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Heisenberg’s uncertainty relations for a hydrogen atom confined by an impenetrable spherical cavity
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The incompatibility between two observables in quantum theory is described by Heisenberg’s uncertainty
principle. In this work, we study spatial confinement effects on Heisenberg’s uncertainty principle for a hydrogen
atom located at the center of an impenetrable spherical cavity with radius ro. Both the radial and vector represen-
tation of the uncertainty principle are considered. For this, we solve the Schrödinger equation numerically within
a finite-differences approach. We find that for small cavity sizes the values of �r̂� p̂r (radial) bunch according
to the number of nodes and that for Rydberg states, i.e., large excitation, they become more coherent, satisfying
exactly Heisenberg’s uncertainty principle, in contrast to the vector description. However, for the vector case, we
find that �r̂ degenerates for small cavity sizes and bunches according to the principal quantum number n for large
cavities. We find that the behavior of �p̂ is responsible for the breaking of the energy degeneracy for confined
quantum systems. This occurs when the confinement radius is of the order of the orbital size, as determined by
the electron average distance 〈r̂〉. In addition, we estimate the critical cavity size for which relativistic effects
become relevant and verify that the relativistic corrections to the energy, obtained from first-order perturbation
theory, become important when the total energy of the atom surpasses 93.845 Hartree, corresponding to 10% of
the speed of light, which is fulfilled for cavity sizes ro < 1 a.u.
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I. INTRODUCTION

Confined quantum systems have been widely studied
[1–4], since they are of great importance in the development of
new technologies, mainly due to the changes in their physical
and chemical properties by effect of the confinement. There
exist a large variety of physical systems under extreme con-
finement conditions, such as atoms (or molecules) trapped
into fullerenes [5,6], zeolitic nanocavities [7,8], helium bub-
bles formed in nuclear reactor walls [9,10], atomsor ions
embedded in plasma [11,12], nanowires [13,14], and quantum
dots [15,16].

Many systems can be considered as low-dimensional
objects [15]—for instance, graphene sheets as a two-
dimensional material, nanowires as a one-dimensional one,
and finally, quantum dots as a dimensionless object. Owing to
the fact that these systems are located or confined in a small
space region, it becomes important to determine the uncer-
tainties in measurements of the system properties. In quantum
and classical systems, the measurements of the properties of
the systems, as well as the accuracy with which one can
measure these properties, are important to characterize them.
Unlike classical mechanics, in quantum mechanics there exist
certain uncertainties when measuring physical quantities. The
quantum uncertainty relations allow us to know whether two
measurements related to two observable quantities are com-
patible or not—that is to say, the accuracy with which we are
able to measure an observable without losing accuracy in the
measurement of another observable. Heisenberg’s uncertainty
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principle is a variance-based uncertainty relation for two in-
compatible observables A and B, related to two operators Â
and B̂, respectively. This uncertainty relation has a product
form [17] expressed as

�Â2�B̂2 � an irreducible lower bound. (1)

Some of the most important uncertainty inequalities are
those corresponding to Heisenberg’s uncertainty principle for
position and momentum [18–20], which is a fundamental
principle in quantum mechanics [21,22]. In other words, if the
electrons are trapped into a small space region, and thus the
value of the variance in position is small, then the variance in
momentum is large, and the energy grows continuously as the
available space decreases in size. Furthermore, Heisenberg’s
uncertainty principle has been extended to the development
of quantum information science, as mentioned by Zozor et al.
in Ref. [23]: “...the formulation of the uncertainty principle
in quantum mechanics in terms of entropic inequalities...can
be considered as a generalization of Heisenberg’s uncertainty
principle....” Thus, the uncertainty relations are of special
interest in quantum information science for free [17,23–29]
and confined systems [30–33]. Within this field of research
there exist areas of knowledge such as quantum noncloning
[34,35], quantum cryptography [36,37], entanglement detec-
tion [38–41], quantum spins squeezing [42–44], quantum
metrology [45–47], quantum synchronization [48,49], and
mixedness detection [50,51], to mention but a few.

In this work, we study a hydrogen atom confined by an
impenetrable spherical cavity in order to analyze the behavior
of Heisenberg’s uncertainty principle under extreme condi-
tions. The hydrogen atom, as the simplest quantum atomic
system, has been useful to analyze electronic properties

2469-9926/2024/110(2)/022814(14) 022814-1 ©2024 American Physical Society

https://orcid.org/0009-0003-3387-0248
https://orcid.org/0000-0002-8651-4998
https://orcid.org/0000-0002-1937-2686
https://ror.org/01tmp8f25
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.022814&domain=pdf&date_stamp=2024-08-15
https://doi.org/10.1103/PhysRevA.110.022814


REYES-GARCÍA, CRUZ, AND CABRERA-TRUJILLO PHYSICAL REVIEW A 110, 022814 (2024)

of more complex systems under several conditions with
spatial limitation [1]. In spite of the fact that there exists
an exact solution for the H atom within an impenetrable
spherical cavity [52,53], we focus our attention on the im-
plementation of a finite-differences (FD) approach to solve
the time-independent Schrödinger equation, since it provides
a numerically efficient and accurate approach to carry out the
calculations necessary for this study.

This work is organized as follows. In Sec. II, we present
a summary of the system of interest as well as the important
generalizations of Heisenberg’s inequalities in spherical co-
ordinates. In Sec. III, we show our results and discussion on
the radial (Sec. III A) and vector (Sec. III B) representations.
In Sec. III C, a first-order perturbation approach is discussed
to define the critical cavity size below which relativistic ef-
fects become relevant. Finally, in Sec. IV, our conclusions are
given. Our calculations are carried out within the nonrelativis-
tic Schrödinger equation and atomic units are used all over the
manuscript.

II. THEORY

A. Confined hydrogen atom by an impenetrable spherical cavity

Let us suppose that a hydrogenic atom is placed into an
impenetrable spherical box, with its nuclear charge Z clamped
at the center of the cavity. The cavity has a radius ro and its
center coincides with the origin of the reference frame. The
Hamiltonian of the system is then given by

Ĥ = −1

2
∇2 + V̂ (r),

V̂ (r) =
{

− Z
r , r < ro

∞, r � ro
. (2)

This form of the confinement potential implies that the wave
function vanishes at the boundary r = ro (Dirichlet boundary
conditions).

The spherical symmetry of the potential, in Eq. (2), sug-
gests us to write the Laplacian operator in terms of the angular
momentum operator L̂2 as

∇2 = 1

r2

∂

∂r

[
r2 ∂

∂r

]
− 1

r2
L̂2. (3)

The stationary Schrödinger equation associated with the
Hamiltonian given by Eqs. (2) and (3) is known to be sep-
arable in its radial and angular coordinates, such that the
wave function is expressed as ψ (r) = R(r)Y m

� (θ, φ), with
Y m

� (θ, φ) the spherical harmonics satisfying the eigenvalue
equation L̂2Y m

� (θ, φ) = �(� + 1)Y m
� (θ, φ). Accordingly, the

radial Schrödinger equation becomes{
− 1

2r2

d

dr

[
r2 d

dr

]
+ �(� + 1)

2r2
− Z

r

}
R(r) = ER(r), (4)

which may be further simplified by defining u(r) = rR(r)
satisfying the equation

−1

2

d2u(r)

dr2
+

[
�(� + 1)

2r2
− Z

r

]
u(r) = Eu(r), (5)

with the boundary conditions u(r)|r=0 = u(r)|r=ro = 0.

Equation (5) defines the eigenfunctions and eigenvalues of
the hydrogen atom for the free and confined case. The only
difference is caused by the boundary conditions, as discussed
by Goldman et al. [52] and Ferreyra et al. [53].

B. Radial uncertainty principle

Owing to the radial symmetry of the Coulombic potential,
it is convenient to resort to the radial and vector representa-
tions of Heisenberg’s uncertainty inequalities when carrying
out its study. We begin with the radial representation, but
our generalities apply to the vector representation as well.
The mentioned irreducible lower bound in Eq. (1) relies on
the commutator of two operators Â and B̂, which satisfy the
relation

[Â, B̂] = iĈ; (6)

thus, the uncertainty principle of these two operators is
given by

〈(�Â)2〉〈(�B̂)2〉 � 〈Ĉ〉2

4
. (7)

Here, �Â = Â − 〈Â〉 [21] and the irreducible lower bound in
Eq. (1) is given by 〈Ĉ〉2/4.

In spherical coordinates, the generalized momentum oper-
ators, according to Dirac’s definition [54], are

p̂r = −i
∂

∂r
, p̂θ = −i

∂

∂θ
, p̂φ = −i

∂

∂φ
, (8)

which according to Eq. (6) obey the following commutation
relations:

[r̂, p̂r] = i, [θ̂ , p̂θ ] = i, [φ̂, p̂φ] = i. (9)

From Eq. (7), their Heisenberg’s inequalities are

�r̂� p̂r � 1
2 , �θ̂�p̂θ � 1

2 , �φ̂� p̂φ � 1
2 . (10)

However, p̂r and p̂θ are not self-adjoint operators and thus
their expectation values are completely imaginary, which im-
plies that the obtained results are physically unacceptable
[17], as stated by Deutsch in Ref. [55]: “...except in the case of
canonical conjugate observable, the generalized Heisenberg’s
inequality does not properly express the quantum uncertainty
principle...” Hence, the following expression for the correct
quantum-mechanical canonical conjugate momentum opera-
tor to the variable r should be used [56–60]:

p̂r = ˙̂r = −i[r̂, Ĥ ] = −i

[
∂

∂r
+ 1

r

]
= −i

1

r

∂

∂r
r, (11)

whose expectation value is null as shown by Hey [58], i.e.,
〈p̂r〉 = 0 for stationary states. This fulfills the modified Ehren-
fest theorem [60,61] for spherical coordinates. From this, the
radial variances for �r̂ and � p̂r are

�r̂ =
√

〈r̂2〉 − 〈r̂〉2 and � p̂r =
√〈

p̂2
r

〉
. (12)

In order to study the effects produced by the confining cav-
ity on the uncertainty principle within our FD implementation,
the expectation value of the radial component of the square of
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the linear momentum is calculated from Eq. (5) as〈
p̂2

r

〉 = 2〈K̂〉 − �(� + 1)〈r̂−2〉
= 2E + 2Z〈r̂−1〉 − �(� + 1)〈r̂−2〉. (13)

This is the expression we use to determine the variances and
the uncertainty inequalities, whose results are discussed in
Sec. III A.

C. Vector uncertainty principle

In the previous section, Sec. II B, the radial representation
of Heisenberg’s uncertainty relation is shown, which only
considers the scalar expectation values. Now we focus on the
vector representation of the position and momentum operators
whereby the uncertainty relation is calculated [25,26,29,56].
That is, the expectation values are calculated on the position
and the momentum vector operators.

In spherical coordinates the vector position is r = rer

while the momentum operator is given by

p̂ = −i∇ = −i

{
er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ

}
. (14)

Here, er , eθ , and eφ are the spherical unit vectors. Therefore,
according to Eq. (6) the commutator [r̂, p̂] = −3i, such that
the uncertainty inequality, Eq. (1), for the vector case becomes

�r̂�p̂ � 3
2 . (15)

However, Eq. (15) has a generalization for spherically sym-
metric potentials [26,56,62] involving the angular momentum
quantum number �, as

�r̂�p̂ � � + 3
2 , (16)

with

�r̂ =
√

〈r̂2〉 − 〈r̂〉2, �p̂ =
√

〈p̂2〉 − 〈p̂〉2. (17)

Due to the radial symmetry, we have that 〈r̂〉 = 0. Further-
more, the expectation value for r̂2 is 〈r2〉, since r̂2 = r̂ · r̂ =
r̂2, and 〈p̂〉 = 0 for stationary states, such that Eqs. (17) sim-
plify to

�r̂ =
√

〈r̂2〉 and �p̂ =
√

〈p̂2〉. (18)

Again, 〈p̂2〉 is related to the kinetic energy through Eq. (2),

〈p̂2〉 = 2〈K̂〉 = 2〈E − V̂ 〉 = 2E + 2Z〈r̂−1〉. (19)

The expectation value of the radial momentum 〈p̂2
r〉 is related

to the angular momentum square as

〈p̂2〉 = 〈
p̂2

r

〉 + �(� + 1)〈r̂−2〉. (20)

Thus, the radial case involves the state structure of the atom,
while the vector case does not, as seen from Eqs. (13) and
(19), since in the radial case we have the centrifugal potential.

D. Numerical implementation

In order to evaluate Eqs. (12) and (18), we solve the
Schrödinger equation, Eq. (5), and calculate the variances
in a numerical mesh through an FD approach as reported in

FIG. 1. Heisenberg’s uncertainty principle values for the radial
representation �r̂� p̂r as a function of the cavity radius ro, for n�

states with n = 1, 2, 3, 4, 5 and � = 0, 1, 2, 3 of a confined H atom
by an impenetrable spherical cavity. Here, nr indicates the number of
nodes for each state. ns states in green, np states in blue, nd states
in red, and n f states in light blue. The vertical dashed lines indicate
values of the uncertainty relation for cavity radii ro = 1, 10, 20, 50,
and 200 for the different states (see Table I). Symbols (�) at ro = 1
and (�) at ro = 200 correspond to a particle-in-a-box and a free H
atom, respectively.

Ref. [63]. For this case, we use an exponential grid, where

ri = exp

[
i ln(ro + 1)

N + 1

]
− 1, (21)

and i = 0, 1, 2, . . . , N + 1, which takes care of the cusp be-
havior of the wave function for r → 0. We use N = 2000
in the interval 0 < r < ro for cavity sizes from ro = 1 up to
ro = 200. We solve the linear algebra problem using MATHE-
MATICA [64].

At this stage, we point out that, in all cases, the accuracy
of the eigenfunctions and energy calculations through the FD
approach for the confined system shows excellent quantitative
agreement with the exact ones with a precision on the fifth
decimal place.

III. RESULTS AND DISCUSSION

In this section, we analyze confinement effects on Heisen-
berg’s uncertainty principle for a hydrogen atom (Z = 1)
enclosed by a hard spherical cavity of radius ro. Both the radial
and vector representation are used to establish differences in
their description on Heisenberg’s uncertainty behavior. We
complement our results of the confined H atom [56,58] with
those of a particle-in-a-box [65] (Z = 0).

A. Radial uncertainty principle

The behavior of the radial uncertainty relations for the
lowest n � 5 (� = 0, 1, 2, 3) states of the spherically confined
H atom as a function of the cavity radius ro is shown in
Fig. 1. Firstly, we find that the states of this system that have
the lowest values of their Heisenberg’s uncertainty relation
for the radial component, �r̂� p̂r � 1/2, are those whose
wave functions do not have any nodes, in agreement with
Hey [58] for the free atom, as expected. On the other hand,
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TABLE I. Radial Heisenberg’s uncertainty values �r̂� p̂r for a particle-in-a-box, a confined (for a selected set of radii ro), and a free H
atom, according to the number of nodes.

�r̂� p̂(part)
r -particle �r̂� p̂r-confined H atom �r̂� p̂(free)

r -Hey [58]

nr State 1 � ro � 200 ro = 1 ro = 10 ro = 20 ro = 50 ro = 200 ro = ∞
0 1s 0.5679 0.5799 0.8652 0.8660 0.8660 0.8660 0.8660

2p 0.5514 0.5497 0.5708 0.6438 0.6455 0.6455 0.6455
3d 0.5574 0.5561 0.5421 0.5458 0.5916 0.5916 0.5916
4 f 0.5632 0.5624 0.5529 0.5392 0.5638 0.5669 0.5669
5g 0.5679 0.5674 0.5613 0.5522 0.5297 0.5528 0.5528
6h 0.5718 0.5714 0.5673 0.5614 0.5338 0.5436 0.5436

1 2s 1.6703 1.6880 1.1023 1.2192 1.2248 1.2248 1.2247
3p 1.5973 1.6028 1.5707 1.1979 1.2108 1.2108 1.2108
4d 1.5725 1.5755 1.6029 1.5593 1.2453 1.2550 1.2550
5 f 1.5562 1.5581 1.5775 1.5977 1.3237 1.2918 1.2918

2 3s 2.6272 2.6328 2.3124 1.6658 1.6583 1.6583 1.6583
4p 2.5665 2.5699 2.5609 2.3607 1.7026 1.7200 1.7200
5d 2.5428 2.5455 2.5670 2.5600 1.9666 1.8229 1.8229

3 4s 3.5580 3.5578 3.3673 2.9755 2.0955 2.1213 2.1213
5p 3.5141 3.5153 3.4993 3.3860 2.4669 2.2183 2.2183

4 5s 4.4790 4.4757 4.3321 4.0545 2.9170 2.5981 2.5981

for large cavity radii (ro > 100) the uncertainty values tend
toward those of the free hydrogen atom, whereas for small
radii (ro < 2), they converge to the values of a particle-in-a-
box under the same confinement conditions. The values of
the variances for momentum and position of a free H atom
and a particle-in-a-box have been calculated from the exact
solutions of the corresponding Schrödinger equation. In the
case of the free atom the following expression, reported by
Hey [58], is used to calculate the values reported in Table I:

�r̂� p̂(free)
r

= 1

2n

√
[n2(n2 + 2) − �2(� + 1)2][n(2� + 1) − 2�(� + 1)]

n(2� + 1)
.

(22)

Also, Fig. 1 shows the behavior for the radial uncertainty
relation as the cavity radius is reduced, indicating its depen-
dence on the degree of competition between the Coulombic
potential and the effect of the wall for a given cavity radius.
Moreover, one notices a pattern in both limits, ro → 0 and
ro → ∞, where states with the same number of nodes are
grouped in bunches, as observed in Table I and indicated
by vertical dashed lines at ro = 1 and 200 in Fig. 1. This
leads to the existence of well-defined gaps at these two limits.
For a particle-in-a-box, the exact expressions are cumbersome
since they rely on the zeros of the spherical Bessel functions.
However, once they have been calculated, we find that Heisen-
berg’s uncertainty relations are constant for each state and
independent of the values of ro, i.e.,

�r̂�p̂(part)
r = constant. (23)

For a hydrogen atom and for ro > 60, one observes a
bunching around the following values,: �r̂�p̂r ≈ 0.5 for
nodeless states, �r̂�p̂r ≈ 1 for states with a single node,
increasing by ≈0.5 as the number of nodes nr increases. From

Fig. 1, we infer that

lim
ro�1

�r̂� p̂r ≈ nr + 1

2
= n − �

2
, (24)

which is a simplified version of Eq. (22), since at the limit
n → ∞, �r̂� p̂(free)

r ≈ n/2. On the other hand, for ro → 0,
one notices that the uncertainty relations are grouped around
�r̂� p̂r ∼ 0.5 for nodeless states, �r̂� p̂r ∼ 1.5 for single
node states, an so on. Therefore, we infer

lim
ro→0

�r̂� p̂r ≈ nr + 1
2 = n − � − 1

2 (25)

for a confined H atom. From Fig. 1, one sees that the
differences in the �r̂� p̂r values between two states with con-
secutive number of nodes is around ∼1. But this just occurs
for states with a small value of n, since as n increases, these
differences decrease.

Some representative values for the radial component of the
uncertainties for a particle-in-a-box, a confined H atom (inside
a small cavity with ro = 1, a larger cavity with ro = 200, and
some intermediate values of ro), and a free H atom are listed
in Table I for completeness.

Figure 2 shows the uncertainty values as a function of the
principal quantum number n, for three values of the confin-
ing radius. For strong confinement regime, ro = 1 (blue); for
intermediate regime, ro = 40 (red); and for weak confinement
regime, ro = 100 (green), as well as the values of the free atom
[58] (� symbols). One notes that, for the free case, the uncer-
tainty values show a trend of increasing as n increases, except
for nr = 0. But, for small confining radii this trend is reversed,
and gives as a result that the lowest excited states (small n)
are “fuzzier” than the highest ones. On the other hand, the
confinement induces an increment of the uncertainty values
for almost all states, except for some nodeless states, 1s, 2p,
3d , and 4 f (nr = 0). These lowest states become “sharper” as
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FIG. 2. Uncertainty principle values as a function of the prin-
cipal quantum number n. Values of the radial quantum number
nr = n − � − 1 are indicated by a common symbol. The lines joining
the points are used to guide the eye. The same color lines and
symbols correspond to the same confining radius; blue to ro = 1,
red to ro = 40, and green to ro = 100. (�) symbols correspond to the
values of the free atom, as reported by Hey [58].

the system reaches the strong confinement regime. Within the
transition region—for instance, ro = 40—one recognizes that
the uncertainty values show a larger increment as n increases,
for a state with the same number of nodes nr .

Now, let us recall that in quantum mechanics, the states
that satisfy the minimum value of Heisenberg’s uncertainty
relation are the ground state of the harmonic oscillator and
the Gaussian wave packet for a free particle [21,22,25,56].
These states are so-called coherent states. From Eq. (22) or
(24) one verifies that, for nodeless Rydberg states (n � 1 and
� = n − 1) of the free atom, the product �r̂�p̂(free)

r tends to
the minimum value of Heisenberg’s uncertainty principle, i.e.,

lim
n→∞ �r̂�p̂(free)

r = lim
n→∞

1

2

√
2n + 1

2n − 1
= 1

2
. (26)

Thus, as the principal quantum number n increases, the
nodeless states tend to become pseudo-classical states, in
agreement with Bohr’s correspondence principle [22,66].
Consequently, for nodeless states with n → ∞

lim
n→∞ ψ

(free)
n,n−1 = pseudo-classical state (27)

and the inequality �r̂�p̂(free)
r is bounded by the lowest value

0.5 and the value for the ground state of the free atom,
0.866 03. For instance, if we consider the free atom state with
n = 100 and � = 99, we have that �r̂�p̂(free)

r = 0.50251. The
coherence of this state is observed in Fig. 3, where the wave
function (solid blue line) is compared to a Gaussian function
(black dashed line), showing the similarities between them,

FIG. 3. Radial wave function of a free H atom R(free)
n,� (r) (solid

blue line) for n = 100 and � = 99 and Gaussian wave func-
tion, Ne−(r−rm )2/δ (dashed black line), with adjusted parameters
N = 0.239, rm = 9900, and δ = 5×107.

thus confirming our results. On the contrary, for the case of
the same nodeless state for a particle-in-a-box (n = 100 and
� = 99), it has an uncertainty value of �r̂� p̂(part)

r = 0.6069,
which is higher than the corresponding value of the ground
state, �r̂� p̂(part)

r = 0.5679 (see Table I). Owing to the fact
that for strong confinement conditions the kinetic energy over-
rides the Coulombic potential energy, the electron of the H
atom behaves more like a particle-in-a-box [65]; this is the
reason we compare the values for both systems within the
strong confinement regime, finding that they are very similar.

From the previous discussion, the arrangement of the radial
uncertainty of the nodeless states of a confined H atom is
different under strong confinement conditions when compared
to the uncompressed system. In this case, the following ar-
rangement 2p < 3d < 4 f < 1s < 5g < 6h < · · · is observed
(see Table I). Therefore, we expect that the 2p(part) wave
function of a particle-in-a-box to be similar to a Gaussian
function. This is observed in Fig. 4, where the solid blue line
corresponds to the spherical Bessel function of the 2p(part)

FIG. 4. Radial wave function of a particle-in-a-box N1 j1(x1)
(solid blue line), corresponding to the 2p(part) state and Gaussian
wave function, Ne−(r−rm )2/δ (dashed black line), with adjusted pa-
rameters N = 2.84, rm = 0.464, and δ = 1/6.
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(a)

(b)

FIG. 5. �r̂ and � p̂r uncertainties as a function of the confine-
ment radius ro for an impenetrable spherical cavity, for 3s, 4p, and
5d states of a confined H atom.

state and the dashed black line to the Gaussian function. First,
one notes a really good agreement in the vicinity of the center
of the Gaussian at rm = 0.464, but as we move away from rm

the boundary modifies the function, since it suddenly vanishes
at r = 0 and r = ro. Thus, it is the confinement (bound-
ary conditions) that prevents the uncertainty principle from
reaching its minimum value. However, the same confinement
conditions are responsible for making some nodeless states
to evolve from low to high coherence, for the hydrogen case.
For instance, consider the nodeless 1s, 2p, 3d , and 4 f states
of the confined H atom, whose uncertainty values decrease
as the confinement radius ro decreases. On the contrary, for
higher excited nodeless states, the product �r̂�p̂r increases
as the cavity size decreases, which means these states become
less coherent as the cavity size is reduced. So the confinement
makes a nodeless Rydberg states of the confined atom less
coherent.

The behavior of �r̂ and �p̂r for the 3s, 4p, and 5d states
with two nodes is shown in Fig. 5. One notes that for large
confinement radii the variances �r̂ and �p̂r have constant
values, which correspond to the values of the free H atom,
whereas for small radii their values tend to the correspond-
ing values of a particle-in-a-box, whose dependencies are
�r̂ (part) ∝ ro and �p̂(part)

r ∝ r−1
o . Firstly, the behavior of the

variance �r̂ [Fig. 5(a)] can be understood from Eq. (12) under
the assumption that for strong confinement 〈r̂2〉 ∝ 〈r̂〉2 such

that �r̂ ∝ 〈r̂〉 ≈ 0.3ro, i.e., it is proportional to the cavity
size. With the same reasoning, we find that, from Fig. 5(b),
�p̂r ≈ 10/ro. Therefore, we use this matching to explain
what is happening on the product �r̂� p̂r of the confined
H atom. For both systems and small confinement radii, the
position expectation value 〈r̂〉 tends to converge to the value
ro/2. For example, the position expectation value 〈r̂〉 for the
ns(part) state of a particle-in-a-box is exactly ro/2 for all ro,
as expected. Moreover, for the ns(part) states, the arrangement
of the expectation values of the square of the position 〈r̂2〉
is 1s(part) < 2s(part) < 3s(part) < 4s(part) < 5s(part). From these
results one concludes that the variances �r̂ (part) keep the
same order as 〈r̂2〉 since 〈r̂〉 = ro/2 for all ns(part) states of a
particle-in-a-box. On the other hand, the position expectation
value of the ns states in the confined H atom only reaches
the value ro/2 at ro = 0.1, which is smaller than the smallest
radius reported here. Thus, for small cavity sizes, the �r̂�p̂r

values show the same order as the corresponding ones of a
particle-in-a-box. Other particle-in-a-box states with � �= 0 do
not show the same behavior, since the centrifugal potential
�(� + 1)/r2, as observed in Eq. (13), plays an important role
in the position expectation value, hence it is slightly larger
than ro/2 as � increases. This can be compared to the confined
H atom within the strong confinement regime such that, for
the same confinement radius, the more extended wave func-
tions are squeezed by the effect of the wall. For a cavity size
ro = 1, the expectation values, 〈r̂〉 and 〈r̂2〉, of both systems
(confined H atom and particle-in-a-box) have similar values,
and therefore they show the following order: for the np states,
2p > 3p > 4p > 5p; for the nd states, 3d > 4d > 5d; and for
the n f states, 4 f > 5 f , such that the value of the variance �r̂
(in both systems) is lower for more extended wave functions
related to higher excited states. For instance, consider the
nd (part) states of a particle-in-a-box, where we have �r̂ (part)

3d <

�r̂ (part)
4d < �r̂ (part)

5d (dashed black lines), as shown in Fig. 6(a).
In summary, for large confinement radii, the states with the
most extended wave functions have a larger value of �r̂, but
as the confinement conditions become more extreme these
extended wave functions are squeezed stronger, which results
in a lower value of �r̂ than for less extended wave functions.
For example, for small confinement radii one can observe that,
for the confined H atom, the 3s state has a higher �r̂ value
than the 4p and 5d states [see Fig. 5(a)].

The behavior of the variance �p̂r as a function of the
confining cavity size is depicted in Fig. 5(b) for the 3s, 4p,
and 5d states, while Fig. 6(b) shows the same for the nd states
(with n = 3, 4, and 5) of the confined H atom (solid blue lines)
and the corresponding uncertainty values of a particle-in-a-
box (dashed black lines). At first, for large values of ro the
radial kinetic energy is lower for states with a more extended
wave function. This indicates that the electron moves faster
toward the nucleus than away from it. But, as the cavity size
decreases, the electron gains more and more radial kinetic
energy. This is due to the effect of the wall when compared
to the Coulombic potential, which squeezes the wave function
and leads to a decrease of �r̂. In order to satisfy Heisenberg’s
uncertainty principle, � p̂r must increase. From Figs. 5(b) and
6(b), we find that, for smaller ro, the value of � p̂r of the en-
closed H atom converges to the values of a particle-in-a-box.
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(a)

(b)

FIG. 6. �r̂ and � p̂r uncertainties as a function of the confine-
ment radius ro for nd states with n = 3, 4, 5 of a confined H atom
(solid blue lines) and a particle-in-a-box (dashed black lines) as a
function of an impenetrable spherical cavity radius ro.

For states with the same number of nodes, the values of
the variances �r̂ are very similar, as observed in Fig. 5(a),
and similarly for the variances in �p̂r , as shown in Fig. 5(b).
Consequently, the product �r̂�p̂r has very similar values and
exhibits the arrangement in bunches as shown in Fig. 1. We
notice that there are minima in the transition range, from
large to small cavity sizes. For instance, consider the 4d
state, whose value of �r̂�p̂r as a function of ro is plotted
in Fig. 1 (dashed red line). For large radii, it keeps a constant
value until reaching ro ∼ 50. At this point, its value decreases
until reaching a minimum value at around ro ∼ 41, and later
starts increasing around ro ∼ 40. Finally, it reaches a con-
stant value, for ro < 20, which corresponds to the value of a
particle-in-a-box. Notice in Fig. 6(a) that �r̂ decreases faster
between ro = 50 and ro = 40, while in this same interval � p̂r

[Fig. 6(b)] remains almost constant. In a recent work, Estañon
et al. [31] observed the same behavior for the confined H atom
but in two dimensions. This behavior is due to the competition
between the kinetic and Coulombic potential energy. First,
the variances �r̂ (part) and �p̂(part)

r of a particle-in-a-box are
proportional to ro and r−1

o , respectively, such that Eq. (23)
is satisfied. From Fig. 6 one recognizes that �r̂ and � p̂r

dependence are �r̂ ∝ rα�r̂
o and �p̂r ∝ r

α� p̂r
o , with α�r̂ � 0

and α�p̂r � 0. Here, we notice that for the 4d state, as ro

decreases, �p̂r increases slower than r−1
o . This occurs for

FIG. 7. Radial wave function (solid line) and its first (dashed
line) and second derivative (dotted line) as a function of the radial
coordinate for the 3p(free) state of a free H atom.

20 < ro < 40, with � p̂r ∼ r−1.1
o . But, in this same interval

�r̂ ∼ r0.63
o , thus the product �r̂� p̂r ∼ r−0.47

o . This behavior
leads to an increment of �r̂� p̂r as ro decreases.

Finally, for ro < 10, �r̂ and �p̂r tend to the correspond-
ing values of the particle-in-a-box, ro and r−1

o , respectively,
which gives a constant value observed for small ro. These
behaviors are more evident if we consider a higher excited
state. Here, we have just discussed a few states to explain the
radial uncertainty behavior. Since the variance �r̂ is related
to the wave function and the variance � p̂r is related to its
first and second derivative, the expectation value of the kinetic
energy and the momentum are less sensitive to changes in the
confining cavity size, as seen in Fig. 7. Here, one observes that
the second derivative spans a less-extended function than that
of the first derivative and the radial function. This means that
the properties that depend on the first and second derivatives
are less affected by the confinement than those depending on
the radial function as the cavity size becomes smaller.

FIG. 8. Heisenberg’s uncertainty values for the vector represen-
tation �r̂�p̂ as a function of the confinement radius ro, for n� states
with n = 1, 2, 3, 4, 5 and � = 0, 1, 2, 3 for a confined H atom in
an impenetrable spherical cavity. The line colors are the same as in
Fig. 1. Symbols (�) at ro = 1 and (�) at ro = 200 correspond to a
particle-in-a-box and a free H atom, respectively.
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TABLE II. Vector uncertainty values �r̂�p̂ for a confined H atom and a particle-in-a-box, under the same confinement conditions, for
several radii ro, as well as the exact value of the free H atom.

Cn� = �r̂�p̂(part) �r̂�p̂-confined H atom �r̂�p̂(free)-Hey [58]

nr State 1 � ro � 200 ro = 1 ro = 10 ro = 20 ro = 50 ro = 200 ro = ∞
1 1s 1.6703 1.6026 1.7319 1.7320 1.7320 1.7320 1.7321

2p 2.7502 2.7120 2.6111 2.7364 2.7386 2.7386 2.7386
3d 3.8174 3.7927 3.6147 3.6241 3.7417 3.7417 3.7417
4 f 4.8762 4.8585 4.7110 4.6024 4.7369 4.7434 4.7434
5g 5.9289 5.9155 5.7984 5.6847 5.6485 5.7446 5.7446
6h 6.9769 6.9663 6.8719 6.7728 6.5945 6.7454 6.7454

2 2s 3.5580 3.5884 3.2577 3.2370 3.2404 3.2404 3.2404
3p 4.5526 4.5495 4.7192 4.5050 4.4721 4.4721 4.4721
4d 5.5743 5.5657 5.5723 5.7334 5.6008 5.6125 5.6125
5 f 6.6085 6.5991 6.5479 6.5856 6.6989 6.7082 6.7082

3 3s 5.3953 5.4287 5.6252 4.9927 4.7958 4.7958 4.7958
4p 6.3613 6.3676 6.5512 6.7443 6.1127 6.1237 6.1237
5d 7.3565 7.3551 7.4013 7.5721 7.5518 7.3484 7.3485

4 4s 7.2207 7.2522 7.5347 7.4205 6.3560 6.3639 6.3640
5p 8.1723 8.1820 8.3502 8.5874 8.1733 7.7459 7.7460

5 5s 9.0414 9.0705 9.3523 9.3908 8.5041 7.9372 7.9373

In the following section, we discuss Heisenberg’s uncer-
tainty values for the vector case.

B. Vector uncertainty principle

Now, we present our results for Heisenberg’s uncertainty
principle in its vector representation, which complement our
study of the H atom under spatial confinement conditions.

The uncertainty values �r̂�p̂ of the confined H atom as
a function of the confinement radius ro are shown in Fig. 8.
From this figure one notes that they satisfy the generalized
Heisenberg’s uncertainty principle, Eq. (16), for all values of
ro. For instance, the ns states (green lines) have uncertainty
values higher than 3/2, where the lowest value corresponds to
the 1s state (solid green line). For the np states (blue lines),
they have values higher than 5/2 and the lowest value is for
the 2p state (solid blue line), and so on with higher �. Notice
that the nodeless states are the ones with the lowest value,
according to Eq. (16). In this case, the uncertainty values
do not present the bunching that is observed in the radial
case (Fig. 1). This behavior is mainly due to the centrifugal
potential, since it depends on the angular momentum quantum
number �, and its expectation value is added to 〈p̂2

r〉 to obtain
〈p̂2〉, Eq. (20).

For the free atom, the exact value for the product
�r̂�p̂(free) is [56,58]

�r̂�p̂(free) =
√

5n2 + 1 − 3�(� + 1)

2
, (28)

whereas, for a particle-in-a-box, we have that the product of
its variances is also constant, as for the case of the radial
representation,

�r̂�p̂(part)
n� = Cn�(xν ) = constant. (29)

Here, xν are the zeros of the spherical Bessel functions j�(x)
(see Ref. [67]) and Cn� has a different value for each state.

Table II shows the vector uncertainty values �r̂�p̂ for
a confined H atom and a particle-in-a-box, under the same
confinement conditions, for several radii values ro, as well as
the exact value of the free H atom.

As in the radial case, the results for a particle-in-a-box
help us to understand what is occurring with the confined
atom under strong confinement conditions. Firstly, the vari-
ance of the position is a function of ro and xν , i.e., �r̂(part)

n� =
�r̂(part)

n� (ro, xν ). Since the analytical expressions for these un-
certainty values are cumbersome, we only discuss the cases of
the ns and nd states. For these cases one obtains

�r̂(part)
ns = ro

√
4x3

ν + 3 sin(2xν ) − 6xν[cos(2xν ) − xν sin(2xν )]

6x2
ν [2xν − sin(2xν )]

�r̂(part)
nd = ro

√
4
[
x4
ν + 9x2

ν − 27
] − 6

[
7x2

ν − 18
]

cos(2xν ) − 3xν

[
2x2

ν − 37
]

sin(2xν )

6
{
2
[
x4
ν − 3x2

ν − 3
] − 6

[
x2
ν − 1

]
cos(2xν ) + xν

[
x2
ν − 12

]
sin(2xν )

} . (30)

In contrast, for a particle-in-a-box, �p̂(part) =
√

〈p̂2〉 =√
2E = k, since the potential energy is zero inside the box

and k is related to the zeros of the spherical Bessel functions

with rok = xν , hence

kν = xν

ro
= �p̂(part)

n� . (31)
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FIG. 9. Uncertainty �r̂ as a function of the confinement radius
ro, for n� states with n = 1, 2, 3, 5 and � = 0, 1, 2, 3 of a confined H
atom (black lines) and 1s(part) of a particle-in-a-box (solid blue line).

From Eqs. (30) and (31), the product �r̂�p̂(part) is calcu-
lated for each state as a function of ro, obtaining the value of
Cn� in Eq. (29). For instance, the ns(part) states for a particle-
in-a-box have

�r̂�p̂(part)

=
√

4x3
ν + 3 sin(2xν ) − 6xν[cos(2xν ) − xν sin(2xν )]

6[2xν − sin(2xν )]
.

(32)

Here, the zeros xν of the spherical Bessel functions jo(x) are
given by xν = nπ , (n = 1, 2, 3, . . .) as reported in Ref. [67].
Therefore, the uncertainty values for these states become

�r̂�p̂(part)
ns =

√
(nπ )2

3
− 1

2
= Cns. (33)

If we consider higher n�(part) states, then xν are the zeros of
the spherical Bessel function of order �, j�(x).

After calculating the terms Cn� from Eq. (29), it is possible
to obtain a simpler expression for �r̂(part), which shows us its
dependence with ro

�r̂(part)
n� = Cn�

�p̂(part)
= Cn�

xν

ro, (34)

which is linear as confirmed in Fig. 9 (solid blue line).
Moreover, from Eq. (31) one obtains the energy for a particle-
in-a-box as

E (part)
ns = (�p̂)2

2
= x2

ν

2

1

r2
o

. (35)

Equations (31), (34), and (35) give us an idea of a simple
dependence for Heisenberg’s uncertainty and energy relations
for a hydrogen atom confined by a spherical cavity of size ro,
for strong confinement.

Figure 9 shows the uncertainty �r̂ as a function of the
confinement radius ro. Black lines represent the behavior of
the n� states, with n = 1, 2, 3, 5 and � = 0, 1, 2, 3, of the H
atom, while the solid blue line corresponds to the 1s(part) state
of a particle-in-a-box. According to Eq. (34) it is a straight
line, with �r̂(part) = 1.6703ro/π . We only plot the 1s(part) state

FIG. 10. Uncertainty �p̂ as a function of the confinement radius
ro, for 2s, 3p, 4d , and 5 f states of a confined H atom (solid blue
lines) and a particle-in-a-box (dashed black lines).

because the other ones have very similar behavior. In contrast
to the radial case for ro → 0, here the grouping in bunches,
according to the number of nodes, is not observed since all the
states degenerate around the same value of �r̂. This indicates
that the observed splitting in the vector uncertainty values,
in Fig. 8, comes from the centrifugal barrier, as mentioned
before. Notice that the vector variance �r̂ shows a very sim-
ilar behavior to that of the radial component �r̂, since both
have constant values for large radii, which are proportional
to n2, while for small radii they have a linear dependence on
ro. In contrast, from Fig. 9 and for large radii ro → ∞, one
observes that the values of �r̂ are grouping according to the
value of n. Here, one sees the ground state with the lowest
value, while the states with n = 2 have a higher value and
higher excited states are grouping into well-defined bunches.
This is expected from the exact value of �r̂(free) of the free H
atom [58,59]

�r̂(free) =
√

n2

2
[5n2 + 1 − 3�(� + 1)], (36)

where in the limit n → ∞, it goes to �r̂(free) ∼ n2√5/2.
Moreover, as � increases, the �r̂(free) value for that state is
a bit lower than any state with the same value of n. That is
similar to Bohr’s classical model of the atom for a classical
electron moving around the nucleus in a well-defined orbit
determined by the principal quantum number n.

The �p̂ uncertainty of a confined H atom (solid blue lines)
and a particle-in-a-box (dashed black lines) as a function
of ro is shown in Fig. 10. Here, one observes the splitting
between the values of �p̂ for states with the same number
of nodes, e.g., 2s, 3p, 4d , and 5 f states, in the region of small
confinement radii, which does not occur for the radial case.
This behavior is due to the centrifugal potential in Eq. (20).
However, both cases share certain similarities, e.g., they have
constant values for large ro and the same dependence on the
cavity radius since �p̂ ∝ r−1

o for small cavity sizes. Also,
the electron of the confined atom and the particle-in-a-box
reach almost the same value of their respective momentum
uncertainty, i.e., �p̂ ≈ �p̂(part), for confinement radii ro < 10.

022814-9



REYES-GARCÍA, CRUZ, AND CABRERA-TRUJILLO PHYSICAL REVIEW A 110, 022814 (2024)

Now, the variance �p̂(free) for the free H atom is degenerate
in n, since

�p̂(free) = 1

n
. (37)

From Fig. 10, one also observes the splitting of �p̂ values
for states with the same n as the cavity size is reduced—for
instance, the 5s and 5 f states. This splitting results in two
phenomena. The first one is the splitting of the kinetic and
total energy spectra of the hydrogen atom under confinement
conditions [52,68], and the second one is the influence of
the exerted strength by the wall as prescribed by the virial
theorem for the confined system [69]. Thus, the electron not
only moves on certain average distances (orbits) around the
nucleus, as shown in Fig. 9, but it also moves with a well-
defined momentum according to the energy level given by the
principal quantum number n as allowed by the confinement.
The value of the momentum decreases as the electron is in
a higher excited state, in analogy to the classical system. As
a result of the confinement effect, these averaged distances
shrink and the degeneracy of the kinetic energy is broken,
which gives rise to the breakdown of total energy degeneracy.

Unlike the radial case, in the vector case one observes that
as ro increases, the value of the product �r̂�p̂ increases from
a constant value until reaching a global maximum; after this,
it decreases and converges to the corresponding value of the
free H atom, as seen in Figs. 1 and 8. This behavior is more
evident for states with nodes and it results from the following
factors. The sudden changes in the dependence on ro for �r̂
and �p̂, since �r̂ ∝ rα�r

o and �p̂ ∝ rα�r
o , where α�r and α�p

are exponents, and they go from values of α�r̂ ≈ 1 and α�p̂ ≈
−1, for small cavity sizes, to their maximum values within
the transition range, i.e., α�r̂ > 1 and α�p̂ > −1. Thereafter,
for larger cavity sizes, the value of the exponents is such that
α�r̂ > 1 and α�p̂ < −1, but |α�r̂| < |α�p̂| where both �r̂
and �p̂ converge to constant values. This gives the behavior
observed in Fig. 8, showing the global maxima. For instance,
let us consider ns states. Since they have the same value of
momentum in both radial and vector cases, because � = 0, see
Eq. (20), then the difference between both behaviors, �r̂� p̂r

and �r̂�p̂ (specifically the global maxima shown in Fig. 8),
arises from the value of �r̂. Our results show that α�r̂, for the
vector case, has a greater value on average than α�r̂ , for the
radial case. Both of them reach the value 1 for small radii.

In contrast to the radial case at the limit of large ro, node-
less Rydberg states do not reach the minimum value of the
generalized Heisenberg’s uncertainty principle for the vector
representation, Eq. (16), since their values are always larger
than � + 3/2, as shown in Table II. For instance, the value
of �r̂�p̂ for the ground state is 1.7321 > 3/2, the minimum
value for ns states, while the remaining nodeless states have
even larger values, and the difference between the numerical
results and the minimum in Eq. (16) increases as n increases.
Therefore, the ground state is the most coherent state in the
vector case and its coherence increases as the cavity size
decreases, as observed in Fig. 8 and Table II.

Now, let us estimate the radii rc at which the confinement
begins to affect the electronic properties of the confined H
atom. These radii rc are estimated from the behavior of the
momentum variances �p̂, by finding the crossings, for two

(a)

(b)

FIG. 11. �p̂-crossing points as a function of the radius ro

for (a) the ns states (n = 1, 2, 3, 4, 5) and (b) the np states
(n = 2, 3, 4, 5).

consecutive states with the same symmetry—in other words,
the value of ro where the electron in these two states has
the same averaged momenta. Figure 11 shows the behavior
of the variance �p̂, as a function of ro, for the ns and np
states, respectively, as well as the crossing points between
consecutive states with the same symmetry (dashed vertical
lines). For instance, from Fig. 11(a) one observes that the
�p̂-crossing point between the 1s and 2s states is around
rc ≈ 6, which is the radius rc for the lowest state, 1s, where
the energy increment starts to rise with respect to the free
atom, as the reader can verify in Ref. [52]. Likewise, the
changes in the radial and vector uncertainty values for this
state begin to be evident at this radius, as shown in Figs. 1
and 8. For higher excited ns states, the corresponding �p̂-
crossing points are rc ≈ 17, 33, and 52, which are related to
the critical radii of the 2s, 3s, and 4s states, respectively. From
Fig. 11(b) one observes another example of the �p̂-crossing
points, for the np states. The �p̂-crossing point between the
4p and 5p states takes place at rc ≈ 51, which corresponds
to the cavity radius for which the 4p state starts to feel the
effect of the cavity, and so on with other states. A summary of
these results is shown in Table III. Here, the values of 2〈r̂〉free

and the approximated numerical values of �p̂-crossing points
for some states are compared. Here, 〈r̂〉free is the expectation
value of the position of the free H atom. From the comparison
of these two quantities, one realizes that 2〈r̂〉free has a very
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TABLE III. Critical cavity sizes rc at which the state for a
confined H atom exhibits considerable changes on its uncertainty
principle due to the confinement.

State rc = 2〈r̂〉free rc = �p-crossing

1s 3 6
2s 12 17
3s 27 33
4s 48 52
2p 10 16
3p 25 31
4p 46 51
3d 21 27
4d 42 49
4 f 36 42

similar value to the �p̂-crossing points, and this agreements
is better as higher excited states are considered. Thus, we have
two ways of estimating the critical radius rc. From here, one
concludes that the changes in the electronic properties of a
confined atom mainly come from the increment in the kinetic
energy (〈T̂ 〉 = �p̂2/2) as the cavity size decreases. Thus, for
ro < rc one expects higher confinement effects. Moreover, the
radius rc gives an idea of the average size of the H atom orbital
at which the cavity starts to affect it.

C. Relativistic limit

Now, what is the radius ro for which relativistic effects
start to be important? Since our analysis is not relativistic, the
variances �p̂, �p̂r and the energy diverge as ro goes to zero,
as shown in Eqs. (31) and (35). Thus, the electron mean square
root velocity reaches and surpasses the speed of light c at
some confinement radii, requiring relativistic corrections. Let
us recall that the definition of the mean square root velocity
is, from Eq. (12),

vrms =
√

〈v2〉 =
√

〈p̂2〉 = �p̂, (38)

for an electron with mass me = 1 (in atomic units). Let us
consider that relativistic effects are important for particle ve-
locities larger than 10% of the speed of light, i.e., �p̂ > 0.1 c.
Since c ≈ 137 a.u., �p̂ > 13.7 for relativistic effects start
to be important. To determine the cavity size at which this
occurs, we start from those results of a particle-in-a-box, since
for small radii the hydrogen atom under confinement has a
similar behavior. In this case the energy is, from Eq. (35), E =
13.72/2 = 93.845. The corresponding radius that satisfies

this condition is, from Eq. (31),

ro � xν

13.7
. (39)

Table IV shows the values of ro and �r̂ for each state
from the 1s to 5 f for which �p̂ reaches the value 0.1 c.
From here, one notes that the value of these two quantities
(critical radius and �r̂) increases for higher excited states,
which is expected, since higher excited states have a higher
energy value and as the system is being confined they reach
the limit �p̂ = 13.7 (and E = 93.845) faster. We conclude
that states, when ro < 1.1, require a relativistic description of
the confinement through the Dirac equation.

Another procedure to account for the relativistic correction
is obtained from the time-independent perturbation theory
[21]. Here, the perturbation term in the Hamiltonian comes
from the kinetic energy, expressed in terms of the momentum
and the speed of light, for relativistic motion

T̂ = c2

[√
1 + p̂2

c2
− 1

]
; (40)

expanding it in powers of the small p̂/c 
 1, we have

T̂ = p̂2

2
− p̂4

8c2
+ p̂6

16c4
+ · · · . (41)

The first-order perturbation term is given by

Ĥ ′ = − p̂4

8c2
, (42)

such that the Hamiltonian is Ĥ = Ĥ (0) + Ĥ ′, where Ĥ (0) is
the unperturbed Hamiltonian given by Eq. (2). The first-order
correction to the energy is [21] thus

E (1) = − 1

2c2
[(E (0) )2 + 2E (0)〈r̂−1〉 + 〈r̂−2〉], (43)

where E (0) is the energy of the unperturbed-confined system.
The nonrelativistic energy (solid blue lines) and the en-

ergy with relativistic correction (dashed black lines) of the
confined H atom as a function of ro are plotted in Fig. 12.
First, for small radii, one confirms that the energy is pro-
portional to r−2

o , as in Eq. (35), corresponding to the energy
of a particle-in-a-box. Here, one observes that the behavior
of the energies exhibits a larger difference as the cavity size
decreases. Moreover, the difference between both energies is
greater as one considers higher excited states. In our case,
the largest difference is for the 5s state, while the smallest
one is for the ground state. To account for the relativistic

TABLE IV. Values of ro and �r for a-particle-in-a-box for which the electron velocity is 10% of the speed of light c, such that relativistic
effects should be considered.

State ro = xν

13.7
�r = Cns

13.7
State ro = xν

13.7
�r = Cnp

13.7
State ro = xν

13.7
�r = Cnd

13.7
State ro = xν

13.7
�r = Cn f

13.7

1s 0.2293 0.1219
2s 0.4586 0.2597 2p 0.3280 0.2007
3s 0.6879 0.3938 3p 0.5639 0.3323 3d 0.4207 0.2786
4s 0.9173 0.5271 4p 0.7959 0.4643 4d 0.6639 0.4069 4 f 0.5101 0.3559
5s 1.1466 0.6599 5p 1.0267 0.5965 5d 0.8995 0.5370 5 f 0.7604 0.4824
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FIG. 12. Relativistic contribution to the energy of a confined H
atom as a function of the cavity size ro. Solid blue lines correspond
to the expectation value of the unperturbed Hamiltonian, Ĥ (0), while
the dashed black lines to the perturbed Hamiltonian, Ĥ (0) + Ĥ ′.

contributions, we calculate the percentage error between the
two energies by means of

Error(%) = 100
|E (1)|

|E (0) + E (1)| . (44)

The results obtained from Eq. (44) are shown in Fig. 13
as a function of ro. From here, the percentage error increases
monotonically as the cavity size decreases, and it is larger
for excited states. For instance, at small radii ro = 0.1, for
nodeless states (solid lines) the difference goes from ∼1.4%
to ∼7%, with the ground state (solid black line) being the one
that has the smallest correction value to the energy, while the
4 f state has a larger difference. These differences increase as
� does. States with one node (short-dashed lines) have correc-
tions that go from ∼5.6%, for the 2s state, to ∼17%, for the
5 f state. Therefore, the major difference corresponds to the 5s
state, as observed in Figs. 12 and 13, which is expected, since
the 5s state has more sudden changes on its kinetic energy
as ro decreases. It is worth mentioning that the relativistic
correction for the energy of the 5s state is around 50%, making
it necessary to consider higher-order corrections. Moreover,
from Fig. 13 one notes that for radii ro > 1.1 the relativistic
corrections do not play an important role, since the percent-
age error in energy is less than 0.1%, for the states studied
here. For this reason, we only report calculations for the in-
terval 1 � ro � 200. These relativistic corrections provide a

FIG. 13. Percentage error between the energies of the
unperturbed-confined H atom, E (0), and the energy with the
relativistic corrections, E = E (0) + E (1), for the lowest n < 6 states.

justification for the choice of the smallest cavity size for our
study. These relativistic results are calculated by means of
first-order perturbation theory, thus we expect that, by solving
the Dirac equation, one will verify the validity of the first-
order perturbation theory at these cavity sizes. Work is in
progress along these lines.

IV. CONCLUSIONS

In this work, we have studied the position and momentum
uncertainty inequalities and Heisenberg’s uncertainty princi-
ple for the radial and vector representations. We analyze the
behavior of the quadratic mean deviation for the electron
position and momentum, as well as Heisenberg’s uncertainty
principle as a function of the cavity radius. Our results show
the evolution from a free hydrogen atom at large cavity
radii toward a free electron-in-a-box for small confinement.
At small cavity radii, we find that the cavity overrides the
Coulombic interaction. Thus, at small cavity sizes, the elec-
tron of the confined H atom behaves like a free particle in
a spherical box. From the comparison of the results of a
confined H atom and a particle-in-a-box, the domain regions
of the Coulombic potential and kinetic energy are discerned
clearly. These regions are characterized by the constant values
of �r̂� p̂r and �r̂�p̂. Furthermore, the interval where this
competition is relevant for each state of the confined atom is
determined.
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In the radial uncertainty approach, it is found that the com-
pression breaks the coherence degree of the Rydberg states
(pseudo-classical states) of the free system as it is exposed to
extreme conditions of spatial limitations. The states increase
their variance compared to the free system for the extremely
confined case. In contrast to the radial representation, in the
vector representation the most coherent state is the ground
state of the confined atom, and it becomes more coherent as
the cavity size decreases.

Moreover, in the vector representation and for large cavity
sizes, it is found that the arrangement of �r̂ is in bunches,
which are determined by the principal quantum number n.
However, as the system is compressed, these bunches suffer
a degeneracy, as occurs in the case of 〈r〉, which degenerates
as ro decreases, showing just small differences with each
other within the strong confinement regime. On the other
hand, the degeneracy on the principal quantum number of
the expectation values of the momentum (and energy) splits
due to the compression of the system. This compensates the

degeneracy of �r̂ and gives rise to the behavior observed on
the evolution of the uncertainty values �r̂�p̂ of each state
of the system. In addition, the size of the cavity at which
each excitation level is affected is determined by means of the
�p̂-crossing points between two consecutive states with the
same symmetry. This has as a consequence that the changes
in the electronic properties of the system are strongly related
to the increments on the kinetic energy at these cavity sizes.

Finally, the region of validity for our nonrelativistic results
is determined, finding that relativistic corrections are required
for ro < 1.1. Work is in progress to study this problem within
the Dirac equation.
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