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Generalized analytical description of relativistic strong-field ionization
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A relativistic analytical theory of strong-field ionization applicable across the regimes of deep tunneling up
to over-the-barrier ionization (OTBI) is developed, accounting also for the bound-state polarization and the
Stark shift beyond perturbation theory. The latter improvement with respect to the state-of-the-art quasiclassical
theory of Perelomov-Popov-Terent’ev (PPT) for strong-field ionization is essential to describe analytically the
ionization in the OTBI regime and to resolve the order-of-magnitude discrepancy of the ionization yield in
the relativistic regime with respect to PPT theory that has remained unexplained since the numerical result
using the Klein-Gordon equation of Hafizi et al. [Phys. Rev. Lett. 118, 133201 (2017)]. The predictions of the
present relativistic model, in deviation to PPT theory, are shown to be observable using ultrashort laser pulses of
relativistic intensities.
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I. INTRODUCTION

The experimental investigation of relativistic strong-field
ionization was initiated with the pioneering experiment of
Moore et al. [1] more than 20 years ago at a laser intensity
of 3 × 1018 W/cm2, demonstrating ionized electron pondero-
motive acceleration. Later, in more detailed atomic physics
experiments, the observation of signatures of the atomic
bound dynamics in photoelectron momentum distributions
was investigated in relativistic laser fields [2–9]. Presently,
ultrastrong laser fields up to an intensity of 1023 W/cm2

are achievable [10], which provides a good perspective for
extending ionization explorations in the relativistic regime.

The state-of-the-art analytical theory of strong-field ion-
ization, the quasiclassical Perelomov-Popov-Terent’ev (PPT)
theory [11–16], has been generalized into the relativis-
tic regime [17–20]. The feasibility of observing relativistic
features of the ionization yield was recently discussed
in Refs. [21,22]. Comparable results are provided by the
strong-field approximation (SFA) [23–25], with its relativis-
tic version [26,27]. The PPT theory uses the quasiclassical
wave function for the description of the tunneling part of the
electron wave packet which is matched to the undisturbed
exact bound state. The deficiency of the PPT theory is that
the distortion of the bound state in the laser field during
the ionization process is not taken into account. This is not
essential during tunneling ionization, and the PPT theory
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well approximates the experimental ionization yield and has
been applied for the calibration of ultrahigh laser intensities
[28–31]. However, it becomes crucial in the over-the-barrier
ionization (OTBI) regime, and from nonrelativistic numerical
results it is known that PPT theory significantly overestimates
the ionization yield in the latter case [32–36]. The weak-
field adiabatic asymptotic theory for the nonrelativistic regime
[37–40], treating the Stark shift via perturbation theory, does
not fully solve the problem. Why does the PPT theory, seem-
ingly based on the undisturbed bound-state picture, work quite
well for strong fields in the tunneling regime? According to
Ref. [36], the reason is that the atomic polarization and the
Stark shift compensate each other in the tunneling-ionization
regime, which, however, fails for OTBI, resulting in the sup-
pression of the ionization yield. We will advocate here that
this picture needs to be corrected. We will underline two
different contributions of the atomic polarization effect: the
shift of the bound state toward the tunnel exit and the bound-
state distortion. The first effect, increasing the ionization rate,
is implicitly included in PPT theory via the field-dependent
matching of the undisturbed bound wave function in the
continuum. This is the reason for the good performance of
the PPT theory in the tunneling regime. For OTBI, both the
bound-state distortion and the Stark shift decrease the rate,
causing a substantial discrepancy from PPT theory.

Numerical investigation of the relativistic ionization dy-
namics, with highly charged ions (HCIs) and ultrastrong laser
fields, was carried out in Refs. [28,29,41–52]. In particular,
the total ionization yield via a three-dimensional (3D) solution
of the Klein-Gordon equation for hydrogenlike HCIs was
calculated [52]. The surprising result is that the OTBI yield
underestimates by an order of magnitude the prediction of the
relativistic PPT theory, with the discrepancy increasing in the
deep relativistic regime.

In this paper, a theory of strong-field ionization in the rela-
tivistic regime is put forward which incorporates the important
effects of the polarization of the atomic bound state and the
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Stark shift of the bound-state energy in an ultrastrong laser
field. We describe the ionization as an adiabatic quantum jump
from the bound state in the continuum at a specific transition
time. In contrast to the common PPT theory, we account for
the bound-state distortion in the laser field using general-
ized eikonal (GEA) theory [53–55]. The latter improvement
is crucial to reproduce the ionization rates from the deep-
tunneling up to the OTBI regime, in particular, to explain the
order-of-magnitude discrepancies of the numerical result in
Ref. [52] for the relativistic ionization with respect to PPT
theory. In light of the present theory, the recent experimental
results from Ref. [56] are analyzed, and the deviation from
PPT theory is explained. We discuss the conditions for an
experimental confirmation of the predictions of the present
relativistic model versus PPT theory.

The structure of this paper is as follows. In Sec. II the
general method of calculation based on the adiabatic transition
theory is introduced. In Sec. III the theory for the nonrelativis-
tic regime is developed. For pedagogical reasons, we begin the
discussion with the theory for the case of a one-dimensional
(1D) short-range atomic potential and further apply the same
scheme for a realistic 3D case with a Coulomb potential. The
theory is extended into the relativistic regime in Sec. IV, first
based on the Klein-Gordon equation and then based on the
Dirac equation. The possibility of observing the predictions
of our theory is discussed in Sec. V, and the conclusion is
given in Sec. VI.

II. ADIABATIC TRANSITION THEORY

Our approach for calculating strong-field ionization proba-
bilities is based on the use of the modified continuum and the
bound states. The wave function of the electron is given by the
exact time-evolution operator (TEO) U (t, t ′) of the system:

|ψ (t )〉 = U (t, t a)|ψ (t a)〉, (1)

with the initial condition |ψ (t a)〉 = |ψa
0 (t a)〉, where ψa

0 is the
unperturbed atomic bound state at the turn on t a of the laser
field. The ionization amplitude mp is derived by a projection
of ψ on the exact continuum state ψ

f
p with asymptotic mo-

mentum p at the asymptotic time t f :

mp = 〈
ψ f

p (t f )
∣∣U (t f , t a)|ψ (t a)〉, (2)

which determines the differential ionization probability:

dw/d3p = |mp|2. (3)

We approximate the exact TEO following the Keldysh ap-
proach [23], assuming that in the beginning of the ionization
process the atomic potential dominates the dynamics, whereas
in the end the laser field dominates:

U (t f , t a) = U f (t f , t∗)U a(t∗, t a), (4)

where U f is the TEO with a perturbative treatment of the
atomic potential V and U a is the TEO with a perturbative
treatment of the laser field. The time t∗ is the instant when the
transition between the two approximations of the exact TEO
takes place. In accordance with the adiabatic transition theory
[57–60], the transition time is determined by the condition
of the quasienergy equality of the two adiabatically evolved
states. The quasienergy of a state is defined as ε = −∂t S, with

the action S: ψ = exp(iS). Thus, the transition time from the
atomic state modified in the laser field [ψa = exp(iSa)] to the
continuum state in the laser field, modified by the Coulomb
potential of the atomic core [ψ f = exp(iS f )], is found via

∂t S
a(t∗) = ∂t S

f ∗(t∗). (5)

The adiabatic approximation is valid when the typical
timescale of the perturbation exceeds that of the state. For
strong-field ionization this implies that the laser period ex-
ceeds the atomic evolution time: ω � Ip, with ω being the
laser frequency and Ip being the atomic ionization potential.
The ionization amplitude then takes the simple form of an
overlap integral:

mp = 〈
ψ f

p (t∗)
∣∣ψa(t∗)

〉
. (6)

Note, however, that the transition time t∗ in Eq. (5) is coor-
dinate dependent, and the overlap integral in Eq. (6) is an
integral over possible quantum paths, where each position
defines its own switching time t∗.

To derive the modified continuum and bound-state wave
functions, we employ GEA theory describing the eikonal S
perturbatively. For the continuum wave function the atomic
potential is a perturbation in describing the phase, and for the
bound state it is a perturbation in the interaction with the laser
field.

III. NONRELATIVISTIC REGIME

For pedagogical reasons, we first develop our approach
in the case of a 1D short-range atomic potential and further
apply the same scheme for a realistic 3D case with a Coulomb
potential.

A. One-dimensional model with zero-range potential

We start with the ionization process of an electron bound
in a 1D zero-range potential (ZRP),

V (x) = −κδ(x), (7)

driven by a constant electric field E (t ) = −E0. The electron
dynamics is described via the time-dependent Schrödinger
equation (TDSE) for the wave function ψ

i∂tψ =
[
−∂xx

2
− xE0 + V (x)

]
ψ. (8)

As mentioned above following Eq. (4), U f is the TEO with
a perturbative effect of the atomic potential V and U a is the
TEO, where the electric potential −xE0 is a perturbation.

1. Zeroth-order approximation

In a first step let us use the zeroth-order approximation for
the two TEOs:

U (t f , t a) = U f
0 (t f , t∗)U a

0 (t∗, t a), (9)

with U f
0 (t f , t∗) being the Volkov TEO and U a

0 (t∗, t a) being
the atomic TEO. The ionization amplitude in this case takes
the simple form of the overlap integral of the wave functions
of the Volkov state and the atomic bound state at the switching

023103-2



GENERALIZED ANALYTICAL DESCRIPTION OF … PHYSICAL REVIEW A 110, 023103 (2024)

time t∗. We approximate the laser field by a constant field and
use the Volkov wave function in a constant field,

ψ
f

0 = 1√
2π

exp

(
iE0tx − iE2

0 t3

6

)
(10)

(vanishing canonical momentum is assumed, p = 0, without
loss of generality in the case of a static field). The bound state
of the atomic potential in the ZRP is

ψa
0 = √

κ exp

(
−κ|x| + iκ2t

2

)
. (11)

Thus, we have the zeroth-order amplitude for ionization:

m0 = 〈
ψ

f
0 (t∗)

∣∣ψa
0 (t∗)

〉
. (12)

The switching time is defined using Eq. (5):

(E0t∗)2

2
− xE0 = −Ip, (13)

with Ip = κ2/2 being the ionization potential. Equation (13)
has two solutions:

t∗ = t∗
± ≡ ±i

√
2(Ip − xE0)

E0
. (14)

The complexity of the solutions for x < xe = Ip/E0 indicates
the negative kinetic energy at tunneling ionization. Note that
only the solution with a positive imaginary part is physical.
Mathematically, a physical saddle point is defined by the
condition iS̈ f (t∗) < iS̈a(t∗).

For x > xe there are two real solutions, t∗ =
±√2(xE0 − Ip)/E0. Since here the electric potential energy
xE0 is initially larger than Ip, i.e., the laser field is not the
perturbation anymore, the TEO is approximated by

U (t f , t a) = U f (t f , t∗
+)U a(t∗

+, t∗
−)U f (t∗

−, t a). (15)

The dynamics which starts from the tail of the bound wave
function out of the barrier is governed initially by the laser
field, intermediately by the atom, and finally by the field again.
The contribution from these initial coordinates is negligible
in a static field with large turn-on and -off times t a and t f ;
consequently, outside of the tunneling barrier no ionization
is induced. In physical terms, the electron is free and cannot
absorb energy from the laser field in this situation.

The exact numerical calculation of the amplitude m0 in
Eq. (12) is presented in Fig. 1(b). For the analytical estimation
we note that the integrand in Eq. (12) has a maximum at
x = 0 [see Fig. 1(a)], which allows us to expand it for small x,
leading to

m0 ≈
∫

0
dx

√
κ

2π
exp

(
− Ea

3E0
− E0κ

2x2

2Ea

)

= 1

2

√
Ea

κE0
e− Ea

3E0 , (16)

with Ea = κ3 being the nonrelativistic atomic field. In the an-
alytical estimation, we neglected the integration region x < 0,
as it gives a small correction ∼E0/Ea to the leading term of
Eq. (16); see the comparison with the exact numerical integra-
tion in Fig. 1(b). As a benchmark, we compare the amplitude

FIG. 1. (a) The integrand of the overlap integral in the zeroth-
order description at E0 = 0.1 a.u. (b) Numerically calculated
ionization amplitude in the zeroth-order description compared with
the first-order SFA result m0/mSFA (blue) and the analytical estima-
tion using Eq. (16) (orange). (c) The integrand of the overlap integral
of Eq. (12) in the first-order description at E0 = 0.1 a.u. (d) The
numerically calculated ionization amplitude using the first-order de-
scription (25) (blue) and using the exact ionization rate (29) (orange)
with respect to that in the first-order SFA.
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with that of the first-order SFA for the ZRP. In the zeroth-
order approximation we have the relation m0/mSFA = 1/2.
This result is also confirmed by the numerical calculation of
the overlap integral [see Fig. 1(b)].

2. First-order approximation

We improve the description by taking into account in the
first-order approximation the effect of the atomic potential for
the continuum motion in the laser field and the effect of the
laser field for the bound dynamics. For the description of the
continuum motion in the first-order approximation, we replace
the Volkov wave function by the GEA wave function in a
short-range potential. In this case, the TDSE is rewritten with
the ansatz ψ f = exp(iS f ) in the following form:

−∂t S
f = (∂xS f )2/2 − i∂xxS f /2 − xE0 + V (x). (17)

The latter is solved perturbatively with respect to the atomic
potential V (x): S f = S f

0 + S f
1 , where the zeroth-order solution

coincides with the Volkov phase S f
0 = E0tx − E2

0 t3/6 and the
first-order one can be represented in the integral form [55],

S f
1 (x, t ) = − κ

2π

∫
t
ds

√
2π i

(s − t )
exp

[
(x + α(s) − α(t ))2

2i(s − t )

]
,

(18)

with α(t ) = E0t2/2. Thus, the modified continuum state reads

ψ
f

1 (x, t ) = ψ
f

0 (x, t ) exp
[
iS f

1 (x, t )
]
. (19)

We can also calculate the second-order correction to the con-
tinuum state:

S f
2 (x, t ) ≈

∫
t
ds∂xS f

1 (x, s)2/2. (20)

However, its contribution to the ionization amplitude ap-
pears to be negligible and will be further neglected, using
ψ f (x, t ) = ψ

f
1 (x, t ) as the modified continuum state.

In the same way, we consider in the first-order approxima-
tion the effect of the laser field for the bound-state dynamics.
Using the ansatz ψa = exp(iSa) for the bound-state wave
function, we obtain from the TDSE

−∂t S
a = (∂xSa)2/2 − i∂xxSa/2 + V − xE0, (21)

which is solved perturbatively with respect to the laser dis-
turbance xE0: Sa = Sa

0 + Sa
1 + Sa

2 . The zeroth-order solution
is the bound state ψa

0 = exp(iSa
0 ) in the ZRP, Sa

0 = iκ
√

x2 +
κ2/2t − i ln(

√
κ ), and the first- and second-order corrections

are calculated analytically, assuming that the electric field
is turned off adiabatically for infinite positive and negative
times:

Sa
1 (x) = −i

κx(1 + |x|κ )E0

2Ea
, (22)

Sa
2 (x, t ) = − iE2

0 x2κ2(3 + κ|x|)
6E2

a

− εst, (23)

with the Stark shift εs = −5/8κ2E2
0 /E2

a of the bound-state
energy. All other terms besides the Stark shift describe the
polarization of the atomic bound state before the tunnel ion-
ization. Whereas the Stark shift is quadratic in the field, the

polarization also has linear terms. Thus, the modified bound
state reads

ψa(x, t ) = ca
2ψ

a
0 (x, t ) exp

[
iSa

1 (x) + iSa
2 (x, t )

]
≈ ca

2ψ
a
0 (x, t )

{
1 + iSa

1 (x) − [
Sa

1 (x)
]2

/2 + iSa
2 (x, t )

}
= ψa

0 (x, t )

{
1 + E0κx(1 + |x|κ )

2Ea
− iεst

+ E2
0 {−30 + x2κ2[15 + |x|κ (10 + 3xκ )]}

24E2
a

}
,

(24)

where ca
2 = 1 − 5E2

0 /4E2
a is the normalization constant. Here,

the correction is expanded into the preexponential, which is
equivalent to the perturbation theory with respect to the xE0

potential.
We calculate the ionization amplitude including the

leading-order correction:

m1 =
∫

dx ψ f (x, t∗)∗ψa(x, t∗). (25)

The overlap integral above is calculated numerically up to the
tunnel-exit coordinate xe = Ip/E0. This choice of the upper
limit of the coordinate integration of the overlap integral with
an approximate wave function, Eq. (24), is justified in the next
section, where it is compared with the exact case. Further,
Fig. 1(d) confirms that the ionization probability with mod-
ified wave functions for the case of the ZRP is in accordance
with the first-order SFA in weak fields.

3. One-dimensional exact case

To judge the accuracy of the applied approximations in the
previous sections, we compare the ionization amplitude using
the first-order description in Eq. (25) with the exact solution.
The Schrödinger equation (8) in the 1D case for electron
ionization from a bound state in a δ potential has an exact
solution, expressed via Airy functions. We look for the energy
eigenstate in the potential −κδ(x) − xE0:

ψ (x, t ) = ψ (x) exp(−iεt ), (26)

imposing the standard boundary conditions to ψ (x), corre-
sponding to the ionization problem: the current density is
positive at x → ∞, describing an outgoing wave, and the
probability is vanishing at x → −∞. This yields the solution
for the energy ε,

ψ+(x) = c+

(
Bi

[
−21/3(ε + E0x)

E2/3
0

]

+ iAi

[
−21/3(ε + E0x)

E2/3
0

])
, x > 0,

ψ−(x) = c−Ai

[
−21/3(ε + E0x)

E2/3
0

]
, x < 0. (27)
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FIG. 2. The overlap integral of Eq. (25) for E0 = 0.1 a.u. with
the exact atomic wave function of Eq. (27) calculated up to the
coordinate x: m1(x) = ∫ x

−∞ dx ψ f (x, t∗)∗ψa(x, t∗). The vertical grid
line is the tunnel exit xe = Ip/E0. At x = xe, the overlap integral is
stabilized to a certain value.

Further, we impose the continuity conditions for the wave
function and for its derivative:

ψ+(0) = ψ−(0),

ψ ′
+(0) − ψ ′

−(0) = −2κψ+(0), (28)

which are solved numerically, providing complex eigenenergy
ε and the ratio c+/c−.

The ionization rate is described by the imaginary part of
the complex eigenenergy,


 = −2Im{ε}. (29)

The result of the comparison of the exact ionization
rate with that from the first-order description in Eq. (25)
is shown in Fig. 1(d) for different field strengths, where
both are given with respect to the SFA value 
SFA =
κ2 exp[−(2/3)(κ3/E0)]. Figure 1(d) shows that the first-order
description with our model provides a good approximation of
the exact ionization rate.

The value of the overlap integral in Eq. (25) with the exact
atomic wave function in Eq. (27), depending on the upper
bound of the coordinate, is shown in Fig. 2. It indicates that
the integral value is stabilized at the tunnel exit in the exact
case. In the region x > xe, the integral oscillates, and the net
contribution from this region is vanishing. The latter justifies
the restriction of the integration region of the overlap integral
up to x = xe in the case of the approximate modified atomic
wave function.

4. Time-dependent laser field: Quasistatic approximation

In the quasistatic approximation, the results obtained with
a constant laser field E0 are still valid for the case of a
time-dependent laser field E (t ) using the replacement E0 →
E (t ). Let us estimate the validity condition of this approx-
imation by inserting the quasistatic solution into the exact
differential equation in the 1D case, Eq. (17). Using the
analytical expression from Ref. [61] for the matching time
t∗ = arcsin(iγ )/ω − ixs/κ and the estimate for the typical
value of the coordinate for the tunneling xs ∼ √

κ/Es, with

Es ≡ E (ts) = E0

√
1 + γ 2 and the Keldysh parameter [23]

γ = κω/E0, the error of the approximate solution to Eq. (17)
scales as (E0/Ea)γ ∼ ω/Ip, which gives the condition of the
applicability of the quasistatic approximation.

B. Three-dimensional case with Coulomb potential

The method outlined within a 1D simple model in the
previous section is applied here for a realistic 3D case with a
Coulomb potential. The Schrödinger equation for the eikonal
S reads, in this case,

−∂t S = (∇S)2/2 − i�S/2 + V (r) + r · E(t ). (30)

The description of the continuum motion is modified, treating
the atomic potential V (r) = −Z/r, with Z being the charge of
the atomic core, by the perturbation theory in Eq. (30):

S f = S f
0 + S f

1 , (31)

where the unperturbed eikonal [at V = 0] corresponds to the
nonrelativistic Volkov wave function ψ

f
p,0 [62],

S f
0 = [p + A(t )] · r +

∫
t
dt ′[p + A(t )]2/2, (32)

with A(t ) = − ∫ E(t )dt , and the perturbed eikonal S f
1 fulfills

the equation

−∂t S
f
1 − [p + A(t )] · ∇S f

1 + i�S f
1 /2 = V (r). (33)

The solution of Eq. (33) is known from the GEA theory [55]:

S f
1 (r, t ) = −Z

∫
t
ds

erf
[√ [r+p(s−t )+α(s)−α(t )]2

−2i(s−t )

]
√

[r + p(s − t ) + α(s) − α(t )]2
, (34)

where α(t ) = ∫
dtA(t ) is the displacement in the laser field

and S f
1 describes the modification of the tunneling bar-

rier due to the Coulomb field, enhancing the ionization
probability [14].

In a similar manner, the description of the bound-state
dynamics is modified, treating the interaction with the laser
field as a perturbation in the eikonal in Eq. (30):

Sa = Sa
0 + Sa

1, (35)

where the unperturbed eikonal corresponds to the free atomic
wave function [63],

Sa
0 (r, t ) = iκr − i(Z/κ − 1) ln(κr)

− i ln(
√

κ3/π ) + Ipt + ca
0, (36)

with κ = √
2Ip being the atomic velocity and ca

0 being the
normalization constant. The perturbed eikonal Sa

1 describes
the polarization of the atomic state in the laser field and fulfills

−∂t S
a
1 − ∇Sa

0 · ∇Sa
1 + i�Sa

1/2 = r · E(t ). (37)

First, we consider the quasistatic case E(t ) = −x̂E0 =
const (with px = 0 without loss of generality). With parabolic
coordinates u = √

r + x and v = √
r − x, the solution close

to the origin is

−E0u4 − i f ′′
u (u) + 2iκu f ′

u(u) − i f ′
u(u)

u

+ E0v
4 − i f ′′

v (v) + 2iκv f ′
v (v) − i f ′

v (v)

v
= 0, (38)
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with Sa = fu + fv . The 2D differential equation is then sepa-
rated,

−E0u4 − i f ′′
u (u) + 2iκu f ′

u(u) − i f ′
u(u)

u
= −2E0/κ

2,

+E0v
4 − i f ′′

v (v) + 2iκv f ′
v (v) − i f ′

v (v)

v
= 2E0/κ

2. (39)

The first-order correction reads

Sa
1 = − iE0u2(4 + u2κ )

8κ2
+ iE0v

2(4 + v2κ )

8κ2
. (40)

In the same manner, the second-order solution is derived as

Sa
2 = − iE2

0 (u4κ (21 + 2u2κ ))

96κ5
− iE2

0 (v4κ (21 + 2v2κ ))

96κ5
− εst

(41)

with the Stark energy shift εs = −9κ2E2
0 /4E2

a (cf. [63]). Thus,
we have the following modified bound state:

ψa(r, t ) = ca
2ψ

a
0 (r, t ) exp

(
iSa

1 + iSa
2

)
(42)

≈ ca
2ψ

a
0

[
1 + iSa

1 − (
Sa

1

)2
/2 + iSa

2

]
≈ ψa

0 (r, t )

{
1 + κx(2 + rκ )

E0

2Ea
− iεst

+−372 + κ2[45x2 + 2r3κ + 30rx2κ + 3r2(7 + 2x2κ2)]

48

×
(

E0

Ea

)2
}

, (43)

with the normalization constant ca
2 = 1 − 31E2

0 /4E2
a . We

expanded the exponent as Sa
1,2 � 1 at r ∼ 1/κ . With the re-

placement E0 → E (t ), the solutions above for Sa
1,2 are also

valid in time-dependent fields at (E0/Ea)γ 2/
√

1 + γ 2 � 1,
with the atomic field Ea ≡ κ3, which is equivalent to ω/Ip �
1 at a large Keldysh parameter γ = κω/E0 [23].

The ionization amplitude is calculated numerically using
Eq. (6) with the modified wave functions ψ f and ψa. The
integration over the coordinate in Eq. (6) is extended up to
the tunnel exit xe = Ip/E0, as the tail of the wave function out
of the barrier cannot contribute to ionization. The calculated
ionization rate w, highlighting different contributions, is illus-
trated in Fig. 3. It is remarkable that it accurately reproduces
the Tong-Lin fitting factor [34] of the ionization yield via
numerical TDSE solutions with respect to PPT theory:

Tnr ≡
(

w

wPPT

)
nonrel

= exp

[
−
(

Z2

κ2

)(
12E0

Ea

)]
, (44)

with wPPT being the PPT rate [16]. We analytically estimate
the Tong-Lin factor with our model at f ≡ E0/Ea � 1 in
Appendix A.

We highlight the following contributions in Fig. 3: the
Stark shift described via the eikonal term εst , the polariza-
tion effect as a shift of the bound state toward the tunnel
exit (via Sa

1 and Sa
2 + εst), and the polarization effect of the

bound-state distortion (via the factor ca
2). The shift of the

bound state increases the ionization rate (by a factor of ∼4)
up to the PPT value for weak fields. This is because the PPT
rate implicitly includes this polarization effect via the field

FIG. 3. The ratio of the ionization rate w to that of PPT-theory
wPPT for hydrogen (κ = 1): blue circles, our model with only
Coulomb corrections (CCs) via S f

1 ; orange squares, our model with
CCs and the atomic polarization (via S f

1 , Sa
1 , and Sa

2 + εst); green
diamonds, our model with CCs, the atomic polarization, and the
Stark shift; red triangles, our model with all corrections, including
the bound-state distortion; black inverted triangles, the Tong-Lin
factor [34].

dependence of the matching coordinate xs = √
κ/E0 of the

undisturbed bound wave function in the continuum. This is
the reason for the good performance of the PPT theory in the
tunneling regime. In strong fields, the bound-state distortion
and the Stark shift decrease the rate away from the PPT result
with the respective scalings ∼ − 15E2

0 /E2
a and ∼ − 5E0/Ea,

according to our model. Note that the Stark shift of a hydrogen
atom in a static electric field in the nonrelativistic regime was
previously addressed in many publications that proposed, in
particular, different techniques for the resummation of the
divergent perturbation series (see, e.g., [64–67] and references
therein). In contrast, our aim here is to put forward a simple
scheme for a perturbative treatment, with a benchmark of the
Tong-Lin factor, and apply this to the relativistic regime.

IV. RELATIVISTIC REGIME

We apply our theory to the relativistic regime described by
the Klein-Gordon equation as well as by Dirac equations.

A. Klein-Gordon equation

In the case of the Klein-Gordon equation we look for the
solution using the ansatz ψ = exp(iS), where the eikonal S
fulfills the equation [54]

−i∂2S(x) + [∂S(x) + A(η)/c + V (x)/c]2 = c2, (45)

where the four-coordinate xμ = (ct, r), ∂ ≡ ∂/∂xμ, the laser
four-vector potential A(η) = (r · E(η),−k̂(r · E(η))) in the
Göppert-Mayer gauge, k̂ = k/|k|, k is the laser wave vec-
tor, and the atomic four-potential V (x) = (V (r), 0, 0, 0). The
gauge invariance of the theory is discussed in Appendix D.
The eikonal is derived using perturbation theory,

S = S0 + S1, (46)

either with respect to V for S f or with respect to A(η) for Sa.
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1. Modified continuum wave function

The unperturbed eikonal of the relativistic continuum state S f
0 is represented by the phase of the relativistic Volkov wave

function [68]:

S f
0 (x, y, z, t ) = [px + A(η)]x + pyy − c�z −

∫
η

dsε̃(s). (47)

Here, the laser wave propagates along the z axis and is linearly polarized along the x axis, η = t − z/c, � ≡ ε/c2 − pz/c is
the motion integral in a plane wave field, ε =

√
c4 + c2 p2 is the electron energy, and ε̃(s) = ε + [pxA(η) + A(η)2/2]/� is the

energy in the laser field. The GEA correction to the eikonal of the continuum state S f
1 fulfills the equation

−i∂2S f
1 (x) + 2

[
∂S f

0 (x) + A(η)/c
][

∂S f
1 (x) + V (x)/c

] = 0. (48)

After coordinate transformation to (η, r), Eq. (48) is solved via a Fourier transformation. In the case of a quasistatic field, using
the zeroth-order solution in the velocity gauge S f

0 = −c�z − εη − E2
0 η3/(6�) (px,y = 0 in the constant field), the equation for

the Fourier component is√
2

π
Z
[

pzE
2
0 η2 + ε

c

(
2c2 + E2

0 η2
)]+ cq2

{[
ic�qzE

2
0 η2 + c2(q2 + 2pzqz + 2qxE0η)

]
S̃ f

1 (η, q) + 2c(c� − qz )
∂S̃ f

1 (η, q)

∂η

}
= 0,

which is solved exactly. The solution is simplified at qz � c:

S̃ f
1 (η, q) ≈ −Z

∫
η

ds exp

(
i(s − η)

6c2�

{
c�qzE

2
0 (s2 + sη + η2) + 3c2[q2 + 2qz pz + qxE0(s + η)]

})2ε + c�E2
0 s2

√
2πc3�q2

. (49)

In the coordinate space the eikonal for the relativistic continuum reads

S f
1 (η, r) ≈ −Z

∫
η

ds
ε̃(s)erf

[√
�

r(s,η)2

−2i(s−η)

]
c2�r(s, η)

, (50)

with the relativistic trajectory r(s, t ) = ({x + [α(s) − α(η)]/�}2 + [y + py(s − η)/�]2 + {z + pz(s − η)/� + [β(s) −
β(η)]/(c�2)}2)1/2, and β = ∫

dηA2(η)/2.

2. Modified bound-state wave function

The unperturbed relativistic bound-state wave function is known from the atomic theory [20,63] with

Sa
0 = Sa

0 − i[(1 − Ip/c2)2 − 1] ln(κr) − i ln
(
Ca

0

)
, (51)

where Sa
0 is the nonrelativistic term from Eq. (36) and Ca

0 = 2−1+ε2
0 /

√
2cε0
(2ε2

0 ), with ε0 ≡ 1 − Ip/c2.
The correction to the bound state fulfills the equation

−i∂2Sa
1(x) + 2

[
∂Sa

0(x) + V (x)/c
][

∂Sa
1(x) + A(η)/c

] = 0 (52)

and a similar equation for Sa
2. The equations for Sa

1,2 are solved in a quasiclassical expansion over h̄ [69], where we go to next
to leading order in h̄. The main corrections to the bound state come from the atomic polarization and Stark shift due to the
laser electric field. Additionally, new terms in the relativistic regime occur due to the laser magnetic field and the electron mass
correction. The leading-order correction up to E0/Ea and h̄ is derived from following equation:

∂rScor
1 =

(
−Eaxz

cr
− i

Eax

κ
+ i

EaIpx

c2κ
+ ixκ2

)
E0

Ea
, (53)

where Scor
1 ≡ S1 − Sa

1 , Sa
1 is the nonrelativistic term from Eq. (40), and Ea = √

3σ 3/(1 + σ 2)c3 is the relativistic atomic field

[20] with σ =
√

2 + ε2
0 − ε0

√
8 + ε2

0/
√

2. Therefore, finally, we have

Sa
1 = Sa

1 + ix

{−Ea(1 − Ip/c2)r + iEazκ/c + rκ3

2κ
+ κ3 − Ea[(1 − Ip/c2)3 + Zκ/c2]

κ2

}
E0

Ea
. (54)
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The higher-order correction is calculated in a similar way:

Sa
2 = Sa

2 +
{

ir
[
κ6r2 − E2

a (c2(−r)+icκz+rIp)2

c4

]
24κ3

− irx2
{
3E2

a

[( Ip

c2 − 1
)2 + κ2

c2

]− 3κ6
}

24κ3

− E2
a rz
[
11c6 + c4(6κZ − 29Ip) + 27c2I2

p − 9I3
p

]
24c7κ3

− ir2
[− 21c8κ6 − c6E2

a κ2 + 3E2
a (c2 − Ip)2

(
7c4 − 10c2Ip + 5I2

p

)+ 12c4E2
a κZ (c2 − Ip)

]
48c8κ4

− i
[− 7c8κ6x2 + 7E2

a x2(c2 − Ip)4 + c2E2
a κ2

[
c4(4x2 + y2) + 2c2Ip(z2 − 3x2) + I2

p (3x2 − z2)
]+ 4c4E2

a κx2Z (c2 − Ip)
]

16c8κ4

}

×
(

E0

Ea

)2

, (55)

where Sa
2 is the nonrelativistic term from Eq. (41).

B. Dirac equation

Our starting point is the quadratic Dirac equation:

[(i∂ + A/c + V/c)2 − c2 + � · B/c + iα · E/c]ψ = 0. (56)

The wave function of the latter is looked for using the ansatz ψ = u exp(iS), where u is the spinorial part and S is the eikonal of
the Klein-Gordon equation. We look for the solution of u and S perturbatively with respect to the atomic potential and the laser
field for the modified continuum and bound state, respectively.

The unperturbed wave function of the relativistic continuum state of the Dirac equation u f
0 exp(iS f

0 ) is represented by the
relativistic Volkov wave function [68]. The correction S f

1 to the eikonal of the modified continuum wave function is given by
Eq. (50). We neglect u f

1 , which describes the spin flip induced by the atomic potential during the tunneling dynamics and is of
the order of (κ/c)3 according to Ref. [69].

The unperturbed relativistic bound-state wave function for the Dirac equation is given by [63]

Sa
0 = Sa

0 − iIp/c2 ln (κr) − i ln
(
Ca

0

)
, (57)

with Ca
0 = 2−1+ε0

√
(1 + ε0)/
(1 + 2ε0). We choose the Dirac eikonal for the atomic wave function to be identical to the Klein-

Gordon one Sa and find the spinorial corrections. The first-order spinorial correction in h̄ and E0/Ea is then a solution of the
following equation:

(4c2 − Ip)∂rua
1 = 4Ipc

(
1 + 2εMu̇a

1, 2εMu̇a
1, 2εMu̇a

1, 2εMu̇a
1

)

−
(

i(2Ip)3/2(z + 3ix)

r
,

i(2Ip)3/2y

r
,−2iIpcxy

r2
,

(2Ip)3/2r(x − iz) + 2cIp[r2 + x(x − iz)]

r2

)
E0

Ea
, (58)

where εM = −E0/(2c) and 1/c expansion up to second order was applied. The solution of the latter equation reads

ua
1 = i

E0t

2c
ua

0 + E0

Ea

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I3/2
p (−iz+3x)√

2c2

iI3/2
p y√
2c2 − Ipr

c

− iIpxy
2rc − Ipr

c + i I3/2
p y√
2c2

−−Ip(z2+izx+y2 )
2rc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (59)

Using the modified atomic and continuum wave functions in the relativistic regime, ψa = Ca
2{ψa

0 [1 + iSa
1 − (Sa

1)2/2 + Sa
2] +

exp(iSa
0)(ua

1 + iSa
1ua

1 + ua
2)}, the ionization amplitude of Eq. (6) for the Klein-Gordon and Dirac equations is calculated

numerically at the most probable momentum p = (0, 0, Ip/3c) [70]; see Fig. 4, where the ionization yields from different
approximations are compared.

We also estimated analytically the relativistic analog of the Tong-Lin factor (the correction factor to the PPT ionization rate):(
w

wPPT

)
rel

≈
(

w

wPPT

)
nr

e− 2κ2

c2 ≈ exp

(
−12Z2

κ2

E0

Ea
− 2κ2

c2

)
. (60)
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FIG. 4. Analytical estimates for the relativistic ionization:
(a) The ionization yield (Y). (b) The ionization rate (R). In both
panels symbols are as follows: blue circles, nonrelativistic PPT the-
ory; orange squares, relativistic PPT theory; red triangles, corrected
relativistic rates from the present theory; black inverted triangles,
corrected relativistic rates from the numerical solution of the Klein-
Gordon equation in Ref. [52]; dotted line, the analytical estimate
of the PPT rate from Eq. (B1); solid brown line without markers,
the analytical estimate of the corrected relativistic PPT rate via the
Tong-Lin factor (60).

The relation between the relativistic and nonrelativistic ion-
ization rates is given in Appendix B.

In Fig. 4 the relativistic correction factor for the PPT theory
given above is tested against the matching method in this
paper as well as against the numerical calculation in Ref. [52],
demonstrating good performance. According to Fig. 4, our
theory provides good agreement for the yield with the results
of the numerical solution of the Klein-Gordon equation from
Ref. [52], while the standard relativistic PPT theory overesti-
mates it by more than an order of magnitude. The role of the
different polarization effects (bound-state shift and distortion)
and the Stark shift is similar to that in the nonrelativistic case
(Fig. 3). The main characteristic feature of the relativistic
yield is the decreasing of the yield at large Ip/c2. This stems
from the relativistic mass shift effect, which decreases the size
and the polarization of the atomic bound state at large Ip/c2.
The latter contributes to the deviation of the result with our
model from that of the relativistic PPT theory.

(a)

(b)

FIG. 5. (a) Integrated electron energy vs laser intensity: the ex-
perimental results of Ref. [56] with the 1-mm shield (black circles),
the PPT theory from Ref. [56] (blue solid squares), PPT theory with
depletion (red dotted line with inverted triangles), the corrected PPT
theory with the present model (red dashed line with triangles), and
our model including the depletion effect of the ground state (red
diamonds). (b) The ratio of the ionization yield for Kr35+ with respect
to PPT in a three-cycle laser pulse for the PPT yield with depletion
(blue line) and our model with depletion (orange line). The grid
lines show the OTBI threshold (solid) and the saturation intensity
for Kr34+ (dashed).

V. POSSIBILITIES FOR OBSERVING
THE THEORY PREDICTIONS

Recently, an experiment on tunneling ionization from the
K shell of neon in the relativistic regime was carried out
with a laser intensity exceeding 1020 W/cm2 [56]. The in-
tegrated electron energy was measured. The authors also
provided Monte Carlo simulations employing the PPT rates
and concluded that the PPT theory (as well as the so-called
barrier-suppression ionization model [71]) overestimates the
ionization yield. However, it appears that the depletion
of the atomic state is not taken into account in these sim-
ulations. We give an estimation of the experimental results
using the theoretical method in this paper and include the
depletion effect. Our qualitative estimation consists of mul-
tiplying the PPT curve in Fig. 5(a) by the correction factor
according to our theory (w/wPPT)rel. The depletion is ac-
counted for by evaluating the correction factor for the laser
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(a)

(b)

FIG. 6. (a) The m1 integrand for the Coulomb case at E0 =
0.05 a.u. (b) Analytic estimates of the correction factor via Eqs. (A2)
and (A3); the green line shows the Tong-Lin factor [34].

field corresponding to the ionization saturation time td , de-
termined from the ionization yield Y (t ) via Ÿ (td ) = 0 (see
Appendix C). When the depletion of the bound state is
included, both the PPT theory and our method fit the ex-
perimental result within the experimental error [Fig. 5(a),
red solid and red dotted lines], Thus, the experimental re-
sult from Ref. [56] cannot distinguish between PPT theory
and our method. This is because of the domination of the
depletion over a long laser pulse duration in the experi-
ment (25 cycles). With a shorter laser pulse, the deviation
of our method from PPT theory is measurable near the
OTBI threshold, as the example of krypton HCI ioniza-
tion in a three-cycle ultraintense laser pulse demonstrates
in Fig. 5(b). We see that near the OTBI threshold, ac-
counting for the bound-state distortion in the laser field can
result in a decrease in the ionization yield by more than
2 times.

VI. CONCLUSION

We put forward a simple model for relativistic ioniza-
tion with the important ingredient of accounting for the
bound-state polarization and the Stark shift beyond perturba-
tion theory. With this modification to the adiabatic transition
model, the deviation of the numerical and experimental results
from the PPT theory was explained. In the recent experiment
in Ref. [56] the depletion of the bound state was the dominat-
ing factor to account for the deviation from PPT theory. The
role of depletion can be avoided by using shorter laser pulses,
with which the prediction of our model deviating from PPT
theory can be confirmed.
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APPENDIX A: ANALYTICAL ESTIMATE FOR
THE MODIFIED IONIZATION AMPLITUDE

We provide an analytical estimate for the modified ioniza-
tion amplitude m1. First of all, we approximate the 3D overlap
integral via that of the 1D case using the result in Ref. [72]:

m1 = c3D

∫
dxC(x)ψ f

0 (x, t∗)ψa
0 (x, t∗)

× {
1 + iSa

1 (x, 0) − [
Sa

1 (x, 0)
]2 + iSa

2 (x, 0)
}
, (A1)

with the Coulomb-correction factor of the PPT theory C(x) =√
8(Ea/E0)(1 − E0x/κ2 − E2

0 x2/4κ4) [69], the dimensional
conversion factor c3D = 1/

√
2πκ2 [72], and the polarization

corrections Sa
1 (x, 0) and Sa

2 (x, 0) on the x axis in the case of
Coulomb potential.

The integrand is shown in Fig. 6(a), justifying the integra-
tion along the x axis (y = z = 0; note that the volume element
z is included in the plot). The integration performed until the
tunnel exit xe yields

mxe
1

mPPT
= e− 1

8

/
f

(
− 1

32
√

2π f 3/2
− 271

√
f

24
√

2π
− 29

24
√

2π
√

f

)

+4

3

√
2

π

√
f + 15

8
, (A2)

while the integration up to x = ∞ is

m∞
1

mPPT
= 9 f 3/2

2
√

2π
− 53 f 2

8
− 9 f

8
+ 4

3

√
2

π

√
f + 15

8
, (A3)

with f = E0/Ea.
From Fig. 6(b) one can see the relevance of the integration

up to the exit coordinate. For low fields the 1D description
using Eq. (A1) is not accurate.

The region of applicability of the Tong-Lin factor with
respect to the laser field can be deduced from Fig. 7, where the
exact numerical solution for the ionization rate of hydrogen of
Ref. [66] is compared with the Tong-Lin factor. The Tong-Lin
factor is reliable up to E0 � 0.15 a.u.
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FIG. 7. The ratio w/wPPT for the ionization of hydrogen from the
numerical solution in Ref. [66] (blue line) and the Tong-Lin factor
from Ref. [34] (orange line).

APPENDIX B: RELATION BETWEEN THE RELATIVISTIC
AND NONRELATIVISTIC IONIZATION RATES

In the PPT theory the relativistic rate can be obtained with
a correction factor from the nonrelativistic rate [19]:

wrel
PPT = crelwnr

PPT, (B1)

where the correction factor crel is different for the Dirac and
Klein-Gordon equations:

crel = (2κxs)−μ2Ip/c2
exp

[
κ2

36c2

Ea

E0

]
, (B2)

with μ = 1 for the Dirac equation, μ = 2 for the Klein-
Gordon equation, and xs ≈ 2

√
κ/E0.

APPENDIX C: ESTIMATION OF THE
INTEGRATED-ELECTRON-ENERGY YIELD

We provide the correction to the estimation of the experi-
mental results using the theoretical method in this paper. First
of all, we calculate for arbitrary field strength, the quasistatic
relativistic correction factor to the PPT rate, according to the
model given in this paper:

crel(E0) = wrel(E0)

wrel
PPT(E0)

. (C1)

We use κ = 9.3 a.u. and Z ≈ 9.3 a.u., corresponding to the K
shell of neon, and a laser field

E (t ) = E0 f (t ) cos(ωt ), (C2)

with the envelope f (t ) = cos(ωt/50)2. With the given correc-
tion factor, the quasistatic instantaneous ionization rate reads

dw

dt
= crel[E0 f (t )]

√
3

π

√
E0 f (t )

κ3

E0 f (t )

2κ

× 8κ6

E2
0 f (t )2

exp

[
− 2κ3

3E0 f (t )

]
. (C3)

With the classical mapping of the ionization time t to the
final photoelectron energy ε at a given observation angle θ , the

integrated electron energy (IEE) is derived via the ionization
rate:

dE(ε)

d�
=
∫ ε

E0

dεε
dw

dεd�
, (C4)

with E0 being the low cutoff energy corresponding to the
applied shield and d� being the solid angle. As the PPT rate
is corrected with the factor crel, the IEE is also corrected,

dE(ε)

d�
= crel[E0 f (t )]

∫ ε

E0

dεε
dwPPT

dεd�
. (C5)

We can take into account the depletion effect of the atomic
state, which is neglected in the theoretical estimation of
Ref. [56]. To this end, we calculate the ionization yield:

Y (t ) = 1 − exp

[
−
∫ t

t a

dt ′ dw

dt ′

]
, (C6)

with t a = −25π/ω. Due to the depletion, the ionization yield
is saturated at t = td , which is determined from the condition

Ÿ (td ) = 0. (C7)

Thus, the saturation induces an effective ionization instant td ,
and the IEE is modified due to the depletion effect,

dE(ε)

d�
= crel[E0 f (td )]

∫ ε

E0

dεε
dwPPT

dεd�
[E0 f (td )]. (C8)

Figure 5 shows the modified IEE according to the formula
above.

APPENDIX D: GAUGE INVARIANCE

In the main text, the length gauge is used for the laser
field in the nonrelativistic regime, and its analog, the Göppert-
Mayer gauge, is used for the relativistic case. While it is
known that the standard SFA is gauge dependent [73–76], the
theory developed in this paper is gauge invariant because it
accounts for the bound-state dynamics in the laser field.

Let us briefly discuss the role of the gauge for the applied
theory. To this end, we present the results of the theory in
the velocity gauge. First, we consider the simplest case of the
nonrelativistic regime with a 1D zero-range atomic potential.
In the velocity gauge A(t ) = E0t , and the Volkov-state reads

ψ
f

0 = exp
[−iE2

0 t3/6
]
/
√

2π. (D1)

The bound state is corrected by the eikonal in the laser field
using the solution of the following equation:

−∂Sa
1 = (

∂xSa
1 + E0t

)
∂xSa

0 − i∂xxSa
1/2, (D2)

which yields

Sa
1 = −E0tx − iE0x2/2κ − iE0x/2κ2. (D3)

Note the difference in Sa
1 above from the length-gauge result

in Eq. (22) by the term −E0tx, which is now missing in the
Volkov state [compare Eq. (D1) with (10)]. Further, the atomic
correction to the Volkov state is identical to the length gauge.

Consequently, the overlap integral of the corrected bound
and Volkov states is the same in the length and velocity
gauges. The equation that defines the matching time t∗ at
which the overlap integral is evaluated is accordingly given
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by ∂t (Sa
0 + Sa

1 ) = ∂t (S
f
0 ), yielding the same expression as in

length gauge. Note S f
1 is time independent in a quasistatic

laser field and a zero-range potential. Thus, the results of the
length and velocity gauges coincide.

In the nonrelativistic 3D Coulomb case the situation is
similar: the atomic eikonal equation in the leading order is

−∂t S
a
1 = (∇Sa

1 + E0t
) · ∇Sa

0 − i�Sa
1/2, (D4)

with the solution

Sa
1 (x, t ) = −E0tx − iκx(2 + rκ )

E0

Ea
. (D5)

Again, the first term is identical to the one that is missing in
the Volkov state in the velocity gauge.

Similarly, one can show in the relativistic case that the four
standard gauges, the length, Power-Zienau, Göppert-Mayer,
and velocity gauges, with their Volkov states

S f ,L
0 ∼ E0tx, S f ,PZ

0 ∼ E0(t − z/2c)x,

S f ,GM
0 ∼ E0(t − z/c)x, S f ,V

0 ∼ 0, (D6)

give identical results; i.e., the atomic eikonal given in Eq. (55)
for the Göppert-Mayer gauge has to be corrected by the dif-
ference in the exponents to the Göppert-Mayer eikonal:

Sa,i
1 = Sa,GM

1 + (
S f ,i

0 − S f ,GM
0

)
. (D7)

Thus, the applied theory is gauge invariant.
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