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Relativistic coupled-cluster (RCC) theory at the singles and doubles approximation has been implemented to
estimate nuclear-spin-dependent (NSD) parity-violating (PV) electric dipole (E1) transition amplitudes (E1NSD

PV )
among hyperfine levels of the 6s 2S1/2 → 7s 2S1/2 transition in 133Cs. To validate our calculations, we reproduce
the Dirac-Hartree-Fock values and results from the combined coupled-Dirac-Hartree-Fock and random phase
approximation (CPDF-RPA) method reported earlier. Contributions from the double-core-polarization (DCP)
effects with the CPDF-RPA method were found to be between 3% and 12% among different hyperfine levels.
We derived a generalized expression for E1NSD

PV , which helped incorporate both the NSD PV Hamiltonian and
E1 operator simultaneously in the perturbative approach to account for the DCP contributions. The RCC method
subsumes the CPDF-RPA and DCP effects in addition to contributions from the Brückner pair correlations and
normalization of the wave functions and correlations among them. To improve accuracy of the E1NSD

PV amplitudes
further, we replace the ab initio values of the E1 matrix elements and energies by their experimental values via
a sum-over-states approach.
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I. INTRODUCTION

In an atomic system, parity violation (PV) interactions
originate from two primary sources [1,2]. The first source
is the neutral current weak interactions between the atomic
nucleus and electrons. The second is the electromagnetic
interaction between electrons and a potentially existing parity-
violating nuclear anapole moment (NAM) within the nucleus.
Though the concept of NAM is very fundamental, its exis-
tence is still under debate and should be addressed decisively.
The weak interactions, mediated by the Z0 boson (and Z0-like
bosons), are categorized into nuclear spin-independent (NSI)
and nuclear spin-dependent (NSD) interactions, depending on
whether the axial-vector and vector currents arise from the
electron and nuclear sectors, respectively, or vice versa [1].
The NSI component, owing to the coherent contributions from
all the nucleons, is sensitive to probe possible new physics
beyond the Standard Model (SM) of particle interactions [3].
The PV interactions in atomic systems are too weak to be
detected directly like other typical spectroscopic properties.
In view of this, special techniques have been developed in
different laboratories to observe these effects. Usually, elec-
tric dipole (E1) amplitudes of the forbidden transitions due
to PV effects (E1PV) in combination with either magnetic
dipole amplitudes, electric quadrupole amplitudes, or Stark-
induced E1 amplitudes (E1Stark) are measured to realize their
signatures in atomic systems. Among a few selective atomic
systems, 133Cs was considered by two groups to measure
E1PV [4–6]. Both groups considered the 6s 2S1/2 → 7s 2S1/2

*Contact author: arupc794@gmail.com
†Contact author: bijaya@prl.res.in

transition in 133Cs in their experiments, but one group mea-
sured the interface between the E1PV and optical transition
amplitudes [5], while the other group has reported measure-
ment of the interface between the E1PV and E1Stark amplitudes
[6]. To differentiate the NSI and NSD components from
E1PV, denoted by E1NSI

PV and E1NSD
PV , respectively, from the

experimental results, measurements were carried out between
the F = 3 and F = 4 hyperfine levels of the 6s 2S1/2 and
7s 2S1/2 states by Wood et al. [6]. This offers experimental
values to the NSI and NSD components of E1PV in 133Cs
within 0.35% and 15% accuracy, respectively [6]. This is
the most accurate measurement of E1PV in an atomic system
to date.

Several groups have put continuous efforts into determin-
ing the E1NSI

PV amplitude of the 6s 2S1/2 → 7s 2S1/2 transition
in 133Cs in the last two decades. Among these, calculations
performed using the relativistic coupled-cluster (RCC) theory
are considered to be more accurate [7–9]. Combining the
calculations with the precise measurement of E1NSI

PV , strin-
gent constraints on several fundamental parameters signifying
beyond the SM physics have been imposed. However, less
effort has been put into calculating the E1NSD

PV amplitude of the
above transition. This is owing to the fact that the electronic
component of the NSD PV interaction Hamiltonian is a rank
one operator, and its coupling with nuclear spin makes angular
momentum couplings complicated compared to calculations
involving the NSI interaction Hamiltonian. Though a finite
value of NAM has been inferred by combining the measured
E1NSD

PV amplitude with the earlier calculations, the inferred
value is at variance with the results of the shell model and the
nucleon-nucleon scattering experiments [10,11]. Moreover,
the sign of the NAM coupling constant from the Cs measure-
ment is not in agreement with the measurement using the Tl
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atom [3]. In such circumstances, it is imperative to carry out
further investigations on NAM. This motivated us to revisit the
calculation of E1NSD

PV in the 6s 2S1/2 → 7s 2S1/2 transition of
133Cs by employing the RCC theory.

In one of the early calculations, Flambaum and Dzuba had
used the Brueckner orbitals (corresponding to pair-correlation
[PC] effects) in the Dirac-Hartree-Fock (DHF) method to
estimate the E1NSD

PV values between different hyperfine levels
of the 6s 2S1/2 → 7s 2S1/2 transition of 133Cs [12,13]. Subse-
quently, Johnson et al. employed random phase approximation
(RPA) to calculate these amplitudes by incorporating electron
correlation effects due to core-polarization (CP) effects to
all order [14]. As demonstrated in the calculation of E1NSI

PV ,
the non-RPA correlation effects are quite significant in the
6s 2S1/2 → 7s 2S1/2 transition of 133Cs [15]. Moreover, the
double-core-polarization (DCP) contributions, the CP effects
arising due to simultaneous consideration of both the PV
interaction Hamiltonian and E1 operator in the perturbation,
to E1NSD

PV in the above transition are not yet explored explic-
itly like has been investigated for E1NSI

PV [15,16]. In order
to address disagreement between the nuclear theory probe
and atomic studies on the NAM, it is necessary to calculate
the E1NSD

PV amplitudes in 133Cs more accurately by includ-
ing the correlation effects that were omitted earlier. In this
work, we estimate the E1NSD

PV amplitudes between different
hyperfine levels of the 6s 2S1/2 and 7s 2S1/2 states by em-
ploying the RCC theory, which captures the PC, CP, and DCP
contributions to all orders. To validate our calculations and
show the importance of considering the DCP effects for accu-
rate determination of the E1NSD

PV amplitudes, we first analyze
the results using the DHF, RPA, coupled-Dirac-Hartree-Fock
(CPDF), and combined CPDF-RPA methods. These results
are compared with the previously reported values at the same
level of approximation in the many-body theory. Since the
commonly used formula to estimate the E1NSD

PV amplitude
in atomic system is not apt to use for estimating the DCP
effect in the CPDF-RPA approach, we present a generic
expression that can be implemented easily in any of the
many-body methods. In addition, we improve the RCC re-
sults by replacing ab initio values of the E1 amplitudes and
energies by their experimental results via a sum-over-states
approach.

II. THEORY

The NSD PV interaction Hamiltonian in an atomic system
is given by

HNSD = KW
GF√

2
(�αD · �I )ρN (r), (1)

where GF is the Fermi constant with value 2.22249×10−14 in
atomic units (a.u.), the dimensionless quantity KW is a NSD
PV violating nuclear parameter, �αD is the Dirac matrix, �I is the
nuclear spin, and ρN (r) is the nuclear density. The magnitude
of KW depends on the contributions from NAM and NSD
interactions within an atomic nucleus, so it can be expressed
as

KW = Ka + KNSD, (2)

where Ka and KNSD denote contributions from NAM and
NSD interactions, respectively. To determine the nuclear po-
tential and density, we have used Fermi charge distribution,
given by

ρN (r) = ρ0

1 + e(r−b)/a
(3)

with the normalization factor ρ0, the half-charge radius
b = 5.670729105 fm [17], and a = 2.3/4(ln3) is related to
the skin thickness. As KW is the quantity to be inferred by
combining measurement with atomic calculation, we express
the above Hamiltonian as

HNSD = KW HNSD
PV , (4)

so that calculations can be performed using HNSD
PV . Again, it

would be necessary to decouple the electronic and nuclear
components from HNSD

PV in order to facilitate the calculations
using the electronic part. This is done by expressing

HNSD
PV = GF√

2

∑
q

(−1)qI (1)
q K (1)

−q , (5)

where I (1)
q is the qth component of �I , and the matrix element

of the electronic component, K (1), between the orbitals |φ f 〉
and |φi〉 in the relativistic form is given by

〈φ f |K (1)
q |φi〉 = i

∫ ∞

0
drρN (r)[〈κ f m f |σq| − κimi〉Pf (r)Qi(r)

−〈−κ f m f |σq|κimi〉Q f (r)Pi(r)]. (6)

In the above expression, P(r) and Q(r) represent the large and
small components of the Dirac wave function, respectively,
κ and m are the relativistic and azimuthal component of the
angular momentum of the Dirac orbital, respectively, and σ is
the Pauli spinor.

In the presence of HNSD, a mixed-parity hyperfine level
wave function, |�v〉F , can be expressed as

|�v〉F � ∣∣�F,(0)
v

〉+ KW

∣∣�F,(1)
v

〉
, (7)

where |�F,(0)
v 〉 is the hyperfine level wave function due to

electromagnetic interactions and |�F,(1)
v 〉 is the first correction

due to HNSD
PV . Note that KW may not be small, but HNSD

PV is
very small compared to the Hamiltonian describing electro-
magnetic interactions in the atomic systems. So in the above
perturbative analysis KW just denotes the order of perturbation
rather than the strength of the interaction.

Between the hyperfine levels with |� f 〉F ≡ |(IJf )Ff M f 〉
and |�i〉F ≡ |(IJi )FiMi〉, the E1NSD

PV can be given using the
Wigner-Eckart theorem as

E1NSD
PV = (−1)Ff −M f

(
Ff 1 Fi

−M f M f − Mi Mi

)

×〈Ff |
∣∣DNSD

PV

∣∣|Fi〉, (8)

where 〈Ff ||DNSD
PV ||Fi〉 is the reduced matrix element and

DNSD
PV is the PV interaction-induced E1 operator. The actual
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quantity of interest from the atomic calculation point of view
is XNSD

PV = 〈Ff ||DNSD
PV ||Fi〉/KW .

By expanding the first-order wave function in the sum-
over-states approach, we can write

XNSD
PV =

∑
n 
=i

〈Ff ||D||Fn〉〈Fn|
∣∣HNSD

PV

∣∣|Fi〉
NF
(
E (0)

Fi
− E (0)

Fn

)
+
∑
n 
= f

〈Ff |
∣∣HNSD

PV

∣∣|Fn〉〈Fn||D||Fi〉
NF
(
E (0)

Ff
− E (0)

Fn

)
�
∑
n 
=i

〈Ff ||D||Fn〉〈Fn|
∣∣HNSD

PV

∣∣|Fi〉
NF
(
E (0)

i − E (0)
n
)

+
∑
n 
= f

〈Ff |
∣∣HNSD

PV

∣∣|Fn〉〈Fn||D||Fi〉
NF
(
E (0)

f − E (0)
n
) , (9)

where D is the usual E1 operator, E (0)
Fn

and E (0)
n are

the hyperfine and atomic energy values of the nth state,

respectively, and NF =
√

〈� (0)
f |� (0)

f 〉F 〈� (0)
i |� (0)

i 〉F is the
normalization factor of the hyperfine level states. It is chal-
lenging to deal with the wave functions in the hyperfine
coordinate system to evaluate the above quantity. To ad-
dress this, we express the |(IJ )FMF 〉 levels in perturbation
series as

|(IJ )FMF 〉 = |II; JMJ〉 +
∑

J ′,MJ′

|II; J ′MJ ′ 〉

× 〈II; J ′MJ ′ |Hh f |II; JMJ〉
EJ − EJ ′

+ · · · . (10)

In the above expression, Hh f denotes the hyperfine interaction
Hamiltonian. In this work we restricted ourselves to only
the first term |II; JMJ〉. Using the above approximation and
substituting the relations

〈(I, Jn)Fn, Mn| �K (1) · �I|(I, Ji )Fi, Mi〉
= δFn,FiδMn,Mi (−1)I+Fi+Ji

√
I (I + 1)(2I + 1)

×
{

Jn Ji 1
I I Fi

}
〈Jn||K (1)||Ji〉 (11)

and

〈(I, Jf )Ff , M f |D|(I, Jn)Fn, Mn〉
= √

(2Ff + 1)(2Fn + 1)(−1)Ff −M f

×
(

Ff 1 Fn

−M f q Mn

)
(−1)I+Fn+Jf +1

×
{

Jn Jf 1
Ff Fn I

}
〈Jf ||D||Jn〉 (12)

in Eq. (9) yields

XNSD
PV = C

[∑
n 
=i

{
Jn Ji 1
I I Fi

}{
Jn Jf 1
Ff Fi I

}

× (−1)(Jf −Ji+1) 〈Jf ||D||Jn〉〈Jn||K (1)||Ji〉
E (0)

i − E (0)
n

+
∑
n 
= f

{
Jn Jf 1
I I Ff

}{
Jn Ji 1
Fi Ff I

}

× (−1)(Ff −Fi+1) 〈Jf ||K (1)||Jn〉〈Jn||D||Ji〉
E (0)

f − E (0)
n

]
, (13)

where C = GF√
2

√
I (I + 1)(2I + 1)(2Ff + 1)(2Fi + 1).

To carry out calculation of the above quantity using the
final state (|� f 〉) and initial state (|�i〉) atomic wave functions,
we can express Eq. (13) as

XNSD
PV = 1

N
〈
�

(0)
f

∣∣D̃ f

∣∣� (1)
i

〉+ 〈
�

(1)
f

∣∣D̃i

∣∣� (0)
i

〉
, (14)

where N =
√

〈� (0)
f |� (0)

f 〉〈� (0)
i |� (0)

i 〉 is the normalization fac-

tor of the atomic wave functions, D̃i and D̃ f are the effective
E1 operators, and the wave functions with superscript (0) and
(1) are the unperturbed atomic wave functions and first-order
perturbed atomic wave functions due to the K (1) operator
corresponding to the initial and final states, respectively. The
effective E1 operators are explicitly given by

D̃i = (−1)(Ff −Fi+1)
∑

n

〈Jn||D||Ji〉

×
{

Jn Jf 1
I I Ff

}{
Jn Ji 1
Fi Ff I

}
(15)

and

D̃ f = (−1)(Jf −Ji+1)
∑

n

〈Jf ||D||Jn〉

×
{

Jn Ji 1
I I Fi

}{
Jn Jf 1
Ff Fi I

}
. (16)

The first-order atomic wave functions are obtained by solving
the following inhomogeneous equations:(

Hat − E (0)
v

)∣∣� (1)
v

〉 = −K (1)
∣∣� (0)

v

〉
, (17)

where Hat denotes atomic Hamiltonian due to electromagnetic
interactions.

Alternatively, the XNSD
PV amplitude between the states |� f 〉

and |�i〉 can be estimated as the second-order correction af-
ter considering E1 operator, D, as an additional perturbation
(similar to the expressions given for E1NSI

PV in Ref. [15]); i.e.,

XNSD
PV � 〈

�
(0,0)
f

∣∣D∣∣� (1,0)
i

〉+ 〈
�

(0,0)
f

∣∣K (1)∣∣� (0,1)
i

〉
+ 〈� (0,0)

f

∣∣� (1,1)
i

〉
, (18)

in which the superscripts (m, n) denote m orders of K (1) and
n orders of D. For example, Eq. (9) is used in the RPA,
CPDF, and CPDF-RPA methods without considering the DCP
effects. However, the DCP effects can be considered in the
CPDF-RPA method through the last term of Eq. (18). The
RCC theory can include the DCP effects through the for-
mulation of the method adopting either Eq. (9) or Eq. (18).
It is not convenient to determine the second-order perturbed
wave function, |� (1,1)

i 〉, using the formula given by Eq. (13).
For this, we give here a more generic formula by simplifying
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〈Ff ||DNSD
PV ||Fi〉 using the tensor product relations [18,19] as

XNSD
PV = C

∑
k=0,1,2

(2k + 1)

×
[∑

n 
=i

⎧⎨
⎩

Jf Ji k
I I 1

Ff Fi 1

⎫⎬
⎭
{

Jf k Ji

1 Jn 1

}

× (−1)(Jf +Ji+1) 〈Jf ||D||Jn〉〈Jn||K (1)||Ji〉
E (0)

i − E (0)
n

+
∑
n 
= f

⎧⎨
⎩

I I 1
Jf Ji k
Ff Fi 1

⎫⎬
⎭
{

Jf k Ji

1 Jn 1

}

× (−1)(2Jf +Ff −Fi+1) 〈Jf ||K (1)||Jn〉〈Jn||D||Ji〉
E (0)

f − E (0)
n

]
. (19)

It can be shown that both Eqs. (13) and (19) are equivalent.
However, Fi, Ff , and Jn are not coupled through either 6 j or
9 j symbols in Eq. (19) as in the case for Eq. (13). This helps
to implement the above expression in the CPDF-RPA method
to compute XNSD

PV by defining D and K
(1)

as

D = (−1)(Jf +Ji+1)
∑

k=0,1,2

(2k + 1)

×
∑

n

⎧⎨
⎩

Jf Ji k
I I 1

Ff Fi 1

⎫⎬
⎭
{

Jf k Ji

1 Jn 1

}
〈Jf ||D||Jn〉 (20)

and

K
(1) = (−1)(2Jf +Ff −Fi+1)

∑
k=0,1,2

(2k + 1)

×
∑

n

⎧⎨
⎩

I I 1
Jf Ji k
Ff Fi 1

⎫⎬
⎭
{

Jf k Ji

1 Jn 1

}
〈Jf ||K (1)||Jn〉.

(21)

In this case, the first-order wave functions are evaluated in the
first-principle approach as(

Hat − E (0)
i

)∣∣� (1,0)
i

〉 = −K (1)
∣∣� (0,0)

i

〉
(22)

and (
Hat − E (0)

i − ω
)∣∣� (0,1)

i

〉 = −D
∣∣� (0,0)

i

〉
, (23)

where ω = E (0)
f − E (0)

i . It should be noted that the matrix
elements of both the K (1) and D operators and all the coupling
angular factors are taken into account in the evaluation of
|� (1,1)

i 〉, so it does not require defining any additional effective
operator for estimating XNSD

PV .

III. METHODOLOGY

To determine the unperturbed electronic wave functions
of the atomic states of 133Cs, we consider Hat at the Dirac-
Coulomb (DC) approximation, given in atomic units (a.u.) by

Hat =
∑

i

[
c�αD

i · �pi + (
βD

i − 1
)
c2 + Vn(ri)

]+
∑
i, j>i

1

ri j
, (24)

where c is speed of light, βD is another Dirac matrix, �p is
the single-particle momentum operator, Vn(r) denotes nuclear
potential seen by an electron at distance r from the nucleus,
and 1

ri j
represents the Coulomb potential between the electrons

located at the ith and jth positions.
The final unperturbed wave functions are obtained in

three steps. In the first step we determine the DHF wave
function, |�0〉, due to Hat of the closed-shell core [5p6]
of 133Cs. In the second step, exact atomic wave function
of the closed core, |� (0)

0 〉 is determined by incorporating
the electron correlation effects due to the residual Coulomb
interactions, Ves = Hat − HDHF with the DHF Hamiltonian
HDHF, neglected in the DHF method using an wave operator
�

(0)
0 , i.e., ∣∣� (0)

0

〉 = �
(0)
0 |�0〉. (25)

In the third and final step, we obtain the intended
wave functions of 133Cs by appending the required va-
lence orbital, v, of the state to the closed-core configu-
ration [5p6]. For this purpose, the modified DHF wave
function is defined as |�v〉 = a†

v|�0〉. The exact unper-
turbed wave function of state, |� (0)

v 〉, in such case can be
defined as ∣∣� (0)

v

〉 = (
�

(0)
0 + �(0)

v

)|�v〉, (26)

where �(0)
v is the new wave operator responsible for exciting

electrons including the valence electron from |�v〉. It should
be noted that �

(0)
0 excites electrons only from the core orbitals

of |�v〉. It means that we need to determine amplitudes of both
the operators to determine |� (0)

v 〉.
Analogous to unperturbed wave functions, we can also

define wave operators to obtain the first-order perturbed wave
functions due to HNSD as∣∣� (1)

0

〉 = �
(1)
0 |�0〉 (27)

and ∣∣� (1)
v

〉 = (
�

(1)
0 + �(1)

v

)|�v〉, (28)

where superscript (1) denotes the first-order perturbation.
When both the HNSD and D operators are included one or-
der each, then the second-order perturbed wave functions are
defined as ∣∣� (1,1)

0

〉 = �
(1,1)
0 |�0〉 (29)

and ∣∣� (1,1)
v

〉 = (
�

(1,1)
0 + �(1,1)

v

)|�v〉, (30)

where the first superscript stands for the order of HNSD and the
second superscript stands for the order of D.

The DHF expression for E1NSD
PV using Eq. (9) can be given

by [15]

XNSD
PV = C〈� f |�DHF,(0)†

0 D̃ f �
DHF,(1)
0 |�i〉

+ 〈� f |�DHF,(1)†
0 D̃i�

DHF,(0)
0 |�i〉

+ 〈� f |�DHF,(0)†
f D̃ f �

DHF,(1)
i |�i〉

+ 〈� f |�DHF,(1)†
f D̃i�

DHF,(0)
i |�i〉, (31)
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where �
DHF,(0)
0 = �DHF,(0)

v = 1, �
DHF,(1)
0 =∑

ap
〈�p

a |K (1)|�0〉
E0+εp−E0−εa

a†
paa, and �DHF,(1)

v = ∑
p

〈�p
v |K (1)|�v〉

E0+εp−E0−εv
a†

pav

with E0 = ∑
a εa is the DHF energy of the closed core and

εi is the ith DHF orbital. Here a, b denote core orbitals, p, q
denote virtual orbitals, and |�pq···

ab··· 〉 = a†
pa†

q · · · abaa|�0〉. We
have also added the name of the method in the superscript
of the wave operator in order to identify the approximation
used in the calculation. It should be noted that in Eq. (31),
contributions from the first two terms are referred to as the
“Core” contribution, while the contributions from the last two
terms are called “Valence” contributions.

In the CPDF method, Eq. (9) is again used to calculate
XNSD

PV . We express its formula as [15]

XNSD
PV = C〈� f |�CPDF,(0)†

0 D̃ f �
CPDF,(1)
0 |�i〉

+ 〈� f |�CPDF,(1)†
0 D̃i�

CPDF,(0)
0 |�i〉

+ 〈� f |�CPDF,(0)†
f D̃ f �

CPDF,(1)
i |�i〉

+ 〈� f |�CPDF,(1)†
f D̃i�

CPDF,(0)
i |�i〉, (32)

where �
CPDF,(0)
0/v ≡ �

DHF,(0)
0/v and the amplitudes of the first-

order CPDF wave operators are obtained by

(HDHF − E0)�CPDF,(1)
0 |�0〉 = −K (1)|�0〉 − U (1)

PV |�0〉
and

(HDHF − Ev )�CPDF,(1)
v |�v〉 = −K (1)|�v〉 − U (1)

PV |�v〉.
Here Ev = E0 + εv and U (1)

PV is the perturbed DHF potential
and is defined as

U (1)
PV |�i〉 =

∑
b

[〈b|Ves�
CPDF,(1)
i |b〉|i〉 − 〈b|Ves�

CPDF,(1)
i |i〉|b〉

+ 〈b|�CPDF,(1)†
0 Ves|b〉|i〉 − 〈i|�CPDF,(1)†

0 Ves|i〉|b〉
]
.

(33)

In Eq. (32), the first two terms correspond to Core contri-
bution, while the last two terms give Valence contributions.
In the RPA method, one can define the wave opera-
tors �

RPA,(1)
0 and �

RPA,(1)
i in a similar manner except that

Hat is replaced by Hat − ω and K (1) by D in the above
equations.

It can be noticed the CPDF and RPA methods still use
DHF wave operators to define the unperturbed wave func-
tions that miss correlation contributions from Ves. This is
partially addressed by the CPDF-RPA method in which the
first-order |� (1,0)

v 〉 and |� (0,1)
v 〉 wave functions are deter-

mined inthe same way as the CPDF and RPA methods,
respectively, but an additional term arises through |� (1,1)

i 〉 by
expressing [15]

XNSD
PV = C〈� f |�DHF,(0)†

0 D�
CPDF,(1)
0 |�i〉

+ 〈� f |�RPA,(1)†
0 K

(1)
�

DHF,(0)
0 |�i〉

+ 〈� f |�DHF,(0)†
f D�

CPDF,(1)
i |�i〉

+ 〈� f |�RPA,(1)†
f K

(1)
�

DHF,(0)
i |�i〉

+ 〈� f |�DHF,(0)†
f �

(1,1)
i |�i〉, (34)

where the CPDF-RPA coupled wave operators are defined as

(HDHF − E0 − ω)�(1,1)
0 |�0〉

= −D�
CPDF,(1)
0 |�i〉 − U CPDF,(1)

PV |�0〉
− K (1)�

RPA,(1)
i |�0〉 − U RPA,(1)

PV |�0〉 − U (1,1)
PV |�0〉

and

(HDHF − Ei − ω)�(1,1)
i |�i〉

= −D�
CPDF,(1)
i |�i〉

−U CPDF,(1)
PV |�i〉 − K (1)�

RPA,(1)
i |�i〉

−U RPA,(1)
PV |�i〉 − U (1,1)

PV |�i〉.
In this case, we define

U (1,1)
PV |�i〉 =

∑
b

[〈b|�RPA,(1)†
i Ves�

CPDF,(1)
i |b〉|i〉

− 〈b|�RPA,(1)†
i Ves�

CPDF,(1)
i |i〉|b〉

+ 〈b|�CPDF,(1)†
i Ves�

RPA,(1)
i |b〉|i〉

− 〈b|�CPDF,(1)†
i Ves�

RPA,(1)
i |i〉|b〉

+ 〈b|Ves�
(1,1)
i |b〉|i〉 − 〈b|Ves�

(1,1)
i |i〉|b〉

+ 〈b|�(1,1)†
0 Ves|b〉|i〉 − 〈b|�(1,1)†

0 Ves|i〉|b〉
]
. (35)

As can be seen from the above expression, there are wave
operators from both the CPDF and RPA methods are coupled
through Ves in the CPDF-RPA method. This is how additional
core-polarization effects as well as DCP effects arise in the
CPDF-RPA method. Due to the complexity involved in the
evaluation of DCP terms and their contributions being too
small, sometimes they are neglected in the studies of PV
effects in the atomic systems (refer to Ref. [15] for more
discussion of this). To demonstrate the importance of the DCP
contributions to XNSD

PV , we present results without accounting
for and after including the DCP contributions in the CPDF-
RPA method. The CPDF-RPA method without the DCP
effects is denoted by the CPDF-RPA∗ method in this work.

Though the CPDF, RPA, and CPDF-RPA methods are all-
order methods, they take into account only CP effects to all
orders through single excitations. To account for the effects of
both PC and CP on all orders, along with their correlations,
it is necessary to consider doubly excited state configurations.
In view of this consideration, RCC theory is a better choice.
In the RCC theory ansatz, the unperturbed wave operators are
given by [15]

�
(0)
0 = eT (0) |�0〉 (36)

and

�(0)
v = eT (0)

S(0)
v |�v〉. (37)

Extending these definitions to the first-order perturbed wave
functions, we can define the corresponding wave operators as
[15]

�
(1)
0 = eT (0)

T (1)|�0〉 (38)

and

�(1)
v = eT (0)[

S(1)
v + (

1 + S(0)
v

)
T (1)

]|�v〉. (39)
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The amplitude determining equations for the unperturbed
wave operator in the (R)CC theory are given by [18,20]〈

�p
a

∣∣[H0,�
(0)
0

]|�0〉 = −〈�p
a

∣∣Ves�
(0)
0 |�0〉 (40)

and 〈
�p

v

∣∣[H0,�
(0)
v

]|�v〉 = − 〈�p
v

∣∣Ves
(
�

(0)
0 + �(0)

v

)|�v〉
+ E (0)

v

〈
�p

v

∣∣�(0)
v |�v〉. (41)

The energy, E (0)
v , of the state is estimated by

E (0)
v = 〈�v|Hat

(
�

(0)
0 + �(0)

v

)|�v〉. (42)

After the amplitudes of the unperturbed wave operators are
known, it is also possible to evaluate the E1 matrix elements
and matrix elements of the K (1) operator in the RCC theory
using the following expression:

O = 〈� f |
{
1 + S(0)

f

}†
Ō
{
1 + S(0)

i

}|�i〉
〈� f |

{
1 + S(0)

f

}†
N̄
{
1 + S(0)

i

}|�i〉
, (43)

where O denotes either the D or K (1) operator, Ō = eT (0)†
OeT (0)

and N̄ = eT (0)†
eT (0)

. By using these matrix elements and ener-
gies in either Eq. (13) or Eq. (19), we can evaluate the XNSD

PV
values as a sum-over-states approach. In fact by comparing
the calculated energies and E1 matrix elements with their
experimental results, accuracy of the calculated XNSD

PV values
can be gauged. It is also possible to replace the calculated en-
ergies and E1 matrix elements in a sum-over-states approach
by their experimental values to improve accuracy of the XNSD

PV
values by a semiempirical treatment of the method. Nonethe-
less, the sum-over-states approach has the limitation that it
can only include matrix elements involving a few low-lying
intermediate states (denoted as the “Main” contribution) that
are bound and have singly excited configurations with respect
to the initial and final DHF states. Since PV interaction orig-
inates from the nucleus and densities of continuum over the
nucleus are large in comparison to the high-lying bound states,
it is important to include contributions from the continuum
to achieve accurate calculations of the XNSD

PV values. We re-
ferred to the contributions from the continuum and high-lying
bound states as “Tail.” Also, contributions from the doubly
excited configurations, which are a part of DCP effects, can-
not be included in the sum-over-states approach. These two
contributions can be included more rigorously by solving
equations directly for the first-order perturbed wave functions
than by expressing them in terms of sum over intermediate
states.

To obtain the first-order perturbed wave functions in the
first-principle approach using the RCC theory, amplitudes of
the first-order perturbed wave operators can be obtained using
the following equations [9,21]:〈

�p
a

∣∣[H0,�
(1)
0

]|�0〉 = −〈�p
a

∣∣K (1)�
(0)
0 + Ves�

(1)
0 |�0〉 (44)

and 〈
�p

v

∣∣[H0,�
(1)
v

]|�v〉 = − 〈�p
v

∣∣K (1)
(
�

(0)
0 + �(0)

v

)|�v〉
+ 〈�p

v

∣∣Ves
(
�

(1)
0 + �(1)

v

)|�v〉
+ E (0)

v

〈
�p

v

∣∣�(1)
v |�v〉. (45)

In this work, we use Eq. (9) to evaluate XNSD
PV , which

follows

XNSD
PV = C

〈� f |
{
S(1)†

f + (
1 + S(0)†

f

)
T (1)†

}
D̄
{
1 + S(0)

i

}|�i〉
〈� f |

{
S(0)†

f + 1
}
N̄
{
1 + S(0)

i

}|�i〉

+ 〈� f |
{
1 + S(0)

f

}†
D̄
{
T (1)

(
1 + S(0)

i

)+ S(1)
i

}|�i〉
〈� f |

{
S(0)†

f + 1
}
N̄
{
1 + S(0)

i

}|�i〉
.

(46)

From the above expression, contributions arising through
D̄T (1) and T (1)†D̄ correspond to the Core contribution, while
contributions from the rest of the terms are the Valence con-
tributions.

In the present work, we consider all possible single and
double excitations in the RCC theory (RCCSD method). The
single- and double-excited RCC wave operators are denoted
by additional subscripts 1 and 2, respectively. Thus, we define
in the RCCSD method

T (0)
0 = T (0)

10 + T (0)
20 ,

T (1)
0 = T (1)

10 + T (1)
20 ,

S(0)
v = S(0)

1v + S(0)
2v ,

and

S(1)
v = S(1)

1v + S(1)
2v . (47)

As mentioned earlier, the DCP contributions are included
in the CPDF-RPA method due to the last term of Eq. (18). We
had a choice to adopt Eq. (18) in the RCC theory to determine
XNSD

PV . However, such an approach would demand that we
compute and store amplitudes of the �

(1,1)
0 and �(1,1)

v wave
operators. This is quite a bit of involved work and requires
large computational resources to carry out the calculations.
In contrast to the other methods, electron correlation effects
are included in the evaluation of both the bra and ket states
through the RCC theory. As a result, this includes many more
electron correlation effects compared to the CPDF, RPA, and
CPDF-RPA methods. Following discussions in Ref. [15], it
can be shown that the RCCSD term DS(1)

2v and its complex
conjugate (c.c) include all DCP contributions of the CPDF-
RPA method even though Eq. (46) is derived based on Eq. (9).
This is the potential of the RCC theory for which the results
obtained using the RCCSD method can be treated as more
accurate compared to the other methods.

IV. RESULTS AND DISCUSSION

We present our calculated XNSD
PV values between the F = 3

and F = 4 hyperfine levels of the 6s 2S1/2 → 7s 2S1/2 tran-
sition in the 133Cs atom in Table I. They are given from the
DHF, CPDF, RPA, CPDF-RPA∗, CPDF-RPA, and RCCSD
methods. In the same table, we have also given results that
were reported earlier in the literature [14,22,23]. The differ-
ences in the results between the DHF and other methods listed
in the table show the amount of electron correlation included
through the respective method. Analyses of these results show
a very interesting trend. By comparing results between the
CPDF and RPA method, we can draw the conclusion that CP
effects arising through the K (1) much stronger than those arise
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TABLE I. Estimated X NSD
PV values of the hyperfine transitions

(Ff − Fi) among all possible hyperfine levels Ff and Fi of the 7s 2S1/2

and 6s 2S1/2 states, respectively, in 133Cs from different methods.
All the values are given in the units of iea0KW × 10−12 with the
electron charge e and the Bohr radius a0. We also compare these
values with the values reported in previous works at different levels
of approximation in the many-body method.

Method 3-3 3-4 4-3 4-4

This work

DHF 1.9029 5.4663 4.7337 2.1665
CPDF 2.3345 7.0455 6.1470 2.6579
RPA 1.8305 5.6738 4.9689 2.0842
CPDF-RPA∗ 2.2456 7.2348 6.3707 2.5564
CPDF-RPA 2.0139 6.9891 6.2142 2.2928
RCCSD 2.3344 7.3943 6.4958 2.6575

Other works

DHF [14] 1.908 5.481 4.746 2.173
DHF [22] 2.011 5.774 5.000 2.289
RPA [14] 2.249 7.299 6.432 2.560
PRCCa [22] 2.274 6.313 5.446 2.589
SD [23] 7.948 7.057

aThe PRCC method of Ref. [22] is same as our RCCSD method.

through the E1 operator. In fact, they contribute with opposite
signs with respect to the DHF values. Interestingly this trend is
more peculiar in the CPDF-RPA∗ method, in which results be-
tween the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 hyperfine
levels are larger than the CPDF values, while they are smaller
for the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 hyperfine lev-
els compared to the CPDF values. So from these results it
would not be clearly argued that the CP effects through the E1
operator always contribute with an opposite sign than the K (1)

operator. The differences between the results from the CPDF-
RPA∗ and CPDF-RPA indicate that the DCP contributions
are quite significant in the evaluations of the XNSD

PV values,
and they reduce the values obtained using the CPDF-RPA∗
method. The results from the RCCSD method are seen to
be larger than the CPDF-RPA method. The RCCSD method
includes all contributions that are taken into account in the
CPDF-RPA method as well as contributions from the PC
effects and correlations among both the CP and PC effects
to all orders. Though the CPDF-RPA∗ values appear to be
close to the RCCSD values, both the CPDF-RPA and RCCSD
methods include DCP contributions, while the CPDF-RPA∗
method does not. It, thus, suggests that contributions arising
through the PC effects in the determination of the XNSD

PV values
are quite significant and cannot be neglected for their accu-
rate evaluation. To gauge the magnitudes of the XNSD

PV values
quantitatively for the transitions between different hyperfine
levels, we plot these values in Fig. 1. This clearly shows
that magnitudes of the XNSD

PV values in the Fi = 3 → Ff = 3
and Fi = 4 → Ff = 4 transitions are smaller compared to the
Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions.

As can be seen in Table I, calculations carried out at the
DHF level in Ref. [14] agree quite well with our values but
differ a little bit from Ref. [22]. A careful comparison shows

FIG. 1. Magnitudes of the X NSD
PV values for the Ff − Fi transitions

of the 7s 2S1/2(Ff ) and 6s 2S1/2(Fi ) states in 133Cs from different
methods. The same units as in Table I are used for the plotted values.

that our CPDF-RPA∗ results match well with the RPA values
of Ref. [14]. From this analysis, we assume that the RPA
method of Ref. [14] is not exactly the same with our RPA
method; rather, it considers the combined results from both
the CPDF and RPA methods. It, however, appears to us that
DCP contributions were not included in Ref. [14]. This can
also be corroborated with the expression used in Ref. [14],
i.e., Eq. (13), in the determination of XNSD

PV as this expression
is difficult to implement in the form of Eq. (34). As stated
categorically earlier, we are able to include the DCP contribu-
tion in the CPDF-RPA method by using the formula given by
Eq. (19). The calculations in Ref. [23] differ from the present
work on two major grounds. First, it uses a sum-over-states
approach in which E1 and K (1) matrix elements of a few
low-lying transitions are explicitly evaluated using the RCC
theory and experimental energy values were used. Limitations
of the sum-over-states approach have already been discussed
earlier. Second, only linear in T (0) and S(0)

v terms appearing in
Eq. (37) of the single- and double-approximated RCC theory
(SD) are being considered in the evaluation of the matrix el-
ements. The differences between the sum-over-states SD and
ab initio RCCSD results could be due to the DCP effects and
contributions from the Core and Tail contributions, which are
included more rigorously in the present work. Comparison be-
tween the results from the PRCC method of Ref. [22] and the
RCCSD method of present work shows large differences. This
could be due to two reasons; use of different size basis func-
tions and difference in the implementation of the method. In
both works, though Gaussian-type orbitals (GTOs) are being
used, different set of parameters are being considered. Since
we have compared our DHF values with those of Ref. [14]
and the results agree, we presume that our basis functions are
good enough to produce accurate results for XNSD

PV . It should
be noted that B-spline polynomials were used as basis func-
tions in Ref. [14] in contrast to our GTOs. From the point of
view of method, both the PRCC and RCCSD methods are the
single- and double-approximated RCC theory, and obtain
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TABLE II. The Core and Valence contributions to the X NSD
PV

values in all the considered transitions among all possible hyperfine
levels Ff and Fi of the 7s 2S1/2 and 6s 2S1/2 states, respectively, in
133Cs from different methods. The same units as in Table I are used
here.

Method Ff Fi Core Valence

DHF 3 3 −0.0046 1.9075
3 4 −0.2031 5.6693
4 3 −0.2014 4.9350
4 4 −0.0051 2.1717

CPDF 3 3 −0.0049 2.3394
3 4 −0.4417 7.4872
4 3 −0.4396 6.5866
4 4 −0.0056 2.6635

RPA 3 3 0.0007 1.8298
3 4 −0.2814 5.9552
4 3 −0.2821 5.2510
4 4 0.0007 2.0835

CPDF-RPA∗ 3 3 0.0039 2.2417
3 4 −0.6181 7.8529
4 3 −0.6195 6.9902
4 4 0.0039 2.5525

CPDF-RPA 3 3 0.0039 2.0100
3 4 −0.6181 7.6072
4 3 −0.6195 6.8337
4 4 0.0039 2.2889

RCCSD 3 3 −0.0047 2.3392
3 4 −0.3458 7.7401
4 3 −0.3441 6.8399
4 4 −0.0052 2.6627

results in the first-principle approach. However, their imple-
mentation procedures in Ref. [22] and in our work differ
in dealing with the angular momentum couplings between
the nuclear and electronic components. We follow the pro-
cedures adopted by other groups to decouple nuclear and
electronic angular factors, and carry out calculations only
on the electronic coordinate by expressing nuclear angular
factors as prefactors. In contrast, both the nuclear and elec-
tronic couplings are included together in the PRCC method.
Nonetheless, the results are expected to be similar in both
approaches as nuclear and electronic components of the wave
functions are treated at the same level of approximation. To
ensure correct implementation of our method, we reproduced
the results of the CPDF-RPA method by the corresponding
terms of the RCCSD method and extra contributions arising
through the RCCSD method over the CPDF-RPA method
have been investigated thoroughly. From this analysis, we
presume that our RCCSD calculations are more reliable.

We also try to understand the roles of both the Core and
Valence correlation contributions in the evaluation of XNSD

PV .
For this purpose, we present both these contributions from
each considered method in Table II. Comparison of Core
and Valence contributions from each method for different
hyperfine transitions shows how both types of effects vary
from lower- to higher-order approximations in the many-body
theory. The first interesting phenomenon one can observe

from this table is that the Core contributions to the Fi = 3 →
Ff = 3 and Fi = 4 → Ff = 4 transitions are similar but the
Valence contributions to these transitions differ significantly.
An analogous behavior can also be noticed for the Fi = 3 →
Ff = 4 and Fi = 4 → Ff = 3 transitions. It means that the
similarity between Core contributions to these transitions can-
not be attributed to their radial and angular factors, but it is
a peculiar behavior of the property being studied. Another
difference in the trend can be noticed that the signs of the
Core contributions among the DHF, CPDF, and RCCSD are
opposite for the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 tran-
sitions than the RPA, CPDF-RPA∗, and CPDF-RPA methods,
while they are same for the Fi = 3 → Ff = 4 and Fi = 4 →
Ff = 3 transitions. It also suggests that the Core contribu-
tions arising from the combined CPDF-RPA (or CPDF-RPA∗)
method are not same as the total sum of the individual Core
contributions from both the CPDF and RPA methods. Thus,
the correlation trends in these methods behave completely
differently from each other. It is worth mentioning here that in
the CPDF and RCCSD method K (1) is treated as a perturba-
tion. If the E1 operator is treated perturbatively in the RCCSD
method like in the RPA, the sign of the Core contribution may
differ. However, results with the DHF method are independent
of whether K (1) or E1 operator is considered as perturbation.
Now, from the analyses of Valence contributions, we do not
find any sign differences among their values for any of the
hyperfine transition at different levels of approximation in the
methods, but their magnitudes show large variance from one
to another method. The differences between the values from
the DHF method and other methods for the Fi = 3 → Ff = 3
and Fi = 4 → Ff = 4 transitions are relatively smaller than
the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions.

To fathom the role of electron correlation effects accounted
through each many-body method in a more quantified view
point, we plot the XNSD

PV values from each method with respect
to the DHF values (by taking the ratio of each calculation with
respect to the corresponding DHF value) for each transition
between the hyperfine levels in Fig. 2. As the figure clearly
shows, the correlation trends are different in the estimation
of Core and Valence contributions at different approximations
of the method. Both the net magnitude and correlation effects
to Core contribution are small, while they are pronounced in
the estimation of the Valence contribution. This is the reason
why earlier reported results using a sum-over-states approach,
in which only Valence contributions are estimated more rig-
orously, look reasonably accurate. Further, looking closely at
the figure, it can be said that the correlation effects included
through the CPDF-RPA method are the largest compared to
the other methods. In the Fi = 3 → Ff = 3 and Fi = 4 →
Ff = 4 transitions, the CPDF method includes the smallest
amount of correlation effects, while in the Fi = 3 → Ff = 4
and Fi = 4 → Ff = 3 transitions the RPA method accounts
for the smallest amount of correlation effects. Interestingly
the correlation effects arising through the RCCSD method
are next to the second smallest in all the transitions though
it includes all effects that are included through the CPDF,
RPA, and CPDF-RPA methods. It, therefore, suggests that the
PC effects that are included through the RCCSD method and
missing in the other methods contribute almost equally, but
with opposite signs.
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FIG. 2. Ratios of the calculated X NSD
PV values for the Ff − Fi

transitions of the 7s 2S1/2 and 6s 2S1/2 states, respectively, in 133Cs
from different methods with respect to their DHF values. The same
units as in Table I are used.

Now we intend to understand contributions to the XNSD
PV

values arising through the initial and final perturbed states
in different methods. In Table III we present results from
both the initial and final perturbed states separately in all
the hyperfine level transitions using the methods that are
employed in this work. As can be seen from this table, the
final perturbed states contribute predominantly over the initial
perturbed states among all the transitions at different approx-
imation of methods irrespective of whether the K (1) or E1
operator is considered as perturbation. This trend has striking
similarity with the evaluation of the E1NSI

PV amplitude of the
6s 2S1/2 −7s 2S1/2 transition in 133Cs [15]. Another observa-
tion is that contributions to XNSD

PV from the initial and final
states in the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transi-
tions are in opposite sign, while they contribute with the same
sign in the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions
resulting in enhancement in the final result.

We also analyze contributions to the XNSD
PV values arising

from individual terms of the RCCSD method explicitly in
Table IV. In this table, contributions arising through D̄T (1)

1
and its c.c. term correspond to the Core contributions and
the rest of the terms offer the Valence contributions. From
computational convenience, only the effective one-body part
of D̄ has been calculated and stored, which is multiplied
with the RCC operators to get their values in the above ta-
ble. The remaining part of D̄ is coded directly along with
the RCC operators, and they are many in number. These

TABLE III. Comparison of contributions from the initial and
final perturbed states to X NSD

PV among all possible hyperfine levels of
the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi ) transition in 133Cs at different meth-
ods, in units of iea0KW × 10−12.

Method Ff Fi 〈7S(0)|D̃ f |6S(1)〉 〈7S(1)|D̃i|6S(0)〉 Total

DHF 3 3 −0.7077 2.6106 1.9029
3 4 0.9513 4.5150 5.4663
4 3 1.2236 3.5101 4.7337
4 4 −0.8057 2.9722 2.1665

CPDF 3 3 −0.8673 3.2018 2.3345
3 4 1.2201 5.8254 7.0455
4 3 1.5540 4.5930 6.1470
4 4 −0.9873 3.6452 2.6579

RPA 3 3 −0.8158 2.6463 1.8305
3 4 1.0969 4.5769 5.6738
4 3 1.4108 3.5581 4.9689
4 4 −0.9289 3.0131 2.0842

CPDF-RPA∗ 3 3 −0.9901 3.2357 2.2456
3 4 1.3688 5.8660 7.2348
4 3 1.7504 4.6203 6.3707
4 4 −1.1277 3.6841 2.5564

CPDF-RPA 3 3 −0.9677 2.9816 2.0139
3 4 1.3163 5.6728 6.9891
4 3 1.6894 4.5248 6.2142
4 4 −1.1018 3.3946 2.2928

RCCSD 3 3 −0.9807 3.3151 2.3344
3 4 1.4815 5.9128 7.3943
4 3 1.8590 4.6367 6.4958
4 4 −1.1169 3.7744 2.6575

contributions are referred to as the “Others” in this table.
Again, wave functions of the RCC method are not normalized.
We list corrections to the XNSD

PV values due to normalization of
the wave functions under “Norm” in the table. In fact, these

TABLE IV. Contributions from different RCC terms to the X NSD
PV

values (in units iea0KW × 10−12) of the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi )
transitions in 133Cs. Contributions given under “Norm” represent
the corrections to results due to normalization factors of the wave
functions. D denotes only the effective one-body part of eT (0)†

DeT (0)
.

Contributions from other nonlinear terms of the RCCSD method are
given together under “Others.”

RCC term 3-3 3-4 4-3 4-4

D̄T (1)
1 −0.1029 −0.1981 −0.1585 −0.1169

T (1)†
1 D̄ 0.0983 −0.1501 −0.1879 0.1120

D̄S(1)
1i −0.4487 0.6832 0.8561 −0.5110

S(1)†
1 f D̄ 4.5384 8.0486 6.3017 5.1674

S(0)†
1 f D̄S(1)

1i −0.5575 0.8032 1.0178 −0.6349

S(1)†
1 f D̄S(0)

1i −1.0339 −1.8588 −1.4609 −1.1770

D̄S(1)
2i −0.0577 0.1179 0.1403 −0.0658

S(1)†
2 f D̄ −0.0077 0.0273 0.0304 −0.0087

Others −0.0389 0.0947 0.1090 −0.0452

Norm −0.0549 −0.1736 −0.1522 −0.0624

Total 2.3344 7.3943 6.4958 2.6575
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TABLE V. Demonstration of variations in the RCCSD values of
X NSD

PV among different hyperfine levels of the 7s 2S1/2 and 6s 2S1/2

states with various nuclear charge density distributions. The same
units as in Table I are used here.

Distribution type

Ff Fi Fermi Gaussian Uniform

3 4 2.3344 2.3485 2.2964
3 4 7.3943 7.4318 7.2620
4 3 6.4958 6.5278 6.3781
4 4 2.6575 2.6739 2.6145

corrections are a part of the correlation effects in the sys-
tem and should be taken into account for accurate estimate
of the above quantities unless they have been absorbed in
the formulation of the theory like normal RCC theory [24].
However, these corrections do not appear in other employed
methods because in such cases either the ket state or bra
state is approximated to the DHF wave function, and this is
a limitation of those methods. Looking at the table carefully,
it can be observed that there are cancellations among the cor-
rections from D̄T (1)

1 and its c.c. term in the Fi = 3 → Ff = 3
and Fi = 4 → Ff = 4 transitions, whereas they add up in the
Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions. A similar
trend is also seen in the contribution from the D̄S(1)

1i and S(1)†
1 f D̄

terms. By drawing parallel to the calculation of the E1NSI
PV am-

plitudes (see Ref. [15]), it can be shown that D̄T (1)
1 and its c.c.

term include all Core contributions of the CPDF-RPA method
in addition to contributions from PCs and many non-RPA type
physical effects. It also includes DCP-type Core correlation
contributions, which cannot appear through the CPDF-RPA
method. Similarly, the Valence contributions of the CPDF-
RPA∗ method are embedded within the D̄S(1)

1i and S(1)†
1 f D̄

terms [15]. In addition, these RCC terms include valence
PC and many non-RPA effects. As demonstrated explicitly in
Ref. [15] in the analyses of the E1NSI

PV results, the DCP effects
included in the CPDF-RPA method appear via the D̄S(1)

2i and
S(1)†

2 f D̄ RCC terms. It, therefore, implies that contributions

from S(0)†
1 f D̄S(1)

1i , S(1)†
1 f DS(0)

1i and other nonlinear terms, given as
“Others,” are the additional correlation contributions arising
through the RCCSD method.

As mentioned in Sec. II, all the above calculations were
performed using the Fermi charge distribution. To get an
impression of how these results vary with different nuclear
charge distributions, we estimated the XNSD

PV values using the
uniform and Gaussian nuclear charge distributions [25–27]
in the RCCSD method. We have presented these results in
Table V. As can be seen from the table, there are differ-
ences about 0.5%–0.6% among the results from the Fermi
and Gaussian charge distributions. However, these differences
are comparatively large, about 1.6%–1.8%, among the results
from the Fermi and uniform distributions. This suggests that
the XNSD

PV values strongly depend on the choice of the nuclear
charge distributions. Since the Fermi charge distribution is
more realistic than the Gaussian and uniform distributions, we
have considered results from the Fermi charge distribution for
the final values of XNSD

PV .

After learning trends of electron correlation effects to
the evaluation of XNSD

PV for all the transitions among the
hyperfine levels of the 6s 2S1/2 and 7s 2S1/2 states in 133Cs
from different angles using various methods and RCC terms,
we finally wish to estimate and improve accuracy of these
quantities so that they can be eventually used to infer fun-
damental parameters of general interest. This is done in two
steps. In the first step, we try to separate out the Main contribu-
tion and the rest from our RCCSD calculation. This is because
in the earlier results obtained using the sum-over-states ap-
proach, contributions from Core and Tail were estimated using
lower-order methods. Moreover, DCP was not taken into ac-
count in those calculations. So by dividing RCCSD results
into Main and the rest, the latter part will correspond to the
Core, DCP, and Tail contributions together. Accuracy of this
part can be easily claimed to be improved over the previous
calculations. In the second step, it can be attempted to im-
prove the accuracy of the Main contribution obtained through
the first-principle approach using the RCCSD method. There
is always a challenge to attain very accurate results in the
ab initio method to calculate quantities like XNSD

PV over the
sum-over-states approach as the K (1) and E1 matrix elements
converge very slowly with respect to higher-order correlation
effects, while in the sum-over-states approach the important
contributing E1 matrix elements can be used from the ex-
periments. Also, one can use experimental energies in the
sum-over-states approach to remove uncertainties due to the
calculated energies. Since our ultimate objective of this work
is to obtain very accurate values of XNSD

PV , we replace the ab
initio Main contributions by the semiempirical values using
the sum-over-states approach. In the previous calculations us-
ing the sum-over-states approach [23], the np 2P1/2;3/2 (with
n = 6−9) intermediate bound states were used. To be consis-
tent with these calculations and to demonstrate differences in
the results from both calculations, we also consider these in-
termediate states to estimate the Main contributions to XNSD

PV .
First, we determine these quantities using the calculated E1
matrix elements and energies from the RCCSD method. This
helps extract the Core, DCP, and Tail contributions from the
RCCSD method. Then we replace the calculated E1 matrix
elements and energies by the precisely known experimental
values. In Table VI we have given our calculated E1 matrix
elements and energies from the RCCSD method, and com-
pare them with the precisely reported experimental values
[28–33], while experimental energies are used from the Na-
tional Institute of Science and Technology (NIST) database
[34]. For completeness, we have also listed the K (1) matrix
elements from the RCCSD method in this table. As can be
seen from the table, there are significant differences between
the RCCSD values and experimental results. In the previ-
ous study of E1NSI

PV in the 6s 2S1/2 → 7s 2S1/2 transition of
133Cs [9], it has been shown that the RCCSD values of the
E1 matrix elements and energies improve drastically towards
the experimental results when triple excitations were taken
into account in the RCC theory. Since triple excitations to
determine the XNSD

PV values are not implemented yet owing
to very complex angular momentum couplings involved in
this case, use of the sum-over-states approach to improve
these results is the best possible option at this stage. It should
be further noted that many E1 matrix elements have been
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TABLE VI. Calculated reduced E1 matrix elements (in a.u.), reduced K (1) matrix elements (in iKW × 10−12) and the excitation energies
(in cm−1) of the low-lying states of 133Cs using the RCCSD method. These values have been used to estimate the “Main” contributions to
the X NSD

PV amplitudes. Our results are also compared with the precise experimental values wherever they are available. Note that signs of the
experimental E1 matrix elements cannot be determined.

E1 matrix elements Excitation energies

Transition This work Experiment K (1) amplitudes This work Experiment [34]

6P1/2 − 6S1/2 4.5512 4.5012(26) [28] −2.0914 11 224.82 11 178.27
7P1/2 − 6S1/2 0.3010 0.27810(45) [29] −1.1801 21 809.27 21 765.35
8P1/2 − 6S1/2 0.0916 0.0723(44) [30] −0.7930 25 755.02 25 708.83
9P1/2 − 6S1/2 −0.0389 0.5717 27 702.51 27 637.00
6P3/2 − 6S1/2 6.4009 6.3403(64) [31] 0.0370 11 785.84 11 732.31
7P3/2 − 6S1/2 0.6097 0.57417(57) [29] 0.0213 21 992.53 21 946.40
8P3/2 − 6S1/2 0.2326 0.0141 25 838.57 25 791.51
9P3/2 − 6S1/2 0.1243 0.0101 27 745.82 27 681.68
7S1/2 − 6P1/2 −4.2535 4.249(4) [32] 1.0348 7344.17 7357.26
7S1/2 − 7P1/2 10.3017 10.325(5) [33] 0.5837 3240.28 3229.82
7S1/2 − 8P1/2 0.9500 0.3917 7186.03 7173.31
7S1/2 − 9P1/2 −0.3870 −0.2823 9133.52 9101.47
7S1/2 − 6P3/2 6.5053 6.489(5) [32] 0.0167 6783.15 6803.22
7S1/2 − 7P3/2 −14.3023 14.344(7) [33] 0.0094 3423.54 3410.87
7S1/2 − 8P3/2 −1.6676 0.0067 7269.58 7255.98
7S1/2 − 9P3/2 −0.7372 0.0050 9176.83 9146.15

reported precisely [29–33] since the previous calculations of
XNSD

PV were carried out using the sum-over-states approach
[23]. Therefore, the difference in the final results reported
in Ref. [23] and the present values obtained using the sum-
over-states approach can be partly due to this reason. We give
contributions to the XNSD

PV of different transitions involving
the hyperfine levels of the 6s 2S1/2 and 7s 2S1/2 states from
the ab initio calculations in Table VII. Again, these values
are given by considering some of the E1 matrix elements
and energies from the experiments (semiempirical results) in

TABLE VII. Estimated “Main” contributions to the X NSD
PV val-

ues, in units of iea0KW × 10−12, of the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi )
transitions in 133Cs using matrix elements involving the np 2P1/2,3/2

(n = 6−9) intermediate states from the RCCSD method in the sum-
over-states approach. The values are given by ab initio results. These
values obtained after replacing some of the calculated E1 matrix
elements and energies by their precisely known experimental values
are given under semiempirical results. These values are estimated for
the initial perturbed and final perturbed states separately, then the
final values are given after adding both the contributions.

Ff Fi 〈7S(0)|D̃ f |6S(1)〉 〈7S(1)|D̃i|6S(0)〉 Total

Ab initio results
3 3 −1.1389 3.3557 2.2168
3 4 1.6080 6.0009 7.6089
4 3 2.0464 4.7093 6.7557
4 4 −1.2967 3.8206 2.5239

Semiempirical results
3 3 −1.1391 3.3376 2.1985
3 4 1.6078 5.9681 7.5759
4 3 2.0463 4.6834 6.7297
4 4 −1.2969 3.8000 2.5031

the same table. We depict individual contributions from the
np 2P1/2,3/2 (n = 6 − 9) states to the Main contribution in
Fig. 3, which signifies the importance of their contributions.
This knowledge can help improve the accuracy of the XNSD

PV
values in the future. The plots in this figure show that among
all the considered bound states, only the 6P1/2 and 7P1/2

states contribute almost entirely to the Main contributions in
all transitions. As can be seen from the figure, contributions
from the nP3/2 states are very small. In the Fi = 3 → Ff = 3
and Fi = 4 → Ff = 4 transitions, the 6P1/2 state contributes
in opposite sign to the initial and final perturbed states. As
a result, the dominating contributions come effectively from
the 7P1/2 state. In the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3
transitions, contributions from the 6P1/2 state are in the same
sign for the both initial and final perturbed states. Therefore,
contributions from the 6P1/2 state in these transitions dominate
over the contributions from the 7P1/2 state. Also, there are
huge cancellations among contributions from the intermedi-
ate states to both the initial and final perturbed states in all
transitions. Particularly, these cancellations are strong in the
initial perturbed state explaining the reason why contributions
from the initial perturbed states are quite small over the final
perturbed states.

It can be seen from Table VII that the differences between
the Main contributions from ab initio results and the final
results given in Table I are noticeable prominently. From
this we can argue that accurate evaluation of the remaining
contributions from Core, DCP, and Tail are equally important
as the Main contributions. Again, the K (1) matrix elements are
evaluated using the RCCSD method in this work. This attempt
in the present work is to account for the Core, DCP, and Tail
contributions to the XNSD

PV values more accurately compared
to the previous results reported using the sum-over-states
approach. Then by adding the semiempirical values of the
Main contributions, we give the final recommended values of
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FIG. 3. Demonstration of contributions from different intermediate states to the X NSD
PV values for different 7s 2S1/2(Ff ) − 6s 2S1/2(Fi )

transitions in 133Cs. States with the subscript “−” symbol in the figure represent the lower angular momentum state of a fine-structure partner;
i.e., P_ means P1/2 and P stands for the P3/2 state.

XNSD
PV among the hyperfine levels of the 6s 2S1/2 → 7s 2S1/2

transition in 133Cs, which can be combined further with the
measured E1NSD

PV values to infer NAM.
In Table VIII we give the recommended values for the

Main, Core, DCP, and Tail contributions to XNSD
PV , in units

iea0KW × 10−12, along with their estimated uncertainties
for all possible transitions among the hyperfine levels of
the 6s 2S1/2 and 7s 2S1/2 states in 133Cs by adopting the

TABLE VIII. The final recommended Main, Core, and
DCP+Tail contributions to the X NSD

PV values (in units of iea0KW ×
10−12) of the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi ) transitions in 133Cs. Uncer-
tainties are quoted within the parentheses. Refer to the text for an
explanation of their estimations.

Ff Fi Main Core DCP+Tail Total

3 3 2.1985(52) −0.0047(2) 0.122(3) 2.316(6)
3 4 7.5759(73) −0.3458(18) 0.131(2) 7.361(8)
4 3 6.7297(88) −0.3441(18) 0.084(1) 6.470(9)
4 4 2.5031(56) −0.0052(3) 0.139(3) 2.637(6)

procedure discussed in the previous two paragraphs. Since
there is no obvious way of disengage the DCP and Tail con-
tributions in our RCCSD method, they are given together as
DCP+Tail in this table. The major source of uncertainty to
the Main contributions comes from the E1 matrix elements
used in the experiments. We also repeated the calculations
by increasing the size of basis functions in the CPDF-RPA
method with different combinations of high-lying s and p
orbitals. From the variations in the values from different corre-
lation contributions, we assigned uncertainties to the Core and
DCP+Tail contributions. Since carrying out such analyses
using the RCCSD method is computationally cumbersome,
we have used the CPDF-RPA method to estimate uncertainties
to the Core and DCP+Tail contributions.

Apart from E1NSD
PV , there can be another NSD contribution

to E1PV due to the hyperfine-induced NSI interaction if we
consider next-order correction to |(IJ )FMF 〉 by the hyperfine
interaction Hamiltonian. We neglect this correction in the
present work. It was mentioned earlier that the NSD compo-
nent of E1PV between the hyperfine levels of the 6s 2S1/2 →
7s 2S1/2 transition in 133Cs has been measured. However, it
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corresponds to a differential value of the NSD contribution
to E1PV that was extracted by carrying out PV measurements
between the 6s 2S1/2(Fi = 3) → 7s 2S1/2(Ff = 4) transition
and between the 6s 2S1/2(Fi = 4) → 7s 2S1/2(Ff = 3) tran-
sition in 133Cs [6]. By assuming the net NSD contribution
to E1PV arises only from E1NSD

PV then we can express the
differential E1NSD

PV value between the above hyperfine levels
Fi and Ff as [14]

δE1NSD
PV = KW

⎡
⎣(XNSD

PV

AFf ,Fi

)Ff ,Fi

−
(
XNSD

PV

AFi,Ff

)Fi,Ff
⎤
⎦, (48)

where subscript and superscript Ff , Fi notations used in the
above expression denotes for the hyperfine level transition
Ff → Fi and

AFf Fi = (−1)Jf +Fi+I+1
√

6(2Fi + 1)(2Ff + 1)

×
{

Ff Fi 1
Ji Jf I

}
.

Again, the actual measured quantity in Ref. [6] is
δE1NSD

PV /β = −0.077(11) mV/cm, where β is the vector
polarizability of the 6s 2S1/2 → 7s 2S1/2 transition in 133Cs.
Using the recently reported value β = 27.043(36) a.u. from
Ref. [35], we infer KW = 0.116(16) by combining our
calculated XNSD

PV values with the measurement of δE1NSD
PV /β.

Furthermore by substituting KNSD = 0.0140 from a nuclear
model calculation [36], it yields Ka = 0.102(16). This is in
good agreement with the values reported for Ka in Refs. [14]
and [36].

V. SUMMARY

We have carried out calculations of the electric dipole
amplitudes due to spin-dependent parity-violating interactions

in the 6s 2S1/2 → 7s 2S1/2 transition of 133Cs using the Dirac-
Coulomb atomic Hamiltonian. To understand the roles of
various correlation effects and contributions arising through
many intermediate states to these quantities, we have em-
ployed the DHF, CPDF, RPA, and RCC methods. These
contributions are further classified into Core, DCP, and Va-
lence contributions, and their trends are analyzed using
different methods. We have also analyzed contributions to the
above quantities arising through various terms of the RCC
method. Since the correlation effects arising through the other
methods are implicitly present within the RCC method along
with many other effects, we presume the results obtained
using the RCC method are more accurate. To improve ac-
curacy of these calculations further, we divide the Valence
contributions of the RCC method into two parts: a part that
comes from the low-lying bound states and the remaining
part arises due to the other intermediate states. Among these
two, the first part of the contributions is the dominant one.
We improve the accuracy of this part by reevaluating them
using a sum-over-states approach after replacing some of the
precisely known electric dipole amplitudes and energies from
experiments. Finally, we revise the limit on the magnitude
of a nucleon-nucleon parity-violating coupling constant by
combining our calculation with the precise measurement of
the above transition in 133Cs.
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