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the case of excitation to F ′ = 3 and 4 levels [FF ′=3
2 (g, e) and FF ′=4

2 (g, e), respectively] as follows:

FF ′=3
2 (g, e)

= α

8�
S (δF ′=3, γ f )2

∣∣∣∣∣
23∑

i=17

�ig�ei

∣∣∣∣∣
2[
S (�ge−LS,�ge−w )(ρgg + ρee) + A(�ge−LS,�ge−w )

δF ′=3(ρgg − ρee) − δgρgg + δeρee

γ f

]
,

(A7)

FF ′=4
2 (g, e)

= α

8�
S (δF ′=4, γ f )2

∣∣∣∣∣
32∑

i=24

�ig�ei

∣∣∣∣∣
2[
S (�ge−LS,�ge−w )(ρgg + ρee) + A(�ge−LS,�ge−w )

δF ′=4(ρgg − ρee) − δgρgg + δeρee

γ f

]
.

(A8)

These are written as the sum of one symmetric and one asymmetric Lorentz function, whose width is �ge−w and whose center
is �ge−LS .
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