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A spectral minimum in the high-order harmonic generation (HHG) is of great interest, usually generated by
specific atoms or molecules. Here we show through detailed simulations that the minimum in the HHG spectrum
can be created and tuned by varying the phase-matching conditions when a gas medium is located at the focus
of a long-wavelength laser. We reveal that the minimum can be shifted spatially depending on the quantum orbit
due to its sensitivity to the phase-matching condition. We provide a formula to relate the position of the minimum
to the coherence length of HHG. We also show that the position(s) and the number of (multiple) minimum(s) can
be changed by varying the beam waist and the intensity of the driving laser. In addition, we establish the scaling
relations with the laser wavelength to maintain the spectral position of the minimum. We expect that this method
can be effectively implemented to shape the attosecond pulse in the extreme ultraviolet and soft x rays.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a well-known
nonlinear phenomenon when an intense femtosecond laser
interacts with a gas medium [1–7]. The typical spectral distri-
bution of HHG emission includes three parts: rapid decrease at
the lower orders, a plateau region with gentle intensity change,
and a cutoff region with sharply decreasing intensity. Due to
its unique and wide plateau, the spectral range of HHG can
be extended to the extreme ultraviolet (XUV) and soft x rays
[8–11], making it a favorable light source for synthesizing
attosecond pulses [12,13]. With the ultrashort time resolution
provided by such pulse, it is possible to control and detect
electron dynamics in matter [14–22]. Due to its good coher-
ence in space and time, HHG has also be widely used in
other fields, such as molecular-orbital tomography [23], HHG
spectroscopy [24], and nanoscale structure imaging [25].

The issue of generating a minimum in the HHG spectrum
has been of great interest, extensively investigated in a num-
ber of experimental and theoretical studies. For example, in
some applications, such as multispectral spectrometry [26],
element-specific coherent imaging [27], and photoionization
or photoemission experiments [28], the spectral structure of
the generated HHG spectrum is desirable to be modified,
which can be achieved by using the minimum in its spectrum.
Recently, the minimum in the HHG spectrum has been used
to shape attosecond pulses [29–32]. Such shaped pulse adds
an additional degree for controlling the electron dynamics.
For example, Fu et al. [33] showed that the laser-dressed
lineshape of Fano resonance can be rapidly modified within
the timescale of tens of attoseconds if the atomic system
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is excited by a double-peaked attosecond pulse. There are
several different ways to create the minimum in the HHG
spectrum. According to an extended version of the well-
known three-step model [34], the HHG spectrum contains the
information about the electronic structure of an atomic target,
imprinted through the photoionization cross section (PICS).
Thus one can generate the minimum in the HHG spectrum,
inheriting from the minimum in the PICS. A typical example
is the “Cooper minimum” in the PICS of Ar, which has been
observed in the HHG spectra in many experiments [35–41].
If molecules are transiently aligned by a femtosecond laser
under a nonadiabatic scheme, the minimum can also be gener-
ated in the HHG spectrum. Here we take the CO2 molecule as
an example [42–51]. Two types of the minimum exist. One is
called the “structural” minimum [42,43], which origins from
the minimum of the PICS at each fixed alignment angle, but its
position and depth could be changed by coherently averaging
over the alignment distribution. The other one is called the
“dynamical” minimum [44,45], due to interference between
the highest occupied molecular orbital (HOMO) and the inner
orbitals (such as HOMO-1, HOMO-2, and so on) in the HHG
process. Its position can be varied by changing the intensity
of the HHG driving laser. Jin and Lin [52] also showed that
the two-color laser pulse can be used to generate a shallow
minimum in the HHG spectrum of Ne under some specific
phase-matching conditions. Very recently, Li et al. [32] pro-
posed a quasi-phase-matching scheme of using two gas jets
to create and control the minimum in the HHG spectrum.
They were able to shift the position of the minimum in the
XUV by adjusting the distance between two jets when the gas
pressure is properly chosen. All approaches above have their
own limitations. It is desirable to develop other simple and
easy-operated methods to produce and tune the minimum in
the HHG spectrum of atoms.
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It is well known that the generation process of HHG in the
gas medium can be divided into two steps [53,54]. The first
one is the interaction of the atom and the local laser field,
called as the single-atom response, which can be accurately
computed by solving the time-dependent Schrödinger equa-
tion (TDSE). The second one is the macroscopic response,
including the coherent summation of harmonic emissions
from each atom in the gas medium, which can be well taken
into account by solving the Maxwell’s wave equations of
the driving laser and the generated high-harmonic field. This
step is also generally described by using the term of “phase
matching.” Since the phase-matching conditions of HHG are
very sensitive to the macroscopic parameters, such as the
laser focusing geometry, the gas-jet position, the pulse energy,
and so on, they could be used to control the structure of the
HHG spectrum. Is it possible to create the minimum in the
HHG spectrum by adjusting the phase-matching conditions
just with a single-color driving laser? Note that this scheme is
relatively easy to perform experimentally.

In this article, our main goal is to offer a feasible method to
tune the minimum generated in the HHG spectrum of atoms
with the single-color laser. We analyze how the quantum
orbits and the phase-matching conditions influence the har-
monic minimum by using the well-established HHG theory
of macroscopic propagation. Our method is based on using
the unfavorable phase-matching condition, usually avoided in
the generation of the HHG. To the best of our knowledge,
this method has not been presented by others in the literature.
This paper is organized as follows: In Sec. II, we present the
theoretical methods for simulating single-atom HHG, macro-
scopic propagation of HHG in the gas medium, and far-field
harmonic emissions. In Sec. III, we present HHG results
with the minimum after macroscopic propagation, analyze the
phase-matching conditions of high harmonics in the near field,
explain the formation of the harmonic spatial profile in the far
field, and tune the position(s) and the number of the harmonic
(multiple) minimum(s). The conclusions are given in Sec. IV.

II. THEORETICAL METHODS

A. Single-atom high-order harmonic generation response

The strong-field approximation (SFA) model proposed by
Lewenstein et al. [55] has been widely used to simulate the
single-atom response. However, there exists the difference
between high harmonics computed by the SFA and by solving
the TDSE. To solve this problem, the Lin’s group introduced
the quantitative rescattering (QRS) model [56–58], which
aims to compute the single-atom harmonic spectrum as accu-
rate as the TDSE. In the SFA model, harmonic emissions from
different quantum paths can be separated using the saddle-
point approximation. This is also known as the quantum orbit
(QO) model [56,59–62]. The QO model can also be modified
in the frame of the QRS model. The QRS model has been
validated by comparing its results with those obtained by the
TDSE as well as experimental measurements [63]. Note that
all the computed results of the single-atom response in this
paper are obtained using the QRS model.

1. Lewenstein (or strong-field approximation) model

According to the Lewenstein model under the strong-field
approximation [55,64], the time-dependent induced dipole
moment can be written in the form of the following integral:

x(t ) = − i
∫ t

−∞
dt ′

( −2π i

t − t ′ − iε

)3/2

d∗
x (ps + A(t ))

× dx(ps + A(t ′))E (t ′)e−iS(ps,t,t ′ ) + c.c., (1)

where E (t ) is the applied laser field, and A(t ) is the vector
potential. They can be related in the following:

A(t ) = −
∫ t

−∞
dt ′′′E (t ′′′). (2)

ps is the saddle-point solution for momentum, which is given
by

ps = − 1

t − t ′

∫ t

t ′
A(t ′′)dt ′′, (3)

and S(ps, t, t ′) is the classical action of the electron during
propagation in the electric field, which is expressed as

S(ps, t, t ′) =
∫ t

t ′
dt ′′

(
1

2
[ps + A(t ′′)]2 + Ip

)
. (4)

Here Ip is the ionization potential of the target, and t ′ and t are
the ionization and recombination moments of the electron, re-
spectively. Note that in Eq. (1), one can truncate the excursion
time of the electron to select contribution to the single-atom
HHG (or the electron wave packet) from different electron
returns.

For hydrogenlike atoms, the dipole matrix element describ-
ing the transition from the ground state to the continuum (or
the plane-wave state) is given by

d (p) = 〈p|d̂|g〉 = i

(
27/2(2Ip)5/4

π

)
p

(p2 + 2Ip)3 . (5)

2. Quantum orbit model

Applying the saddle-point approximation, the following
two equations can be obtained for the harmonic with the
angular frequency ω [56,59–62]:

1
2 [ps + A(t ′)]2 = −Ip, (6)

and
1
2 [ps + A(t )]2 = ω − Ip. (7)

Here the first equation corresponds to the quantum effect of
tunneling ionization of the electron, and the second equa-
tion represents emission of the photon with the energy ω by
recombination of the electron with the parent ion.

The induced-dipole moment in the frequency domain can
be expressed as

x(ω) =
∑

s

2π√
det(S′′)

( −2π i

ts − t ′
s

)3/2

d∗
x (ps + A(ts))

× dx(ps + A(t ′
s ))E (t ′

s )e−i�(ps,ts,t ′
s ), (8)

where each pair (ts, t ′
s ) determines a unique quantum orbit rep-

resented by s, the phase factor �(ps, t, t ′) = S(ps, t, t ′) − ωt ,
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and the calculation of the determinant det(S′′) is straightfor-
ward. In Eq. (8), one can select contribution to the single-atom
HHG (or the electron wave packet) either from one specific
quantum orbit or from multiple quantum orbits.

3. Quantitative rescattering model

In the QRS model [56–58], the induced-dipole moment of
an atomic target under a linearly polarized laser can be written
as

x(ω) = W (ω)d (ω), (9)

where d (ω) is the complex photorecombination (PR) transi-
tion dipole matrix element, which reflects the properties of
the target, and W (ω) is the complex microscopic wave packet,
which is mostly determined by the laser.

In the QRS model, d (ω) can be precisely calculated by
solving the time-independent Schrödinger equation under the
single-active electron (SAE) approximation, in which the in-
teraction between the electron and the atomic ion is described
by a model potential [65]. In the SFA, dSFA(ω) is obtained
by assuming that the continuum state of the ionized electron
is a plane wave as shown in Eq. (5), which is not accurate.
Meanwhile, the wave packet W(ω) in the QRS model is the
same as that in the SFA model, and it can be calculated by
using the Lewenstein model or the quantum orbit model as

W (ω) = xSFA(ω)

dSFA(ω)
, (10)

or

W (ω) = xQO(ω)

dSFA(ω)
. (11)

Here xSFA(ω) and xQO(ω) are complex induced-dipole mo-
ments, and dSFA(ω) is a pure imaginary or a pure real number.

B. Propagation equations of the high-harmonic field

We assume that the laser beam is not affected when it
is propagated in a macroscopic gas medium. By employ-
ing a moving coordinate frame (z′ = z and t ′ = t − z/c) and
applying the paraxial approximation, the Maxwell’s wave
equations for the high-harmonic field in the frequency domain
are [41,53,54,64]

∇2
⊥Ẽh(r, z′, ω) − 2iω

c

∂Ẽh(r, z′, ω)

∂z′ = −μ0ω
2P̃nl (r, z′, ω),

(12)

where

Ẽh(r, z′, ω) = F̂ [Eh(r, z′, t ′)], (13)

P̃nl(r, z′, ω) = F̂ [Pnl(r, z′, t ′)], (14)

and

Pnl(r, z′, t ′) = [n0 − ne(r, z′, t ′)]x(r, z′, t ′). (15)

Here F̂ is the Fourier transform operator acting on the tem-
poral coordinate, Pnl(r, z′, t ′) is the nonlinear polarization, n0

is the neutral atom density, and ne(r, z′, t ′) is the free electron
density. x(r, z′, t ′) is the induced-dipole moment in the time
domain obtained with a local laser field at the spatial position

(r, z′), and it can be related to x(ω) by the Fourier transform.
Once Eq. (12) is solved, the harmonic field Ẽh(r, z′, ω) at the
exit face of the gas medium is called the near-field harmonic.

C. Far-field harmonic emission

When the high harmonics are emitted from the exit of the
gas medium, they further propagate in vacuum until reaching
the spectrometer, referred to as far field. Such propagation
process from the near field to the far field can be quantitatively
described by using Huygens integral under the paraxial and
Fresnel approximations. The high harmonic in the far field is
computed by the near-field harmonic in the following:

E f
h (r f , z f , ω)

= ik
∫

Ẽh(r, z′, ω)

z f − z′ J0

(
krr f

z f − z′

)
exp

[−ik(r2 + r2
f )

2(z f − z′)

]

× rdr, (16)

where J0 is the zero-order Bessel function of the first kind, z f

and z′ are the far-field and near-field positions from the laser
focus, respectively, r f is the transverse coordinate in the far
field.

III. RESULTS AND DISCUSSION

A. Generation of the minimum in the high-order harmonic
generation spectrum after macroscopic propagation

In the simulations, the temporal electric field of the laser
pulse takes the form

E (t ) = E0cos2

(
πt

τ

)
cos(ω0t + ϕ). (17)

Here E0 is the amplitude of the peak laser field, τ is the total
duration, which is 2.75 times the full-width-at-half-maximum
(FWHM) duration of the laser pulse, ω0 is the angular fre-
quency, and ϕ is the carrier-envelope phase (CEP). We choose
that the total duration is 30 optical cycles, the wavelength is
1600 nm, and the CEP is fixed at zero. The gas target is chosen
as neon atom, whose single-atom HHG spectrum has no min-
imum. We assume that the incident laser is a Gaussian beam,
and its intensity at the laser focus is 1.5 × 1014 W/cm2 and its
beam waist is chosen as 90 µm. The gas jet with the length of
1 mm is located at the laser focus. Under these macroscopic
parameters, a minimum indeed appears in the HHG spectrum
after propagation, which is about centered in the spectrum.
Note that we are limited to the low-pressure condition in this
work. We have confirmed that such conditions require the gas
pressure to be below 10 torr, at which the self-absorption of
high harmonics can be safely neglected.

We first show the spectral intensity distributions of HHG in
the near field and in the far field in Figs. 1(a) and 1(b), respec-
tively. A clear minimum can be identified in two figures, with
the more pronounced minimum structure in the far field. The
position of the minimum varies with the radial distance or the
divergence angle, exhibiting a curved minimum structure in
the intensity distribution. We integrate the harmonic intensity
in the far field within two specific ranges of 0–1 mrad and
1.5–2.5 mrad. The resulting harmonic spectra are illustrated
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FIG. 1. Harmonic intensity distributions in the (a) near field and (b) far field. “Int.” in the label of the color bar means intensity. (c) Far-field
harmonic spectra spatially integrated within 0–1 mrad (red line) and 1.5–2.5 mrad (orange line). Single-atom harmonic spectrum (blue line)
is also shown in panel (c) for comparison. The driving laser has a wavelength of 1600 nm, a beam waist of 90 µm, and a peak intensity of
1.5 × 1014 W/cm2 at the focus. A 1-mm-long Ne gas jet is put at the laser focus.

in Fig. 1(c), clearly showing that the position of the minimum
shifts to the higher order with increasing the divergence an-
gle. We also show the single-atom HHG spectrum of Ne in
Fig. 1(c) for comparison. There is no minimum in the HHG
spectrum because no minimum exists in the PR cross sec-
tion of the Ne atom [54,66]. Thus appearance of the minimum
in the macroscopic HHG spectra is solely due to propagation
effects in the gas medium. This is different from the minimum
occurring in the HHG spectra of Ar atoms [35–41] and carbon
dioxide molecules [42–51]. Note that we have confirmed that
the minimum structure presented in Fig. 1 remains unchanged
when the SFA is used to compute the single-atom induced
dipole moments in the macroscopic HHG simulation. This is
because the properties of harmonic emissions from different
electron trajectories are solely determined by the microscopic
wave packet in Eq. (9), which does not vary from the QRS
model to the SFA. Thus, the phase-matching condition of high
harmonics also remains the same.

In general, the phase-matching conditions of HHG from
different quantum orbits are different. We thus analyze
whether the generation of the harmonic minimum depends
on the quantum orbit. In Fig. 2, we show the spatial intensity
distributions of HHG from different quantum orbits. Here we
choose the following quantum orbits: the short orbit of the first
return (S1), the long orbit of the first return (L1), the short
orbit of the third return (S3), and the long orbit of the third
return (L3). The results of the second return are not presented
because the cutoff energies of generated HHG spectra are too
small to reach the harmonic minimum. In the near field, the
position of the minimum does not change along the radial
direction (labeled by the red square) for S1 in Fig. 2(a), and
the minimum always occurs near the 101th harmonic order
(H101) within the spatial range of 0–20 µm. Meanwhile, the
minimum is clearly presented for L1, but its position is shifted
to the higher order with increasing the radial distance (see red
and black circles) in Fig. 2(b). For S3 and L3 in Figs. 2(c)
and 2(d), the minimum becomes shallow (or fuzzy), and the
general behavior is similar to that for L1. Note that the unclear
minimum displaying in the near-field intensity distribution in
Fig. 1(a) is because of overlap of harmonic emissions from
the quantum orbits of the first and the third returns. In the

far field, harmonic emissions from S1 are only located on
axis with a minimum at H101, see Fig. 2(e). For L1, S3, and
L3, the minimum clearly displays both on axis and off axis,
showing a curved structure in the spatial intensity distribution,
see Figs. 2(f)–2(h). For different quantum orbits, we integrate
the harmonic intensity in the spatial range of 0–1 mrad. The
resulting harmonic spectra are shown in Figs. 2(i)–2(l). It
clearly shows that the position of the minimum is not varied
with the quantum orbit. Thus, in Fig. 1(b), the minimum
appearing on the axis in the far field is due to all quantum
orbits, and the off-axis minimum is caused by the quantum
orbits longer than the short one in the first return.

B. Analysis of phase-matching conditions of near-field
harmonics from different quantum orbits

1. Spatial evolution of harmonic emissions from different
quantum orbits in the gas medium

We next try to understand the results from different quan-
tum orbits in the near field in Fig. 2. We plot spatial
distributions of the harmonic intensity inside the gas medium
for three selected harmonic orders in Fig. 3. Results are shown
for different quantum orbits. In the first row, for H61, har-
monic emissions from S1 are mostly distributed close to the
axis in Fig. 3(a), and we can identify the coherence length Lcoh

from the peak intensity along the propagation distance. It is
about 0.8 mm. This value decreases with the harmonic order.
As labeled in Figs. 2(e) and 2(i), Lcoh is 0.5 mm for H101,
and 0.4 mm for H131. In the second row, the radial region of
harmonic emissions from L1 is expanded with the harmonic
order, as shown by red lines with double arrows in Figs. 2(b),
2(f), and 2(j). On-axis harmonic emissions from L1 exhibit the
similar behavior to that from S1, i.e., the similar coherence
length and the similar minimum position. In the third and
fourth rows, spatial distributions of harmonic emissions from
S3 and L3 are similar to that from L1, but the emission region
along the radial direction is squeezed with multiple branches.
Figure 2 displays that the harmonic minimum from different
quantum orbits may vary with the spatial point.

023107-4



CONTROL OF A SPECTRAL MINIMUM IN HIGH-ORDER … PHYSICAL REVIEW A 110, 023107 (2024)

FIG. 2. Harmonic intensity distributions in the near field by (a) S1, (b) L1, (c) S3, and (d) L3. The red square, red arrows, red circles, and
black circles are consistent with those in Fig. 3, indicating specific positions on the exit plane of the gas jet. Far-field intensity distributions of
high harmonics generated by (e) S1, (f) L1, (g) S3, and (h) L3. The spectra by spatially integrating far-field high harmonics within 0–1 mrad
are shown in panels (i)–(l). Red dashed lines indicate the location of H101.

2. Calculation of the coherence length of high-order harmonic
generation

To analyze the phase matching of HHG, we consider two
terms: one is the induced dipole phase in the single-atom
response, and the other is the geometric phase of the driv-
ing laser. Since the laser intensity and the gas pressure are
relatively low in this work, contributions from neutral atom
dispersion and plasma to the phase matching can be ignored.
For the qth harmonic, the phase mismatch can be expressed as
[67,68]

δkq(r, z) = kq − |qk1 + K|, (18)

where kq = qω0/c, and k1 is the total wave vector of the
driving laser, which is explicitly expressed as

k1(r, z) = k0ez − ∇ϕ(r, z), (19)

where ez is the unit vector along the z direction, ϕ(r, z) is the
geometric phase of the driving laser, and k0 = ω0/c. The wave
vector K describing the spatial dependence of the single-atom
dipole phase is given by

K(r, z) = ∇ϕq,dip(r, z). (20)

Here ϕq,dip(r, z) is the intrinsic induced dipole phase accumu-
lated by the movement of the electron in the laser field. Its
dependence on the laser intensity is written as

ϕq,dip(r, z) = −αi,qI (r, z), (21)

where I (r, z) is the spatial peak intensity of the driving laser,
and the coefficient αi,q depends on the quantum orbit. The
αi,q values for various quantum orbits have been given in
Ref. [69].
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FIG. 3. Spatial evolution of the harmonic field from different quantum orbits inside the gas medium. From the top row to the bottom one,
the results are for S1, L1, S3, and L3, respectively. The first, second, and third columns are for H61, H101, and H131, respectively. The white
lines with double arrows indicate the harmonic coherence length.

Finally, the coherence length of HHG can be defined as

Lq,coh(r, z) = π∣∣δkq(r, z)
∣∣ . (22)

Spatial distributions of the coherence length of HHG for dif-
ferent orders and different quantum orbits are plotted in Fig. 4.
The first, second, and third columns are for H61, H101, and
H131, respectively. From top row to bottom one, the results
are shown for S1, L1, S3, and L3, respectively. In our HHG
simulations, the gas jet is located at the focus with the length
of 1 mm. Purple lines indicate the location of the gas jet.
The coherence length larger than 1 mm is represented by the
“white” color.

3. Analysis of coherence length maps for different quantum orbits

We then explain the spatial evolution of the harmonic in-
tensity in the gas jet presented in Fig. 3 by using the map of the
coherence length. For S1, the phase-matching condition be-
comes worse with increasing the harmonic order in Figs. 4(a),
4(e), and 4(i), the calculated coherence length at the laser

focus (as indicated in the figures) is 0.82 mm at H61, 0.49 mm
at H101, and 0.38 mm at H131. These values agree very well
with those identified from numerical simulations in Figs. 3(a),
3(e), and 3(i). We also find that the coherence length is not
changed much along the radial direction within the effective
HHG generation region for S1. This explains the growth of the
harmonic intensity along the propagation distance is similar
on axis and off axis in Figs. 3(a), 3(e), and 3(i). With the
value of the coherence length, we can determine the harmonic
minimum when the following relation is fulfilled:

d

2Lcoh
= n, (23)

where d is the thickness of the gas jet, Lcoh is the coherence
length, and n � 1 is an integer. For example, in Fig. 3(e), the
coherence length is about 0.5 mm, which satisfies Eq. (23)
with n = 1, thus the minimum occurs at H101 in Fig. 2(a).
The harmonic minimum could be located both on axis and off
axis once the Eq. (23) is satisfied. This equation is also valid
for other quantum orbits.
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FIG. 4. Maps of the coherence length (Lcoh) of different harmonics from different quantum orbits. The first, second, third, and fourth rows
are for S1, L1, S3, and L3, respectively. The first, second, and third columns show the results for H61, H101, and H131, respectively. The
length of the gas jet is labeled by vertical purple lines.

From Eqs. (20) and (21), since the gradient of the laser
intensity is zero at the laser focus, the wave vector K is zero,
i.e., at the laser focus the coherence length is only determined
by the geometric phase of the driving laser, which is the
same for different quantum orbits. Thus, for L1, S3, and L3,
the harmonic minimum also occurs at H101 on axis, labeled
by red circles in Figs. 3(f)–3(h), which is similar to that
for S1. For L1, the good phase-matching area is gradually
moved further off axis with increasing the harmonic order,
as labeled by the red lines with double arrows in Figs. 4(b),
4(f), and 4(j), which is quite different from that for S1. This
is consistent with the trend that the constant growth area of
the harmonic intensity is gradually moved up in Figs. 3(b),
3(f), and 3(j). In Fig. 3(j), there is a minimum formed off axis
when r < 20 µm, as indicated by a black circle. This can be
explained that the coherence length is close to 0.5 mm in an
off-axis position within r < 20 µm in Fig. 4(j), thus Eq. (23)
is satisfied with n = 1.

For S3 and L3, the phase-matching condition around the
laser focus is similar to that for L1. As shown in Figs. 4(c),
4(g), and 4(k) and Figs. 4(d), 4(h), and 4(l), the favorable
phase-matching area becomes narrower along the radial di-
rection compared with that for L1, and is moved up with the
harmonic order. Spatial intensity distributions of the harmonic
intensity in Figs. 3(c), 3(g), and 3(k) and Figs. 3(d), 3(h),
and 3(l) can thus be understood. The origin of the minimum
labeled by a black circle off axis in Fig. 3(k) is the same as
that in Fig. 3(j). Note that the minimum is absent in Fig. 3(l)
because the variation of the coherence length in a limited
off-axis area in Fig. 4(l) is so significant that Eq. (23) cannot
be fulfilled.

C. Formation of the harmonic spatial profile in the far field

High-order harmonics exiting from the gas jet propagate
in vacuum until the far field. The information of the phase
and intensity of the harmonic in the near field determines its
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FIG. 5. Near-field intensity profiles of (a) H61, (b) H101, and (c) H131 from rigorous propagation simulations. Similar results in the far
field are shown in panels (d)–(f). Here only high harmonics from L1 are considered. Panels (g)–(i) present modeled near-field results. Panels
(j)–(l) show the far-field intensity distributions with different α values. Peak positions in the second row can be well reproduced by red lines in
the fourth row. The α is given in the units of 10−14 rad W−1 cm2.

spatial profile or the minimum structure in the far field. We
use high harmonics generated from L1 for illustration. We first
show near-field intensity distributions for selected H61, H101,
and H131 in Figs. 5(a)–5(c), respectively. And corresponding
far-field intensity profiles of those harmonics are plotted in
Figs. 5(d)–5(f). These are used to test the model later on.

And then, we adopt a simple model to describe the intensity
and phase distributions of the harmonic in the near field. The
intensity distribution follows a Gaussian one, and its peak
shifts with the harmonic order, as shown in Figs. 5(g)–5(i),
respectively. These distributions resemble real ones in the
near field very closely. The phase distribution is described
as αI (r), where α is the coefficient and I (r) is the driving
laser intensity at the exit plane of the gas jet. The far-field
intensity distributions obtained by the model are shown in
Figs. 5(j)–5(l). As indicated by the red lines, once the proper
α is chosen, the peak position and the general spatial profile
in the far field can be accurately reproduced, compared with

those in Figs. 5(d)–5(f). One can also see that the far-field
spatial profile is very sensitive to the α value. A larger α leads
to a faster phase change along the radial direction in the near
field, resulting in a peak position with greater divergence in
the far field. From this model, we can conclude that the change
of the spatial intensity distribution in the near field is the
same as that in the far field, i.e., the peak of the Gaussian-like
distribution is shifted further off axis with the harmonic order
for L1. This means that the minimum is moved up with the
harmonic order, which has been clearly shown in Figs. 2(b)
and 2(f).

D. Control of the position(s) and the number of the harmonic
(multiple) minimum(s)

1. Variation of the laser beam waist

According to Eq. (23), the position(s) and the number of
(multiple) minimum(s) could be changed if the coherence
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FIG. 6. Far-field intensity distributions of high harmonics generated by the 1600-nm driving laser with different beam waists: (a) 60 µm,
(b) 80 µm, and (c) 100 µm. Two spatial positions of 1 and 3 mrad are marked by white dotted lines. Time-frequency analysis of harmonic
emissions at 1 mrad are displayed in panels (d)–(f), while the corresponding attosecond pulses in half an optical cycle are presented in
panels (g)–(i), which are synthesized by high harmonics above H100. The similar results at 3 mrad are shown in panels (j)–(l) and (m)–(o),
respectively.

length of HHG is changed, which can be achieved by varying
the macroscopic parameters. First, we vary the beam waist
of the driving laser, and other parameters are maintained.
Results in the far field are shown in Figs. 6(a)–6(c). When
the beam waist is 100 µm, there is only one minimum. If the
beam waist is reduced to 80 µm, two minima appear. And
there are more minimum structures when the beam waist is
decreased to 60 µm, but the minimum structure is not clear
in the lower orders. We choose two divergence angles of 1
and 3 mrad to illustrate the features of the time-frequency
picture of harmonic emissions and the synthesized attosecond
pulses.

At 1 mrad, the time-frequency analysis shows that har-
monic emissions from S1 are stronger than that from L1 in
Fig. 6(d), with minima clearly appearing around H100 and

H140. The corresponding attosecond pulse by synthesizing
the high harmonics above H100 has four peaks in half an
optical cycle in Fig. 6(g). Among them, the first two peaks
are from S1 while the last two are from L1. We have checked
that there is only one peak in each half optical cycle in the
attosecond pulse train (APT) of the single-atom response. In
Fig. 6(e), the time-frequency harmonic emissions show three
divided parts over half an optical cycle above H100, and three
major peaks are displayed in the synthesized attosecond pulse
in Fig. 6(h). In Fig. 6(f), harmonic emissions in the cutoff
region are stronger, which are spectrally separated from emis-
sions of S1 and L1 by the minimum. The resulting attosecond
pulse in Fig. 6(i) is separated into two parts, with the first weak
one from S1 and the second strong one from merged S1 and
L1. At 3 mrad, the position of the minimum changes. From
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FIG. 7. (a) Intensity distributions of far-field harmonics by the 1600-nm laser with a peak intensity of 2.5 × 1014 W/cm2 at the focus.
Time-frequency picture of harmonic emissions at (b) 1 mrad and corresponding attosecond pulses synthesized by (c) high harmonics above
H100. The similar results by changing the intensity as 3.5 × 1014 W/cm2 are shown in panels (d)–(f), respectively.

Figs. 6(j) and 6(m), there are three separated parts in each
half cycle above H100 in the time-frequency picture, corre-
sponding to the first burst (red line) from S1, the second one
(blue line) from merged S1 and L1, and the third one (green
line) from L1 in the attosecond pulse. There is no minimum
in Figs. 6(k) and 6(l). Thus the main burst in the attosecond
pulse is from L1 (green lines) in Figs. 6(n) and 6(o).

Therefore, the position(s) and the number of (multiple)
minimum(s) in the far field can be adjusted by varying the
laser beam waist. In the time domain, this can be used to shape
the profile of the attosecond pulse and change the width of the
emission burst in the APT. Note that the minimum in the HHG
spectrum cannot be created if the laser beam waist is set too
small.

2. Variation of the laser intensity

We then check how the minimum structure in the HHG
spectrum is influenced by the laser intensity. We change
the intensity to 2.5 × 1014 W/cm2 and fix other parameters.
The resulting harmonic intensity distribution in the far field
is shown in Fig. 7(a), and the time-frequency analysis of
harmonic emissions and the profile of the attosecond pulse
(synthesized by high harmonics above H100) at 1 mrad are
shown in Figs. 7(b) and 7(c), respectively. The similar re-
sults for the intensity of 3.5 × 1014 W/cm2 are shown in
Figs. 7(d)–7(f). Comparing Figs. 1(b), 7(a), and 7(d), the
number of (multiple) minimum(s) is increased by increasing
the laser intensity, but the minimum at the lower order does
not move; for example, the minimum at H101 on the axis.
The increase in the number of multiple minima with the laser
intensity can also be seen in the time-frequency harmonics
emissions in Figs. 7(b) and 7(e). Consequently, in the APT,
there is an increase in the number of emission peaks within

half an optical period, effectively reducing the width of each
emission burst, see Figs. 7(c) and 7(f).

3. Scaling relations with the laser wavelength

Can the similar minimum structure in the HHG spectrum
emerge by changing the laser wavelength? It is desirable if
the HHG spectrum with the minimum can be scalable. For
simplicity, we derive a scaling relation by considering the har-
monic coherence length along the axis. According to Eq. (18),
the phase mismatch at the laser focus can be expressed as

δkq = kq − |qk1 + K| = qω0/c −
(

qω0/c − qλ0

πw0
2

)

= qλ0

πw0
2
, (24)

where w0 is the laser beam waist, λ0 is the laser wavelength,
and q is the harmonic order. Note that K is zero at the laser
focus. To maintain the same phase mismatch (or the coherence
length), we can obtain the following scaling relations:

λ0 → ηλ0,

w0 → ηw0,

q → ηq. (25)

Here η is a scaling parameter.
To check the scaling relations above, we show spatial har-

monic emissions in the far field by using a 1200-nm laser
in Figs. 8(a)–8(c). Three beam waists of 50, 55, and 63 µm
are chosen to ensure that the harmonic minimum can be
generated. The gas jet with the length of 1 mm is put at the
focus. The intensity of the driving beam at the laser focus
is fixed at 1.5 × 1014 W/cm2. The total pulse duration is 30
optical cycles, and the CEP is zero. According to the scaling
relations in Eq. (25), we choose the beam waists of 66.7,
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FIG. 8. Intensity distributions of high harmonics in the far field generated by the 1200-nm laser with different beam waists: (a) 50 µm,
(b) 55 µm, and (c) 63 µm. Similar results by the 1600-nm laser are shown in panels (d)–(f) as the beam waists are chosen according to the
scaling relations in Eq. (25). For comparison, harmonic spectra of two wavelengths on the axis are plotted together in panels (g)–(i), in which
black dotted line indicates the location of the minimum.

73.3, and 84.0 µm for the 1600-nm laser. Results are shown
in Figs. 8(d)–8(f). One can see that the number of (multi-
ple) minimum(s) decreases as the laser beam waist increases.
This trend is the same for both wavelengths. We compare
the harmonic spectra on the axis at different wavelengths in
Figs. 8(g)–8(i). Note that the horizontal axis in these figures is
expressed with the photon energy for easy comparison, and
the black dotted line indicates the minimum. It can be seen
that the minimum appears in the same position at different
wavelengths. Thus the scaling relation of the harmonic order
is confirmed, which shows that the photon energy of the min-
imum is not varied with the laser wavelength. Resemblance
of spatial harmonic emissions at two different wavelengths
verifies the validity of the scaling relations in Eq. (25) even
though rigorous propagation effects in the gas medium has
been fully taken into account.

Simulations in this section show that the position of the
minimum in the HHG spectrum can be easily shifted. This is
one of advantages of our method compared with the conven-
tional method, in which the fixed minimum is generated in the
HHG spectrum of an atom target, relating to the minimum in
the photoionization cross section of the same target.

The minimum in the HHG spectrum can also be mod-
ified by varying the gas pressure. For example, we have
observed that the position of the minimum in Fig. 1 shifts
towards higher harmonics if the gas pressure is increased
to 30 or 50 torr, which can be explained by the similar

analysis of the phase mismatch. Specifically, the positive
phase mismatch due to neutral atom dispersion, increased
with the gas pressure, should be compensated by that due
to the geometric phase of the driving laser though increasing
the harmonic order. However, the phase-matching conditions
of high harmonics are very sensitive to the gas pressure.
It requires considerable efforts to identify the proper con-
ditions for creating the minimum in the HHG spectrum
under the high-pressure (several hundred torr) condition, or
more generally under the extreme condition of high pressure
and high intensity. Meanwhile, the effect of self-absorption
of high harmonics by the gas medium should be care-
fully considered. This is a topic worth investigating in the
future.

Note that we employ a Gaussian beam as the driving laser
beam in this work. Alternatively, a Laguerre-Gaussian beam
carrying the orbital angular momentum may be adopted [53].
Further detailed studies are required.

IV. CONCLUSIONS

In summary, we demonstrated through rigorous simula-
tions that the minimum in the HHG spectrum can be created
and tuned by varying the macroscopic parameters prop-
erly with a single-color long-wavelength laser only. We first
showed that a curved minimum structure exists in the har-
monic intensity distributions both in the near field and in the
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far field when the gas jet is located at the laser focus and the
driving laser has a relatively big beam waist. The minimum in
the HHG spectrum thus can be spectrally shifted with the spa-
tial position. It is worth noting that there is no minimum in the
single-atom HHG spectrum of the Ne atom. We revealed that
the position of the minimum is fixed along the radial direction
for the short orbit of the first return (S1), and it is shifted
towards higher orders as the radial distance (or the divergence
angle) increases for the long orbit of the first return (L1), the
short orbit of the third return (S3), and the long orbit of the
third return (L3). We examined the spatial evolution of the
harmonic field inside the gas medium from different quantum
orbits. It shows that the behaviors of the field growth for S1 are
quite different from that for L1, S3, and L3. Such differences
among quantum orbits can be well explained by the calcu-
lated maps of the coherence length. We also gave a formula
to predict the spectral position of the minimum in terms of
the coherence length. We then proposed a simple model to
describe the near-field harmonic and explained the formation
of the harmonic spatial profile in the far field. We showed that
the position(s) and the number of (multiple) minimum(s) can
be tuned by varying the beam waist and the intensity of the
driving laser. A smaller waist and a larger intensity are benefi-
cial for increasing the number of multiple minima, which can
also be used to shape the temporal profile of the attosecond

pulse in the attosecond pulse train and to reduce the width
of emission burst. Finally, we derived the scaling relations
with the laser wavelength to maintain the spectral position
of the minimum and the phase-matching condition. Since the
method in this study is simple and robust, it can be easily
applied to shape the attosecond pulse and modify the spectral
structure, making the HHG light being a useful light source for
various applications.

As we know, the phase-matching conditions of the HHG
are very sensitive to the macroscopic parameters, and it is
impossible to scan all macroscopic parameters in a single
experiment. Without the guidance of this work, the exper-
imentalists hardly identify the macroscopic condition for
creating and controlling the minimum in the HHG spectrum.
Thus our results and the established rules (or relations) are
useful to the HHG community.
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