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We theoretically investigate nondipole effects in the reconstruction of attosecond beating by interference of
two-photon transitions (RABBIT) of helium using linearly polarized extreme ultraviolet and infrared fields. By
scanning the time delay between the two fields, we observe modulations in sidebands (SBs) both for angular-
integrated photoelectron yield and forward-backward asymmetry in photoelectron distribution along the light-
propagation direction. The SB modulations of the forward-backward asymmetry reveal Wigner and continuum-
continuum time delays of the electron wave packets ionized via nondipole paths, different from the conventional
RABBIT where only the dipole paths are involved. Furthermore, the time delays extracted from the forward-
backward asymmetry show an abrupt jump as a function of polar emission angle of photoelectrons, due to the
competition among continuum partial waves in nondipole laser-assisted photoionization.
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I. INTRODUCTION

The photoelectric effect is one of the most fundamental
quantum processes, and it has been investigated by a variety of
pump-probe spectroscopies [1–3] since the advent of attosec-
ond extreme ultraviolet (XUV) pulses [4,5]. For instance, the
reconstruction of attosecond beating by interference of two-
photon transitions (RABBIT) technique is widely employed
to monitor the electronic dynamics on its natural timescale
[6–9], using an XUV attosecond pulse train (APT) and a weak
infrared (IR) probe field [2,3]. By changing the relative time
delay between the XUV and IR fields, the photoelectron yields
of sidebands (SBs) located between the main peaks are period-
ically modulated due to the interference between the electron
wave packets ionized via different two-photon paths [5,10,11].
From the modulations of the SB signals, the relative phase
of the ionized electron wave packets can be retrieved, which
encodes the information of the laser fields [5,12] and of the
electronic motions in laser-matter interaction [3,13–16]. Once
the phase of the laser fields is known, we can obtain the in-
trinsic time delay of the electron wave packets in two-photon
above-threshold ionization [2,3]. In the absence of resonances
[17], this photoionization time delay can be approximately
separated into Wigner and continuum-continuum (CC) time
delays, respectively, corresponding to the bound-continuum
(BC) and CC transitions [2,3,18].
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For photoionization processes in the low-photon-energy
range below 100 eV, the dipole approximation (DA) is well-
grounded because electrons are ejected from the target’s
orbital of significantly small scale compared with the long
wavelength of the impinging radiation [19–21]. In the short-
wavelength regime of soft and hard x-rays, the breakdown of
the DA is observed as a forward-backward asymmetry along
the light-propagation direction in the angular distribution of
photoelectrons [20,22–26]. Particularly, the manifestation of
nondipole effects is greatly enhanced near Cooper minima
[27,28], the zeros of Fano profiles [29,30], and electric-
quadrupole resonances [31,32], where the amplitudes of
electric-dipole transitions become vanishingly small [20]. In
strong-field ionization of the long-wavelength regime, the DA
also breaks down because the electronic dynamics are signifi-
cantly influenced by the magnetic field component of the laser
fields for the photoelectrons with higher velocities [33–44].
Recently, the RABBIT measurements on helium atoms [45]
revealed nondipole effects in two-photon above-threshold ion-
ization of the long-wavelength regime [46–51]. At an IR
intensity of 5.88 × 1013 W/cm2, the electron wave packets
ionized by the two adjacent XUV bursts are shifted by 15 pm
in position due to the Lorentz force of the IR field, and thus the
photoelectron momentum distribution is modified [45]. More-
over, by observing the forward-backward asymmetry of the
photoelectron yields, a discrepancy of 15 ± 10 as is resolved
between the photoionization time delays of electric-dipole and
electric-quadrupole transitions [45].

In this work, we revisit the nondipole RABBIT mea-
surements of a helium atom using linearly polarized XUV
and weak IR fields. At low IR intensities, the strong-field
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effects from the magnetic components of the laser fields,
e.g., the Lorentz force, are negligible, which enables us
to isolate the perturbative influence of electric-quadrupole
transitions on the photoionization time delay. By varying
the time delay between the XUV and IR fields, the SB
signals of the forward-backward asymmetry along the light-
propagation direction are modulated with different phases,
compared to the angular-integrated photoelectron yields [45].
In the nondipole RABBIT scheme, BC and CC transitions
can be either electric-dipole or electric-quadrupole in two-
photon above-threshold ionization.1 According to selection
rules, the dipole (nondipole) paths have isotropic (anisotropic)
continuum partial waves over an azimuthal angle from the
spherically symmetric 1s ground state of helium. Hence, the
SB modulations in angular-integrated photoelectron spectra
only imprint the photoionization time delays of the electronic
wave packets ionized through dipole paths. However, in the
forward-backward asymmetry of photoelectron spectra, the
SB modulations result from the interference of the dipole
paths with the nondipole paths, which encode the Wigner
and CC time delays related to electric-quadrupole transitions.
Moreover, we show that the time delays extracted from the
forward-backward asymmetry exhibit sudden jumps as a func-
tion of the polar emission angle of photoelectrons, due to
the competition among continuum partial waves in nondipole
laser-assisted photoionization.

This paper is structured as follows. In Sec. II, we
introduce the nondipole time-dependent Schrödinger equa-
tion (Sec. II A) and perturbation theory including nondipole
effects (Sec. II B). In Sec. III, we analyze the numerical
results, including the photoelectron spectra (Sec. III A) and
the extracted time delays (Sec. III B). The Wigner and CC
phases in nondipole two-photon above-threshold ionization
(Sec. III C), and the propensity rules in nondipole laser-
assisted photoionization (Sec. III D), are also analyzed. We
finish with a summary in Sec. IV. The paper ends with
several Appendixes. Appendix A provides the derivations
of the Hamiltonian used in the nondipole time-dependent
Schödinger equation. Appendix B gives the derivations of
the nondipole laser-atom interaction term in “length gauge.”
Appendix C introduces the electric-dipole-magnetic-dipole
paths and their modifications to observables. Appendix D
derives the analytical CC phases of electric-quadrupole tran-
sitions in the continuum. Appendix E gives the approximated
expression for the forward-backward asymmetry in the photo-
electron spectra. Atomic units are used throughout this paper
unless otherwise stated.

II. THEORY

A. Nondipole time-dependent Schrödinger equation

To uncover the electronic dynamics in photoionization, we
solve the time-dependent Schrödinger equation (TDSE) for
the helium atom. The TDSE within the single-active-electron

1The electric-dipole–magnetic-dipole paths are also allowed while
they have small contributions.

approximation is written as

i
∂�(r, t )

∂t
= H�(r, t ), (1)

where the nonrelativistic Hamiltonian is written in its
minimal-coupling form [52]

H = 1
2 [p + A(r, t )]2 + V (r) − φ(r, t ), (2)

with the scalar potential φ(r, t ) = 0. Here the canonical mo-
mentum operator and the position of the electron are p = −i∇
and r, respectively. The one-electron effective potential of the
helium atom is modeled as V (r) = −[1 + exp(−2.1325r)]/r
[53]. The vector potential of the external laser field A(r, t ) =
A(ξ = t − k̂ · r/c) contains the full spatial dependence of the
electromagnetic field, where the light-propagation direction of
the laser field is k̂ = ey in our calculation, and c = 1/α ≈ 137
is the speed of light (α is the fine structure constant). Including
nondipole effects to the first order in 1/c, the Hamiltonian in
Eq. (2) is transformed to (see Appendix A for details) [54–59]

H = 1

2
p2 + p · A(t ) + V (r)

+ 1

c
(k̂ · p)

(
p · A(t ) + 1

2
A2(t )

)
− 1

c
(k̂ · r)A(t ) · ∇V (r), (3)

where A(t ) is the laser vector potential at the position of the
nucleus, i.e., A(ξ = t ) = A(r = 0, t ).

In our calculation, the linearly polarized laser field is de-
scribed as

A(t ) = [AXUV(t ) + AIR(t − τ )]ε̂, (4)

where AXUV(t ) and AIR(t − τ ) are the vector potentials of the
XUV and IR fields, respectively. The time delay between the
two fields is τ , and the polarization of the electric field is
ε̂ = ez. The vector potential of the time-delayed IR field is
expressed as

AIR(t − τ ) = Aω
A
IR(t ; τ ) sin[ω(t − τ )], (5a)

with the envelope function


A
IR(t − τ ) = exp

[
−2 ln 2

(t − τ )2

τ 2
IR

]
. (5b)

Here Aω is the amplitude of the field. In our numerical simu-
lations, the central frequency ω = 1.55 eV is used for the IR
field, which corresponds to a period of T = 2π/ω = 2.69 fs.
The full width at half-maximum (FWHM) of the IR field is
τIR = 11.24T = 30.25 fs in laser intensity. The vector poten-
tial of the XUV field is modeled as an attosecond pulse train
[60]

AXUV(t ) =
5∑

n=−5

A�

A,(n)
APT 


A,(n)
XUV (t ) sin[ωXUV(t − nT/2)],

(6a)

where the relative amplitude of the nth XUV pulse in the pulse
train is



A,(n)
APT = exp

[
−2 ln 2

(nT/2)2

τ 2
APT

]
, (6b)
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and the envelope function of the nth XUV pulse is



A,(n)
XUV (t ) = (−1)n exp

[
−2 ln 2

(t − nT/2)2

τ 2
XUV

]
. (6c)

Here A� is the amplitude of the field. In our simulations, the
central frequency ωXUV = 25ω is used for the XUV field. The
FWHM durations of the XUV attosecond pulses and the APT
composed of 11 XUV bursts are τXUV = 0.08T = 0.2153 fs
and τAPT = 1.5T = 4.0361 fs in laser intensity, respectively.

The wave function of the TDSE is expanded as a partial
wave series

�(r, t ) =
lmax∑
l=0

lmax∑
m=−lmax

Yl,m(θ, ϕ)
Rl,m(r, t )

r
, (7)

where Yl,m(θ, ϕ) are spherical harmonics with polar angle θ

and azimuthal angle ϕ, and Rl,m(r, t ) is the radial part of
the wave function. The angular momentum quantum number
and the magnetic quantum number are denoted as l and m,
respectively. In our calculations, Rl,m(r, t ) is discretized by the
finite-element discrete variable representation method [61],
where the box size is rmax = 480.0 a.u. The numerical conver-
gence is reached with lmax = 5. The initial state of the helium
atom is obtained by imaginary-time propagation, yielding a
binding energy of I1s

p = 24.5978 eV.
The time propagation of the wave function �(r, t ) is im-

plemented by the split-Lanczos method [62,63] with the time
step �t = 0.01 a.u. In each propagation step, the wave func-
tion �(r, t ) is split into the inner part �in(r, t ) = F (r)�(r, t )
and the outer part �out (r, t ) = [1 − F (r)]�(r, t ), using an
absorbing mask function F (r) = 1 − 1/[1 + e(Rc−r)/4.0] with
Rc = 200.0 a.u. The inner part �in(r, t ) is kept in the prop-
agation governed by the full Hamiltonian H in Eq. (3), and
the outer part �out (r, t ) is approximately propagated by a
Coulomb-Volkov propagator [64]. Specifically, the ionization
amplitude of the photoelectrons with the momentum p at time
ti is obtained by projecting the outer part �out (r, ti ) on the
scattering waves of helium [53] as

f (p, ti ) = 〈
ψ scat

p (r, ti )
∣∣�out (r, ti )

〉
. (8a)

Then the total ionization amplitude at the final time t f is
expressed as

f (p) =
Nstep∑
i=1

Up(ti, t f ) f (p, ti ), (8b)

where Nstep is the number of propagation steps, and the time
evolution factor,

Up(ti, t f ) = exp

{
−i

∫ t f

ti

[
p2

2
+ p · A(t ′)

+ 1

c

(
k̂ · p

)(
p · A(t ′) + A2(t ′)

2

)]
dt ′

}
, (8c)

is expressed in terms of the Volkov phase with the nondipole
correction [40,65,66]. Finally, the ionization probability dis-
tributions are obtained as

P(p) = | f (p)|2. (8d)

B. Perturbation theory including nondipole effects

The Hamiltonian in Eq. (2) can be partitioned as H =
H0 + Hint, where the atomic Hamiltonian is H0 = p2/2 +
V (r) and the laser-atom interaction term Hint has the multi-
polar expansion under the Power-Zienau-Woolley transform
in a Coulomb gauge [67–71]. Following Refs. [31,72–77], the
effective interaction term for the field component j is given to
the first order in 1/c as (see Appendix B for the alternative
derivations in “length gauge”)

H (±)
int,j (t ) ≈ Ej (t )

(
ÔED ± ik j

2
ÔEQ

)
+ 1

2
Bj (t )ÔMD, (9)

where Ej (t ) and Bj (t ) = Ej (t )/c are the electric and magnetic
fields of linear polarizations, respectively. The superscripts
(+) and (−) denote the absorption and emission of photons,
respectively. The operators for electric-dipole and electric-
quadrupole transitions are ÔED = (ε̂ · r) = z and ÔEQ = (k̂ ·
r)(ε̂ · r) = yz, respectively. Note that the electric-quadrupole
transition has the scaling factor related to the photon mo-
mentum k j = ω j/c, with ω j > 0 the photon frequency. The
operator for the magnetic dipole transition is ÔMD = (k̂ ×
ε̂) · L = ex · L = Lx, with Lx the x-component of the angu-
lar momentum operator L = r × p. The selection rules given
by the electric-quadrupole transition operator ÔEQ = yz are
�l = 0,±2 and �m = ±1, and the selection rules given by
the magnetic-dipole transition operator ÔMD = Lx are �l =
0 and �m = ±1. In principle, the two-photon paths with
the magnetic-dipole transition followed by the electric-dipole
transition are allowed (the electric-dipole-magnetic-dipole
paths PEDMD). However, due to their small contribution
(see Appendix C for details), only the electric-dipole and
electric-quadrupole terms are discussed in the following. In
the RABBIT scheme, the ionization amplitudes are derived
by the second-order time-dependent perturbation theory as
[2,17,52,78]

A(2)
f ←i = −i

∫ ∞

−∞
dω1Ẽ2(ω f − ωi − ω1)Ẽ1(ω1)

×
∑

ν

∫ 〈ψ f |Ô|ψν〉〈ψν |Ô|ψi〉
ωi + ω1 − ων + i0+ , (10)

where |ψβ〉 denote the unperturbed states with the energy
of ωβ , i.e., H0|ψβ〉 = ωβ |ψβ〉, with β = i, ν, f corresponding
to the initial, the intermediate, and the final states, respec-
tively. The Fourier transform of the electric field is Ẽ j (ω j ) =
(2π )−1/2

∫ ∞
−∞ Ej (t )eiω j t dt ( j = 1, 2). The total transition op-

erator is Ô = ÔED ± ik jÔEQ/2. Equation (10) describes the
two-photon transition through the exchange of a photon ω1

from the field E1(t ) followed by exchanging a photon ω2

from the field E2(t ), either though electric-dipole or electric-
quadrupole transitions, where the energy-preserving condition
ω f = ωi + ω1 + ω2 is satisfied, with ω1,2 > 0 (ω1,2 < 0) cor-
responding to absorption (emission). With the monochromatic
approximation and separating the electric-dipole and electric-
quadrupole contributions, the two-photon ionization has three
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FIG. 1. The schematic of essential ionization channels in the nondipole RABBIT scheme for (a) dipole-dipole paths PDD, (b) dipole-
quadrupole paths PDQ, and (c) quadrupole-dipole paths PQD. The purple and red arrows indicate the transitions by exchanging the XUV and
IR photons, respectively. The upward (downward) arrows denote the absorption (emission) of a photon. The solid (dashed) arrows denote
the relatively more (less) probable transition according to the propensity rule in laser-assisted photoionization when comparing each step of
absorption and emission from the same state. The partial waves of each ionization channel are illustrated as the real spherical harmonics
represented on polar plots. The inset depicts the coordinate system in our discussions, where ε̂, k̂, and p̂ = (θ, ϕ), respectively, denote the
directions for the polarization of the electric field, the light-propagation, and the emission of photoelectrons.

types of paths to the first order in 1/c [31,45,46],

A(±)
DD = − i

4
EωE�e±iωτ+iφ�

∑
ν

∫ 〈ψ f |ÔED|ψν〉〈ψν |ÔED|ψi〉
ωi + � − ων + i0+ ,

A(±)
DQ = ± ω

8c
EωE�e±iωτ+iφ�

∑
ν

∫ 〈ψ f |ÔEQ|ψν〉〈ψν |ÔED|ψi〉
ωi + � − ων + i0+ ,

A(±)
QD = �

8c
EωE�e±iωτ+iφ�

∑
ν

∫ 〈ψ f |ÔED|ψν〉〈ψν |ÔEQ|ψi〉
ωi + � − ων + i0+ ,

(11)

where the amplitude of the IR electric field is Eω, and the
amplitude and the phase of the XUV harmonics are E� and
φ� = 0, respectively. The superscripts (+) and (−) denote
the absorption and emission of the IR photon after absorbing
the XUV photon, respectively. For SB 2q at the photoelectron
energy ω f = 2qω − I1s

p , the frequency of the XUV photon is
� = (2q − 1)ω [� = (2q + 1)ω] in the absorption (emission)
case. In Eqs. (11), the ionization amplitudes A(±)

DD corre-
spond to the electric-dipole BC transition followed by the
electric-dipole CC transition in two-photon above-threshold
ionization (dipole-dipole paths PDD); the ionization ampli-
tudes A(±)

DQ are related to the electric-dipole BC transition
followed by the electric-quadrupole CC transition (dipole-
quadrupole paths PDQ); and the ionization amplitudes A(±)

QD
are associated with the electric-quadrupole BC transition fol-
lowed by the electric-dipole CC transition (quadrupole-dipole
paths PQD). The magnitudes of the nondipole paths A(±)

DQ/QD

are roughly two orders less than the dipole paths A(±)
DD , due to

the existing factor 1/c. We exclude the ionization paths with
the two photons exchanged in a reversed time order due to

their negligible contribution to the observables2 focused on
here [2,79].

Figure 1 shows the essential ionization channels in the
nondipole RABBIT scheme, where the selection rules are
�m = 0 and �l = ±1 (�m = ±1 and �l = 0,±2) for
electric-dipole (electric-quadrupole) transitions. In Fig. 1(a),
the usual dipole RABBIT paths PDD [18] have two ionization
channels characterized by s0 → p0 → εs0/εd0 in both ab-
sorption and emission cases (here and hereafter the continuum
partial wave is denoted as εlm, with l the angular quantum
number and m the magnetic quantum number). As shown in
Fig. 1(b), the dipole-quadrupole paths PDQ have four possible
channels characterized by s0 → p0 → εp±1/ε f±1 in both ab-
sorption and emission cases. Similarly, the quadrupole-dipole
paths PQD have four probable channels characterized by s0 →
d−1 → εp−1/ε f−1 and s0 → d1 → εp1/ε f1 for both absorp-
tion and emission of the IR photon, as given in Fig. 1(c).
In all dipole and nondipole cases, the relative strength of
the ionization channels in each path is determined by the
propensity rule in laser-assisted photoionization [80,81]: the
angular momenta of electrons are prone to increase (decrease)
in absorbing (emitting) a photon in the continuum, as given in
Fig. 1.

2As discussed in Sec. III, the focused observables are only relevant
to the interference within the dipole paths, and to the interference
of the dipole paths with the nondipole paths. In the absence of the
resonances with bound states, the contributions of the dipole paths
with the IR photon exchanged first can be safely neglected for both
types of interferences.
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FIG. 2. (a) The angular-integrated photoelectron energy spectra obtained by solving the TDSE, as a function of time delay between the
XUV and IR fields. The intensities of the XUV and IR fields are 1 × 1013 and 1 × 1010 W/cm2, respectively. (b) The same as (a), but for
the forward-backward asymmetry of the photoelectron spectra at polar emission angle θ = 71◦ of photoelectrons. (c) The normalized 2ωτ

oscillations of photoelectron yields for SB 20 and SB 28 of the angular-integrated photoelectron spectra. (d) The same as (c), but for the
forward-backward asymmetry of the photoelectron spectra at polar emission angle θ = 71◦. The solid and dashed lines correspond to SB 20
and SB 28, respectively.

In calculation, the incoming final continuum state ψ−
p (r) =

〈r|ψ f 〉 can be further expanded on the partial wave series
as [82]

ψ−
p (r) = 1

p1/2

∞∑
l=0

l∑
m=−l

il e−iηlY ∗
l,m( p̂)RE ,l (r)Yl,m(r̂), (12)

where the asymptotic momentum is p = pp̂ with p = √
2E =√

2ω f , and the emission direction of photoelectrons is
p̂ = (θ, ϕ). The scattering phase ηl = σl + δl contains the
Coulombic phase σl = arg[�(1 + l − iZ/p)] with the effec-
tive nuclear charge Z = 1, and the phase shift δl due to the
short-range potential in the helium atom [53]. The energy-
normalized radial wave function is REl (r) with its asymptotic
behavior of

√
2/(π pr) sin[pr − lπ/2 − Z ln(2pr)/p + σl +

δl ] when r → ∞. Substituting Eq. (12) into Eqs. (11), the
ionization amplitude of different paths can be written as

A(±)
P = 1

p1/2

∑
N

e±iωτ+iφ�M(±)
P,NYL,M ( p̂). (13)

Here M(±)
P,N is the reduced ionization amplitude of a spec-

ified ionization channel of the path P ∈ {DD, DQ, QD},
which is unambiguously characterized by the ensemble of the
quantum numbers of the states throughout two-photon transi-
tions, N = {(li, mi ), (λ,μ), (L, M )}. Here li, λ, and L (mi, μ,
and M), respectively, label the angular (magnetic) quantum

numbers of the initial, the intermediate, and the final states.
The amplitudes M(±)

P,N can be separated into the angular
and radial integrals. Dealing with the infinite summation in
the radial part by the Dalgarno-Lewis method [83], the ra-
dial part is calculated using the perturbed wave functions
[84], which satisfy the inhomogeneous equation and the
boundary conditions described in Ref. [85]. Particularly, the
integration of two continuum wave functions appearing in
Eqs. (11) is calculated by using a complex coordinate rotation
method [86].

III. RESULTS

A. Photoelectron spectra

Figure 2(a) shows the usual RABBIT photoelectron energy
spectra integrated over both polar and azimuthal emission
angles of photoelectrons and as a function of the time de-
lay between the XUV and IR fields, which are obtained by
solving the TDSE within [78] and beyond the DA. Here
the intensities of the XUV and IR fields are 1 × 1013 and
1 × 1010 W/cm2, respectively. In the angular-integrated spec-
tra, the photoelectron yields of SBs 20 to 28 are modulated
at the frequency 2ω as a function of the time delay be-
tween the two fields, which imprints the relative phase of
the electron wave packets ionized via the absorption and
emission paths in Fig. 1. Figure 2(c) shows the normalized
photoelectron yields of the 2ω oscillations in SB 20 and SB
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FIG. 3. The photoionization time delays extracted from the
angular-integrated photoelectron spectra as a function of the photo-
electron energy. The orange triangles and blue circles correspond to
the results obtained by solving the TDSE beyond and within the DA,
respectively. The red squares and green rhombuses refer to the PT
results excluding and including the nondipole paths PDQ, PQD, and
PEDMD in addition to the dipole path PDD, respectively.

28, which are obtained from the Fourier transform of the
SB signals in Fig. 2(a). The 2ωτ oscillations of SB 20 are
obviously retarded with respect to SB 28, which reveals the
energy dependence of the phase of the outgoing electron wave
packets.

Figure 2(b) shows the forward-backward asymmetry of the
photoelectron yields at a polar emission angle θ = 71◦. Here
the forward-backward asymmetry is defined as the difference
of the photoelectron yields between the parallel (ϕ = π/2)
and antiparallel (ϕ = 3π/2) to the light-propagation direction
(y-axis). The amplitudes of the asymmetry in Fig. 2(b) are
two orders less (∼1/c) than the angular-integrated RABBIT
photoelectron spectra in Fig. 2(a). Interestingly, the forward-
backward asymmetry of the photoelectron yields in the SBs
also displays 2ω modulations as a function of the time delay
between the two laser fields. As shown in Fig. 2(d), the phases
of 2ωτ oscillations also depend on the photoelectron energy,
and they are obviously different from the angular-integrated
SBs in Fig. 2(c).

B. Photoionization time delays

Figure 3 shows the photoionization time delays t̄d from
SB 20 to SB 28 as a function of the photoelectron en-
ergy, which are extracted by fitting the 2ωτ oscillations of
the SB signals in angular-integrated photoelectron spectra
with S2ω

2q = B0 cos[2ω(τ − t̄d )]. For the TDSE simulations in
Fig. 2(a), the retrieved time delays are negative and they
increase with the photoelectron energy. The TDSE results
within and beyond the DA show an excellent agreement,
which indicates that the angular-integrated time delays encode
no nondipole effects. As a comparison, we use perturba-
tion theory (PT) in Sec. II B to calculate the photoelectron
yields of SBs 20 to 28 in angular-integrated photoelectron
spectra as

Ī(E2q, τ ) =
∫

d�

∣∣∣∣∣∑
P ′

(A(+)
P ′ (E2q ) + A(−)

P ′ (E2q ))

∣∣∣∣∣
2

= 1

p

∫
d�

∣∣∣∣∣ ∑
P ′,N

(e+iωτM(+)
P ′,N (E2q )YL,M ( p̂)

+ e−iωτM(−)
P ′,N (E2q )YL,M ( p̂))

∣∣∣∣∣
2

, (14)

with E2q = 2qω − I1s
p = p2/2 the energy of SB 2q, and p̂ =

(θ, ϕ) the emission direction of photoelectrons. Here we use
the same laser parameters as the TDSE simulations, and
the phases of XUV harmonics φ� are zero. For compari-
son, we calculated the angular-integrated time delays by PT
including [P ′ = {DD, DQ, QD, EDMD} in Eq. (14)] and ex-
cluding [P ′ = {DD} in Eq. (14)] the nondipole paths, which
are also shown in Fig. 3. The PT results agree well with
the TDSE results. The tiny discrepancy may be due to the
monochromatic approximation of PT in Eqs. (11) and to the
inadequate description of the CC transitions3 by the Coulomb-
Volkov propagator of TDSE in Eq. (8c) [1]. This agreement
validates our PT analysis below. Furthermore, the complete
overlap between the PT results including and excluding the
nondipole paths indicates that the angular-integrated photo-
electron yields (to the first order in 1/c) are solely due to the
interference between the absorption and emission dipole paths
P(±)

DD . This conclusion obeys the physical intuition: because the
dipole (nondipole) paths have azimuthal-isotropic (azimuthal-
anisotropic) continuum partial waves εs0 and εd0 (εp±1 and
ε f±1) according to selection rules (Fig. 1), the interference
signal (to the first order in 1/c) of the dipole paths with the
nondipole paths totally cancels out in integrating along the
azimuthal direction.

According to Eq. (14), the 2ωτ oscillations of the angular-
integrated SB 2q signals are expressed to the first order
in 1/c as

Ī2ω(E2q, τ ) ∝ |M(+)
DD,s(E2q )||M(−)

DD,s(E2q )| cos[2ωτ

+ (φ(+)
DD,s(E2q ) − φ

(−)
DD,s(E2q ))]

+ |M(+)
DD,d(E2q )||M(−)

DD,d(E2q )| cos[2ωτ

+ (φ(+)
DD,d(E2q ) − φ

(−)
DD,d(E2q ))], (15)

where the ensemble of the quantum numbers N is reduced
to the angular momentum quantum number L of the final
state, and the phases of the reduced ionization amplitudes
are φ

(±)
DD,s/d = arg(M(±)

DD,s/d ). Equation (15) indicates that, in
the angular-integrated photoelectron spectra to the first order
in 1/c, the 2ωτ oscillations of SB signals only encode the
interference between the same two partial waves separately
from the absorption (P(+)

DD ) and emission (P(−)
DD ) dipole paths

in Fig. 1, mathematically due to the orthogonality of spherical
harmonics.

3In the TDSE simulations, the boundaries Rc = 100.0 and
200.0 a.u. have been separately used in the absorbing mask function
F (r) = 1 − 1/[1 + e(Rc−r)/4.0]. The convergence of time delays was
found by using the larger boundary Rc = 200.0 a.u.
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FIG. 4. (a) The photoionization time delays as a function of polar emission angle of photoelectrons for all SBs, which are extracted from
the forward-backward asymmetry of the angular-resolved photoelectron spectra calculated by solving the TDSE including nondipole effects.
(b) The same as (a), but calculated by PT. The stars, rhombuses, triangles, circles, and squares correspond to SBs 20, 22, 24, 26, and 28,
respectively. (c) The photoionization time delay extracted from the asymmetry photoelectron spectra at polar emission angle θ = 40◦ as a
function of the photoelectron energy. (d) The same as (c), but for polar emission angle θ = 71◦. The rhombuses correspond to the TDSE
results. The circles (dots) refer to the PT results including all the paths PDD, PDQ, PQD, and PEDMD (only the paths PDD, PDQ, and PQD). The
triangles and squares refer to the PT results only including the paths PDD and PDQ, and only including the paths PDD and PQD, respectively.

Figure 4(a) shows TDSE results of the time delays ex-
tracted from the 2ωτ oscillations in the forward-backward
asymmetry at different polar emission angles. The time delays
are negative for all polar emission angles and for all SBs.

In addition, the time delays vary gently for all polar angles
except for an abrupt jump in the vicinity of θ ≈ 80◦. For
comparison, we use PT to calculate the photoelectron yields
of SBs 20 to 28 in angular-resolved photoelectron spectra as

I (E2q, θ, ϕ, τ ) =
∣∣∣∣∣∑
P ′

A(+)
P ′ (E2q, θ, ϕ, τ ) + A(−)

P ′ (E2q, θ, ϕ, τ )

∣∣∣∣∣
2

= 1

p

∣∣∣∣∣∣
∑
P ′,N

e+iωτM(+)
P ′,N (E2q )YL,M ( p̂) + e−iωτM(−)

P ′,N (E2q )YL,M ( p̂)

∣∣∣∣∣∣
2

. (16)

Then the forward-backward asymmetry of the photoelectron yields along the light-propagation direction ϕ0 = π/2 is
calculated as

Iasy(E2q, θ, τ ; ϕ0 = π/2) = I (E2q, θ, ϕ0, τ ) − I (E2q, θ, ϕ0 + π, τ ). (17)

Figure 4(b) shows the time delays as a function of polar
emission angle of photoelectrons for SBs 20 to 28, which are
extracted from the forward-backward asymmetry calculated
by Eq. (17). Here the laser parameters are the same as the
TDSE calculations. The PT results agree quantitatively with
the TDSE results in Fig. 4(a), validating our following PT
analysis of the angular-resolved time delays.

Figures 4(c) and 4(d), respectively, compare the TDSE and
PT results of the time delay extracted from the 2ωτ oscilla-
tions of the forward-backward asymmetry at polar emission

angles θ = 40◦ and 71◦, as a function of the photoelectron
energy. In both Figs. 4(c) and 4(d), the time delays are
negative and increase with the photoelectron energy. The in-
crease of the time delays with the photoelectron energy is
sharper at θ = 71◦ than that at θ = 40◦. For θ = 40◦, the
TDSE results agree well with the PT results including all the
paths PDD, PDQ, PQD, and PEDMD. In addition, the agreement
between the PT results including and excluding the magnetic-
dipole paths PEDMD [the circles and dots in Fig. 4(c)] indicates
the dominant contribution of the electric-quadrupole paths

023109-7



YIJIE LIAO et al. PHYSICAL REVIEW A 110, 023109 (2024)

PDQ and PQD. For θ = 71◦ where the photoelectron yields are
low, however, the calculated asymmetry time delays are more
sensitive to the methods and to the involvement of PEDMD

paths, as indicated by Fig. 4(d). For comparison, Figs. 4(c) and
4(d) also show the time delays calculated by PT including the
dipole paths and either one of the electric-quadrupole paths,
i.e., by separately letting P ′ = {DD, DQ} and {DD, QD} in
Eq. (16). For both θ = 40◦ and 71◦, the time delays calculated
by PT only including the PDD and PDQ (PDD and PQD) paths are
more (less) negative than those calculated by PT including all
three paths PDD, PDQ, and PQD, as well as those calculated by
TDSE. These obvious discrepancies indicate that the interfer-
ences of the dipole path PDD with both nondipole paths PDQ

and PQD have crucial contributions to the 2ωτ oscillations in
the forward-backward asymmetry.

C. Wigner phases and continuum-continuum phases

As discussed in Sec. III B, to the first order in 1/c,
the angular-integrated photoelectron spectra only encode the
phases of the dipole paths, while the forward-backward asym-
metry imprints the phase differences between the dipole
and the nondipole paths. In the following, we discuss the
phases of the dipole and the electric-quadrupole paths in
Fig. 1 (see Appendix C for details of magnetic-dipole paths
PEDMD). Within the asymptotic approximation and neglect-
ing the L-dependence of the CC phases [2], the phases of
the reduced ionization amplitudes M(±)

P,N are approximately
partitioned as (see Appendix D for details)

φ
(±)
DD,λ(E2q ) ≈ −(λ + 2)

π

2
+ ηλ(κ±) + φD

cc(k, κ±),

φ
(±)
DQ,λ(E2q ) ≈ −(λ + 1)

π

2
+ ηλ(κ±) + φQ

cc(k, κ±),

φ
(±)
QD,λ(E2q ) ≈ −λ

π

2
+ ηλ(κ±) + φD

cc(k, κ±), (18)

where the ensemble of the quantum numbers N is reduced to
the angular momentum quantum number λ of the intermediate
state. The intermediate angular momentum is λ = 1 (λ = 2)
for PDD/DQ paths (PQD path). The momentum of the final
continuum state is k = √

2E2q and the momentum of the inter-
mediate continuum state is κ± = √

2(E2q ∓ ω) for absorption
and emission, respectively. The Wigner phases corresponding
to BC transitions are the scattering phases ηλ(κ±) of the
intermediate continuum state, which contain the short-range
phase shift δλ and the Coulombic phase σλ. The CC phases are
φD

cc(k, κ±) and φQ
cc(k, κ±) for the electric-dipole and electric-

quadrupole CC transitions, respectively. Note that Eqs. (18)
have included the phases introduced by the coefficients in
Eqs. (11) and by the angular integrals of the reduced ioniza-
tion amplitudes M(±)

P,N . Including the long-range amplitude
effects [2], the analytical expressions of the CC phases are
given as (see Appendix D for details)

φD
cc(k, κ±) = arg

[
(2κ±)iZ/κ±

(2k)iZ/k

�[2 + iZ (1/κ± − 1/k)]

(κ± − k)iZ (1/κ±−1/k)

]
+ arg

[
1+ iZ

2

(
1

κ2±
+ 1

k2

)
κ± − k

1 + iZ (1/κ± − 1/k)

]
,
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FIG. 5. (a) The Wigner phases as a function of the photoelectron
energy. The circles and squares correspond to the angular momentum
quantum numbers λ = 1 and 2 of the intermediate state, respectively.
(b) The CC phases as a function of the photoelectron energy. The
upper (lower) plane corresponds to absorption (emission) of the IR
photon in the continuum. The dashed (solid) lines correspond to the
analytical results for electric-dipole (electric-quadrupole) CC tran-
sitions. The circles, triangles, and squares, respectively, correspond
to the paths PDD, PDQ, and PQD in Fig. 1, with their specific partial
waves indicated by the legend. The solid (hollow) symbols refer to
the lower (higher) final angular momentum in each path.

φQ
cc(k, κ±) = arg

[
(2κ±)iZ/κ±

(2k)iZ/k

�[3 + iZ (1/κ± − 1/k)]

(κ± − k)iZ (1/κ±−1/k)

]
+ arg

[
1+ iZ

2

(
1

κ2±
+ 1

k2

)
κ± − k

2 + iZ (1/κ± − 1/k)

]
,

(19)

where the second terms of φ
D/Q
cc (k, κ±) contain the modifica-

tions from long-range amplitude effects.
Figure 5(a) shows the Wigner phases ηλ (λ = 1, 2) as a

function of the photoelectron energy for all paths in Fig. 1.
The Wigner phases ηλ are positive and they increase with
the photoelectron energy for all paths. The Wigner phase
is larger for the PDD/DQ (λ = 1) path with electric-dipole
BC transitions at all photoelectron energies. Figure 5(b)
shows the analytical CC phases calculated by Eqs. (19) as
a function of the photoelectron energy. In the case of ab-
sorbing (emitting) the IR photon, the CC phases are positive
(negative) and decrease (increase) with the photoelectron
energy, with their values approaching zero at high photo-
electron energies. In both absorption and emission cases, the
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CC phases for the electric-quadrupole CC transition have a
larger absolute value than those for the electric-dipole CC
transition, and their difference becomes smaller with the
photoelectron energy.

To examine the accuracy of the analytical expressions of
the CC phases in Eqs. (19), we use PT to calculate the CC
phases from the radial integral R(±)

P,N of the reduced transition

amplitudes (M(±)
P,N ) as (see Appendix D for details)

φDD/QD,N
cc (k, κ±) = arg(R(±)

DD/QD,N ) − (L − λ − 1)
π

2
− ηλ(κ±) + ηL(k),

φDQ,N
cc (k, κ±) = arg(R(±)

DQ,N ) − (L − λ)
π

2
− ηλ(κ±) + ηL(k) − arg(κ± − k), (20)

where we use arg(κ+ − k) = 0 [arg(κ− − k) = −π ] for κ+ >

k [κ− < k] in the emission (absorption) case. Note that the
numerical CC phases calculated by Eqs. (20) are independent
of the magnetic quantum numbers (mi, μ, M ) of the initial,
the intermediate, and the final states. Figure 5(b) shows the
CC phases φP,N

cc calculated by Eqs. (20) as a function of
the photoelectron energy. By comparing the analytical φ

D/Q
cc

[Eqs. (19)] and the numerical φP,N
cc [Eqs. (20)] CC phases,

we conclude that the analytical expressions of the CC phases
in Eqs. (19) are more accurate for electric-quadrupole CC
transitions (PDQ paths) compared to electric-dipole CC tran-
sitions (PDD and PQD paths), as indicated by the smaller

deviations of the numerical CC phases from the analytical
ones and by the smaller L-dependencies of the numeri-
cal CC phases in Fig. 5(b). In each path, the analytical
CC phases are more accurate for emission cases and at
high photoelectron energies [2]. In these above cases, the
asymptotic approximation works better for the perturbed
wave function and the continuum wave function of the fi-
nal state in the radial integrals R(±)

P,N [2]. Correspondingly,
the approximated partition of the phases in Eqs. (18) is also
more accurate.

Using the approximated phases in Eqs. (18), the 2ωτ oscil-
lations of the SB signals in the forward-backward asymmetry
are obtained as (see Appendix E for more details)

I2ω
asy(E2q, θ, τ ; ϕ0) ∝ α(E2q, θ ; ϕ0) cos

[
2ωτ + ηλ=1(κ+) + φD

cc(k, κ+) − ηλ=1(κ−) − φQ
cc(k, κ−)

]
+ β(E2q, θ ; ϕ0) cos

[
2ωτ + ηλ=1(κ+) + φQ

cc(k, κ+) − ηλ=1(κ−) − φD
cc(k, κ−)

]
+ γ (E2q, θ ; ϕ0) cos

[
2ωτ + ηλ=1(κ+) + φD

cc(k, κ+) − ηλ=2(κ−) − φD
cc(k, κ−)

]
+ ζ (E2q, θ ; ϕ0) cos

[
2ωτ + ηλ=2(κ+) + φD

cc(k, κ+) − ηλ=1(κ−) − φD
cc(k, κ−)

]
, (21)

where the coefficients have the forms

α(E2q, θ ; ϕ0) = −8 sin ϕ0

⎡⎣ ∑
L=0,2

∣∣M(+)
DD,L(E2q )

∣∣ȲL,0(θ )

⎤⎦ ×
⎡⎣ ∑

L=1,3

∣∣M(−)
DQ,L(E2q )

∣∣ȲL,1(θ )

⎤⎦,

β(E2q, θ ; ϕ0) = −8 sin ϕ0

⎡⎣ ∑
L=1,3

∣∣M(+)
DQ,L(E2q )

∣∣ȲL,1(θ )

⎤⎦ ×
⎡⎣ ∑

L=0,2

∣∣M(−)
DD,L(E2q )

∣∣ȲL,0(θ )

⎤⎦,

γ (E2q, θ ; ϕ0) = −8 sin ϕ0

⎡⎣ ∑
L=0,2

∣∣M(+)
DD,L(E2q )

∣∣ȲL,0(θ )

⎤⎦ ×
⎡⎣ ∑

L=1,3

∣∣M(−)
QD,L(E2q )

∣∣ȲL,1(θ )

⎤⎦,

ζ (E2q, θ ; ϕ0) = −8 sin ϕ0

⎡⎣ ∑
L=1,3

∣∣M(+)
QD,L(E2q )

∣∣ȲL,1(θ )

⎤⎦ ×
⎡⎣ ∑

L=0,2

∣∣M(−)
DD,L(E2q )

∣∣ȲL,0(θ )

⎤⎦, (22)

with ϕ0 = π/2 referring to the light-propagation direction,
and the ensemble of the quantum numbers N is reduced
to the angular momentum quantum number L of the final
state. Here the relation Ȳl,−m(θ ) = (−1)mȲl,m(θ ) is used with
Yl,m(θ, ϕ) = Ȳl,m(θ )eimϕ .

In Eq. (21), the first and second (third and fourth) terms
correspond to the interference of the dipole path PDD with
the nondipole path PDQ (PQD). In addition, the nondipole

paths PDQ and PQD carry different phases in their interfer-
ence with the dipole path, because both BC [Fig. 5(a)] and
CC [Fig. 5(b)] transitions have different phases between the
electric-dipole and electric-quadrupole cases. Due to their
compensation, the measured time delays are in between the
PT results only including the dipole paths PDD and either of
the nondipole paths PDQ or PQD, as shown in Figs. 4(c) and
4(d). These different phases explain the discrepancies among
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FIG. 6. The ratios of the modules of the reduced ionization am-
plitudes M(±)

P,N with a larger final angular momentum L> to those
with a smaller final angular momentum L< for all paths in Fig. 1,
as a function of the photoelectron energy. The dashed (solid) lines
correspond to the absorption (emission) of the IR photon in the
continuum. The circles, triangles, and squares refer to the paths
PDD, PDQ, and PQD, respectively.

the PT results including different sets of paths in Figs. 4(c) and
4(d). Note that the interferences of the dipole paths with the
magnetic-dipole paths PEDMD are omitted in Eq. (21) for their
small contribution. The modification from magnetic-dipole
paths PEDMD is given in Appendix C.

Furthermore, the coefficients in Eq. (22) depend on polar
angle, which explains the difference between the asymmetry
time delays at different polar angles, as seen by comparing
Figs. 4(c) and 4(d). Note that the time delays extracted from
the asymmetry of the photoelectron yields are independent
of the choice of the asymmetry direction ϕ = ϕ0 (ϕ0 �= 0, π )
because the coefficients in Eq. (22) are all proportional to
the factor sin ϕ0 �= 0, which is verified by our TDSE and PT
calculations (not shown). Here we chose the light-propagation
direction (ϕ0 = π/2) for the maximal signal-to-noise ratio.

D. The propensity rule in laser-assisted photoionization

Figure 6 shows the ratios of the modules of the reduced
ionization amplitudes M(±)

P,N with larger (L>) and smaller
(L<) angular quantum numbers of the final states for all
paths in Fig. 1 as a function of the photoelectron energy.
For all dipole and nondipole paths, the electrons are prone
to increase (decrease) its angular momentum in absorbing
(emitting) an IR photon in the continuum [80,81], as indi-
cated by |M(+)

P,L>
|/|M(+)

P,L<
| > 1 (|M(−)

P,L>
|/|M(−)

P,L<
| < 1) at

all photoelectron energies in Fig. 6. Moreover, this propensity
for increasing or decreasing the angular momentum becomes
less with the photoelectron energy for all paths, with the
ratio |M(±)

P,L>
|/|M(±)

P,L<
| approaching the ratio of their angu-

lar integrals [81]. In addition, Fig. 6 indicates that different
paths have different degrees of propensity towards increas-
ing or decreasing the angular momentum: PQD > PDQ >

PDD for absorption (the ratios |M(+)
P,L>

|/|M(+)
P,L<

| from the
biggest to the smallest) while PDD > PQD > PDQ (the ratios
|M(−)

P,L>
|/|M(−)

P,L<
| from the smallest to the biggest) for emis-

sion.
In the following, we use the propensity rule in Fig. 6 to

interpret the abrupt jump of the angular-resolved asymmetry

time delays in Figs. 4(a) and 4(b). In PDQ and PQD cases
(PDD case), ε f±1 waves (εd0 wave) change(s) into negative
signs crossing their (its) node at polar angle θ ≈ 63.4◦ (θ ≈
54.5◦), and thus destructively interfere(s) with the positive
εp±1 waves (εs0 wave), as shown in Fig. 1. Furthermore, in
the absorption case for all paths, the negative partial waves
ε f±1 and εd0 have a bigger amplitude, with their higher an-
gular momenta, and thus they completely cancel the positive
partial waves εp±1 and εs0 when interfering. Therefore, the
coefficients α, β, γ , and ζ in Eqs. (22) exhibit values of zero
near polar angle θ ≈ 80◦ due to the competition of the partial
waves in paths P(+)

DD , P(+)
DQ , P(+)

DD , and P(+)
QD , respectively. Cor-

respondingly, sudden jumps occur in the time delays near the
zeros of the coefficients in Figs. 4(a) and 4(b).

IV. CONCLUSION

We have systematically investigated the nondipole RAB-
BIT measurement on an atom using linearly polarized XUV
and IR fields. By scanning the time delay τ between the
XUV and IR fields, we calculated the three-dimensional
photoelectron spectra to the first order in 1/c by solv-
ing the TDSE and by PT within the single-active-electron
approximation. In the RABBIT scheme beyond the DA, ei-
ther of the BC and CC transitions can be electric-dipole
or electric-quadrupole in two-photon transitions, resulting in
isotropic (anisotropic) continuum partial waves along the az-
imuthal direction for dipole-dipole (dipole-quadrupole and
quadrupole-dipole) paths.

In the photoelectron spectra integrated over both polar and
azimuthal emission angles of photoelectrons (to the first order
in 1/c), the 2ωτ oscillations of the SB signals originate purely
from the interference among the absorption and emission
dipole-dipole paths, due to the cancellation of the azimuthal-
anisotropic continuum partial waves of dipole-quadrupole
and quadrupole-dipole paths in their interference with the
azimuthal-isotropic continuum partial waves of dipole-dipole
paths. In the asymmetry of the photoelectron spectra along
the light-propagation direction (to the first order in 1/c), the
2ωτ oscillations of the SB signals mainly result from the
interference of dipole-dipole paths with dipole-quadrupole
and quadrupole-dipole paths. Hence, the time delays retrieved
from the modulating forward-backward asymmetry reveal
nondipole effects on the electronic dynamics in photoioniza-
tion. Furthermore, the extracted time delays exhibit an abrupt
jump in the vicinity of polar angle θ ≈ 80◦ due to the compe-
tition among the partial waves in the absorption paths for both
dipole and nondipole cases.

Similar to conventional RABBIT within the DA, the re-
trieved RABBIT phases can be approximately separated into
Wigner and CC phases, respectively, corresponding to the
BC and CC transitions in two-photon above-threshold ion-
ization including nondipole effects (assuming zero phases of
XUV harmonics and in the absence of resonances). Our PT
calculations revealed that dipole-quadrupole and quadrupole-
dipole paths had different photoionization time delays due
to their different Wigner and CC phases. Moreover, elec-
trons prefer to increase (decrease) the angular momentum in
absorbing (emitting) an IR photon in the continuum in the
case of nondipole two-photon above-threshold ionization, in
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accordance with the propensity rule in laser-assisted photoion-
ization within the DA.

We discussed nondipole effects in the RABBIT measure-
ment on an atom using linearly polarized laser fields. We
believe that underlying physics can be generalized to the
nondipole RABBIT using circularly polarized fields and to
more complex molecular [87] systems.
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APPENDIX A: THE HAMILTONIAN IN THE NONDIPOLE TDSE

Using A(r, t ) = A(ξ = t − k̂ · r/c) ≈ A(t ) − (k̂ · r/c)dA(t )/dt and E(t ) = −dA(t )/dt for the electric field, the Hamilto-
nian in Eq. (2) is expanded to the first order in 1/c as [55,66]

H = 1

2
[p + A(t )]2 + 1

c

(
k̂ · r

)
[p + A(t )] · E(t ) + V (r). (A1)

To dismiss the direct coupling between the position operator r and the momentum operator p, we apply a unitary transformation
U = exp(−iχ ) with a Hermitian operator χ = (k̂ · r)(p · A(t ) + 1

2 A2(t ))/c [55], which leads to a transformed wave function
�̃ = U� and the transformed Hamiltonian to the first order in 1/c (using the Baker-Campbell-Hausdorff formula eXYe−X =
Y + [X,Y ] + [X, [X,Y ]]/2! + [X, [X, [X,Y ]]]/3! + · · · ) [55]

H̃ = UHU † + i
∂U

∂t
U † = UHU † + ∂

∂t
χ ≈ 1

2

[
p + k̂

c

(
p · A(t ) + 1

2
A2(t )

)
+ A(t )

]2

+ V

(
r − 1

c
(k̂ · r)A(t )

)

≈ 1

2

[
p2 + p · A(t ) + A(t ) · p + 1

c
(k̂ · p)

(
p · A(t ) + 1

2
A2(t )

)
+ 1

c

(
p · A(t ) + 1

2
A2(t )

)
(k̂ · p) + A2(t )

]
+ V

(
r − 1

c

(
k̂ · r

)
A(t )

)
. (A2)

Here we used the relation ε̂ · k̂ = 0. This unitary transformation can be interpreted as the shifts of position and momentum
operators,

r → r̃ = r − 1

c
(k̂ · r)A(t ), p → p̃ = p + k̂

c

(
p · A(t ) + 1

2
A2(t )

)
. (A3)

Then the Hamiltonian in Eq. (A2) is further transformed into “velocity gauge” by [52]

A → A′ = A + ∇ f , φ → φ′ = φ − ∂ f /∂t, � → � ′ = exp(−i f )�, (A4a)

f =
∫ t

−∞

1

2
A2(t ′)dt ′, (A4b)

where A, φ, and � are the vector potential, the scalar potential, and the wave function, respectively. In Coulomb gauge (∇ · A =
0 or [p, A] = 0), the Hamiltonian is obtained as

H = 1

2
p2 + p · A(t ) + 1

c
(k̂ · p)

(
p · A(t ) + 1

2
A2(t )

)
+ V

(
r − 1

c
(k̂ · r)A(t )

)
. (A5)

To speed up the time propagation, the shifted potential is expanded to the first order in 1/c as V (r − (k̂ · r/c)A(t )) ≈ V (r) −
(k̂ · r)A(t ) · ∇V (r)/c [55], which gives the Hamiltonian in Eq. (3).

APPENDIX B: THE DERIVATIONS FOR SINGLE- AND TWO-PHOTON TRANSITION
MOMENTS INCLUDING NONDIPOLE EFFECTS

Applying the gauge transformation to the Hamiltonian in Eq. (A1) with the function f = −A(t ) · r in Eq. (A4a), we obtain
the Hamiltonian in “length gauge” as [66,75] H = H0 + HL

int, with the atomic Hamiltonian H0 = p2/2 + V (r). The laser-atom
interaction term is

HL
int =

[
r + 1

c
(k̂ · r)p

]
· E(t ) = HD

int + HND
int , (B1)
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where the electric-dipole contribution is HD
int = E(t ) · r = E (t )ÔED and the nondipole contribution is HND

int = (k̂ · r)E(t ) · p/c =
E (t )ÔND/c. The transition operator is Ô = ÔED + ÔND/c, which contains the electric-dipole ÔED = ε̂ · r and the nondipole
ÔND = (k̂ · r)(ε̂ · p) contributions.

In partitioning electric-quadrupole and magnetic-dipole contributions, we use the commutator p = i[H0, r] and the rela-
tion (k̂ · p)(ε̂ · r) = (ε̂ · p)(k̂ · r) + (ε̂ × k̂) · (r × p) to transform the nondipole one-photon transition moment 〈ψn|ÔND|ψm〉
between two atomic states into pure position representation:

〈ψn|ÔND|ψm〉 = 〈ψn|(k̂ · r)(ε̂ · p)|ψm〉 = i〈ψn|(k̂ · r)H0(ε̂ · r)|ψm〉 − i〈ψn|(k̂ · r)(ε̂ · r)H0|ψm〉
= −〈ψn|(k̂ · p)(ε̂ · r)|ψm〉 + i〈ψn|H0(k̂ · r)(ε̂ · r)|ψm〉 − iωm〈ψn|(k̂ · r)(ε̂ · r)|ψm〉
= −〈ψn|(k̂ · r)(ε̂ · p)|ψm〉 − 〈ψn|(ε̂ × k̂) · (r × p)|ψm〉 + i(ωn − ωm)〈ψn|(k̂ · r)(ε̂ · r)|ψm〉

= i

2
(ωn − ωm)〈ψn|(k̂ · r)(ε̂ · r)|ψm〉 + 1

2
〈ψn|(k̂ × ε̂) · (r × p)|ψm〉

= i

2
(ωn − ωm)〈ψn|ÔEQ|ψm〉 + 1

2
〈ψn|ÔMD|ψm〉,

where the denotations are given in Sec. II B. Note that the energy difference is ωn − ωm > 0 (ωn − ωm < 0) for absorption
(emission). Our results are consistent with changing the interaction term within the DA, p · A(t ) into that beyond the DA,
p · A(t )e±ik·r, in velocity gauge (+ for absorption and − for emission), as done in Refs. [47,88,89].

According to Eq. (B1), the two-photon transition moments from the initial state |ψi〉 to the final state |ψ f 〉 can include one
step of a nondipole transition either after a dipole transition [17]

M(2)
D+ND = 〈ψ f |ÔNDG+(ω′)ÔED|ψi〉, (B2)

or before a dipole transition

M(2)
ND+D = 〈ψ f |ÔEDG+(ω′)ÔND|ψi〉, (B3)

with ω′ = ωi + � and M(2)
D+ND/ND+D the reduced transition amplitudes. The retarded (G+) and advanced (G−) resolvents for the

field-free system H0 are expanded on the atomic states as [90]

G±(ω′) = (ω′ − H0 ± i0+)−1 =
∑

ν

∫ |ψν〉〈ψν |
ω′ − ων ± i0+ , (B4)

with H0|ψν〉 = ων |ψν〉. Here the resolvents satisfy the relations (G+)† = G− and (G±)−1 = ω′ − H0 ± i0+. Alternatively, the
reduced nondipole transition amplitudes M(2)

D+ND/ND+D can be expressed as [2,85]

M(2)
D+ND = 1

c
〈ρ−

f |ÔED|ψi〉,

M(2)
ND+D = 1

c
〈ψ f |ÔED|ρ+

i 〉, (B5)

where the forward- (|ρ+
β 〉) and backward-propagating (〈ρ−

β |) perturbed wave functions are defined as |ρ±
β 〉 = G±(ω′)(k̂ · r)(ε̂ ·

p)|ψβ〉 (β = i, f ). Likewise, we can transform |ρ±
β 〉 into pure position representation:

|ρ±
β 〉 = G±(ω′)(k̂ · r)(ε̂ · p)|ψβ〉 = −iG±(ω′)(k̂ · r)(ε̂ · r)H0|ψβ〉 + iG±(ω′)(k̂ · r)H0(ε̂ · r)|ψβ〉

= −iωβG±(ω′)(k̂ · r)(ε̂ · r)|ψβ〉 − G±(ω′)(k̂ · p)(ε̂ · r)|ψβ〉 + iG±(ω′)H0(k̂ · r)(ε̂ · r)|ψβ〉
= i(ω′ − ωβ )G±(ω′)(k̂ · r)(ε̂ · r)|ψβ〉 − G±(ω′)(k̂ · p)(ε̂ · r)|ψβ〉 − iG±(ω′)(ω′ − H0 ± i0+)(k̂ · r)(ε̂ · r)|ψβ〉
= i(ω′ − ωβ )G±(ω′)(k̂ · r)(ε̂ · r)|ψβ〉 − G±(ω′)(k̂ · r)(ε̂ · p)|ψβ〉 − G±(ω′)(ε̂ × k̂) · (r × p)|ψβ〉 − i(k̂ · r)(ε̂ · r)|ψβ〉

= i

2
(ω′ − ωβ )G±(ω′)ÔEQ|ψβ〉 + 1

2
G±(ω′)ÔMD|ψβ〉 − i

2
(k̂ · r)(ε̂ · r)|ψβ〉

≈ i

2
(ω′ − ωβ )G±(ω′)ÔEQ|ψβ〉 + 1

2
G±(ω′)ÔMD|ψβ〉,

with ω′ − ωβ = i� (ω′ − ωβ = ∓iω) for β = i (β = f ). In the last step, the term “(k̂ · r)(ε̂ · r)|ψβ〉” is safely neglected because
it physically means the simultaneous exchange of one electric-dipole photon plus one electric-quadrupole photon, with much
lower possibilities than the two-photon transitions via virtual states (three orders lower in our calculations). Note that our results
are consistent with the interaction term in Eq. (9) as a correspondence of the Hamiltonian under Power-Zienau-Woolley transform
in the quantum electrodynamics framework [74,77].
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APPENDIX C: THE ELECTRIC-DIPOLE–MAGNETIC-DIPOLE PATHS IN TWO-PHOTON
ABOVE-THRESHOLD IONIZATION

With the monochromatic approximation, the two-photon ionization amplitudes, corresponding to the electric-dipole BC and
the magnetic-dipole CC transitions, are given as

A(±)
EDMD(E2q, θ, ϕ, τ ) = − i

8c
EωE�e±iωτ+iφ�

∑
ν

∫ 〈ψ f |ÔMD|ψν〉〈ψν |ÔED|ψi〉
ωi + � − ων + i0+

= 1

p1/2

∑
N

e±iωτ+iφ�M(±)
EDMD,N (E2q )YL,M ( p̂), (C1)

where the denotations are given in Sec. II B. The magnetic-dipole transition operator is ÔMD = Lx = (L+ + L−)/2 in our
calculations, with L± the ladder operators L±Yl,m = √

l (l + 1) − m(m ± 1)Yl,m±1. According to the selection rules, the electric-
dipole–magnetic-dipole (ED-MD) paths have the ionization channels s0 → p0 → εp±1 in both absorption and emission cases.
The reduced ionization amplitudes for the ED-MD paths are obtained as

M(±)
EDMD,N = − i−(L−1)eiηL

16c
EωE�

∑
ν

∫ 〈RE ,L|Rν,λ〉〈Rν,λ|r|Rni,li〉
ωi + � − ων + i0+ × 〈YL,M |L+/−|Yλ,μ〉〈Yλ,μ|Y1,0|Yli,mi〉

= ± i−(L−1)eiηL

8
√

2cω
EωE�〈RE ,L|r|Rni,li〉 × 〈YL,M |Yλ,μ+1/μ−1〉〈Yλ,μ|Y1,0|Yli,mi〉, (C2)

where the ensemble of the quantum numbers N is reduced to the angular momentum quantum number L = 1 of the final state for
both emission and absorption cases because the amplitudes M(±)

EDMD,N are the same for the magnetic quantum number M = ±1
of the final state.

Like the electric-quadrupole paths PDQ/QD, the interference of the ED-MD paths PEDMD with the dipole paths PDD leads to the
2ωτ oscillations of the SB 2q signal to the first order in 1/c:

IM,2ω(E2q, θ, ϕ, τ ) ∝ 2
∑

L=0,2

∑
M ′=±1

ȲL,M=0(θ )ȲL′=1,M ′ (θ )

{−|M(+)
DD,L(E2q )||Q(−)

DD,L′=1(E2q )| cos[2ωτ + φ
(+)
DD,L(E2q ) − ηL′=1(E2q ) − M ′ϕ]

+ |M(−)
DD,L(E2q )||Q(+)

DD,L′=1(E2q )| cos[2ωτ + ηL′=1(E2q ) − φ
(−)
DD,L(E2q ) + M ′ϕ]}, (C3)

where the denotations are given in Sec. III B. In the corresponding forward-backward asymmetry of the photoelectron yields
along the direction ϕ = ϕ0, the 2ωτ oscillations of the SB 2q signal are obtained as (following similar derivations in Appendix E)

IM,2ω
asy (E2q, θ, τ ; ϕ0) = IM,2ω(E2q, θ, ϕ0, τ ) − IM,2ω(E2q, θ, ϕ0 + π, τ )

∝ 4
∑

L=0,2

∑
M ′=±1

ȲL,0(θ )Ȳ1,M ′ (θ ){−|M(+)
DD,L(E2q )||Q(−)

DD,L′=1(E2q )| cos[2ωτ + φ
(+)
DD,L(E2q ) − ηL′=1(E2q ) − M ′ϕ0]

+ |M(−)
DD,L(E2q )||Q(+)

DD,L′=1(E2q )| cos[2ωτ + ηL′=1(E2q ) − φ
(−)
DD,L(E2q ) + M ′ϕ0]}

= −8 sin ϕ0Ȳ1,1(θ )
∑

L=0,2

ȲL,0(θ ){|M(+)
DD,L(E2q )||Q(−)

DD,L′=1(E2q )| sin[2ωτ + φ
(+)
DD,L(E2q ) − ηp(E2q )]

+ |M(−)
DD,L(E2q )||Q(+)

DD,L′=1(E2q )| sin[2ωτ + ηL′=1(E2q ) − φ
(−)
DD,L(E2q )]}. (C4)

APPENDIX D: THE DERIVATIONS FOR THE PHASES OF THE TWO-PHOTON TRANSITIONS
INCLUDING NONDIPOLE EFFECTS

In this Appendix, we will derive the phases of PDQ and PQD paths following Ref. [2]. The radial integrals, R(±)
DQ/QD,N , of the

reduced transition amplitudes (M(±)
DQ/QD,N ) are

R(±)
DQ,N =

∑
ν

∫ 〈Rk,L|r2|Rν,λ〉〈Rν,λ|r
∣∣Rni,li

〉
ωi + � − ων + i0+ ,

R(±)
QD,N =

∑
ν

∫ 〈Rk,L|r|Rν,λ〉〈Rν,λ|r2
∣∣Rni,li

〉
ωi + � − ων + i0+ ,

(D1)

where Rni,li , Rν,λ, and Rk,L are the radial wave functions of the initial, the intermediate, and the final states, respectively.
The final scattering wave Rk,L has the asymptotic behavior at infinite r as Rk,L(r) → Nk

r sin[�k,L(r)], with the amplitude
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Nk ≈ √
2/(πk)[1 − Z/(2rk2)] within the Wentzel-Kramers-Brillouin (WKB) approximation and the phase �k,L(r) = kr +

Z ln(2kr)/k + ηL(k) − πL/2. Following Refs. [2,85], the corresponding perturbed wave functions and their asymptotic behav-
iors at infinite r are

|ρ (±)
DQ,N 〉 =

∑
ν

∫ |Rν,λ〉〈Rν,λ|r
∣∣Rni,li

〉
ωi + � − ων + i0+ → −πNκ±

r
exp[i�κ±,λ(r)]〈Rκ±,λ|r

∣∣Rni,li

〉
,

|ρ (±)
QD,N 〉 =

∑
ν

∫ |Rν,λ〉〈Rν,λ|r2
∣∣Rni,li

〉
ωi + � − ων + i0+ → −πNκ±

r
exp[i�κ±,λ(r)]〈Rκ±,λ|r2

∣∣Rni,li

〉
. (D2)

Following the asymptotic approximation in Ref. [2] and omitting the fast oscillating term, the integrals R(±)
DQ/QD,N are

obtained as

R(±)
QD,N =〈Rk,L|r|ρ (±)

QD,N 〉 = −π〈Rκ±,λ|r2
∣∣Rni,li

〉√ 4

π2κ±k

∫ ∞

0

[
1 − Z

2r

(
1

κ2±
+ 1

k2

)]
exp (i�κ±,λ)r sin �k,Ldr

= − π〈Rκ±,λ|r2
∣∣Rni,li

〉√ 4

π2κ±k

∫ ∞

0
exp (i�κ±,λ)r sin �k,Ldr

+ πZ〈Rκ±,λ|r2
∣∣Rni,li

〉( 1

κ2±
+ 1

k2

)√
4

π2κ±k

∫ ∞

0
exp (i�κ±,λ) sin �k,Ldr

≈ − π〈Rκ±,λ|r2
∣∣Rni,li

〉√ 1

π2κ±k
× exp

[
−πZ

2

(
1

κ±
− 1

k

)]
× 1

(κ± − k)2

× i(L−λ−1) exp [i(ηλ − ηL )] × (2κ±)iZ/κ±

(2k)iZ/k

�
[
2 + iZ

(
1
κ±

− 1
k

)]
(κ± − k)iZ (1/κ±−1/k)

×
[

1 + iZ

2

(
1

κ2±
+ 1

k2

)
κ± − k

1 + iZ (1/κ± − 1/k)

]
,

R(±)
DQ,N = 〈Rk,L|r2|ρ (±)

DQ,N 〉 = −π〈Rκ±,λ|r|Rni,li〉
√

4

π2κ±k

∫ ∞

0

[
1 − Z

2r

(
1

κ2±
+ 1

k2

)]
exp (i�κ±,λ)r2 sin �k,Ldr

= −π〈Rκ±,λ|r
∣∣Rni,li

〉√ 4

π2κ±k

∫ ∞

0
exp (i�κ±,λ)r2 sin �k,Ldr

+ πZ〈Rκ±,λ|r
∣∣Rni,li

〉( 1

κ2±
+ 1

k2

)√
4

π2κ±k

∫ ∞

0
exp (i�κ±,λ)r sin �k,Ldr

≈ −π〈Rκ±,λ|r
∣∣Rni,li

〉√ 1

π2κ±k
× exp

[
−πZ

2

(
1

κ±
− 1

k

)]

× i(L−λ)

(κ± − k)3
exp [i(ηλ − ηL )] × (2κ±)iZ/κ±

(2k)iZ/k

�
[
3 + iZ

(
1
κ±

− 1
k

)]
(κ± − k)iZ (1/κ±−1/k)

×
[

1 + iZ

2

(
1

κ2±
+ 1

k2

)
κ± − k

2 + iZ (1/κ± − 1/k)

]
,

with their phases

arg[R(±)
QD,N ] = π

2
(L − λ − 1) + ηλ(κ±) − ηL(k) + φD

cc(k, κ±),

arg[R(±)
DQ,N ] = π

2
(L − λ) + ηλ(κ±) − ηL(k) + φQ

cc(k, κ±) + arg(κ± − k). (D3)
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APPENDIX E: THE 2ωτ MODULATION OF THE FORWARD-BACKWARD ASYMMETRY IN THE SB SIGNALS

With the approximated phases in Eqs. (18), the 2ωτ oscillations of the forward-backward asymmetry at ϕ = ϕ0 given by
Eq. (17), can be written as (except for a factor 1/p)

I2ω
asy(E2q, θ, τ ; ϕ0) = I2ω(E2q, θ, ϕ0, τ ) − I2ω(E2q, θ, ϕ0 + π, τ )

∝
∑

L=0,2

∑
L′=1,3

∑
M ′=±1

4ȲL,0(θ )ȲL′,M ′ (θ )
{∣∣M(+)

DD,L(E2q )
∣∣∣∣M(−)

DQ,L′ (E2q )
∣∣ cos[2ωτ + φ

(+)
DD,λ(E2q )

−φ
(−)
DQ,λ(E2q ) − M ′ϕ0] + |M(−)

DD,L(E2q )||M(+)
DQ,L′ (E2q )| cos[2ωτ − φ

(−)
DD,λ(E2q ) + φ

(+)
DQ,λ(E2q )

+ M ′ϕ0] + |M(+)
DD,L(E2q )||M(−)

QD,L′ (E2q )| cos[2ωτ + φ
(+)
DD,λ(E2q ) − φ

(−)
QD,λ(E2q ) − M ′ϕ0]

+ |M(−)
DD,L(E2q )||M(+)

QD,L′ (E2q )| cos[2ωτ − φ
(−)
DD,λ(E2q ) + φ

(+)
QD,λ(E2q ) + M ′ϕ0]

=
∑

L=0,2

∑
L′=1,3

8 sin ϕ0ȲL,0(θ )ȲL′,1(θ )
{|M(+)

DD,L(E2q )||M(−)
DQ,L′ (E2q )| sin[2ωτ + φ

(+)
DD,λ(E2q )

− φ
(−)
DQ,λ(E2q )] − |M(−)

DD,L(E2q )||M(+)
DQ,L′ (E2q )| sin[2ωτ − φ

(−)
DD,λ(E2q ) + φ

(+)
DQ,λ(E2q )]

+ |M(+)
DD,L(E2q )||M(−)

QD,L′ (E2q )| sin[2ωτ + φ
(+)
DD,λ(E2q ) − φ

(−)
QD,λ(E2q )]

− |M(−)
DD,L(E2q )||M(+)

QD,L′ (E2q )| sin[2ωτ − φ
(−)
DD,λ(E2q ) + φ

(+)
QD,λ(E2q )]

}
=

∑
L=0,2

∑
L′=1,3

8 sin ϕ0ȲL,0(θ )ȲL′,1(θ )
{∣∣M(+)

DD,L(E2q )
∣∣∣∣M(−)

DQ,L′ (E2q )
∣∣

× sin
[
2ωτ + ηλ=1(κ+) + φD

cc(k, κ+) − ηλ=1(κ−) − φQ
cc(k, κ−) − π

2

]
− ∣∣M(−)

DD,L(E2q )
∣∣∣∣M(+)

DQ,L′ (E2q )
∣∣ sin

[
2ωτ − ηλ=1(κ−) − φD

cc(k, κ−) + ηλ=1(κ+) + φQ
cc(k, κ+) + π

2

]
+ ∣∣M(+)

DD,L(E2q )
∣∣∣∣M(−)

QD,L′ (E2q )
∣∣ sin

[
2ωτ + ηλ=1(κ+) + φD

cc(k, κ+) − ηλ=2(κ−) − φD
cc(k, κ−) − π

2

]
− ∣∣M(−)

DD,L(E2q )
∣∣∣∣M(+)

QD,L′ (E2q )
∣∣ sin

[
2ωτ − ηλ=1(κ−) − φD

cc(k, κ−) + ηλ=2(κ+) + φD
cc(k, κ+) + π

2

]}
=

∑
L=0,2

∑
L′=1,3

−8 sin ϕ0ȲL,0(θ )ȲL′,1(θ )
{∣∣M(+)

DD,L(E2q )
∣∣∣∣M(−)

DQ,L′ (E2q )
∣∣

× cos
[
2ωτ + ηλ=1(κ+) + φD

cc(k, κ+) − ηλ=1(κ−) − φQ
cc(k, κ−)

]
+ |M(−)

DD,L(E2q )||M(+)
DQ,L′ (E2q )| cos

[
2ωτ − ηλ=1(κ−) − φD

cc(k, κ−) + ηλ=1(κ+) + φQ
cc(k, κ+)

]
+ |M(+)

DD,L(E2q )||M(−)
QD,L′ (E2q )| cos

[
2ωτ + ηλ=1(κ+) + φD

cc(k, κ+) − ηλ=2(κ−) − φD
cc(k, κ−)

]
+ |M(−)

DD,L(E2q )||M(+)
QD,L′ (E2q )| cos

[
2ωτ − ηλ=1(κ−) − φD

cc(k, κ−) + ηλ=2(κ+) + φD
cc(k, κ+)

]}
.

Here the relation Ȳl,−m(θ ) = (−1)mȲl,m(θ ) is used, where Yl,m(θ, ϕ) = Ȳl,m(θ )eimϕ and Ȳl,m(θ ) = (−1)m
√

2l+1
4π

(l−m)!
(l+m)! Pm

l (cos θ ),
with Pm

l (cos θ ) the associated Legendre polynomial.
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