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Negative imaginary potential to model ionization in atoms and molecules by electron impact
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The low-energy electron-molecule collisions have several implications for the behavior of microscopic and
macroscopic environments. One of the most important consequences of this event is molecular ionization due
to the electron impact. Since the inclusion of ionization effects through ab initio methods is challenging, we
implemented a negative imaginary potential to act as a sinkhole of probability flux to mimic the ionization
effects in electron-molecule collisions. We employed an iterative procedure to reproduce the total ionization
cross sections computed with the binary-encounter-Bethe model and investigated some Gaussian distributions
representing the model potential. Also, in light of obtaining a model with a reasonable physical significance and
avoiding arbitrariness, we performed calculations using the probability density as an imaginary potential. Our
main goal is to investigate the effect of an absorption potential in the elastic and inelastic channels in ab initio
calculations using the Schwinger multichannel method. The results obtained in this study using H2 as a test case
are encouraging, since the absorption channel disputes flux probability with other channels.
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I. INTRODUCTION

The electron scattering by atoms and molecules has sev-
eral applications since almost everything in the universe is
made from these “small bricks.” In particular, looking into
applications, we highlight combustion environments such as
atmospheric discharges [1,2], processing plasmas and sur-
face treatments [3–5], nanomaterials manufacturing [6,7],
biological medium and chemistry [8–13], biofuels production
[14–17], and combustion chambers [18], among others.

Concerning low-energy electron scattering by molecular
targets, the Schwinger multichannel (SMC) method [19–22]
has proved to be a well-established methodology with suc-
cessful applications over the years [23–32]. Recently, we
applied the SMC method to investigate the electronic exci-
tation of benzene molecules by electron impact and employed
437 open channels in the calculations (elastic plus 436 elec-
tronic excitation channels). We observed that the differential
cross sections (DCSs) are converged comparing the different
levels of calculations. In the results for the elastic channel
[33], we obtained an excellent agreement compared to the
experimental data available for the electron impact energies
(E0) up to 20 eV. For larger E0, for example, 50 eV, the
calculations overestimate the experimental data. Regarding
electronic excitation [34], our results still overestimate the
measured data, even considering a large number of energet-
ically accessible channels derived from the bound Rydberg
states below the ionization potential (IP). For intermediate
energies (above E0 = 20 eV), the situation is worse, since
the results were not improved by increasing the basis set
and, as a consequence, the number of channels below the
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IP. We suspect that these discrepancies are mostly due to the
ionization channels (channels from the continuum, above the
first IP threshold) which have not been included in the SMC
method up to date.

The SMC method is based on Schwinger’s variational
principle, whose kickoff is the Lippmann-Schwinger (LS)
equation. However, the LS equation has a limitation in which
only one electron in the continuum is allowed (the incident or
outgoing electron), since the equation has no unique solution
for more electrons in this regime [35]. This makes the ab initio
approach cumbersome.

In the literature, we cite as examples the following al-
ternative approaches to take ionization effects into account:
the R-matrix [36] and convergent close-coupling [37], which
uses pseudostates to discretize the continuum of states, and
the distorted wave approximation [38], which uses a model
imaginary potential to include absorption effects, as electronic
excitation plus ionization. In particular, the binary-encounter-
Bethe (BEB) model [39] is extremely simple and delivers
an equation for the ionization cross section that requires a
simple bound-state calculation to obtain orbital constants used
as inputs in this approach.

In order to take ionization effects into account in the SMC
method, we employed a negative imaginary potential (NIP) in
the interaction potential to act as a probability flux sinkhole.
We started the initiative to generate a model potential as a
single Gaussian function to describe ionization effects by fit-
ting the BEB total ionization cross sections (TICS). However,
we observed that the absorption integral cross section (AICS)
for this NIP does not have the same magnitude and shape as
the BEB TICS. To solve this, the strength of the potential
(multiplication constant) is adjusted iteratively for each E0

to provide an AICS equal to the TICS of the BEB method.
In this study, we report the cross sections for elastic and
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electronically inelastic scattering of electrons by H2. These
cross sections were obtained with the SMC method and show
the effect of taking ionization into account by including the
NIP. Further, we investigate the possibility of giving a physical
meaning to the NIP, taking the probability density of the
bound electrons as the spatial distribution of the potential.

The remainder of this paper is organized as follows. Sec-
tion II shows the theory involved in our approach. Section III
displays the computational aspects used in the bound-state
and scattering calculations. In Sec. IV we display our results
and discussions. Section V presents the conclusions and future
perspectives.

II. THEORY

A. Prelude

Consider the interaction potential of the form

V = V0 ± iW0, (1)

where V0 is the electron-target interact potential and W0 is an
arbitrary potential. As reported in Ref. [35], the presence of
±W0 in V generates a font (plus sign) or a sinkhole (minus
sign) of the current probability density j (or as usually called,
probability flux),

∇r · j = ±2W0
∂ρ

∂t
, (2)

where ρ is the probability density. We are interested in the
formalism with V = V0 − iW0. The behavior of the sinkhole
could, in principle, be useful for the absorption of the incident
particles. Since an ionized electron (or electrons) goes to the
continuum, we could mimic this effect by including a NIP
given by Eq. (1) in the scattering dynamics.

B. SMC method with NIP model

After considering the non-Hermitian nature of the Hamilto-
nian (due to the presence of the NIP) [40], we obtained that the
resulting expression of the scattering amplitude is the same as
reported elsewhere [19–22] for the real interaction potential.
The fixed-nuclei body-frame scattering amplitude is given by

f (kf , ki) = − 1

2π

∑
m,n

〈Skf |V |χm〉(d−1)mn〈χn|V |Ski 〉, (3)

with dmn = 〈χm|A(+)|χn〉 and

A(+) = Ĥ

N + 1
− ĤP + PĤ

2
+ V P + PV

2
− V G(+)

P V. (4)

In Eq. (4), the reduced Hamiltonian operator Ĥ = E − H is
the total energy (target ground-state energy plus the kinetic
energy of the incoming electron) minus the (N + 1)-electron
Hamiltonian, and N is the number of electrons in the tar-
get. The latter is given by H = H0 + V , where H0 describes
the noninteracting electron-molecule system, and |Ski〉 is a
solution of H0, given by the product of a plane wave with
momentum k and a target state |�i〉. The wave vector ki (kf ) is
the incoming (outgoing) projectile wave vector. The operator
V = V0 − iW0 is the interaction potential between the incident
electron and the molecule V0 minus i times the potential
W0. Also, we have the Green’s function G(+)

P projected onto

the P = ∑Nopen

�=1 |��〉〈��| space, spanning Nopen electronic tar-
get bound states. Our trial (N + 1)-electrons scattering wave
function is expanded as a combination of states |χm〉, which
are the configuration state functions (CSFs). The practical
aspects concerning the CSFs |χm〉 and the projection operator
P are provided in Sec. III.

C. The choices for W0

We explored two different spatial distributions of W0,
where both strategies are constructed from a spatial func-
tion V (r) multiplied by a function of the electron impact
energy E0,

W0 = ζn(E0)V (r), (5)

with ζn being the strength of the potential. We discuss the
factor ζn later in this section. Motivated by our previous study
about a model potential [41], as a first approach, the spatial
form chosen for V (r) is an s-type Cartesian Gaussian centered
at the origin,

V (r) = CX e−αX (r)2
, (6)

where CX is the coefficient and αX is the exponent of the
Gaussian.

As we did not know the correct physical structure of the
complex potential, we developed a second approach using the
knowledge that the electrons were ionized from the region
of the probability density ρ(r), i.e., we settled V (r) = ρ(r).
For a set of atomic orbitals {φi; i = 1, . . . , Nao} inside of the
Hartree-Fock (HF) electronic ground state �1, we have

ρ(r) =
Nocc∑
i=1

Nao∑
j=1

Nao∑
k=1

Ci
jC

i
kφ j (r)φk (r) (7)

and Ck
i (Ck

j ) are the molecular orbital coefficients of the Nocc

occupied orbitals inside of �1. For the hydrogen molecule,
we have

ρ(r) =
Nao∑
j=1

Nao∑
k=1

C1
j C

1
k φ j (r)φk (r), (8)

since we have just one occupied orbital in the electronic
ground state. To use ρ(r) as the spatial part of W0, it was
necessary to implement the matrix elements between the CSFs
and the W0, which are

〈χm|W0|χn〉, 〈χm|W0P|χn〉, 〈χm|PW0|χn〉. (9)

Also, due to the presence of the numerators of Eq. (3) and
the Green’s operator matrix elements, we had to implement
in the SMC method code the matrix elements given by
〈χm|W0|��k〉. As W0 is a one-electron operator, the primitive
integrals involving the probability density are the four-center
overlap integrals

∫
d3r(x − Ax )nax (y − Ay)nay (z − Az )naz e−αA(r−A)2

× ρ(r)(x − Bx )nbx (y − By)nby (z − Bz )nbz e−αB (r−B)2
(10)
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and the Fourier transform of three-center overlap integrals∫
d3r(x − Ax )nax (y − Ay)nay (z − Az )naz e−αA(r−A)2

ρ(r)e+ik·r,

(11)

where A and B are arbitrary Cartesian vectors, and αA and αB

are arbitrary Gaussian exponents. This second representation
of W0 helps us to obtain a spatial distribution for the NIP
instead of using a single Gaussian with an arbitrary width.

D. Cross sections and the iterative factor ζn

The integral cross section (ICS) is given by

σi→ f = 1

4π

k f

ki

∫
dk̂i

∫
dk̂ f | f (kf , ki)|2, (12)

where the integral 1
4π

∫
dk̂i is to ensure the average over

all target orientations. From Eq. (12), setting |ki| = |kf |
we obtain the elastic ICS (ECS), σecs. The inelastic cross
sections (INECS) were obtained by summing all cross sec-
tions from transitions for an initial state i to a final state f :

σinecs =
Nopen∑
f =2

σi→ f , (13)

where for i = f = 1 we have the ECS. Therefore, the to-
tal ICS (TCS) could be obtained from the optical theorem
(OPTH) as

σopth = 1

4π

∫
dk̂i

4π

ki
Im [ f (ki, ki)]. (14)

Due to the presence of the NIP, σopth − σecs �= σinecs, since now
we have the absorption of the incident flux, i.e., an absorption
ICS (the AICS). Therefore,

σopth − σecs − σinecs ≡ σaics. (15)

Now we can rescue the discussion of the factor ζn, named
the iteration factor. In our iterative procedure, the objective is
to adjust the factor ζn until σaics,n−1 is equal to σBEB

ζn = σBEB

σaics,n−1
β1 + ζn−1β0, (16)

where n is the iteration number, with ζ0 being an arbitrary
number, usually 1 hartree. We have chosen β1 = 0.1 and
β0 = 0.9, i.e., 10% to increment ζn−1 by the ratio of σBEB by
σaics,n−1 and 90% from the previous iteration. The σBEB is the
BEB model partial ionization cross section given by

σBEB = S

t + u + 1

[
ln t

2

(
1 − 1

t2

)
+ 1 − 1

t
− ln t

t + 1

]
, (17)

where S = 4πa2
0N (R/B)2 (R = 13.6057 eV), B is the orbital

binding energy, U is the orbital kinetic energy (u = U/B),
and T is the incident energy (t = T/B). To obtain the TICS,
one should sum the contribution of each occupied orbital.
Note that the BEB model is just a parameter for the NIP,
meaning that we could use any other ionization cross sec-
tions, including experimental ones. In summary, we perform
the SMC method scattering calculations, obtain σaics,n−1, and
verify the convergence of the factor ζn, which is achieved

TABLE I. Exponents of the uncontracted Cartesian Gaussian
functions of s, p, and d types, for target and scattering calculations.
Please see the text for more details.

Target and scattering description Extra functions for scattering

s p d

39.186 359 1.475 474 7 4.5
6.567 806 2 0.339 955 51 1.5
1.774 537 5 0.109 565 38 0.5
0.623 416 84 0.042 477 76 0.125
0.235 659 27 0.017 663 03 0.031 25
0.089 189 09 0.006 933 56
0.036 337 81
0.015 303 56
0.005 615 93

when σaics,n−1 = σBEB. If the iterative procedure does not con-
verge, we update the iterative factor and perform the scattering
calculations again. This procedure is repeated until ζn is con-
verged. The uncertainty assumed for the convergence is about
|σaics,n−1 − σBEB|2 ≈ 0.1% of σBEB.

III. COMPUTATIONAL ASPECTS

The geometry of the H2 molecule used in all calcula-
tions (R0 = 1.401 a0) was obtained from the experimental
data available in the CCCBDB Nist Database [42]. Table I
shows the Cartesian Gaussian functions used to represent the
atomic orbitals utilized in this study. We employed the s and
p basis set as Natalense et al. [43] used in their calculations.
We supplemented the scattering basis with 
-type functions
as scattering orbitals from the work of da Costa et al. [44].
The linear combinations of d orbitals employed to gener-
ate only 
-type orbitals were (dx2

1
− dy2

1
) ± (dx2

2
− dy2

2
) and

dx1y1 ± dx2y2 , where the indexes 1 and 2 correspond for each
atom of the hydrogen molecule.

The electronic ground state was obtained in the HF approx-
imation, where the canonical virtual orbitals are improved by
using the modified virtual orbitals (MVO) technique [45], as
implemented in the GAMESS computational package [46]. The
MVO approach employed was to diagonalize the electronic
Hamiltonian of the target where the occupied molecular or-
bital σg was half-filled, i.e., for the target H2

+.
Going to the computational description of the scattering

problem, we performed two multichannel scattering calcula-
tions to verify the influence of the NIP. We give here a detailed
description of each one.

(i) The 3-channel (3ch) calculation (Nopen = 3): the elastic
channel (ground state X 1�g) and the electronic excitation
channels from the X 1�g state to the b 3�(+)

u and B 1�(+)
u

states. The configuration interaction singles (CIS) description
was obtained from a single excited determinant constructed
from the highest occupied molecular orbit (HOMO)-lowest
unoccupied molecular obital (LUMO) excitation. The vertical
excitation energies for 3ch calculations are shown in Table II,
in comparison with calculations and experiments from the
literature [47–50].

(ii) The 39-channel (39ch) calculation (Nopen = 39): in-
cludes all the channels in the 3ch calculation and 36 more
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TABLE II. Vertical excitation energies (in eV) at the TCIS and CIS levels compared to the FCIS calculation. We compare our results with
the R-matrix full configuration interaction (FCI) and molecular convergent close-coupling (MCCC) configuration interaction (CI) calculations
from Ref. [50] (both calculations at the bond length R0 = 1.448 a0) and experimental data from Sharp [47], Wrkich et al. [49] and Hargreaves
et al. [50]. The CIS calculation corresponds to the level of description of excited states in the 3ch calculation (only one hole-particle pair to
describe the excited states) and the TCIS with the 39ch calculation (nineteen hole-particle pairs to describe the excited states).

Symmetry FCIS CIS TCIS R-matrix FCI MCCC CI Sharp Wrkich Hargreaves

b 3�u 9.97 10.09 10.04 10.23 10.31
a 3�g 12.03 12.05 12.35 12.14 11.79 11.78
c 3�u 12.31 12.32 12.52 12.35 11.76 11.79 11.76
B 1�u 12.73 13.75 12.97 12.52 12.44 11.18 11.18 11.17
E (F ) 1�g 13.00 13.10 12.93 12.73 12.29 12.30 12.29
C 1�u 13.09 13.17 13.02 12.73 12.29 12.30 12.28

electronic excitation channels. In Table II, we show the ver-
tical excitation energies for the states discussed in Sec. IV.
We employed the truncated CIS (TCIS) [28] to select
all-important single excitations from the full CIS (FCIS) cal-
culation to describe all the states up to the cutoff energy
given by εP. We chose εP = IP = 16.17 eV, which is the IP
of the hydrogen molecule according to Koopmans’ theorem
calculated with the HF orbital energy. This gives rise to 38
excited states (half singlets and half triplets) below the εP.
Table II also shows this comparison for a TCIS using 19
excited determinants (made with 19 hole-particle pairs) and
the FCIS calculation.

As mentioned in Sec. II, we need to define the CSFs used
in the scattering calculations. The electronic ground state
and single excitations from the CIS were employed as tar-
get determinants in |χm〉. The scattering orbitals are all the

virtual orbitals obtained from the MVO approach from the
HF target. This strategy enables us to consider all channels
open in each calculation mentioned (3ch and 39ch), where
the number of CSFs used was different for each calculation
level (230 and 2642 CSFs, respectively). This ensures that we
avoid pseudoresonances from closed channels. Furthermore,
we maintain only CSFs of doublet multiplicity.

For the 3ch calculations, we tested different values of α,
corresponding to different widths of the Gaussian function
within W0. The values chosen were α = 1, 2, 4, and 8 a−2

0 .
Additionally, W0 was constructed linearly proportional to
the electronic probability density [ρ(r)]. The ρ(r) used was
obtained in the HF approximation (ground state) for all
the multichannel coupling calculations. Finally, the initial
iterative factor was set to ζ0 = 1 hartree, except for ρ(r) in
the 39ch calculation, where we used ζ0 = 0.1 hartree.

FIG. 1. Elastic, inelastic, total (OPTH), and electronic excitation integral cross sections for electron scattering by H2 molecules for the
cases without and with the NIP model inclusion.
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FIG. 2. Elastic, inelastic, absorption, and total (OPTH) integral
cross sections for electron scattering by H2 molecules for the cases
without and with the NIP model inclusion, for 39ch. We compare our
calculations with the theoretical work (MCCC) of Meltzer et al. [48]
and the experimental data of Srivastava et al. [51], Hoffman et al.
[54], Shyn and Sharp [52], and Muse et al. [53].

IV. RESULTS

A. Integral cross sections for 3ch calculations

Let us highlight the main features generated by the in-
clusion of the NIP. Figure 1 shows the results from the 3ch
calculations. The elastic integral cross section decreases as
the electron incident impact energy (E0) increases, mimicking
the flux competition between the elastic and inelastic chan-
nels. The results clearly show that the AICS (flux absorbed
by the sinkhole) is parametrized iteratively to reproduce the
BEB TICS. Looking at the electronic excitation channels, the
drop in the cross sections caused by the NIP is different for
the singlet and triplet transitions. This means that the NIP
also works in the inelastic channels since our model disputes
probability flux differently for each state. The TCS (OPTH)
is shown by completeness and carries the influence of the
NIP as well. Also, the OPTH cross sections show an inter-
esting behavior, since for α = 1 a−2

0 and ρ(r) the magnitude
of the cross sections increases according to the increase of
E0. This could be expected by including the ionization effects,
which also contribute to the total scattering. For the inelastic
channels, the change in the Gaussian width slightly modifies
the cross-section magnitudes. This challenged us to explain
the correct physical meaning of a given complex potential.
Our first attempt was to use the probability density ρ(r) as
the spatial part. We verified that the NIP behaves similarly
to a Gaussian distribution with diffuse exponents since the
elastic cross sections have magnitudes above those of the case
with α = 1 a−2

0 . The advantage of using ρ(r) is to remove the
arbitrariness in choosing the Gaussian width within the NIP.
Furthermore, the physical meaning of the NIP with ρ(r) as its
spatial part is that the flux probability is stolen from the region
where the electrons can be localized in the molecule. The

peak appearing in the curves around 17.5 eV is noticeable and
was investigated and classified as spurious caused by linear
dependence in the basis set. Moreover, the associated CSF is
|χm〉 = A|�LUMO

HOMO〉 ⊗ |φLUMO〉, where, in this case, |�LUMO
HOMO〉

is a singlet excited determinant generated from the HOMO-
LUMO excitation. We decided to maintain the basis set since
the main objective of this work is to evaluate the influence of
the NIP in the scattering dynamics.

B. Integral cross sections for 39ch calculations

The expected effects of the inclusion of NIP in the 3ch
calculation were detected, but the question is: does the same
occur when more energetically accessible channels are in-
cluded in the calculations? Once we know the effect of the
NIP, it is time to include the TCIS strategy to allow more
channels to be open, calling the combined strategy TCIS +
NIP. Figure 2 shows the results of ECS, INECS, AICS, and
TCS (OPTH) obtained with the 39ch calculation, compared
with the MCCC calculations of Meltzer et al. [48] and exper-
imental data available in the literature [51–55]. We take into
account all open channels energetically accessible above the
IP and the absorption due to the NIP to mimic the TICS of
the BEB model. Also, it is important to recall that we use the
probability density to force the flux absorption in the regions
most likely occupied by electrons. The agreement between our
results and experimental data for the elastic channel is good.
Our results underestimate the MCCC calculations in magni-
tude by approximately 17%, where these very sophisticated
calculations are in excellent agreement with the measurements
of Ref. [52]. It is worth mentioning that our goal is not to ob-
tain accurate cross sections for the hydrogen molecule; instead
of this we want to evaluate the influence of the NIP to mimic
the ionization effects. The INECS calculated with NIP under-
estimates the no NIP calculations, which is expected since
the sum of all electronic excitation cross sections is smaller
due to the probability of flux absorption. Regarding the TCS,
our results overestimate the measurement points. Again, it is
noticeable that our TCS with NIP has the correct behavior by
increasing the impact energy E0, which is the growth in mag-
nitude compared to the no NIP calculation. Figure 3 shows
the electronic excitation cross sections obtained with the 39ch
calculation, compared again with the MCCC calculations of
Meltzer et al. [48] and measurements available in the literature
[49,50,55,56]. The results reinforce the ideas discussed above
for the 3ch calculation. In addition, the effect of the NIP in
each electronic excitation channel shows that the flux proba-
bility sinkhole acts differently for each transition. Considering
the excitation to the first triplet excited state (X 1�g → b 3�u),
the cross sections are very close to the experiment, where
the inclusion of the NIP improves the comparison. For the
transition to the first singlet excited state (X 1�g → B 1�u), the
cross sections overestimate the experimental data up to 20 eV,
and again, the NIP brings our results towards the experimental
points. As the first singlet transition has a transition dipole
moment, for larger energies (above 20 eV), we expect that
our calculations underestimate the experimental data, since
the importance of this effect increases with E0. The other
electronic excitation channels overestimate the experimental
curves. These discrepancies can be attributed to the lack of
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FIG. 3. Electronic excitation integral cross sections for electron scattering by H2 molecules for the cases without and with the NIP model
inclusion, for 39ch. We compare our calculations with the theoretical work (MCCC) of Meltzer et al. [48] and the experimental data of Khakoo
and Segura [55], Wrkich et al. [49], Hargreaves et al. [50], and Zawadzki et al. [56].

long-range interactions (due to using L2 functions), which
are very important to the dipole-allowed transitions and can
unbalance the multichannel coupling.

C. Iterative factor ζn

Considering all the different widths of the Gaussian used
(α = 1, 2, 4, and 8 a−2

0 ) in the 3ch calculations (Fig. 1), we
observed a progressive decrease in the magnitude of the elastic

FIG. 4. Factor ζn as a function of impact electron energy E0 for
different NIP model spatial distributions. The α values correspond to
the 3ch calculations in Fig. 1.

FIG. 5. Elastic differential cross sections for electron scattering
by H2 molecules for the cases without and with the NIP model
inclusion, for 39ch. We compare our calculations with the theoretical
work (MCCC) of Meltzer et al. [48] and the experimental data of
Srivastava et al. [51], Shyn and Sharp [52], and Muse et al. [53].
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FIG. 6. Differential cross sections for the transition X 1�g −→
b 3�u of the electron scattering by H2 molecules for the cases with-
out and with the NIP model inclusion, for 39ch. We compare our
calculations with the theoretical work (MCCC) of Meltzer et al. [48]
and experimental data of Khakoo and Segura [55] and Zawadzki
et al. [56].

cross section with the increasing value of α. Figure 4 shows
different ζn values as a function of E0 and that the magnitude
of ζn increases with increasing values of α. This indicates that
for a given NIP, the adjustment of ζn is done to compensate for
the spatial part, which needs to steal the probability flow as per
the BEB model. The iterative factor involving ρ(r) has small
magnitudes compared to those of other spatial distributions,
implying that the spatial component of W0 predominantly
gives absorption in the BEB model quality. Furthermore, we
notice that the ζn values obtained for the 3ch and 39ch cal-
culations using ρ(r) as the spatial part of the NIP are very
close in magnitude. This indicates that we can use a small
open channel space calculation to obtain the iterative factor
and use it as a kickoff for a more sophisticated calculation.

D. Differential cross sections

A more direct comparison between our calculations
and the experimental results is possible via the DCSs,
avoiding the extrapolation for scattering angles (θ ) that the
experimentalists cannot access via measurements.

The DCSs for the elastic channel are shown in Fig. 5. In
general, our calculations have a reasonable agreement with the
experimental data available, where the accord is less apprecia-
ble in the intermediate angles range (between 30◦ and 120◦).

FIG. 7. Differential cross sections for the transition X 1�g −→
a 3�g of the electron scattering by H2 molecules for the cases with-
out and with the NIP model inclusion, for 39ch. We compare our
calculations with the theoretical work (MCCC) of Meltzer et al. [48]
and the experimental data of Wrkich et al. [49].

The MCCC calculations by Meltzer et al. [48] have a good
agreement with the measurements for small and intermediate
angles, while for large θ the agreement is not as good. The
influence of the NIP inclusion is noticeable by looking at the
E0 = 30 eV, where the agreement between our calculations
and the experimental points is improved. Also, the drop in
magnitude caused by the flux absorption is more evident in
the DCSs than in the ICSs (Fig. 2). These results also showed
that, although the NIP was parametrized through AICSs, it
displayed the correct physical behavior in the DCSs.

Regarding the electronic excitation for the triplet excited
states, we show the results in Figs. 6–8. Here some contro-
versies appear since for E0 = 20 eV the agreement of our
computed DCSs with the experimental data is exceptional
while at 30 eV (25 eV for the X 1�g → b 3�u transition), the
agreement between the MCCC calculations and the experi-
mental data is better than that with our SMC calculations.
These results highlight the importance of more theoretical
and experimental efforts to understand the correct nature of
electron-molecule scattering. Considering the inclusion of the
NIP in our calculations, the results indicate that the flux ab-
sorption is different for each electronic excitation transition,
which improves the comparison with the measurements.

Concerning the transition for the singlet excited states, the
results are shown in Figs. 9–11. For these electronic excita-
tion channels, we also observe the controversies raised in the
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FIG. 8. As in Fig. 6, but for the transition X 1�g −→ c 3�u.

FIG. 9. As in Fig. 6, but for the transition X 1�g −→ B 1�u.

FIG. 10. As in Fig. 6, but for the transition X 1�g −→ E (F ) 1�g.

FIG. 11. As in Fig. 6, but for the transition X 1�g −→ C1�u.
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previous paragraph. The long-range interactions, such as the
interaction between the incident electron electric field and the
dipole/transition dipole moment, characteristically influence
the scattering at low angles (<30◦). In this study, we have
not used any approach to correct this angular range. As a
consequence, the DCSs at small angles are poorly described
using the SMC method, while the MCCC calculation provided
results in better agreement with the experimental data. The
comparison between theory and experiment reinforces the
need for more studies of electron scattering by atoms and
molecules.

V. CONCLUSIONS

We presented a strategy to include the ionization effects via
a negative imaginary potential model called NIP, which was
implemented in the Schwinger multichannel method. This
general approach can be implemented in other ab initio and
model potential methods as well. We evaluated the influence
of the NIP for the electron scattering by H2 molecules up
to electron impact energies of 30 eV. The results presented
in this study show the effectiveness of the NIP in absorbing
flux probability as the TICS with BEB model quality. Note
that the BEB TICS is just a parameter, which can be replaced
for TICSs obtained from other more robust methods [57]
and even the experimental data. The expected behavior of
stealing probability flux can be seen through the drop in the
magnitude of the elastic cross section due to the inclusion
of the NIP, compared to calculations without the model.
Furthermore, the spatial shape of the NIP does not strongly
affect the cross sections of the electronic excitation channels.
It is important to notice that the maximum of the TICS for the
hydrogen molecule is around 70 eV (with σBEB ≈ 3.64 a2

0);
therefore, we expected that the drop in magnitude of the cross
sections up to 30 eV (at this energy, σBEB ≈ 2.48 a2

0) by the

inclusion of the NIP model to be moderated. Further studies
will be realized for larger molecules, which have the peak of
the TICS in lower energies (for example, benzene [58]) to
provide a more evident effect of flux probability absorption
by the NIP. In addition, we removed the spatial distribution
arbitrariness of the Gaussian function by including the
probability density as the NIP. Our calculations for the integral
cross sections were compared with the MCCC calculations
[48] and experimental data available in the literature [49–56].
The agreement is good for the elastic channel and the first
triplet excitation; in contrast, for the other channels, the
agreement is not as good. We also reported the DCSs for all
energetically allowed channels, highlighting the importance
of more theoretical investigations in electron-molecule
scattering since no one method has the absolute description
of the experimental data and more measurements are needed
to confirm this idea. We can then say that the role of the
NIP in the SMC method is being fulfilled since the expected
behavior (and also unexpected positive results) occurs.
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