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Electron vortices in the amplitude of the atomic ionization by a few-cycle
circularly polarized laser pulse
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Electron vortices emerging in the amplitude of the ionization of an atom by an isolated few-cycle, circularly
polarized electromagnetic pulse are analyzed in the multiphoton regime. We demonstrate that the number of
vortices, as well as their position and strength, are determined by the relative magnitudes of the dynamical
amplitude parameters corresponding to sequential photon absorption. It is shown that the phase maps of the
ionization amplitude in the momentum space exhibit spiral structures, which are signatures of the Coulomb
scattering phases.
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I. INTRODUCTION

Recently, the question of the interaction of beams carrying
orbital angular momentum with atoms has attracted much
attention [1–10]. Such beams (often called twisted or
vortex beams) bear well-defined values of the integer
orbital momentum quantum number m, which describes
the dependence of the corresponding wave function on
the azimuthal angle ϕ through the factor exp(imϕ) (for
beams propagating along the z axis). For the points on the
z axis the angle ϕ is undefined, and therefore the wave
function there has to be zero. Accordingly, the velocity field,
v(r) = Im (ψ∗∇ψ )/|ψ |2, is swirling around the propagation
direction of the twisted beam. This swirl, or vortex, is
characterized by the parameter M, defined by

M = 1

2π

∮
K

v(r) · dr = 1

2π

∮
K

Im (ψ∗∇ψ )

|ψ |2 dr, (1)

where K denotes an (arbitrary) contour encircling the z axis.
The theoretical background of the above property of the

twisted (or vortex) beams is based on the pioneering work
by Dirac [11], who noted that when the wave function, ψ ,
of a quantum particle is zero in every point on a line (the
nodal line, which is not necessarily a straight line), the cir-
culation of the velocity field around that line is a quantized
quantity, see Eq. (1). In Eq. (1) M can take only integer values,
M = 0,±1,±2, . . .. When depicted, the velocity field in the
vicinity of a nodal line has the form of a swirl, which is
why such phenomena are referred to as “quantum vortices”
[1,12–14]. The parameter M is called “vorticity number,”
“vortex strength,” or the “topological charge” of a vortex.
Since a nodal point is defined by two conditions, Re ψ = 0
and Im ψ = 0, we conclude that the points in space where
ψ = 0 can be lines (nodal lines) or surfaces (nodal surfaces).
In the latter case the vorticity number of every point of the
nodal surface is equal to zero (otherwise it would be infinite,
since any two points on a nodal surface can be connected by
infinitely many nodal lines). Below we will denote quantum

states for which the velocity field has vortices as “vortex
states.” General properties of such states were analyzed in
[15–17].

For the sake of illustration of these two types of nodal
structures, let us consider bound states of the quantum particle
in a Coulomb field. In this case the wave function can be
written in the form [18]

ψ (r) = Rnl (r)Ylm(r̂) = Rnl (r)Ylm(θ, 0) eimϕ, (2)

where r, θ, ϕ are spherical coordinates of the radius vector
r; Rnl (r) is the radial part of the wave function with the
principal quantum number n; and Ylm(θ, ϕ) is the spherical
harmonic with the orbital momentum l and the magnetic
quantum number m. For the ground state, l = m = 0, n = 1
and the radial part of ψ has no nodes. For the excited states,
there are several possibilities. For S states, one has l = m = 0
and ψ is a real-valued function, which has zeros for some
values of r. Thus, zeros of S states form concentric spheres
in space, which are the nodal surfaces. Each point on such
spheres is a zero-strength vortex, M = 0. For P states, l = 1
and m = 0,±1, zeros of the radial functions Rn1(r) (n > 2),
Rn1(r0) = 0, form nodal surfaces as the series of concentric
spheres. Moreover, the angular part of a P state for m = 0 is
zero at θ = π/2, which defines the xy plane as a nodal surface,
while for m = ±1, one has θ = 0, π , which defines the z axis
as a nodal line. Thus, vortices in the wave functions of P states
with m = ±1 occur on the points of the z axis. In this case it
is convenient to choose the contour K to be a circle in the xy
plane. Consequently, the integral in Eq. (1) evaluates to

M = 1

2π

∮ 2π

0

Im (ψ∗∂ψ/∂ϕ)

|ψ |2 dϕ

= m

2π

∮ 2π

0
dϕ = m. (3)

As is seen, a P state has one vortex whose strength is equal
to the value of the magnetic quantum number m. For states
with higher-order orbital momentum, the situation is similar.
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Vortices only emerge on the z axis when the magnetic quan-
tum number m �= 0, and their strength is equal to m. One can
show [11,19] that an additional phase, acquired by the wave
function circulating along a contour enclosing a nodal line,
is connected to a magnetic flux through that contour. Thus,
the quantization of the velocity field circulation implies the
quantization of a magnetic flux. In our example that magnetic
flux is generated by the (quantized) orbital motion of the
electron. It is interesting that the scattering wave function of
the Coulomb problem has no nodes [18]. We note that the
nodal structure of the wave functions of the helium atom was
analyzed in several works; see, e.g., Refs. [20–23]. However,
the occurrence of quantum vortices in the helium atom was
not investigated by the respective authors.

It is important that quantum vortices may occur not only
in the wave functions but also in the amplitudes of various
fragmentation processes, such as impact ionization [24–27].
The corresponding amplitude is a complex-valued function of
the momentum of an escaping electron, and quantum vortices
could emerge in the momentum space. In the conventional
photoionization process induced by a monochromatic elec-
tromagnetic pulse having the frequency ω, the energy of the
photoelectron is fixed by the equation E = p2/2 = Ei + h̄ω

(Ei < 0 is the energy of the initial bound state), and the
photoelectron momentum distribution (PMD) is a sphere in
momentum space. During the last decades it became possible
to observe the ionization of atoms by the ultrashort (few-
cycle) laser pulses [28–33]. Few-cycle pulses are broadband,
and therefore the energy (and momentum) of the photoelec-
tron can vary in a certain range. Thus, the PMD occupies a
certain volume in momentum space. Accordingly, the ampli-
tude of the short-pulse ionization process, A, is a function of
the magnitude p of the momentum vector and its direction
p̂ = p/p. The connection between nodal structures and quan-
tum vortices in the wave function discussed in the paragraph
above raises the overarching question as to where and how
quantum vortices occur in the ionization amplitude A(p).

The simplest way to answer this question is to analyze the
situation when the ionization is performed by purely circu-
larly polarized (CP) pulses. The structure of quantum vortices
in the amplitude of the photodetachment by CP pulses was
analyzed in the series of works [34–37] where the process was
considered both in the multiphoton and strong-field regimes.
Formation of electron vortices in strong-field ionization was
the subject of recent works [5,38,39]. In this article we in-
vestigate the occurrence of quantum vortices in the ionization
amplitudes of atoms by a single intense, few-cycle CP pulse
in the multiphoton regime.

Before considering the case of a single CP pulse, it is
important to highlight that interesting phenomena occur when
an atom (or a molecule) is ionized by a pair of time-delayed
CP pulses with moderate intensities. It was shown [40–44]
that for corotating CP pulses, the PMDs for the threshold
electron exhibit interference fringes in the form of concentric
circles, similar to Newton’s interference rings; meanwhile,
for counter-rotating CP pulses, the interference is seen in the
form of Fermat spirals. It is remarkable that the number of
arms in those spirals is determined by the number of absorbed
photons [45]. (This rule may be violated for counter-rotating
elliptically polarized pulses [46].) Although spiral structures

in the PMDs were termed “vortices” [40–42,45,47], they are
not the same as quantum vortices in the above sense, which are
defined as nodal lines with nonzero circulation of the velocity
field. These velocity field vortices are not seen in PMDs as
any kind of spiral structures. Rather, they can be identified in
the phase maps of the ionization amplitude, where they occur
in the form of finger- or forklike patterns [48].

The goal of the present work is to analyze properties of
quantum vortices in the amplitude of the ionization of atoms
by a single intense, few-cycle CP pulse. Namely, we investi-
gate where in momentum space such vortices occur and what
is their strength. Besides the quantum vortex occurring at the
origin in momentum space, we will show that the interfer-
ence of ionization amplitudes corresponding to the sequential
orders of the photon absorption (e.g., one- and two-photon,
etc.) causes the emergence of additional amplitude quantum
vortices. Interestingly, the same interference effect that causes
the occurrence of quantum vortices in the ionization ampli-
tude also underlies the occurrence of the circular dichroism in
the ionization of atoms by an intense few-cycle pulse [49,50].
Although we assume the ionization to be performed in the
perturbative regime, our conclusions may well be valid for
stronger pulse intensities, since in this case similar “dynamic”
interference effects take place [51–53]. It is remarkable that
although ionization amplitude vortices do not appear as spi-
rals in the corresponding momentum distribution, some spiral
patterns are inherent to the process of the short CP pulse
ionization. Namely, we found that the phase maps of the
ionization amplitude exhibit spiral patterns. The number of
arms of those spirals is equal to the number of absorbed
photons. We emphasize that such spirals do not occur in the
photodetachment process [19,35]. It will be shown below that
the spiral patterns in the phase maps of the ionization ampli-
tude are signatures of the Coulomb scattering phases, δl (p).
Therefore, we denote these patterns as “Coulomb spirals.”

The paper is organized as follows. In Sec. II we derive
the parametrization of the amplitude of the ionization by a
single intense, few-cycle CP pulse. We consider the situa-
tion when the pulse parameters lie within the range where
the nonstationary perturbation theory (PT) is applicable. We
obtain conditions which lead to the occurrence of quantum
vortices in the ionization amplitude. Results of our PT anal-
ysis are compared with the results of numerical solution of
time-dependent Schrödinger equation (TDSE) for hydrogen
and helium atoms in Sec. III. Some concluding remarks are
given in Sec. IV, together with an outlook for further research.
In Appendix we calculate the integral defining the circulation
of the ionization amplitude velocity field.

Atomic units are used throughout the text unless otherwise
specified.

II. PERTURBATION THEORY ANALYSIS OF VORTICES
IN THE PHOTOIONIZATION AMPLITUDE

First, in Sec. II A we derive the PT parametrization of the
ionization amplitude. Next, in Sec. II B properties of vortices
occurring in the ionization amplitude are analyzed. Finally, in
Sec. II C we discuss the origin of spiral patterns emerging in
the phase maps of the ionization amplitude.
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A. Parameterization of the ionization amplitude

We will analyze the ionization amplitude, A, correspond-
ing to the emission of an electron by an atom subjected to
a few-cycle CP electromagnetic pulse. We define the electric
field strength vector by

F(t ) = Re [e F (t )e−i(ωt+φ)]. (4)

Here ω is the pulse carrier frequency, F (t ) is the pulse enve-
lope function, φ is the carrier envelope phase (CEP), and e is
the complex vector of the pulse polarization. For the sake of
simplicity, below we do not consider CEP effects and we set
φ = 0. For CP pulses the polarization vector can be written in
the following form [49],

e = 1√
2

(ex + iξey), ξ = ±1, (5)

where ex, ey are unit vectors of the Cartesian basis, with its
z axis directed along the pulse propagation. Throughout this
work, we define left and right from the point of view of the
emitter of the laser source, as commonly used in the syn-
chrotron radiation community. For right-hand CP (RCP) one
has ξ = 1, while ξ = −1 for left-hand CP (LCP) pulses. The
polarization vector is normalized by the condition (e∗ ·e)=1.
The linear polarization degree for purely CP pulses is equal to
zero, � ≡ (e · e) = 0.

Within the time-dependent perturbation theory, the am-
plitude of the ionization by a broadband (i.e., few-cycle)
electromagnetic pulse can be presented as a sum of terms,
corresponding to different PT orders. In [54,55] it was shown
that the dependence of the ionization amplitude on the photo-
electron emission angles for the ionization of an initial state
with the angular momentum quantum numbers limi, which is
caused by an absorption of n CP photons with the frequency
ω, can be parameterized as follows:

An =
li+n∑

l=|li−n|
Rl (p) {Yl (p̂) ⊗ {e}n}limi , (6)

where Rl (p) are radial partial amplitudes, p̂ is the
unit vector along the photoelectron momentum p̂ = p/p,
{Yl (p̂) ⊗ {e}n}limi are irreducible tensor products [56] of spher-
ical harmonics Ylm(p̂), depending on the angles of p̂, with
the minimal tensor product of n polarization vectors e, {e}nmn ,
defined by [54]

{e}nmn = {{. . . {{e ⊗ e}2 ⊗ e}3 . . . e}n−1 ⊗ e}nmn . (7)

Note that the tensor product (7) does not depend on the
coupling scheme of vectors e. For CP photons the spherical
components of e have the form [cf. Eq. (5)]

e0 = (e · ez ) = 0,

e±1 = ∓ 1√
2

[(e · ex ) ± i(e · ey)] = ξ ∓ 1

2
.

(8)

Here, the last equation can be rewritten as

eμ = ξδμ,−ξ , μ = ±1. (9)

As a consequence, we have that the only nonzero component
of the tensor product (7) of vectors e, defined by Eq. (5), is

that with mn = −ξn:

{e}nmn = δmn,−ξnξ
n. (10)

Below we limit our consideration only to the case of the elec-
tronic emission in the pulse polarization plane, which is the
xy plane, corresponding to the polar spherical angle θ = π/2.
In this case the spherical harmonics in Eq. (6) can be written
explicitly as follows [56]:

Ylm

(
π

2
, ϕ

)

= (−1)
l+m

2 eimϕ

√
2l + 1

4π

(l + m − 1)!!

(l + m)!

(l − m − 1)!!

(l − m)!
,

(11)

where l + m is an even number, otherwise Ylm(π/2, ϕ) = 0.
In Eq. (11) ϕ is the polar angle of the momentum vector p in
the xy plane, where the pulse electric field vector E is rotating.

Equations (10) and (11), together with the properties of the
Clebsch-Gordan coefficients entering the tensor product (6),
allow one to present the amplitude of the n-photon ionization
in the following form:

An = ei(mi+ξn)ϕ An(p), (12)

where An(p) is the dynamical parameter, depending on the
energy of the photoelectron but not on its emission direc-
tion. As was noted above, the total ionization amplitude is a
sum of terms corresponding to different numbers of absorbed
photons:

A(p) =
∞∑

n=1

ei(mi+ξn)ϕAn(p) = eimiϕ

∞∑
n=1

eiξnϕAn(p). (13)

B. Vortices in the ionization amplitude

Let us consider the question on the positions of the zeros
of the ionization amplitude A(p) in the xy plane. Let p0 =
(p0, ϕ0) be the polar coordinates of the momentum vector
corresponding to the zero of the amplitude, that is, A(p0) = 0.
This zero (i.e., the node) is characterized by the topological
charge (or the vortex number) M(p0), defined by [cf. Eq. (1)]

M(p0) = 1

2π

∮
K

Im (A∗∇A)

|A|2 dp = 1

2π

∮
K

Im ∇(ln A) dp,

(14)

where ∇ = ∂/∂p, and the integration contour K encloses the
point p = p0 in the xy plane. In this case pz = 0, and therefore
∇ is a two-dimensional gradient operator whose Cartesian
components are ∇ = (∂/∂ px, ∂/∂ py). Let us evaluate the
circulation of the logarithmic derivative of the ionization am-
plitude A(p):

�(A) =
∮

K
∇g(p) · dp, g(p) = ln A(p). (15)

The polar coordinates of the momentum vector p are p and ϕ,
and Cartesian coordinates of p are

p = p(cos ϕ, sin ϕ). (16)
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The vector element of the contour can be written as

dp = p̂ d p + pτ dϕ, (17)

where the unit vector τ = (− sin ϕ, cos ϕ) is perpendicular to
p̂ = p/p. The gradient operator written in cylindrical coordi-
nates has the form

∇ = p̂
∂

∂ p
+ τ

p

∂

∂ϕ
. (18)

Inserting Eq. (18) into Eq. (15) for the circulation, we obtain,

�(A) =
∮

K

1

A(p)

(
∂A(p)

∂ p
d p + ∂A(p)

∂ϕ
dϕ

)
. (19)

If the amplitude can be written in a factorized form, then
from Eq. (14) we have that the topological charge inside some
contour is a sum of charges corresponding to different ampli-
tude factors. From Eq. (13) it is seen that the factor exp(imiϕ)
is common for all PT orders. Now let K be a small circle with
its center at p = 0. Then, from Eq. (14) we obtain that the
topological charge in the point p = 0 is equal to the magnetic
quantum number of the initial bound state, i.e., M(0) = mi. If
the common factor of the amplitude is a function of p, which
has no nodes in the xy plane, then, according to Eq. (14), it
can be ignored when calculating the topological charge.

It is convenient to write the dynamical ionization amplitude
parameters (13) as follows:

An(p) = An(p) eiαn (p), n = 1, 2, . . . , (20)

where the absolute values An(p), and arguments αn(p), are
functions of the momentum p (or the energy E = p2/2) and
are independent of the angle ϕ. For a monochromatic pulse the
dynamical parameters are proportional to Dirac δ functions,
An(p) ∼ δ(p2/2 − nω − Ip), where Ip = |Ei| is the ionization
potential, which is the consequence of the energy conservation
law. For a broadband pulse in the PT regime the absolute
value An(p) has maximum in the vicinity of the point pn =√

2(nω − Ip) and decreases to zero as p deviates further from
pn. Hence, the non-negative functions An(p) are intersecting
for some values of momenta located between their maxima
separated by the energy ≈ h̄ω. This means that the photo-
electron with the energy E ≈ nω − Ip could be emitted due to
the absorption of either n or n ± 1 photons. The coexistence
of competing ionization channels is caused by the fact that
the energy of the photons in a few-cycle pulse is not a well-
defined quantity. Rather, it lies within some range around the
energy h̄ω, corresponding to the carrier frequency. The shorter
the pulse, the broader the photon energy range. Thus, for the
photoelectron energy satisfying the condition nω � E + Ip �
(n + 1)ω, the main contribution into the expansion (13) of the
ionization amplitude comes from three terms,

A(p) = ei(mi+ξn)ϕ(
An−1 ei(αn−1−ξϕ) + An eiαn + An+1 ei(αn+1+ξϕ)).

(21)

Numerical TDSE results obtained for the ionization of hy-
drogen and helium atoms (see Sec. III) demonstrate that in the
PT regime the main contribution into the ionization amplitude
in the vicinity of a vortex comes from only two terms:

A(p) = ei[αn+(mi+nξ )ϕ]
(
An + An+1ei(ξϕ+β )

)
, (22)

FIG. 1. The mechanism of the multiphoton ionization by a few-
cycle pulse within PT. Ei < 0 is the energy of the initial bound state,
E = p2/2 is the photoelectron energy, and ω and �ω are pulse carrier
frequency and its bandwidth. The thicker the line, the larger the
process probability.

where β = αn+1 − αn, and n is the largest integer less than
Ip/h̄ω. If h̄ω ≈ Ip, then A1 and A2 are the first- and the
second-order PT amplitudes, respectively. The amplitude in
the first PT order can be interpreted as a single-photon ab-
sorption process. In the second PT order there are two possible
processes [49], see Fig. 1: (i) two-photon absorption and (ii)
one-photon absorption + one-photon emission. For the two-
photon absorption process, the dependence of the amplitude
on the angle ϕ is defined by the function exp(2iξϕ); mean-
while, for the process of one-photon absorption + one-photon
emission, the dependence on ϕ cancels out. Numerical TDSE
results (see Sec. III below) demonstrate that in the PT regime
the contribution of the channel (ii) is negligibly small. This
means that the ionization amplitude in this case can indeed be
presented as a combination of only two terms [see Eq. (22)]:

A(p) = ei[α1+(mi+ξ )ϕ]
(
A1 + A2 ei(ξϕ+β )

)
, (23)

where β = α2 − α1.
It is clear that zeros of the amplitudes in Eqs. (22) and (23)

occur in points where the functions An(p), An+1(p) are equal
and the angle ϕ is

ϕ = ϕ0 = π + ξ (αn − αn+1). (24)

In order to calculate the corresponding topological charge,
it is convenient to choose the contour K , enclosing the zero
of the ionization amplitude, to be composed of two radial
and two arc segments, see Fig. 7. Details of the calcula-
tion of the circulation in Eq. (14) are given in Appendix,
where it is shown that the topological charge of the vortex
in the ionization amplitude having the form (22) is equal to
±1, depending on the type of the crossing of curves A =
An(p) and A = An+1(p). If the curves intersect as shown in
Fig. 2(a), then the topological charge equals ξ ; if the in-
tersection occurs in the point where the function An+1(p)
decreases, point 2 in Fig. 2(b), then the topological charge
is −ξ . Apart from that, the ionization amplitude vortices can
have charges with absolute values larger than 1 when three
or more terms give comparable contribution into the ampli-
tude, as in Eq. (21). Namely, zeros of the amplitude in the
form (21) are defined by solutions of the quadratic equation
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nω p

A
An

An+1

nω p

A
An

An+1

(a) (b)

1 1
12

FIG. 2. Possible crossings of the curves of dynamical ionization
amplitude parameters An and An+1, corresponding to the absorption
of n and n + 1 photons. The crossing in (a) leads to a single vortex
with the topological charge ξ ; the crossings (b) lead to three vortices
with the same total charge ξ . Vortices in 1 have the charge ξ , in 2 the
charge is equal to −ξ .

[below z = exp(iξϕ)]:

z2 + bz + c = 0,

b = An

An+1
ei(αn−αn+1 ), (25)

c = An−1

An+1
ei(αn−1−αn+1 ),

which satisfy the condition |z| = 1. It is obvious that Eq. (25)
has no more than two solutions, which coincide when the
condition b = 2c1/2 is met. If this happens in some point
p0 = (p0, ϕ0), then we have that An+1(p0) = An−1(p0) =
An(p0)/2 and αn(p0) = [αn+1(p0) + αn−1(p0)]/2 + 2πk, k =
0,±1,±2 . . .. After these conditions are met, it could be
possible that the ionization amplitude in the vicinity of p0 can
be written as

A(p) = An+1(p) ei[(n−1)ξϕ+iαn+1](eiξϕ + ei�α/2)2, (26)

where �α = αn−1 − αn+1. Since Eq. (14) contains the log-
arithmic derivative, we obtain that the topological charge in
p0 is equal to twice the topological charge of the function
(exp iξϕ + exp i�α/2), which is equal to ±ξ , as was noted
above. We note that for all pulse parameters considered in
our TDSE examples (see Sec. III), we have never encountered
situations where the change in topological charges was not
equal to 1.

Let us consider the situation when the photoelectron energy
is close to nω − Ip. As was explained above, in this case the
ionization amplitude can be presented as a combination of
three terms, see Eq. (21). If we choose the integration contour
to be the circle with the radius p = √

2(nω − Ip), then from
Eqs. (14) and (21) we obtain that the total topological charge
inside the contour is determined by the amplitude factor
exp[i(mi + nξ )ϕ]. Consequently, the total charge inside the
circle is equal to mi + ξn. Similarly, if we expand the contour
so that the radius of the circle is

√
2[(n + 1)ω − Ip], then the

total topological charge becomes mi + ξ (n + 1). Thus, the
topological charge is increased by ξ whenever an additional
photon is absorbed.

The above statement, however, is not quite rigorous, since
the change of the total topological charge inside the circular
integration contour by ξ could happen when the ionization
amplitude contains “vortex-antivortex” pairs. Indeed, a vortex

has charge ξ , while an antivortex has charge −ξ , so that the
topological charge of the pair is zero. To clarify this issue,
let us consider the ionization amplitude for the photoelectron
energy within the interval [nω − Ip, (n + 1)ω − Ip]. Next, let
us assume, for the sake of simplicity, that the amplitude can
be written as a combination of two terms, see Eq. (22). Within
the mentioned energy interval the amplitude of the n-photon
ionization An decreases while the amplitude of the (n + 1)-
photon ionization An+1 increases. Then, in some point p = p0

curves A = An(p) and A = An+1(p) will intersect, An(p0) =
An+1(p0). If that intersection has the form shown in Fig. 2(a),
then the corresponding topological charge will be equal to
ξ . If the curves An+1(p) and An(p) cross in three points, as
is shown in Fig. 2(b), then three vortices will occur with
the same total charge ξ . Now if the radius of the integration
contour lies somewhere between points 1 and 2 in Fig. 2(b),
then the topological charge inside the contour will increase by
ξ without an absorption of an additional photon. If we further
expand the contour beyond point 2, then the total topological
charge inside the contour will decrease by ξ . Note that in our
TDSE results (see Fig. 5) we did not observe crossings of the
kind Fig. 2(b).

C. Properties of the ionization amplitude phase

Below we analyze the dependence of the phase of the
ionization amplitude on the photoelectron momentum. Let
us assume the initial bound state has zero total angular mo-
mentum, li = mi = 0, and the pulse carrier frequency to be
ω ∼ Ip/h̄. In the PT regime the ionization amplitude in this
case is determined by terms corresponding to the transition
from the bound S state into the continuum P state (first PT
order), and continuum D state (second PT order). As a result,
the ionization amplitude can be written in the following form
[55] [cf. Eq. (22)]:

A12 ≡ A(p) = A1(p) ei(δ1+π/2+ϕ) + A2(p) ei(δ2+2ϕ), (27)

where δl (l = 1, 2) are the Coulomb scattering phases [18],
δl = arg �(1 + l − i/p). To understand the role of the inter-
ference emerging after taking the modulus of the amplitude
(27), we choose A1(p) and A2(p), two smooth curves which
intersect according to Fig. 2(a). The curves A = A1(p) and
A = A2(p) are shown in Fig. 3(a). In Figs. 3(b) and 3(c),
the absolute value and the phase of the ionization amplitude
A12 are shown. It is seen that the presence of the single-
and two-photon ionization channels leads to a slight circular
asymmetry of the ionization probability in the pulse polariza-
tion plane [see Fig. 3(b)]. The dependence of the phase of
the amplitude on the angle of the photoelectron momentum,
arg A(ϕ), has two remarkable peculiarities. First, for small
photoelectron energies the phase jumps by 2π on a single-
arm spiral. This Coulomb spiral is defined by the equation
[see Eq. (27)]

δ1(p) + ϕ = ±3π/2. (28)

Second, in the lower part of Fig. 2(c), one sees the emergence
of the second spiral arm on which the phase jumps by 2π .
The point on the top end of the second spiral arm corresponds
to a quantum vortex where the ionization amplitude vanishes,
A12 = 0.
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FIG. 3. Momentum distributions for the absolute value (b), and
phases (c), (d), of the ionization amplitude, modeled by two con-
secutive PT amplitude terms, see Eqs. (27) and (29). On the panel
(a), the model curves corresponding to the dynamical parameters
A1(p), A2(p) are shown.

Now let us assume that the carrier frequency lies in such a
range that the ionization event requires the absorption of three
photons. According to the PT, in this case the ionization am-
plitude expresses as a combination of third- and fourth-order
PT amplitudes. Let us choose the “radial” functions An(p) for
n = 3, 4 to be the same functions A1(p), A2(p), as in the pre-
vious example [see Fig. 3(a)]. Then, the ionization amplitude
can be written similarly to Eq. (27), but with different phase
factors:

A34 ≡ A(p) = A1(p) ei(δ3−π/2+3ϕ) + A2(p) ei(δ4−π+4ϕ). (29)

The dependence of the phase of the ionization amplitude
on the photoelectron momentum and its emission angle is
shown in Fig. 3(d). Despite the different dependence of the
terms in Eqs. (29) and (27) on the angle ϕ, the corresponding
momentum distribution, |A34|, is almost identical to |A12| and
therefore is not shown. On the contrary, the phases arg A34 and
arg A12 are substantially different. In the case of three-photon
threshold, the three-arm spiral on which the phase jumps by
2π is seen in Fig. 3(d). This three-photon Coulomb spiral
is located in the region where the three-photon absorption
dominates, A1 � A2 in Eq. (29), and it is defined by the
equation

δ3(p) + 3ϕ = ±3π/2. (30)

For A1 = A2 and the angle ϕ, which corresponds to the phase
difference of terms in (29) being equal to π , there occurs a
quantum vortex, which is seen as the formation of the fourth
arm of the Coulomb spiral.

The above features of the interference of PT amplitude
terms can be summarized as follows: for small values of p, the
momentum distributions of the ionization amplitude phase,

arg A(p), exhibit spiral structures with the number of arms
equal to the number of absorbed photons; with an increase of
the photoelectron energy at some values of the momentum p
and the angle ϕ the ionization amplitude vanishes (A = 0) and
there appears a quantum vortex, which is seen as the formation
of the additional arm of the phase spiral; further increase of
p eventually leads to the formation of a new vortex and a
corresponding additional spiral arm, and so on.

III. NUMERICAL RESULTS FOR HYDROGEN
AND HELIUM ATOMS

Below we compare results of the above-described PT anal-
ysis with the results obtained by the numerical solution of the
TDSE for the hydrogen and helium atoms. For the H atom
we have utilized the numerical package qprop [57,58]. The
ionization amplitude in qprop is defined by the truncated
partial expansion,

A(p) =
lmax∑
l=0

l∑
m=−l

alm(p)Ylm(p̂), (31)

where lmax is the maximal value of the photoelectron’s orbital
momentum used in the computations. For intensities below
1015W/cm2 and carrier frequencies ω � 0.2, the satisfactory
convergence is achieved for lmax � 15.

In Fig. 4 we show TDSE results for the absolute value of
the amplitude (namely,

√
p|A|) for the ionization of the 1-S

ground state of the hydrogen atom by the RCP pulse with
the duration of three optical cycles, nc = 3, for three values
of ω: 0.202 a.u. (5.5 eV, λ = 225.6 nm), 0.456 a.u. (12.4 eV,
λ = 100 nm), and 0.513 a.u. (13.95 eV, λ = 88.8 nm, ninth
harmonic of 800-nm laser [59]). It is seen that in the mul-
tiphoton regime (i.e., when PT is valid) the momentum
distributions of the ionization amplitude’s absolute value ex-
hibit only slight circular asymmetry. This means that for a
given value of p the main contribution into the total ionization
amplitude comes from only one term in the expansion (13).
This conclusion is further supported by Fig. 5, where the abso-
lute values of the amplitude parameters An(p) are shown. For
ω > 0.2 a.u., the PMDs exhibit a noticeable asymmetry when
the pulse intensity is increased to 1015 W/cm2, see Fig. 4(b).
This means that the total ionization amplitude comprises sev-
eral terms corresponding to different PT orders, which have
comparable magnitude [see Fig. 5(b)]. By comparing results
shown in Figs. 4(b), 4(c), and 4(d), we conclude that for a
given pulse intensity, the PT works better for larger values of
the carrier frequency, which is a known fact [60].

The momentum distributions of the phase of the ioniza-
tion amplitude are shown in Fig. 4, lower row. It is seen
that at low photoelectron energy (i.e., near the center of the
plot), the phase jumps by 2π along the spiral curves, which
resemble Coulomb spirals, shown in Fig. 3. The number of
spiral arms is equal to the number of absorbed photons. The
main difference between the phase momentum distributions in
Figs. 4 and 3 is that the TDSE spirals are much more twisted.
The reason for this feature is not clear. It could be caused
by some inherent property of the TDSE solution procedure,
which could give rise to a common p-dependent phase factor
of the ionization amplitude. (We remark that such common
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FIG. 4. Momentum distributions of the absolute values (
√

p|A|, upper row) and phase maps (arg A, lower row) of the ionization amplitude
for the initial 1-S ground state of the hydrogen atom for different values of the carrier frequency ω and two intensities of the RCP pulse: 1014

and 1015 W/cm2 (0.0534 and 0.1688 a.u., respectively).

phase factors do not affect the ionization probability.) For
peak pulse fields �0.15 a.u. and ω < 0.4 a.u., the spiral phase
curves become distorted, see Fig. 4(b). This means that the
multiphoton regime of the ionization is less adequate for such
intensities, and the ionization amplitude for low photoelec-
tron energy is determined by several (∼5) PT terms, see
Fig. 5(b).

The dependence of the absolute values of different terms
of the expansion (13) on the photoelectron’s momentum p is

shown in the upper row of Fig. 5. TDSE results demonstrate
that for RCP pulses the terms in (31) with m � 0 are negli-
gibly small for all pulse parameters considered, which is in
agreement with PT predictions (see previous Sec. II). Further,
it is seen that with an increase of the carrier frequency ω,
the magnitude of the ionization amplitude is determined by
only two terms of the partial expansion (13), see Fig. 5(c).
The maximal contribution stems from the terms with m being
equal to the minimal number of photons needed to overcome

FIG. 5. Absolute values of the partial ionization amplitudes (upper row) vs total topological charge (lower row), enclosed by a circle with
the radius p, for the ionization of the 1-S ground state of the hydrogen atom. The RCP pulse duration is three cycles of the carrier frequency ω

shown in corresponding panels. Peak pulse intensities are 1014 W/cm2 in the left column and 1015 W/cm2 otherwise.
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the ionization threshold. The lower row in Fig. 5 shows the
total topological charge inside a circle of the radius p. It is
seen that with an increase of p the magnitude of the topo-
logical charge increases by unity. The similar behavior of the
topological charge was also observed in the photodetachment
process occurring in the strong-field regime [19].

Figures 5(a) and 5(c) demonstrate that jumps of the topo-
logical charge correspond to the crossings of the partial
amplitudes, which is in agreement with the PT analysis of
Sec. II B. For example, in Fig. 5(a) one observes that the
curve of amplitude A3 crosses the curve for A4 close to the
point p = 0.6. At this crossing the curve A3 goes down while
A4 goes up. According to the PT treatment of Sec. II B, this
means that there should be a vortex with the topological
charge of +1. Indeed, this prediction is seen in the lower
panel of Fig. 5(a), where the total topological charge inside
the circle of the radius p ≈ 0.6 a.u. increases by +1 from +3
to +4. Simultaneously, in the phase map in Fig. 4(a), one can
see the vortex near the point (−0.5, 0.3) in the xy plane. We
emphasize that not every amplitude curve crossing causes a
vortex formation. Namely, although the curves for A2 and A4

cross at p ≈ 0.4 a.u., there is no vortex seen on the phase map.
This is because the total ionization amplitude in this point is
dominated by a three-photon absorption amplitude A3 which
is nonzero.

The situation becomes more complicated for high pulse
intensities and lower pulse frequencies, see Fig. 5(b). Now the
total ionization amplitude includes many partial amplitudes,
corresponding to different numbers of absorbed photons. Nev-
ertheless, the total topological charge always increases by
+1, similarly to the case of high pulse frequencies. Apart
from that, we observe a remarkable property of the ionization
amplitude vortices for the low-frequency case (i.e., in the
strong-field regime). Namely, in Fig. 5(b) one sees that start-
ing from the fifth vortex, the locations of the vortices occur
near the maximum of the corresponding partial amplitude.
For example, the fifth vortex is located at p = 0.6 a.u., where
the radial amplitude Am=5 has maximum, the sixth vortex is
located close to the maximum of the amplitude Am=6, etc.
Again, in all cases the increase in the total topological charge
inside the circle as radius p increases from one vortex to an-
other is equal to +1. Unlike the case when the total ionization
amplitude is determined by two or three terms of the partial
expansion, there is no simple explanation of this property of
vortices emerging in the strong-field regime.

In Fig. 6 we present the momentum distribution of the
absolute value and the phase of the ionization amplitude (left
column) for the ionization of the 1-S ground state of the
helium atom obtained by direct numerical solution of the
corresponding six-dimensional TDSE [45]. The peak electric
field of the two-cycle RCP pulse is E0 = 0.2387 a.u. (the
corresponding intensity is 2×1015 W/cm2), the carrier fre-
quency is ω = 1.103 a.u. (30 eV, λ = 41.3 nm), and zero
CEP. It is seen that the momentum distribution of the absolute
value of the ionization amplitude has a high degree of circu-
lar symmetry. This means there is a small overlap of partial
amplitudes corresponding to different numbers of absorbed
photons. In Fig. 6(b) we observe that the parameter Am=2 has
a maximum corresponding to a two-photon absorption, while
Am=3 is maximal when three photons are absorbed, which

FIG. 6. TDSE numerical result for helium atom. Left column:
The momentum distribution of the amplitude’s absolute value, |A(p)|
(a), and the phase arg A(p). (c) Right column: Logarithmic plot of
the absolute values of the partial amplitudes (b) vs total topological
charge (d) enclosed by the circle with the radius p. The two-cycle
RCP pulse has peak intensity 2×1015 W/cm2, carrier frequency ω =
1.103 a.u. (30 eV), and zero CEP.

is in agreement with the PT description of the ionization
process. The single arm Coulomb spiral in the phase map
[Fig. 6(c)] means that the emission of the photoelectron with
the momentum up to E ≈ 0.5 a.u. (p ≈ 1.0 a.u.) is caused
by a single-photon absorption. It is also supported by the
fact that the term A1, describing the single-photon absorption,
dominates in the total ionization amplitude up to E ≈ 0.5 a.u.
(p ≈ 1.0 a.u.) [see Fig. 6(b)]. As p increases, Fig. 6(b) shows
that A1 decreases while A2 increases and becomes comparable
in magnitude, which leads to a quantum vortex at E = 0.8 a.u.
(p = 1.3 a.u.), where the two amplitudes are equal. For E >

0.8 a.u. (p > 1.3 a.u.) the total amplitude is mostly determined
by the two-photon absorption, i.e., by A2. According to the PT
treatment, the crossing of two dominating curves A1 and A2

should lead to the occurrence of a vortex with the topological
charge +1. Indeed, by comparing the panels in the second
column of Fig. 6, we have that the total topological charge
increases by +1 at the crossings of the amplitudes A1, A2, then
A2, A3 etc. These features of ionization amplitude vortices are
completely analogous to those discovered in the ionization of
the hydrogen atom, which means that the properties of the
vortices described above should be the same for the ionization
of any atomic target.

IV. CONCLUSION

In the present work we have considered the properties of
the vortex states in the amplitude of atomic ionization by an
intense few-cycle CP pulse. It was shown that the quantum
vortices in the ionization amplitude for p > 0 are determined
by the interference of amplitude terms corresponding to the
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absorption of different numbers of photons. When these num-
bers differ by unity (which was the case in numerical TDSE
results), then the modulus of the topological charge of a vortex
is also equal to unity. Positions of vortices in the momentum
space are determined by both the absolute values of the inter-
fering PT amplitudes and their relative phases. We emphasize
that the general properties of the considered interference ef-
fects are not determined by features of a particular atom, but
they are inherent to the very process of the ionization of finite
quantum systems by short CP pulses, performed in the mul-
tiphoton regime. Therefore, results presented above should
be taken into account when developing efficient methods of
numerical analysis of the interaction of atoms and molecules
with few-cycle CP pulses.

It is well known that phases of the ionization amplitude
terms play a crucial role in the electron interference effects
[40,50,61]. Above, we have found that spiral patterns emerge
in the phase maps of the ionization amplitude for short CP
pulses in the form of “Coulomb spirals” (see Sec. II C).
Similar spiral patterns occur in the PMDs of the ionization
probability in atoms and molecules [40–44] for electrons ion-
ized by a pair of counter-rotating CP pulses. However, these
two kinds of spirals are substantially different, both physically
and mathematically. Physically, the Coulomb spirals are not
seen in the PMDs of the ionization probability for atoms irra-
diated by an isolated CP pulse. They only occur in the phase
maps of the ionization amplitude. Mathematically, the PMD
spirals in the probability of the ionization by counter-rotating
CP pulses are Fermat’s spirals, while Coulomb spirals are not;
see Eqs. (28) and (30). Positions of quantum vortices in the
ionization amplitude can be adjusted by firing the second CP
pulse at an atom after a certain time delay τ , similarly to
the ionization scheme used in [40,45]. Then the magnitude
of τ as well as the intensity of the second (i.e., the probe) CP
pulse can be used to control quantum vortices in momentum
space. The corresponding analysis is the topic of forthcoming
research. Another possibility to observe the predicted features
of the momentum dependence of the ionization phase would
be to consider the ionization by a few-cycle XUV pulse in
the presence of an intense IR field. Such experiments are used
to investigate the question of time delay in the photoioniza-
tion [62]. The corresponding theoretical analysis, however, is
complicated by the fact that terms in the multipole expansion
(13) cannot be attributed to different PT orders with respect to
the XUV pulse, since the presence of the IR field leads to the
mixing of states with different angular momenta.

In our work we have not considered CEP effects. In the
PT regime, when the ionization amplitude for a given p is
determined by no more than three partial amplitude terms, the
variation of CEP leads only to an overall rotation of the ampli-
tude phase map, which is of no physical interest. Finally, we
note that our PT analysis could be extended to the case of the
ionization by elliptically polarized pulses, since they can be
presented as a superposition of oppositely rotating CP pulses.
The corresponding PT treatment, however, is complicated by
the fact that the amplitude terms with the same dependence on
the electron emission angle, exp(imϕ), will be determined by
several functions stemming from many PT orders and not by
one or two terms, as in the case of CP pulses. This problem is
the subject of further investigations.

FIG. 7. The integration contour (blue lines on the left) enclos-
ing the node point P with the polar coordinates (p0, ϕ0 ), where
ϕ0 = (π − β )/m and a(p0) = b(p0). On the right the crossing of
amplitude curves are shown, which corresponds to the vortex with
the topological charge +1.
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APPENDIX: CIRCULATION OF THE IONIZATION
AMPLITUDE VELOCITY FIELD a(p) + b(p) exp i(β + mϕ)

Below we calculate the circulation of the velocity field (15)
of the function A defined by

A(p) = a(p) + b(p) ei(β+mϕ), (A1)

where a and b are non-negative real-valued functions of the
momentum p, and β is a real-valued function of p. We as-
sume that A(p) has zero in the point P (see Fig. 7), whose
polar coordinates are (p0, ϕ0), where a(p0) = b(p0) and ϕ0 =
(π − β )/m.

The circulation (15) of the function (A1) over the contour,
defined by Fig. 7, reduces to four integrals, two of which
correspond to the radial segments, 1 and 3, and the other two
correspond to the arc segments 2 and 4:

�(g) = �1 + �3 + �2 + �4. (A2)

The radial part of the circulation can be calculated as follows:

�1 + �3 =
∫ p2

p1

∂p ln(a + b ei(β+mϕ1 ) ) d p

−
∫ p2

p1

∂p ln(a + b ei(β+mϕ2 ) ) d p

= ln
a2 + b2ei(β+mϕ1 )

a1 + b1ei(β+mϕ1 )
− ln

a2 + b2ei(β+mϕ2 )

a1 + b1ei(β+mϕ2 )
, (A3)
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where a1,2 = a(p1,2) and b1,2 = b(p1,2). The angular part of
the circulation (A2) is written

�2 + �4 =
∫ ϕ2

ϕ1

∂ϕ ln(a2 + b2 ei(β+mϕ) ) dϕ

−
∫ ϕ2

ϕ1

∂ϕ ln(a1 + b1 ei(β+mϕ ) dϕ. (A4)

The argument of the logarithm becomes a real negative num-
ber in the point ϕ0, ϕ1 < ϕ0 < ϕ2, which is equal to either
a1 − b1 for a1 < b1, or a2 − b2 for a2 < b2 (the latter case is
shown in Fig. 7). Either of the conditions must be met, since
the functions a(p) and b(p) cross only once in the interval
(p1, p2), see Fig. 7. This implies that the integration contour
encircles only one zero point P, see Fig. 7. Therefore we split
integrals in Eq. (A4) in the point ϕ = ϕ0. Accordingly, for the
integral over path 2 of the contour we have

�2 =
∫ ϕ0

ϕ1

∂ϕ ln(a2 + b2 ei(β+mϕ) ) dϕ

+
∫ ϕ2

ϕ0

∂ϕ ln(a2 + b2 ei(β+mϕ) ) dϕ

= ln(a2 − b2 + i0) − ln(a2 + b2 ei(β+mϕ1 ) )

+ ln(a2 + b2 ei(β+mϕ2 ) ) − ln(a2 − b2 − i0). (A5)

We have to mention that the complex logarithm function is de-
fined by ln |z|ei arg z = ln |z| + i arg z, where −π � arg z � π .
Thus, for a2 > b2 there is no problem, and the first and fourth
terms in Eq. (A5) cancel out. Note that a2 > b2 implies that
a1 < b1, see Fig. 7. For a2 < b2 (simultaneously a1 > b1), the
first term is iπ + ln |a2 − b2| and the fourth term is ln(a2 −
b2 − i0) = −iπ + ln |a2 − b2|. As a result, the integral �2

becomes

�2 =
{

�̃2, for a2 > b2, (a1 < b1),

�̃2 + 2π i, for a2 < b2, (a1 > b1),
(A6)

where

�̃2 = ln
[(

a2 + b2 ei(β+mϕ2 )
)/(

a2 + b2 ei(β+mϕ1 )
)]

. (A7)

Similarly, for the integral �4, we have

�4 =
{

�̃4, for a1 > b1, (a2 < b2),

�̃4 − 2π i, for a1 < b1, (a2 > b2),
(A8)

where

�̃4 = ln
[(

a1 + b1 ei(β+mϕ1 )
)/(

a1 + b1 ei(β+mϕ2 )
)]

. (A9)

Noting the above Eqs. (A3)–(A9), the circulation Eq. (A2)
becomes

� =
{

2π i, for a1 > b1, (a2 < b2),

−2π i, for a1 < b1, (a2 > b2).
(A10)

The consequence is that the topological charge of an iso-
lated zero of the amplitude is equal to either +1 or −1.
Moreover, for an amplitude having the form

A(p) = a(p) + b(p)ei(β+mϕ), (A11)

there are m vortices (each having unit strength with the same
sign) for a single value of p = p0, corresponding to the elec-
tron energy when both functions a and b coincide, a(p0) =
b(p0). These vortices are placed along a circle with the radius
p0 in the emission xy plane, and the polar angles between the
neighboring vortices are equal to (β − π )/m.
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