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Radiative corrections of the order a(Z«)® for rotational states of two-body systems
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The analytical calculation of the complete a(Za)® one-loop radiative correction to energies of two-body
systems with the angular momenta [ > 0, consisting of a pointlike particle and an extended-size nucleus with
arbitrary masses and spin 1/2, is presented. The obtained results apply to a wide variety of two-body systems,
such as hydrogen, muonium, positronium, and antiprotonic atoms.
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I. INTRODUCTION

Hadronic two-body systems, such as antiprotonic atoms in
circular states [ ~ n, give the possibility to probe the existence
of the long-range interactions between hadrons, which is not
possible by other means. The emission spectroscopy of light
antiprotonic atoms is feasible at CERN [1], and from the
theoretical side these atoms can be very accurately calculated.
In fact, in a highly excited circular state the effective coupling
Zo/n is much smaller than one, and so the nonrelativistic
QED (NRQED) approach can be used to obtain the energy
levels even for high Z nuclei. Such calculations for an ar-
bitrary mass ratio and arbitrary state up to the order (Za)®
were recently performed in Refs. [2,3], and here we extend
this result to the orders «(Za)° and Z?«(Zr)°.

Other two-body systems, such as hydrogen and hydrogen-
like ions, serve for determination of the fundamental physical
constants [4], because they can be measured and calculated
with high accuracy. Significant progress has been achieved
in recent years by the inclusion of the nuclear charge radii
obtained from muonic hydrogen and other light muonic atoms
[5-10]. The current value of the Rydberg constant, based
mainly on the precisely measured 1S-2S transition in H [11]
and 25-2P in pH [5,6], has a relative accuracy of 1.1 x 10712
limited by uncertainties in theoretical predictions for H and
uH [4]. These uncertainties mainly come from the two-loop
electron self-energy, the radiative recoil, and nuclear polar-
izability in the case of muonic atoms. The radiative recoil
correction is a topic of this work.

In this paper, employing units /i = ¢ = 1 and ¢*> = 47 a,
we perform a calculation at the a(Za)® order for two-body
systems with arbitrary masses, including self-energy of an
orbiting particle and with an arbitrary nucleus. In the first
step, we consider the states with / > 0. The lower-order terms
were recently obtained for / = O states in Ref. [12], and for
I > 0 in Refs. [2,3]. The o’ corrections are currently known
only in the nonrecoil limit [13], and here we derive them for
an arbitrary mass ratio. The results obtained may also find
applications in more complicated few-electron systems such
as the helium atom, where discrepancies between theoretical
predictions and experimental values for the ionization ener-
gies have been observed [14-16], and they might come from a
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similar calculation of radiative o’

of the He atom [17].

m correction for triplet states

II. RADIATIVE a(Za)* CORRECTION

The radiative (electron self-energy) a(Za)® correction to

energy Ergd) of a two-body system can be expressed as a

combination of terms with all possible spin couplings [2],

wo(Zot)® . S
Er(a7d) = —(51\15 +L-51E1+L-5En
+51 - 52 Ess + (LL)P sis) &1, (1)
where w is the reduced mass, Za = —ejey/(4m), Z is the

charge number of the nucleus which has a particle number
2, §; is the spin of the ith particle, and
ij

o 1. s
(L'LHY® = E(L’LJ + Ll — ?Lz, )

which is a symmetric traceless tensor. The coefficients £ in
Eq. (1) with different X are functions of the principal quantum
number n and the angular momentum /, and their calculation
is the subject of this work.

At first Er(7d) is divided into three parts,

a

E!) = E; + Ey + Eu, 3)

rad

where the low-energy part E; corresponds to the frequency
of the radiative photon @ ~ m;a?, the middle-energy part Ej,
comes from the region of w ~ m«, and the high-energy part
Ey corresponds to w ~ m;. We will use dimensional regu-
larization with d = 3 — 2¢ to avoid divergences, and the 1/¢
singularity will cancel out in the sum in Eq. (3).

III. LOW-ENERGY PART E;,

The low-energy contribution of the order a(Ze)® is further
divided into three parts,

E; = Ep + Ep + Eps. 4

These parts will be evaluated in the subsequent sections as
corrections to the leading low-energy contribution Ej of the
order a(Za)*, namely to the Bethe logarithm.

©2024 American Physical Society
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A. Ejy

Let us consider the nonrelativistic Hamiltonian for a two-
body system in d dimensions,

_no,n
H = 2, + —= 215 + V(r), 5)
1
V(r) = 2;2 H ©6)
1M %f A% 4x ,
[ P e 2

where ¥ = 7| — 7,. The leading nonrelativistic (dipole) low-
energy contribution is

o _ 4 dk (g KK
L= 2 ) 2k k2
. 1 .
i J
X (Blph g P119). ®)

where H is the nonrelativistic Hamiltonian in d dimensions
from Eq. (5). The wave function ¢ denotes the nonrelativistic
Schrodinger-Pauli wave function in the center-of-mass frame
(p1 = —p> = p ). In the following, we will denote the ex-
pectation value of an arbitrary operator Q, evaluated with
the nonrelativistic Schrodinger—Pauli wave function, by the
shorthand notation (Q).

J

After the d-dimensional integration with respect to k, and
the expansion in €, E7y becomes

Euo = 4y T+ o)— (e — )] L 42
r 3rm? h 2¢ 6

—In D1 ) 9
m

where we ignore terms of order ¢ and higher. The factor
(4 )T (1 4 ¢) appears in all the terms, and thus we will omit
consistently in all matrix elements. The contribution E7 can
thus be rewritten as

Cdaf s T )
Fo = 3m%Z“{28 Tt |:M(Za)2“<6 "

20 . 2(H—-E)].

where the last term is the so-called Bethe logarithm [18].

B. Ei;

We consider now all possible relativistic corrections to
Eq. (10) and introduce the notation

o1 \ /. 1 1 ‘ SR ‘
i J\ — i _ ! J
8Q<pE—H—kp>_<pE—H—k(Q <Q>)E—H—kp]>+2<Q(E—H)’pE—H—kp > (1

where Q is an arbitrary operator. §p involves the first-order perturbations to the Hamiltonian, to the energy, and to the wave
function. The correction Ej; is the perturbation of E;( by the relativistic Breit Hamiltonian H @, which in d dimensions is
(setting e} = —e, ey = Ze)

H® = g'® ¢ H”(4), (12)

4 Zal 1 4 Za 8t r‘rf . gignZa ;i o
H®O =Y o Lo [ TRR) L 22 s — | pl4 222Gl s (), 13
Py 2{ 8mJ + 2 | m? + 3 Ea )+ 2m1mzp1 - 61’2 + 4dmymy or oy 0 (13

//(4) 8a — U 8182 lk ]k Jj_ 81 _
;:2 Tomml viv y —Vv?\v

ViV)pl + (VIV)(gi0 P, — g20'p}), (14

4m1m2

where r2 is the mean square charge radius, $?(r) is the Dirac § function in d dimensions, and o/ = [0, 0/]/(2i). Ind =3
spatial dimensions, the matrices o'/ reduce to "/ = €% a*_ and the Breit Hamiltonian in the center-of-mass frame becomes

p p* 8t r'rj i 218 [ si( rir 8
H(4):_p__p——z - J 2172 s 3 ___>._.83_,
8mj  8mj * 2m1m2 r r P +4m1m2 3 2 3515 (F)
Rl A - g2 .  (-1_. (-1, 2Za( 3 3
- ' e 53 15
273 |:m1m251 + m1m2S2+ - s+ - S|+ 3 \anm + 4 + g+ 1k, |8 (F). (15)

[
We now split Ep

cutoff A:
i ) ()
/ / er)y2k\" k2

X8y <P1

We will use this d = 3 form of H® also later in the calcu- by introducing an intermediate
lation of the second-order correction. Additionally, we note
that the first particle is pointlike, so r2; = 0 and g; = 2. The
second particle will be considered with finite nuclear size,
and we will calculate the radiative corrections only for the
first particle. However, in the case of antiprotonic atoms we
will drop these assumptions for the first particle and include

(16)
radiative corrections for the second particle in Sec. VIII.

J
E—H k"
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After the Za expansion with A = A(Za)?, one goes subsequently to the limits £ — 0 and A — oo. Under the assumption
that [ # 0, we may perform an expansion in 1/k in the second part and obtain

20

A 1 o 5
En=—— dk ks pr———P —— |1 ——2In2
H 3rm? /(; H(4)<p1E —H— kpl> + 3nm%‘2€|: +8(3 n ):|

y / kL {2<H(‘”;[ﬁ1 H ﬁ1]]>+<[171 (H® ﬁlm}. (17)
A Jl1+2e (E—H)/ ’ ’ ’ ’

The second-order contribution in braces will vanish for states with / # 0. In the calculations, we keep g» and r3, arbitrary. After
performing the & integration and with the help of commutator relations, it reads

E_ot(Zot)6ﬂ+a 1
= m e 3r |2

m B 1
— (Za) 2} }—2<ﬁ47r8d(r)ﬁ
w m

Za (1 n 1 n 4, n Za
x| —=|—=+4+—=+-r _—
4 \m m3 3 E2 mims

2 2 n
- ——¢
3 9

Za (1 2\ . o
220t =+ =¢)o/ o,
4m1m2 3 9

0,0 [pi471 8¢ (r)pj](z)

myms r3 r ). 4mymy
L2 (o & —Doy | 207 + 8207
2 Zm% Zm% 2m1m2

)p"4ﬂ5d(r)pj > (18)

where the expectation value is expressed in the center-of-mass system. Here, 8; is a dimensionless quantity, defined as a finite
part of the k integral with divergent terms proportional to A" (n = 1,2, ...) and In(A/p) in the limit of large A omitted:

[BYS +L-5185" + L5287 +51 - 52855 + (L'L))Ps' 55 1. (19)

o (Za)® , 20 A . 1 .
— =1 dkké ——
7 n hi Pl 3rmip /0 H\PYE g P
o (Za)®
T

In all integrals with an upper limit A, to be discussed in
the following, the divergent terms in A will be subtracted. In
particular, the terms proportional to In(A/u) but not In(2A/1¢)
are subtracted, which leads to the presence of factor % under
the logarithm in Eq. (18).

C. Ep,

The second relativistic correction, Ej», is the nonrelativis-
tic quadrupole contribution. Specifically, it comes from the
quadratic in k term from the expansion of exp(ik - 7),

e _ @ d'k (g KK
2Tz | @ni2k K2

X |:<Pl1 (ik - 71)mp{(—il? : 71)>

N 1 .
+<p11(“‘ | Wm”{ﬂ' 20

In a similar way as for E;;, we split the integration into two
parts, by introducing a cutoff A. In the first part, with the
k integral from O to A, one can set d = 3 and extract the
logarithmic divergence. In the second part, with the k inte-
gral from A to oo, we perform a 1/k expansion and employ
commutator relations, with the intent of moving the operator
H — E to the far left or right where it vanishes when acting on
the Schrodinger-Pauli wave function. In this second part it is

(

advantageous, instead of directly expanding the exponentials,
at first to use the identity

T F(Be T = f(p— k). Q1)

Thus, after expanding the resolvent in 1/k, we get for the
expression in the expectation value

3
<pilei/€.71 (H ;4E) pi]eiE.?1>

1/, Aok K\
=y<P1<H—E— o +2—m1> pi) (22)

We expand the bracket and take into account only terms
quadratic in k, contributing at the order «’. This leads to

e /00 d%k i k'k/
m%—2s A (27T)d2k5 k2

x ( p i(H—E)2k2+i(* -k)*(H —E)
pl 2m1 m% P1

A _
ELZ_

1 > - )
+ ﬁ(ﬁl -k)(H — E)(P1 'k):|le>- (23)
1

We now pass to the center of mass system, and the resulting
expression, after performing k integration and expansion for
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small ¢, is
a(Za)6 1 /1 5 w1l 14 1. [m 5
Ep=——3 wps + <(VV){ 1<2 +6+ [ (Za)~ ]) m_;t(§+£+§1“[ﬂ(z“) D}
+Z—a*4n8d( )P x (L+ ) +iln [ﬂ(z )2D> (24)
md PP 206 T 25 T 10 (2w '

Here, 8, = gs is defined as the finite part of the integral [see the discussion following Eq. (19)]

@ Zaf , _dma fA Pk (i N7 i) (P i 7
p— — —_—— 1 . —_— 1 . — —1 . .
by (2m)2k 2 J\P T e Ty Py T\ e T "
(25)

3 D = B m
T n myp A—00

D. E;;

The third contribution, £} 3, originates from the relativistic corrections to the coupling of the electron to the electromagnetic
field. These corrections can be obtained from the Hamiltonian in Eq. (5), and they have the form of a correction to the current

o . 1. Za [8Y rril g1 —1 82 i
8j1 =i[HW. rl] = —=—p\p] + —+ — | P+ o' VIV + 226]'VIV, 26
=il 1 Zm?plpl 2mymy | r r3 8!’2 4m? dmymy (26)

with H® given in Eq. (12), and we keep g; arbitrary for now. The corresponding correction Ej 3 is

Eym2-C LS PR P P 27)
BEIaE | Gk A
We now perform an angular averaging of the matrix element to bring the correction Ej3 into the form
Ere e 2 e d—1 d‘k i 1 ; 28)
BESEd ) en2\ME—H -k

We again split this integral into two parts. In the first part, where k < A, one can approach the limit d = 3. In the second part,
with k > A, one performs a 1/k expansion and obtains

a (5 1 2 [2A

Ei= g ts 3! 8ji. [V, 29
- m1n<9+3e 3 n[ D([ i [V A1) (29)

The expectation value for states with angular momentum / > 0 can be written as

1 Z 8 pliy .
_ _[plpl, [V. P\ ]]+ ¢ [—+rr—§] (—ViVIV)

(371 [V. ]

2ml 2mymy | r
- 172
=|- —I— (VV)7, (30)
ml mymy
where we used the identity

Zo (8 rird

[7(——# )] (=V'VIV)=(1-e)(VV), (3D
r r3

which follows from evaluation of this expression in momentum representation in d dimensions, namely

dq / d'k k- (k—q)

[VV ()P = @nZa)’mi® f

Qry Q) K2k — )2
dlq ... |, tan(em)
= —(nZa)zm‘l‘S/ (2;;6‘7 454! 28—871 (32)
and
Zo [ 8 j diq .. [ d% (.. Kk\1 k k)
Lo for 4+ — rir (—ViViV) = (47‘[ZO()2m?a 4q ol sii _ (g —k)(g—k)
2 \r r3 . 2m)d 2m)d K2 (g —k)?
d? i _, tan(em)
— (1ZaYm f —(2ﬂ‘§deq 4q' =01 ). (33)
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For E; 3 we finally obtain
o (Za)® a1 5 2 m 2 7 -8 =
Epy=— ——=+>+im|—z = - V), 34
B m WP b (38 + 9 + 30 |:2/L( @) mt  mimy (v (34

where B3 is the finite part of the integral (in the center-of-mass system)

a (Za)® 4o . A 1, Za (89 N
— L By= - lim dkk(| =—p'p" + — 4+ — P
371m1,u r—00 Jq 2m1 mpmy r r3

3_
+ ik gl_la"—i— £ sk \viv . P
am? " amm, 2 E—H—k

a (Za)® T R
=B+ L S L 0p (35)

T nd

Now we make the transition g; — 2, but in the case of antiprotonic atoms, discussed in Sec. VIII, we would keep g; arbitrary.
This completes the treatment of the low-energy part in Eq. (4), and the complete Bethe-log-like contributions are

BNS = B + BYS + B1S, (36)
,BSI — lSl +[33Sl’ (37)
B> =B + B, (38)

’Bss _ fs, (39)
B =Bt (40)

IV. MIDDLE-ENERGY PART

In the middle-energy part, the momenta of both the radiative and the exchanged photon are of the order m;«. This part consists
of two diagrams: the triple seagull contribution and a single seagull with retardation; see Figs. 1 and 2. We follow the approach
used in [17] for the case of two electrons and extend it to two particles with arbitrary masses.

A. Triple seagull contribution

The first middle-energy contribution is the triple seagull diagram given by Fig. 1, which is expressed (with k3 being the
radiative photon) as

672 d d d
&z dki d’ky A
Evi = 8" (k)87 (k)8 (k
W= e, | @ik | @iz | @ik P (0L
« <¢|ei(121+1;2)»71 1 i(k3—K1)-T2 1 e—i(lzz+1:3)'72
E—H—k —k E—H —ky— k3
+ iRtk T 1 o~ ika=k) T ! okt Ty
E—H—k —k; E—H—k —k
+ eii(lzlﬂ%)'?2 —1 ik +K2)-Fy ! e*i(lzzflzz)?z |p), 1)
E—H—k —k; E—H —ky)—k3

where 87 (k) = 8" — k'k/ /k. Neglecting E — H in comparison to photon energies, we express the triple seagull contribution as
Eyy = (Hy1), where

572 dk, dik, diky o @d-1
Hyi = 8% (k)8 (ke
M e, | @2k | r)i2k, | @r)i2k (k8L (k)=
e 1 1 1
« el(k1+k2)-r|: i + } (42)
(ki + k) ko +k3) (ki +k3)(ky + ko) (ki + k3) (ko + k3)

The integration over radiative photon k3 is trivial. The remaining integration is performed in spheroidal coordinates, as explained
in Appendix B of Ref. [17]. The result for the triple seagull contribution is

= CE (L4 / @4 g 43)
=——|—-=+=In ——'l"g.
M 2mim, 33 3 g
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B. Single seagull with retardation

The second middle-energy contribution comes from the diagram with a single seagull and retardation, as depicted in Fig. 2.
Such diagram contains two photons, one of which is a transverse photon exchanged between the electrons, and the other is a
radiative photon. The corresponding contribution to the energy is expressed as

e*z dk, dk,

E 5in k Sim k n k 1121-71 —i(§1+?2)-72 -m k i]‘(‘z-?z
= e | ity | Gy O RO G0 e
o L o - N 1
i (k iky -7y —i(ki+kp) P2 ik iko ik iky -7 im ik 7>
+ j2(k1)e E_H_k° —E_H_k211(2)€ + ji (ke —E_H_kljz(z)e oy —
R - o 1 L L T
> 671(k1+k2)-rz + ik elkl-rz Mk elkZ‘rl efl(k1+kz)-rz +e*1(k1+k2)-rz i"(k
L Ty 7y Ly sy sy E—H—f -kt
o 1 - L o =
iky -7y sm k iky Ty —i(ki+ky)Fr -n k ik 7> -m k iky Ty 44
XN B e e A e )™ g, (44)
where j! (k) is the current,
igi
iy = ph+ %oiklkk. (45)

The o’ contribution is obtained by expanding the integrand up to the first order in E — H. Because [d?kk* =0 in the
dimensional regularization, only the terms with k; + k, in the denominator do not vanish, and they can be cast in the form

€4Z ddkl
Eyp = -2

dk, 1

m%_45m2 (2 )42k,

x (I[[j1kne™ ™, H — E],

Taking into account that only the spin-independent terms
survive the double commutator and performing the angular
average for the radiative photon, we arrive at

dk,

E =
M2 (ZJT)d

(4na)zz d— 1)/ dik,
Zm% 4s (27T)d

g KT amany |14y, (47
Xk%kz(k1+k2) k1) (e 10;V]g) (47)

We express this as the expectation value of an effective
operator Hy,,

(47104)322 (d—l) e [ dk
Hyp = — /(zn)d v 1

2mi%m @2m)?
5 / ddk2 81" (k)g"q"
Qo) 131Ky — GRko (ki + k2)

(48)

Performing the remaining integrations in the same way as in
Ref. [17], we get the result

Ol(ZOl)2 dq _.(4 2 8. ¢q
H el — — —In— |gq.
M2 = o 2y | Gy 93 T3 )7
(49)
“\\1 ﬁ

FIG. 1. Time-ordered diagrams contributing to the middle-
energy contribution Ej;.

(27‘[ )d2k2 klz(kl + kz)
i (ke eIt T2 gy (46)

87 (k)8 (ka)

C. Total result for the middle-energy contribution

The total result for the effective operator representing the
middle-energy contribution is

Hy = Hy + Hypz
a(Za)? diq

_ iG7
= T e
Zm%_%mz Q2w )4

1 2 q 4 q
—+—(1—-2¢ln— ) — =In— |qg. 50
X|:9+38< 8n2n’h> 3nm1]q ( )

This needs to be transformed into the coordinate representa-
tion with the help of

(ﬁv)Z — (ﬂza)ZmZFJ ddq ei[j.?
- 1 (27T)d q

x (1 —2¢In i) + 0. (51)
2m1

A

%%M”% sfi““w% ﬁii”“%

5 / 5
M§ ey @E@@

FIG. 2. Time-ordered diagrams contributing to the middle-
energy contribution Ey;.
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Specifically, in the limit e — 0

1 *q
A7) @ny ¢ (=7g), (52)
Inr+y d’q ) 3
— ig-r _ - 1
p (271)36 i 7 +Ing )q, (53)

into three parts,

Ey = Exy + Eno + Ens, (55

where Ey is due to slopes and higher derivatives of electro-
magnetic form factors, Ey; is due to the anomalous magnetic
moment k; = «/(2w), and Eg3 is due to QED correction to

leading to the middle-energy contribution the polarizability o of the first particle beyond k.
H, T2 et y) VR G4
=——|—=——=——=(lnmr ,
M 2emimy [ 9 3¢ 3 v A. Ep

The first part of the high-energy contribution comes from
the derivatives F{(0), F{"(0), and F;(0) of electromagnetic
form-factors of the first particle. For the second particle, we
assume s, = 1/2, and arbitrary g, 725, Ffpos Tapp» and ogs.
As a starting point we will use Ref. [3] and the effective
Hamiltonian

where y is the Euler-Mascheroni constant y = 0.5772.. ..

V. HIGH-ENERGY PART

The high-energy part Ey comes from the momenta of the
radiative photon of the order of electron mass m,, and is split

J

SH = Za ATV (r) + Zo —— (1131 — rEl)za p’4n8d(r)p’+Z ’”E1(’Ez+ 3 >4nV28d(r)
|
120 4ml 36 4m2
Za o (=) a i . Py .
+irrE e 2~ Jp'ansd(rp + S—Zglrfﬂ(zwlfp 48 (rp’ + groik o plans? (rp’)
Za 2 ig— od
+ S rEl(4JTV 83 r)+ lgzU p4r[8 r)p’ ) (56)

where we collected all the terms that contain form-factor derivatives, given by expressions  E;—8Eg in Egs. (36), (38), (41), (43),
(45), (47), (48), (53), and (59) of Ref. [3]. The electromagnetic radii are

6 (k ,
2= (5 +FO). 57)
my \4
12
Qi = ﬁ[F{(O) + F5(0)], (58)
1
15 4 ! /
i = —S14F(0) + F/(0) + 25 (0)]. (59)
1
The derivatives of form factors are given by
roy=2-1-1 (60)
Mg 8 6e]|
a 11 1
F'0)=—| ————|, 61
1 n[ 120 205] D
F(0) = T (62)
For the resulting expression Ep; we get
g _Za B RERNSS L R oo/ T 11 1
=2 m\| m2l160 " 1206 | m2|32 " 24| mumy 16 ' 126 mum, 864 ' 72
1 @ [1 07w ,
ij ij ij
. o[ 1 1 (g2 — Doy [ 1 1 o 1 1 d
i - = - [+ — 478 63
1{ m$[96 248i|+ o2 |32 24e | |48 T 126 [P o4 (63)

(

scattering amplitude approach, as was done for the E9 contri-
bution in Ref. [17]. Generalizing the derivation in Ref. [17]

For the case of two pointlike particles, we checked this result
also by a complementary method of calculation, namely the
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for arbitrary masses of both particles and considering also the
spin-orbit terms, we get the result in agreement with Eq. (63)
for the pointlike second particle.

B. Ex,

Ey» is the contribution due to the anomalous magnetic
moment (amm) k of the pointlike first particle. It can be ob-
tained by collecting all the k-dependent parts of the first-order
operators SE;—8Ey in Ref. [3], where « is present in the g
factor g = 2(1 + «) and in the electric dipole polarizability

2

SH = —%aEE (64)
where
k(14 k) o 2
. - 1-2). 65
vE 4m3 3rm3 ( 8) (63)

We shall add a few comments at this point. If we consider
a point particle with the magnetic moment anomaly, then
the electric dipole polarizability includes the first term in the
above equation. The additional radiative correction, which is
not accounted for by the magnetic moment anomaly, is the
second term, which was calculated in Ref. [13]. Here, we
account only for the first term, and in the next subsection, we
will separately address the second term. This is because, for
a nonpoint particle such as an antiproton, we will include the
first term in the definition of the electric dipole polarizability,
and the second term will be an additional correction with 1/¢
infrared singularity to be canceled with a similar term in the
low-energy part.

All these contributions due to the magnetic moments are
finite, and thus we may present them in three-dimensional
form as

Eny =K

Z <8Hi)+Esec ) (66)

where the individual §H; operators were derived in Ref. [3]
and are presented in Appendix A. E. is a second-order amm

J

contribution
1
Esee = 2<Hzf§1)m mH @iy = 0)>
g T o2 7 =
= —[ES + ESUL -51) + EGUL - 50)
+ESS () - 52) + ESS((LL)@sis)], (67)

where H® is the part of H® in Eq. (15) which is linear in

amm
«1, and H® («; = 0) is the Breit Hamiltonian with «; omitted.

C. Ep;

This is a correction due to the second term in the electric
dipole polarizability in Eq. (65),

o 1 1 =
m(— - 5)(VV) , (68)

Eyz =
H3 3 6

which is considered separately because it is infrared divergent.
We will assume that it is common to all particles, including all
nuclei, and will exclude it from the definition of the electric
dipole polarizability.

VI. TOTAL ONE-LOOP RADIATIVE CORRECTION

With the help of the identity derived in Appendix C valid
for [ > O states,

| Za .. rirj i
=8V —3— J
p |: }’3 ( ,,.2 >j|ep
1 2 N d > < 2
=Zu i 68 pand“(r)p+ u(Vv)s, (69)

all the singularities proportional to 1/¢ cancel out alge-
braically in the sum of all parts in Eq. (3). We may therefore
pass to three dimensions by setting ¢ — 0 and replace

pAn st (r)p — pans(r)p, (70)
o pansd(r)p) — 25, - p x 4n 8> (r)p, (71)
olkal p'ans?(r)p) — 45, x pATS (r)s) x p. (72)

The final expression for Er(de) in Eq. (3) for the o’ radiative
two-body correction to the energy is

o > > o L L.
Eg) = ;(ENS +L-5Es) +L-5Es +5 - $Ess + (L'L)Psis)Er), (73)

where individual coefficients are

E Zo 31 . 1ln my @ )_2 n 779 n 11ln m z )_2 2
={—F—1| =+ -In| —(Z« mym — + —In| —(Z« m
W \mtm2 |\ 288 T 6 | 2u 2\ 7200 T 60 |2 2

1 4 20 m -2 2| 546305
+i 1~|—§m2rE2 5 + 6In E(Zoz) mj ¢ p4md”(r)p +

1

mimy(my + my)

17 2 [m _ 2 589 2 [my _
X {(E + gln I:Z(Zot) 2:| - g(lnmlr—i— y))m% + <m + gln I:Z(Zot) 2:|>m§

317 4 2 Za)? Za)®
a4 oI | 22 (Za) 2 | = Z(Inmyr +y) (Ze) +E$§+wﬁm, (74)
21 3 ré n’
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(2m} + mymy +2m3) (Za)?

E _< (m? — mymy + m3) EZa
st={—

3.2 3
2mim; r

Zo {( 43 1
— + —In
m? m2 144 3

nmg )
omr)

, (23 1
mm; + | — + =In

3.2 1
4mim; r

]

144 6
1 m3m3 (Zoz) 7
16’”1’”2 + m1(2 g) + 2 rEz}p4n3 (r)p> Esselc ,BSl (75)
E Za 5 4 11 1(Z 2\ Dy + 31 n 1 m (Za)2 5 5% (r)p
= —— J— —In| —(Zo — 1)m — — —La m T r
2=\ w2 |36 T 6 | 2u 82 'T\288 "6 2n g2l (P P
(Za)'n
+ B+ B, (76)
Eee — [(5g2 — 6)m; + 5gama] (Za)? (g2 — 2)m2 n (g2 — l)m m
5 24m2m2 r m3mg 48 ! 24 7
77 2 m _ . . (Za)on
+ (m + §ln I:E(ZO[) 21|>g2m§ + lgm%m%r,ﬁz}p4n83(r)p> ESS:; + Tﬂss’ )
B Za <3(m1 +m — gomy) E [(12 + g2)m} + (12 — Tg2)mymy + gom3] Za 1
L= oi—nei+3) mym3(my +my)  r? m3(my + my) rt omim3
T(gr —2 5(g> — 233 5 m 5
X { (g216 )mf + (g24 )mlmz + (m + §1 [j(Za)_z])gzmg + %mfm%rfn} X ﬁ4n33(r)ﬁ>
(Za)'n
+ B+ g (78)
The expectation values of the first-order operators are eval- %1 1081 16 137
uvated with the help of formulas from Appendix D. The e® 220 + 82
second-order contribution, which comes exclusively from the ns = 36 M= 72 771 5 Th ’72 480g2’ (82)
amm contribution, is evaluated in the same way as in Ref. [2]. @ 5 5
We will now present the final formula for the radiative o’ Ens = -5 + ’71 —min 1_63% (83)
contribution to energy. e of _ E . 221 ,46 &)
) G e b TR LT

VII. RESULTS

The general result can be cast in the form

(Ens + L5181 +L-5:6s:

rad —

@ _ pa(Za)®
TA

+ 51 $2Ess + (L'LHPsisiErn), (79)

where we pulled out the factor A~!, with A =30 for [ =1,
and for / > 1 itis defined in Eq. (E1). We consider separately
the cases with /[ = 1 and [ > 1, where for the latter case the
individual coefficients are lengthy and thus we move their
explicit results into Appendix E. Defining

Erin
=In|—(Zax) |, (80)
2m

m;’ my

the results for [ = 1 are

&8 5;;3 £ 21
Ens = e +— = +8’71772<3 s~ n_3)
137 n 100u%n? 2
. —Hy +1
X<60 “+nzlza>+ 27 B
1
x (E - —) +1Iny £ + - ﬁNs, (81)

8
2 JE—
2) + 3n5:|’

1 34 40>
log _ 2
gNS_”‘[(E n5><3+4 N
(85)

3) “) Q)
& _531+5i+5i_ i__ 10//‘"12
st n3 nt nd n 3 "E2

N 20m(m + 1)

A
3 In, +—3f33u (86)
o, (10, 191,835 50\ 133
si=m( g tmgg —my g | mn e
227 13
2
— 87
+g%7717)2(288 77132()) 87)
5 5 9
£w _ 3> 2 of O 7
S1 77177216g2+g2771772 16‘|'77132
25,5
222, 88
+’71< 2 7724> (88)
15 125 50
(5)
531—771(—7+771+77% 18 7719>
7 3
- mn%(ggz + ggé), (89)
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oS W &S A

20m7n
Ssz—i‘f‘ Sz'i‘i + = Bs2 — 12(82—’72)
n3 nt nd n’ 3
1 1
“\3 T8 Iny, (90)
50 13 559 133
58) = 7117)2( 9 %g%> - 8272%772<288 + nzﬁ)
91
@ 2 (15
£5) = emm| 1 +n2 +g§n1n232 (92)
229 7
& = gzn%nz( >+ 7728) - n%n%(— - —g%), (93)
gL gH  gd 20g, /1 1
Egg = ss+ Ss+ﬁ_’_ ﬂss 9g2<n_3_$>
2 2 3
X <M Mn2ry, +4nin2 Ing ) (94)
47 170 137
g3 _ 22770 2
s gzmnz( 5410 127) T2 36082
25
2
- - 95
7717)254 (95)
5 5 &
£l = — mm3g + mnﬁg - nfn%f, (96)

1,170 5
EQ =gzmnz< 5~ Mo > +mn§§, 97)

EX g® gl A 10 1
SLLZ%‘F LL+£+ ,BLL gz(—— )

3 \nd nd
x (u? Tllfler2+47717721H|), (98)
1171 3697 417
583 _771712< 180 —3n ) gzmnz( 720 +mm
,3067 2 227 1291
- — , (99
" 360 ) +g§’“"2< go T M 1200) ©9)

5( 5+ 71+ 9+ 29
L—7717722 821112 3 7724 7724

9 21
+g§mn§< 3 n1%>

19 153 9
58) = 771772( 5 + 3771) +82771772( 0 s

(100)

, 101
— Mg ) Hmmatn — D g%, (101)
where H, =Y, i"! gives the nth harmonic number. The
Bethe logarithmic terms will be calculated after combining
them with those from the exchange contribution at (Zor)’

order. We now consider special cases of the general results
in Eq. (79).

A. Positronium

First, we will examine the case of a positronium atom,
i.e., the two-body system of bound electron and positron.
To achieve this, we treat the nucleus as pointlike by setting
g =2, réz = '"1%42 =0, m; = my = m, and include the cor-

responding result for the radiative correction of the second
particle, where we make the exchange (1 <> 2). Forthe [ = 1
states we get the result

a(Za)om
EQiP) = == [E%SPJ)
(- "' Ve, —m”
An 2 = < n —mn_— )
3013 451 + Za
(102)
where
Pos(py) 73 1 47
EDpy = B 1 _ _
(mP1) e 1440n° ~ 20m* 36001
3 19
= In[(Z 103
+(40n3 T S)nu 02, (103)
Psi3p) 101 3 307
5(7) 3P :ﬂ 0 _ _
(wFo) e 960 1077 T 240005
29 79
= In[(Z 104
<120n3 360n 5>n[( @7, (o
ps3p) 181 73 877
D3P, _B ! - -
€7 P e 172870 960n* 2160015
(2 - B Nz, (10s)
— n
360m° 12005
ps(3p) 491 41 67
0Py = P _ _
(F2) e 80003  1600n*  900n5
3 19
— In[(Za) ™2 106
+<40n3 . 5>n[( @, (106)
BPEETP) = Bus (1) + FBsi(1) + Bsa(1)]
[2s(s + 1) — 3]
+ fﬁss(l)
ﬂLL( )
T+ BF(1 4 2F) —4s(s + D122 (107
=G+ 1) —sts+ 1) —2], (108)

where we introduced notation B;(x) = 8; with x = m;/m;.

B. Hydrogenlike atoms

For hydrogenlike atoms, we begin with the nonrecoil limit,
assuming the nuclear mass m, to be infinitely heavy. We
consider the case of / = 1 while the / > 1 case is presented
in Appendix E. We obtain the result

(7 0) mlot(ZOt)6 (7 0)
Epy (nP) = T(5 +L-
coo_ 1319 1

1687 1001 1Y,
NS T 3600n°  24n®  5400m5 " 81\m w5 ) E2

(0)
I 2319
NS -2
PNs L nl 2z 7
ot n[z( @) }[45;13 45

4 L, (1 1
o 1“(3 ;TS)]

5i607), (109)

(110)
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1 5 23
g0 _ _
S 80n3 + 24n* 13518

1/1 1 S

~g e i+ B

2/1 1 1 5

where

Bix) = B +xp" + 2P + (112)

This result is in agreement with the one from Ref. [13] for a
pointlike nucleus. For the leading recoil contribution we get

£ mia(Za)®

1 (7,1) (7,1) 7 = (1)
hydr (nP) = T, <€ + L 5 S1 +L- S2€SZ

+5-REGY + WLHPsishE 1Y), (113)

(1) 0)
g _ Pns = Bys 4913 B 19 1243
NS T

n3 5400n3  60n*  1350m°

1523 4505 )\ T T 274
381 1Y\ ,, 23 9
- s—1<n—s B —)’" * [F s

20 11 1
27m§ ,%2( - —n—s)]ln |:§(Zoz)_2:|, (114)

1) 0)
5(7,1)2 N 223 _ 5 4 28
S1 n3 108013  12n* 4515

401 1N ,, 2(1 1
ol T T3 TS
1
x In |:§(Za)_2:|,

5(1!)_@ (_ 559 1 229 )
s2 =

(115)

8640n3 = 32n* = 2160m°

L 1 lz -2
Selie]

(1)
293 1 367
63 =55 + (o~ 1o~ e20)

(116)

1620n3  18n*  1620m°

2/1 1\ ,,
+g2ﬁ P LTI
N T,
— $>ln |:§(ZC¥) ],
5069 71
21600n3  240n*

1
5(35 = 25 i
el ]
n’

(117)

5400n5 )

+g2§<ﬁ— (118)

VIII. ANTIPROTONIC ATOMS

We may apply the results of our calculation also to highly
excited rotational states of antiprotonic atoms. In the case
of a two-body system consisting of two hadronic particles,
one has to include the strong interaction effects. However,
for highly excited rotational states, these effects are negligible
due to their short range. We may also omit all the other local
interaction terms, but we have to keep the g factor of the first
particle in the general form, and include also the radiative
contribution for the second (heavy) particle. As a result, only
the low-energy, middle-energy, and Ey3 contributions have to
be taken into account.

For antiprotonic atoms, the low-energy contribution Ey is

En=-2 1L 2 (z)
L= 3er1 2¢ 6 *

Zo 8t rirl .
xX{ — P - 3— p’
mini r €

()6

+— whi(x) +Z*(1 < 2,x < x7 . (119)

In the Bethe logarithm contribution the perturbation of the
expectation value by the Breit Hamiltonian H® has to include
g factors of both particles.

The low-energy contribution Ej, is for antiprotonic atoms
of the form

IR RN AN (o

= O (s 4 g o S
p( L LM ze)

ot (6 T TEn [m(z‘” DD

a (Za)®
EYC
T on

wha(x) +Z°(1 < 2, x <> x7H,  (120)

where a <> b denotes replacement of a with b.
The final low-energy contribution is given by

1- . Za)®
x <%—( . 8))<(VV>+%( O L Bsr)

+Z°0 o2, x o x . (121)

The middle-energy contribution for antiprotonic systems is
obtained in a straightforward way as

E « T2 hamrty)|@vy
== — = mr
M ZJTm%mz 9 3¢ 3 ! Y
+72(1 & 2). (122)

The only high-energy part that will contribute is given by
Eps,

s (L 21 Doy
=5 m m3)\6 3¢ '

The other terms go to polarizability of both particles, and they
are already included in the % contribution in Ref. [2].

(123)
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After summing all the contributions, the singularities exactly cancel each other, which leads to

D _ wa(Za)?

< (105m7 + 170mymy + 68m3 — 60m; (m; + my)(In(myr) + y) + 60(m; + my)” In; )>

P 907 mim
+M(ﬁNS(x)+L 518500 + L 528%2(0) + 31 - 85 () + (WL sl (0) + Z2(1 > 2,x < 271,
(124)
Evaluating the expectation values, we obtain
Za)® (8 a+1n 3 n 8/3 II+1)
g0 - peZa) o8 — 2V Hys + Hopos — Hypy +1 22— 1
p A 3 e 3 21—2 + Hopy3 + +In 2Zan, + 3\ e ng
1 /70 44 L2\ 4+ 1) 28,2 4
— = —-—m—= - —— 4+ —[ld+1)| —6 — == =
+n3(3 7713+7715> 1 +1 tmg i) T my
po(Za)® NS Sl S2 SS V@) i o pLL 2 —1
i (BN ) + L5185 (x) + L-5:5(x) + 51 - 52855(x0) + (L'L)HPsis) B (0)) + Z22(1 < 2,x < x7h).
(125)

The final result for antiprotonic atoms is thus very simple
and compact.

IX. SUMMARY

We have derived a complete a(Za)® and Z%a(Za)® one-
loop self-energy correction to the energy levels of a two-body
system with angular momentum / > 0. The obtained results
are valid for constituent particles of arbitrary masses and spin
1/2, with the nucleus being either pointlike or of extended-
size. For [ = 1, the results are presented in Eqgs. (81)—(101),
while for [ > 1 they are in Egs. (E2)—-(E21), and these results
are presented in Mathematica format in the Supplemental Ma-
terial [19]. For the case of positronium, the results for / = 1
are presented in Eq. (102)-(108), and those for rotational
states of antiprotonic atoms are in Eq. (125). For hydrogenlike

J

(

atoms in the nonrecoil limit, our results agree with the former
calculation in the literature [13] in the case of a point nucleus.
We present also the first-order recoil corrections in Eq. (113)
for I = 1 and in Eq. (E27) for [ > 1, which to our knowledge
have not yet been considered in the literature.

What is yet unknown is the pure exchange contribution
of order (Za)'. Once it is completed, we aim to perform
numerical calculation of relativistic Bethe logarithms and the
electron (muon) vacuum polarization contributions. This will
eventually allow for very accurate results for / > 0 states of
arbitrary two-body systems, including muonic and antipro-
tonic atoms.

Finally, we note that using the operator form of the o (Za)®
correction in Eq. (73) we found a small mistake in the previous
calculation of a similar correction to He ionization energies,
which we describe in detail in Appendix B.

APPENDIX A: OPERATORS CONTRIBUTING TO Epg;

Individual first-order operators that come from the anomalous magnetic moment of the first particle are

Za - 1 1
= - —L 51 <p2_ + _3,,2), (A1)
4m r3 r
5H (82— DG x = 3”’ R S0 x Y+ =2 (12 + — J4n V25 ()
= — DGy x — 4+ —4né’(r X T r
2 2mim 2g2 2xP 3 NPT Sa? 2 am?
3(g2 — 1)
= 4783 , A2
i 6m%|: 4m3 ( %) ] (P X Ams(rp (A2)
Za S 7 e X ¥ | B > L
(SH3 p S2XV2 +_3{p'V1X€1.A1,p~S1}
4m1m2 4my
Za(g,—2)[. - 5§ xF Za
LS{p x V- : 3 ,p~sQ} ——5 (5 - px 483 (r)p — 8252 x pAns3(r)s) x p)
8mym; r 8mym,
Za 32— 2)\., _ . .
+ m(é’zr[iﬂ + 4—m%>S2 X p47‘[33(1’)S1 X p, (A3)
SHy = ey Jy - 12T (Ad)
miniy r~
1 (Za)?
SHy = — — A5
> Sm? rt (AS)
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(Za)Y(ga— DS x7 SixF Za, F

SHe = _ 2% L oA A6
° 2m1m§ 73 3 m% S1 3 e1A] (A6)
Z N T oy 5 i |
6H7; = o S»le ,p_’lO{r n p_’ gle ’p_ ’pl
Ay my r) 2m r3 2my r)’ 2my
Zagp [ | 2. - 2 1 ripl Sl
} S T AN A7
8 [p A A (A7)
SHy = — —5 51 - 5 x et i + —[{et A1, p x 51}, p'] + :
5 m2 1 o [{er A1, P x 51}, p°] D . 3
7 _1 <
- )“Sl 3 r’ﬁX§2}’p2}' (A8)
8mym; r
Z 3 _ 2 7 )
sHy = 22 (3 : )\, - x 48 (p+ 20 (05 B x 48N+ 2798 (), "
6mm; 8m3 T6mim;
where
. Zo [ .. ripd pj Zag: @, x F)i
A =— —|(8Y oy 72 Waxn Lo
€1 2r ( + r2 >m2 2m_2 3 ( )
Z . ig] J Zo (31 % 7)
e Ay = — 22 (i I\ 1 20 i X T e
2r r2 m m r3

are static vector potentials.

APPENDIX B: COMPARISON WITH HELIUM «’ RADIATIVE CORRECTIONS

We can compare our results with electron-electron operators derived for helium centroid triplet states in Ref. [17], given by
the expression EZ; in Eq. (156) of that work. It can be transformed into the form

I 1039 49 T1 T soa (23 am[az] — At 21) ) &1
SET 1350 " a5 "|[2% )PP T\ gg T2 E I LA S Y b

This result can be checked against our two-body first-order operators derived here. We obtain it from the general result Egd) in
Eq. (73) by setting g» = 2, r2, = ry, = 0,m; = my = 1, adding the corresponding result for the second particle where we make
the exchange (1 < 2), setting 5, - 5, = 1/4, omitting fine structure and hyperfine structure tensor terms, and transforming into
atomic units by » — r/«. We obtain

I 1039 49 T1 TN S (B am [ az] Ay 4 21) ] ®)
SET 1350 " a5 | 2% |)prTeoP mae E R T Sl B

We observe a discrepancy between these results. It can be traced to the contribution E, in Ref. [17], given by Eqgs. (102), (103),
and (104). There is a missing overall factor of 2 in this term, which would lead to an additional contribution in helium results
equal to

o’

T 4t
Correcting for this mistake, we would get a perfect agreement between the two results. The numerical change from this correction

amounts only to 2 kHz for the 23S state and 3 kHz for the 23P state, and thus does not explain discrepancies for ionization
energies [14,15].

SE (B3)

APPENDIX C: DERIVATION OF IDENTITIES
To derive Eq. (69), we start with the identity

PV, p1Ip’ = pPVp* + 3P IV, P11 — 3P, BV B)
=P V. PPN+ SRR IV, PP — SR LB V. PN (Ch)
For states with [ > 0 the third term in the last equality vanishes. With the help of the expectation value identity

%, [V, P11 = 4 (VV)? (C2)
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and relation

rr/

[P, [V, p'1l = [Z—‘;< 84 — 3—)] + ﬂZa4msd(r), (C3)
r )], d

withd = 3 — 2¢, we arrive at Eq. (69).
We will also present the evaluation for the expectation value of the operator in the first term of Eq. (A2),

(81 iyl Sl
<(§2 x ﬁ)’(r—3 —3 -+ —4n63<r)) 51 x p>f> (C4)

First, we need to isolate the traceless part of this operator which is contracted with spin vectors. The expectation value of the

traceless part will be proportional to ((L'L’ )<2)s 5), while the trace part will result in terms involving (5 - 5,). For the nonlocal
term we get

ai/' I"I"] i iN@) PSP
G x P =5 —3— )(Sl x pY ) = ([AWL'L)? + B§"]s|s}). (C5)

Coefficients A and B are obtained by projecting the expression on both sides of the equation, which is contracted with spin
operators, either to (L'L/)® or §V/. After lengthy angular momentum algebra, this leads to

1 10 12,uE 16puZo
S 4783 - : Co
(21—1)(21+3)< ATSIP = =3 A > (€6)
1/1 wZo
B= — | -p4ns&’p+——). C7
3 ( gPAmoTp + ! ) (C7)
For the local interaction part we would proceed in a similar way, leading to
(G2 x P4rs* (NG x pY) = (p4n 8> (NDPIL'L)Dss) + 351 - 55). (C8)
APPENDIX D: EXPECTATION VALUES OF FIRST-ORDER OPERATORS
We employ the following identities to evaluate the expectation values with hydrogenic wave functions [18,20]:
1 2(uZa)?
1V 2z (D1)
r3 I(1+ 1)L+ 1)nd
1\ 4(pnZa)*[3n* — 1(1 + 1)] (D2)
I+ DQRL= DL+ DL+ 3’
Inmir+vy _ (uZa)*
r T4+ DRI = D@L+ D@L+ 3’
2 nm, 1 2
x |4[3n — Il + D]| Hyy—2 + Hyy43 — Hypy + 1n — =) =2[1 =32+ DHn+4n-]|, (D3)
2uZa 2
o . 4uZay 1
(P48 (r)p) = —3 —— Jon. (D4)
3 \n n
APPENDIX E: GENERAL RESULTS FOR STATES WITH! > 1
In this section, we will present the results for arbitrary angular momentum / > 1. Defining
A =1+ 12—+ 1)2l+3), (E1)
we obtain the following results for the coefficients in Eq. (79):
e &Y &R 8[1(1 + 1) — 3n?] A
& NS NS 4 NS 2y Hy_ H. —H, 1 — , E2
n=—5 ot tnm P 212 + Hyy3 + T+ Nz + o 5Pns (E2)
113 3 3 4 79 3 3 2 2
EQ =n?|8In = - -—=—-= — o
ns =M st sy t s T T Twtaary @) TS
3 3 3 3 3
2.2 2
- — — — , E3
J”“’“( 6l TT6G+ D) T6@—1) 8@+ 12 T Te +3)>g2 (E3)
321+ 1) 3 1921+ 1) 3 9
e®w _ 2| _ _ 2.2 E4
Ns = 1M 1 Tarnpt™m PRI g 216(21+1)g2 =
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8 11 4 4 28 4 4 ,2
EX) =21 +1 —3m-o 4o - . - E5
ns = il D) h T A TR s (E5)
The following coefficient is
£® g g A
551=%+%+%+;/3L1, (E6)
3 3 8 g2 313 3 13
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The scalar spin-spin coefficient is
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Finally, for the tensor spin-spin coefficient we obtain
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Further, for the positronium atom / > 1 states we obtain
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For hydrogenlike atoms with / > 1, in the limit of an infinitely heavy nucleus, we get the result
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and for the leading recoil correction we get
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