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Non-Rydberg resonant states are a special type of resonant states with open-shell electronic configurations
that cannot be partitioned into a quasi-two-body system of a tightly coupled ion target and a loosely coupled
projectile electron as the case of Rydberg states, which is an important type of resonant processes in atomic
and molecular systems. Previous treatments of non-Rydberg resonances in the context of multichannel quantum
defect theory (MQDT) were to introduce these states as resonances in the smoothly varied MQDT parameters,
and the main merit of the MQDT method for Rydberg states would be lost. To reconcile the efficiency and
numerical accuracy for the calculation of non-Rydberg states, a nonperturbative calculation approach is proposed
in this paper. In this approach, the smooth-varying short-range scattering matrices are obtained by applying
the eigenchannel R-matrix method to the subsystem excluding the non-Rydberg states. Subsequently, the non-
Rydberg states are restored using the configuration-interaction formalism. The scattering matrices with resonant
structures can then be obtained directly using simple linear algebra operations. Since the ingredients of the
procedure are all smooth functions of energy, only a sparse energy grid is required for the time-consuming
ab initio calculations. This makes our method highly computationally efficient and can be considered as an
extension of the traditional MQDT. To demonstrate the efficacy of our method, the resonant e + O+ collisional
complex in the 1− partial wave is calculated. In addition, we demonstrate that the numerical accuracy of the
scattering matrices is significantly affected by the non-Rydberg states.

DOI: 10.1103/PhysRevA.110.022806

I. INTRODUCTION

Atomic and molecular energy levels and the correspond-
ing collision processes are essential physical parameters for
plasma studies ranging from astrophysical plasmas [1–6]
to those in fusion energy research [7–12]. However, it is
extremely challenging to compile such atomic data by ex-
perimental measurements alone, so high-precision theoretical
computations are indispensable to meet these needs.

Of particular interest are the resonant processes, such as
autoionization [13–16], dielectronic recombination [17], and
dissociative recombination [18–20]. These mechanics play a
crucial role in determining the charge state equilibration, the
energy-level populations, and thus the radiative spectrum of
nonequilibrium plasmas [12,21]. These resonant processes
can be viewed as the result of discrete levels interacting
with collisional continua, known as the Fano-Feshbach res-
onance [13,22–24]. Nonperturbative solutions of the problem
have been given, based on the multichannel scattering theory,
for cases with complexity ranging from the simplest one-
discrete–one-channel to general multidiscrete-multichannel
cases [13,22–27]. Several numerical approaches have been de-
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veloped for accurate calculations, such as the close-coupling
method [28–35] and the K-matrix method based on the
Lippmann-Schwinger equation [36–43].

The direct use of such methods in practical calculations
would face efficiency problems, especially for energy ranges
with dense autoionization resonances, since the resonant be-
havior requires calculations on fine energy grids. However,
due to the analytic continuation of the scattering matrices,
the bound states share an intimate relationship with electron-
ion collision processes in the multichannel quantum defect
theory (MQDT) [44–50]. Based on the MQDT, the complex
multichannel interactions within the reaction zone are repre-
sented by the short-range scattering matrices (i.e., Uiα and μα

physical parameters in the eigenchannel representation of the
MQDT), which vary smoothly with energy. Various physical
quantities, including those for resonant processes, can be de-
rived using the MQDT procedure [44–50]. Therefore, instead
of calculating with fine energy grids, one only needs to obtain
short-range scattering matrices on a few energy grids over
the energy regions of interest, either by empirically fitting the
experimental spectroscopy data or by numerical calculations,
which is a unique merit of this method. In this line, we have
developed the R-eigen code (an eigenchannel version based
on the nonrelativistic R-matrix method) and the R-R-eigen
code (an eigenchannel version based on the relativistic R-
matrix method) [51–58] from the earlier Breit-Pauli [59,60]
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and Dirac R-matrix codes [61–63], respectively, to directly
calculate the short-range scattering matrices in both discrete
and continuum energy regions. They have been successfully
applied to the treatment of many atomic processes, such
as electron impact excitations [51,52,56], photoionizations
[53,54,57], as well as the complex autoionization resonant
structures involving multiple thresholds [57,58]. A special
feature of our method is that one can easily check and calibrate
the accuracy of the scattering matrices using the available
spectroscopic data [64], which in turn can determine the
collisional calculation uncertainty [52] and improve the cal-
culation accuracy [57].

However, due to the strong intrashell interactions, a special
kind of resonant states with open-shell electronic configura-
tions cannot be partitioned into a quasi-two-body system of
a closely coupled ion target and a loosely coupled projectile
electron, which is routinely done for Rydberg states. This
essential difference makes these so-called interloping states
[65] or valence states [66] behave very differently from reg-
ular Rydberg states in the channel and makes them difficult
to describe in the traditional MQDT framework [50,65,66].
Previous treatments of such non-Rydberg resonances in the
context of MQDT have been to perturbatively introduce these
states into the MQDT parameters. As a result, the smoothly
varying MQDT parameters become resonant, and the main
advantage of the MQDT method is lost.

In this paper, we propose a nonperturbative approach to
this kind of problem in the framework of MQDT. We treat
this problem by first performing an eigenchannel R-matrix
calculation of the system excluding the non-Rydberg resonant
configurations to obtain smooth scattering matrix parame-
ters on coarse energy grids. Then the non-Rydberg resonant
states are restored to obtain the resonant MQDT parameters
using the configuration-interaction technique similar to Fano
and Feshbach [13,22–26]. Since the calculation involves only
simple linear algebra operations of low-dimensional matrices,
our approach takes no more significant time than solving the
usual MQDT equations. Rich physical phenomena can be
studied by solving the MQDT equation with the calculated
scattering matrices, such as energy levels and autoionization
resonances of the entire channel, as well as cross sections and
rates of dynamics including photoexcitation, collisional ex-
citation, dielectronic recombination, etc. In this respect, our
method can be seen as an extension of the traditional MQDT.
With the smooth-varying configuration interactions between
the eigenchannels and the non-Rydberg states introduced, one
can obtain all physical states including the non-Rydberg states
from smooth functions of energy on a few energy grids, thus
greatly saving the computational time.

For the neutral atomic oxygen system of interest here,
whether it is in a bound state or an e + O+ collisional
complex, it serves not only as a prototypical system in inves-
tigating the electronic correlations but also as an important
subject of study in fields such as astrophysics [1,2] and
environmental science [67,68]. The ratio between the two
transitions 2Do

5/2,3/2 → 4So
3/2 for ground state O+ is a key

quantity used to diagnose the electron densities in planetary
nebulas [1,2]. In the low electron density limit, the two cor-
responding line intensities of interest are related to electronic
collisional excitation cross sections, which shows significant

discrepancies among different theoretical approaches [3–5].
The difficulty lies in the fact that a vast amount of dense reso-
nant structures across multiple thresholds will be encountered
in the calculations in addition to the possible presence of non-
Rydberg resonant states. In this paper, we will demonstrate
that the precision of the scattering matrix is strongly affected
by non-Rydberg resonant states, thus providing valuable in-
sights into the origin of the persistent inaccuracy in previous
calculations.

The paper is organized as follows: in Sec. II, a brief
description of the theory is given, including the R-R-eigen
method, the theoretical treatment of non-Rydberg resonant
states, and the MQDT theory. Section III presents the re-
sults and discussion of the present calculation. The calculated
MQDT parameters, the MQDT analysis of spectroscopic phe-
nomena, and influences of the non-Rydberg resonant states on
the coupled eigenchannels are discussed in Secs. III A–III C,
respectively. Finally, concluding remarks on the present paper
are given in Sec. IV.

II. THEORETICAL METHOD

A. Relativistic eigenchannel R-matrix method

To introduce the nonperturbative approach for the non-
Rydberg resonant states within the MQDT framework based
on the relativistic eigenchannel R-matrix method (R-R-eigen),
a brief review of R-R-eigen is in order; for further details,
the readers can refer to our previous works [51–53,55]. The
excited structure and electronic scattering of atoms can be
treated in a unified manner as an (N+1) problem in the half-
collision picture [44,49], where the N+1-electron complex is
partitioned into a target consisting of N closely coupled elec-
trons and one scattering or excited electron. All (N+1) wave
functions belonging to the same target-electron angular cou-
pling type form a channel. Physical states in a symmetry block
(total angular momentum and parity, i.e., Jπ ) are then de-
scribed by the combination of various coherent channels. The
interaction between the excited electron and the target ion can
be treated accurately by the R-R-eigen method [51–53,55],
which is based on the Dirac R-matrix code [61–63]. The major
difference between the R-R-eigen method [51–53,55] and the
traditional R-matrix method [33,34,60] lies in the definition of
channels. Additional relevant closed channels together with
the so-called open channels in the traditional R matrix are
regrouped as physical channels (ionization channel). More
specifically, the physical channels are those channels with
orbital energy, ε > −q2/l2 (where q and l are the charge of
a long-range potential and the angular momentum, respec-
tively). The rest of the channels (with deep negative energy)
are defined as computational channels, as counterparts to the
“closed channels” in the traditional R matrix. These are in-
cluded to ensure adequate electron correlations. This allows us
to extend the definition and calculation of the scattering matrix
into the bound energy region, and to unify the spectroscopic
phenomena in the bound energy region and scattering phe-
nomena in the continuum region from first principles. The key
physical parameters in the MQDT framework [44,45,48–50]
can be obtained by diagonalizing the short-range scattering
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FIG. 1. Configuration-interaction terms between pure-continuum eigenchannel wave functions and two different non-Rydberg configura-
tions 2s2p1/22p4

3/2 and 2s2p2
1/22p3

3/2 respectively.

matrices:

K̃Jπ

i j =
∑

α

Uiα tan(πμα )Ujα, (1)

where μα are the eigenquantum defects and Uiα is the orthog-
onal transformation matrix. The corresponding eigenchannel
wave functions �α can also be calculated using the eigenchan-
nel R-matrix method [51–53,55]. In general, the eigenchannel
scattering matrix parameters Uiα and μα are functions that
vary slowly with energy. However, non-Rydberg resonances
occur in the presence of open-shell electronic configurations,
causing Uiα and μα to change rapidly with energy and lose the
advantages of the eigenchannel method.

B. Treatment of non-Rydberg resonant states
within the eigenchannel R-matrix method

The treatment of non-Rydberg resonant states within the
eigenchannel R-matrix method proceeds in two steps. First,
the eigenchannel wave functions without the non-Rydberg
resonant states are denoted as pure-continuum type. Outside
the reaction zone (r > r0), these wavefunctions in terms of
the unperturbed scattering matrix parameters {U 0

iα, μ0
α} reads

�0
αε =

∑
i

�iU
0
iα

(
fi cos πμ0

α − gi sin πμ0
α

)
, (2)

with �i the ionization channel function. Then the interac-
tion with non-Rydberg resonant states is introduced using
configuration-interaction formulations, similar to the proce-
dures used by Fano and others [13,25,26], and formulated as
below: 〈

�0
αε′

∣∣ Ĥ
∣∣�0

βε

〉 = εδ(ε − ε′)δαβ, (3a)〈
�0

m| Ĥ
∣∣�0

n

〉 = H0
mn, (3b)〈

�0
αε

∣∣ Ĥ |�0
n

〉 = Vαε,n, (3c)

where the wave functions �0
αε and �0

n are pure-continuum
eigenchannel and non-Rydberg resonant state wave functions,
forming an orthogonal set:〈

�0
m|�0

n

〉 = δmn,〈
�0

m|�0
αε

〉 = 0. (3d)

H0
mn and Vαε,n are the zeroth-order Hamiltonian matrix ele-

ments between the non-Rydberg resonant states (without per-
turbation from the continua) and the configuration-interaction
terms between the pure-continuum eigenchannel and the
non-Rydberg resonant state wave functions, respectively. It
is worth noting that the zeroth-order non-Rydberg resonant
states shown in Eq. (3b) are not prediagonalized as done
in Refs. [13,25]. The Vαε,n is a smooth function of energy;
this is the foundation of our approach to solving the prob-
lem in sparse energy grids. An illustrative example of the
configuration-interaction terms is shown in Fig. 1, where
two non-Rydberg resonant states are present in the O sys-
tem with Jπ = 1−, i.e., 2s2p2

1/22p3
3/2 at around 0.45 Ry and

2s2p1/22p4
3/2 at around 1.1 Ry respectively. Further details

such as the designation of the channel will be introduced later
in this subsection, as they are not critical for the discussion
here.

The physical state at a given energy E can then be ex-
pressed as a linear combination of the pure-continuum basis
and the non-Rydberg resonance states in Eq. (3d):

�(E , i) =
∑

n

An(E , i)�0
n +

∑
α

∫
εc

Bαε(E , i)�0
αεdε, (4)

where the integral
∫
εc

runs over the entire allowed energy

range, i.e., from the lower limit for the eigenchannel Ii − q2

l2

to infinity, with I the ionization threshold and i indexes the
ionization channel. Applying the unperturbed bound and con-
tinuum wave functions 〈�0

m| and 〈�0
αε| to the left of the
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Schrödinger equation Ĥ |�(E , i)〉 = E |�(E , i)〉, we get a
coupled integral equation set of the expansion coefficients
An(E , i) and Bαε(E , i):∑

n

An(E , i)H0
mn +

∑
α

∫
εc

Bαε(E , i)Vm,αεdε = EAm(E , i),

(5a)∑
n

An(E , i)Vαε,n + εBαε(E , i) = EBαε(E , i).

(5b)

This set of equations can be solved directly by the elimination
method [13,25,26]. The trick is to apply the principal value to
Eq. (5b):

Bαε(E , i) = P
∑
n

An(E , i)Vαε,n

E − ε
+ Zα (E , i)δ(E − ε) (6)

where P indicates that the principal value should be taken
when being inserted into the integral of Eq. (5a), and
Zα (E , i) is a prefactor to be determined by matching
the boundary condition. To simplify the discussion,
compact matrix expressions are introduced and denoted
by bold font, e.g., A(E , i) ≡ (. . . , An(E , i), ..)T , B(E , i) ≡
(. . . , Bαε(E , i), . . .)T , Z(E , i) ≡ (. . . , Zα (E , i), . . .)T , and
V (ε) ≡ (. . . ,Vαε,n, . . .). In the matrix notations, Eq. (6) reads
B(E , i) = PV (ε)A(E ,i)

E−ε
+ Z(E , i)δ(E − ε). Inserting Eq. (6)

into Eq. (5a), we get a closed expression [with only free
prefactors Z(E , i)] for A(E , i):

A(E , i) = (H0 + F(E ) − E1)−1[−V T (E )Z(E , i)] (7)

where 1 is the unit matrix, and F(E ) = P ∫
εc

dεV T (ε)V (ε)
E−ε

is
called the residual term, with the integral region being the
same as in Eqs. (4) and (5). The first two terms in the de-
nominator together can simply be considered as an effective
Hamiltonian Hb = H0 + F for the non-Rydberg states after
projecting out the continuum configurations [22,23,69]. The
matrix elements are

Hb
mn = H0

mn + Fmn, (8)

Fmn = P
∑

α

∫
ε

dε
Vm,αεVαε,n

E − ε
. (9)

Diagonalizing the effective Hamiltonian Hb leads to a new
shifted basis function for the non-Rydberg resonant states:

Hb = GT eG, (10)

where GT G = 1, and e the diagonal matrix with its elements
the eigenvalues of Hb. In this new basis, the coefficient solu-
tions can be reformatted into a nicer form:

A(E , i) = G(E1 − e)−1ṽT (E )Z(E , i), (11a)

B(E , i) = Pκ(ε, E )Z(E , i)

π (E − ε)
+ Z(E , i)δ(E − ε) (11b)

where ṽ and κ(E , ε) abbreviate the following expression:

ṽ ≡ V G =
∑

k

Vα,k (E )Gk,m, (12a)

κ(ε, E ) ≡ π ṽ(ε)(E1 − e)−1ṽ(E )T

= π
∑

m

∑
n

Vαε,nGn,m · ∑
k

Gk,mVk,βE

E − em
, (12b)

and em is the element of e.
The physical state wave function for the complete system

including the non-Rydberg states can be obtained by directly
inserting Eqs. (11) and (2) into Eq. (4). The reaction matrix
K is directly related to the behavior of wave functions in the
asymptotic limit (i.e., r → ∞), where the constituent func-
tion �0

n for the bound states in the first summation vanishes,
and the regular and irregular Coulomb functions f and g
approximate

√
2/πk sin (kr + θ ) and −√

2/πk cos (kr + θ )
respectively (θ being the Coulomb phase shift) [50,70].
The first part of the B coefficient is related to the so-
called Hilbert transform, i.e., H[ f (E )] = 1

π
P

∫ f (E )dε

E−ε
, of the

the asymptotic expression of Coulomb wave-function pairs
[71], 1

π
P

∫
εc

f (r,ε)
E−ε

dε = g(r, E ) as well as 1
π
P

∫
εc

g(r,ε)
E−ε

dε =
− f (r, E )(for r → ∞). With these ingredients, the asymptotic
wave function of the physical state now reads

�(E , i)
r→∞−−−→ ZT (E ){κT (E , E )(gU0 cos πμ0

+ fU0 sin πμ0)T

+ ( fU0 cos πμ0 − gU0 sin πμ0)T }� (13a)

= ZT (E ){ f [U0 sin πμ0κ(E , E ) + U0 cos πμ0]

− g[U0 sin πμ0 − U0 cos πμ0κ(E , E )]}T �

(13b)

≡ [( f X − gY )Z(E )]T �, (13c)

where Eq. (13b) is simply the regrouping of the expression
into f and g terms, respectively. By comparison with the
definition of the reaction matrix [44,49,50,55], i.e., �(E , i) ∝∑

i′ �i fi(r)δii′ − �i′g′
i(r)Kii′ (r > r0), the perturbed K matrix

is easily obtained by taking out the prefactor matrix X associ-
ated with the f terms in Eq. (13):

�(E , i)
r→∞−−−→ [( f − gY X−1)XZ(E )]T �, (14)

K = Y X−1

= [U0 sin πμ0 − U0 cos πμ0κ(E , E )]

× [U0 cos πμ0 + U0 sin πμ0κ(E , E )]−1. (15)

Finally, the scattering matrix parameters {Uiα , μα} of the
full system, which changes rapidly with energy (indicating
the presence of resonances), can be obtained by diagonalizing
the K matrices. These K matrices are easily constructed from
smooth functions of energy, �0

αε, U 0
iα , πμ0

α , and Vαε,n using
basic algebraic operations. Therefore, rich physical quantities,
such as the energy levels as well as cross sections of photoab-
sorption, collisional excitation, dielectronic recombination,
etc., can then be accurately calculated by solving the MQDT
equations [44,49,50,55,57].

The effectiveness and correctness of the nonperturba-
tive approach are demonstrated by comparing the calculated
scattering matrix parameters with those obtained from full
R-R-eigen calculations for the e + O+ system with symmetry
block Jπ = 1− as an example in Fig. 2. In the energy
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FIG. 2. Quantum defects for an atomic oxygen system with non-Rydberg resonances in different treatments. (a) Pure-continuum type
eigenchannel quantum defects (EQDs) μ0

α obtained from R-R-eigen calculation. (b) EQD obtained with our approach but taking the residual
interaction term Fmn out of Eq. (7) to demonstrate its effect. (c) EQD obtained from full R-R-eigen calculations. (d) EQD obtained in the
approach with the Fmn term. The shifts (�1 = −0.16 and �2 = −0.15 Ry for 2s2p2

1/22p3
3/2 and 2s2p1

1/22p4
3/2, respectively) of the resonant

structures due to the terms Fmn are indicated by the dashed lines.

range of interest, 14 ionization channels (JJ notation) and
the corresponding eigenchannels (LS notation) are relevant.
Their detailed designation can be found in Table I. The
pure-continuum eigenchannel quantum defects (EQDs) μ0

α

shown in Fig. 2(a) vary smoothly with energy, whereas two
resonances appear in (c) for the EQD μα obtained from
the full R-R-eigen calculations with two non-Rydberg states
2s2p2

1/22p3
3/2 at around 0.45 Ry and 2s2p1/22p4

3/2 at around
1.1 Ry respectively. The EQD obtained from the nonper-
turbative approach shown in (d) reproduces the R-R-eigen
calculations very well with less computational effort. To
demonstrate the effect of the residual interaction Fmn induced
by the coupling of the non-Rydberg states with eigenchannels,
the term Fmn in the denominator in Eq. (8) is removed. As a
result, the two resonances in the calculated EQD shown in
(b) are blueshifted with respect to the true EQD calculated
by following the original recipe. Note that since the residual
interaction Fmn shows near-constant dependence of energy, it
can be approximated as a constant in the practical calculation,
which can further improve the computational efficiency. This

verifies the effectiveness of treating the non-Rydberg resonant
states in our analytical nonperturbative approach.

C. Multichannel quantum defect theory

To demonstrate the calculation for the physical states after
obtaining the MQDT parameters, we start with the eigenchan-
nel wave function �Jπ

α , which can be calculated variationally
within the reaction zone (r � r0). Outside the reaction zone
(r � r0) it can be rigorously expressed as [44–48,50]

�Jπ
α =

N∑
i=1

�iUiα ( fi cos πμα − gi sin πμα ), r � r0 (16)

where fi and gi are the regular and irregular Coulomb func-
tions, respectively, and �i is the channel wave function. The
energy eigen wavefunction �Jπ (E ) can be described as a
linear combination of the eigenchannel wave functions:

�Jπ (E ) =
∑

α

Aα (E )�Jπ
α (E ), (17)

TABLE I. The physical channels (ionization channel) and corresponding eigenchannels for O with Jπ = 1−.

Parameter Value

Index 1 2 3 4 5 6 7
Ionization channels 4S3/2s1/2

4S3/2d3/2
4S3/2d5/2

2D3/2s1/2
2P3/2s1/2

2P1/2s1/2
2D5/2d3/2

Eigenchannels 4Ss 3S 4Sd 5D 4Sd 3D 2Ds 3D 2Ps 1P 2Ps 3P 2Dd 3P

Index 8 9 10 11 12 13 14
Ionization channels 2D5/2d5/2

2D3/2d3/2
2D3/2d5/2

2D5/2g7/2
2P3/2d3/2

2P3/2d5/2
2P1/2d3/2

Eigenchannels 2Dd 1P 2Dd 3D 2Dd 3S 2Dg 3D 2Pd 3D 2Pd 1P 2Pd3P
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FIG. 3. MQDT parameters (scattering matrices) for the e + O+ system with Jπ = 1− in both discrete and autoionization energy regions
[−0.31 � E (in Ry) < 0.85] across five thresholds (blue shaded lines). (a) Eigenchannel quantum defects μα . (b) Euler-type angles θi j

representing the transformation matrix Uiα . The highlighted curves demonstrate the strong interchannel interactions. The calculation is divided
into four energy regions, each region labeled with the number of physical channels, i.e., 1ch, 6ch, 10ch, and 14ch.

where Aα is the mixing coefficient to be determined by asymp-
totic boundary conditions [44–48,50] in the MQDT method.
The nontrivial solution of the MQDT equations leads to a
determinant equation:

F ({νi}, {μα,Ui,α}) = det [Uiα sin π (νi + μα )] = 0 (18)

with the effective principal quantum numbers νi defined by
the energy relations

E = Ii − q2

ν2
i

, (19)

where Ii is the corresponding threshold (in Ry) and q is the
charge of the target.

Then, all discrete energy levels and autoionization res-
onances in the entire channel can be systematically ob-
tained using the semianalytical JHANGZ [namely projected
high-dimensional quantum-defect graph (symmetrized)] plot
method [57] for solving MQDT equations with multithresh-
old. This graphical method facilitates the direct comparison
of theoretical energy levels and resonances with available
precision spectroscopic measurement data [64]. On the other
hand, we can easily determine the precision of scattering cal-
culations systematically based on the analytical continuation
property of the short-range scattering matrix.

III. APPLICATION TO THE OXYGEN SYSTEM

A. Short-range scattering matrix parameters

Our nonperturbative approach is applied to study both
spectroscopy and the scattering phenomena in the oxygen sys-
tem with symmetry block Jπ = 1−, where two non-Rydberg
states are present. Moreover, we reveal the relationship be-
tween the numerical accuracy of the eigenchannels and the
non-Rydberg states by designing a series of calculation mod-
els of successively increasing complexity and measuring the

numerical accuracy of each channel accordingly. Specifically,
ten calculation models are constructed by considering differ-
ent degrees of electronic correlations in the target states and by
including different numbers of target states. The target states
are optimized layer by layer using our developed quasicom-
plete basis sets (QCBS) scheme [72–74]; the details can be
found in the Appendix. In the energy range of interest, 14
eigenchannels listed in Table I are relevant; as will be shown
in the next subsection, the calculated short-range scattering
matrix parameters in model 6 are found to agree the best with
spectroscopic observations. The corresponding EQD μα and
Euler-type angles θi j , representing the transformation matrix
Uiα , are shown in Figs. 3(a) and 3(b), respectively. It can
be seen that the scattering parameters vary smoothly over
the energy range across the five target ionization thresholds,
indicated by the blue shade lines. Due to the analytical prop-
erty of the short-range scattering matrix, the scattering matrix
parameters smoothly interface into higher-energy regions with
a larger number of physical channels [51–53,55,56]. The reso-
nances appear mainly in the 10ch and 14ch energy regions for
the eigenchannels (2Ps) 3P and (2Ps) 1P, due to perturbations
by non-Rydberg resonant states 2s2p5 3P and 1P, respectively.

B. MQDT analysis of spectroscopic phenomena

To obtain the physical states directly, and to gauge the
numerical accuracy against the precise experimental spec-
troscopic levels, we use the MQDT procedure to project
the high-dimensional scattering matrix parameters onto two-
dimensional plots with the JHANGZ graphical method [75].
The JHANGZ plot for the energy regions with one, six,
and ten channels [−0.31 � E (in Ry) < 0.220, correspond-
ing to 1.3 � ν2D5/2

< 6.4] is presented in Fig. 4. We chose an
appropriate two-dimensional plot with ν2D5/2

versus −ν4S3/2
,

because we focus on the two strongly perturbed Rydberg
series, 4S3/2 nd and 2D5/2 nd . As a result, the energy relation

022806-6



SPECTROSCOPY AND SCATTERING: AN EXTENDED … PHYSICAL REVIEW A 110, 022806 (2024)

FIG. 4. MQDT analysis for the e + O+ system in the energy range of −0.31 � E (in Ry) < 0.220 (i.e. 1.3 � ν2D5/2
< 6.4). Three

horizontal lines with quasiperiodic resonant structures are the effective eigenphase shifts obtained from the MQDT Eq. (18). Gray line segments
denote the energy relation Eq. (19) between ν2D5/2

and −ν4S3/2
. Theoretical energy levels and autoionization resonances denoted by the small

dots show excellent agreement with spectroscopic observations marked as larger hollow symbols. The red star denotes the non-Rydberg
resonance state 2s2p5 3P.

between the thresholds 4S3/2 and 2D5/2. i.e., I2D5/2
−

q2/ν2
2D5/2

= I4S3/2
− q2/ν2

4S3/2
from Eq. (19), is shown as a se-

ries of gray line segments converging to 4S3/2, represented
as a brown dashed line. Auxiliary abscissas associated with
the fourth threshold ν2P3/2

are also plotted to help character-
ize the corresponding Rydberg series associated with the 2P
target states. Three horizontal lines with quasiperiodic steep
resonance structures are the solution of the MQDT Eq. (18).
The black, red, and green curves represent three effective
eigenchannels (collisional eigenchannels [45,48]) associated
with the first ionization threshold, i.e., 4Ss (3S1), 4Sd (5D1),
and 4Sd (3D1), respectively. The color of the resonances
encodes their major eigenchannel contribution based on the
wave-function analysis of Aα in Eq. (17). The cross points
between the gray energy relation curves and the colored
eigenphase shifts marked by small full dots are the theo-
retical energy levels. As for the autoionization resonances,
their energy positions (νr , τ r

ρ) are defined as the maxima
of the energy derivatives of the eigenphase shift [58], i.e.,
π

dτρ

dE |max = π (ν3 dτρ

dν
)|νr . The available precise experimental

spectroscopic observations [64] are denoted by larger hollow
symbols for benchmark comparison. Among them, the non-
Rydberg resonant state 2s2p5 3P is denoted as a pink star. As
is shown clearly, all bound states as well as autoionizations,
including the non-Rydberg resonance, show excellent agree-
ment with the experimental data. All autoionization states
in the 14-channel energy regions are also obtained, but for
brevity their JHANGZ analysis is omitted here and they are
used only to evaluate the accuracies of the scattering matrices
in the next subsection.

C. Influences of the non-Rydberg resonant states
on the coupled eigenchannels

With the nonperturbative approach as an extension of
MQDT, we can study the influence of the non-Rydberg states
on the overall calculation accuracy. We define the scattering

matrix inaccuracy as the absolute value of the shift of the EQD
that minimizes the overall discrepancy between the theoretical
and experimental energy levels as well as the autoionization
resonances [64]:

Sacc = ∣∣μexp
α − μtheo

α

∣∣. (20)

The acceptance value of the optimization procedure is set
to the experimental measurement uncertainty, approximately
±2 cm−1 [76].

The evaluated inaccuracies of the scattering matrices, Sacc,
for eigenchannels strongly perturbed and unperturbed by the
non-Rydberg states are shown separately in Fig. 5 to illustrate
the influence of the non-Rydberg states on the overall nu-
merical accuracy of the neutral oxygen system with Jπ = 1−.
Ten calculation models with increasing complexity indicated
by the model index are included in the paper. It can be seen
that Sacc does not decrease monotonously with the increasing
model complexity. In addition, the result shown in subfigures
(b) and (c) lying energetically closer to the two non-Rydberg
resonant states shows much bigger inaccuracies than the in-
accuracy for the same channels in the 6ch region. However,
the unperturbed channels behave more or less identically for
all three energy regions. Therefore, we show only the 14ch
as an example. These behaviors suggest that the non-Rydberg
resonant states have a significant influence on the numerical
accuracy of the perturbed channels.

To further investigate the influence of non-Rydberg states
on the overall computational inaccuracy, we need to introduce
an intuitive evaluation scheme for the numerical inaccuracy
of both the non-Rydberg states and the eigenchannel states.
The overall numerical inaccuracy Stot

acc for the eigenchannel
states is simply defined by averaging over the channels with
the number of experimentally observed spectroscopy states in
each channel as the statistical weights. The overall numerical
inaccuracy Stot

acc is evaluated for each of the ten calculation
models and is shown in Fig. 6(a). The numerical inaccuracy
for the non-Rydberg states is defined by the deviation of the
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FIG. 5. The inaccuracies of the scattering matrices Sacc for the ten calculation models. The calculation inaccuracy is found strongly related
to the coupling strength with the non-Rydberg resonant states. (a)–(c) The eigenchannels strongly perturbed by non-Rydberg states in the 6ch,
10ch, and 14ch regions. (d) Unperturbed channels in the 14ch region.

theoretical energy position of the non-Rydberg states Etheo

from the experimental values Eexp [64,77]. The inaccuracy is
further averaged over the singlet 1P and triplet 3P states:

Qnon = 1
2

(∣∣E 3P
theo − E

3P
exp

∣∣ + ∣∣E 1P
theo − E

1P
exp

∣∣). (21)

The evaluated inaccuracies for the ten calculation models are
shown in Fig. 6(b). The inaccuracy of both Rydberg and
non-Rydberg states does not show a monotonically decreasing

FIG. 6. Calculation inaccuracy for (a) overall inaccuracies of the
scattering matrices Stot

acc, evaluated by a weighted-averaging algorithm
for all the channels, and (b) the averaged energy position of the two
non-Rydberg resonant states 2s2p5 3P1 and 1P1.

trend with increasing model complexity, as indicated by the
model indices. Instead, the most reliable results are obtained
with model 6, where the optimal balance between the pre-
cision of the non-Rydberg resonant states and the overall
accuracy of the normal Rydberg-type states is obtained. In
summary, this demonstrates the importance of the treatment
of non-Rydberg states within atomic systems, which not only
affect the quality of their energy positions but also propagate
their inaccuracies to other normal Rydberg states due to strong
electronic correlations.

IV. CONCLUSION

In this paper, we proposed an efficient nonperturbative
approach to treat the non-Rydberg states in the framework
of MQDT, which can be considered as an extension of the
MQDT method. Our approach consists of two steps. First,
we calculate the scattering matrices excluding the bound-
type configurations by the relativistic eigenchannel R-matrix
method (R-R-eigen) on sparse energy grids. The scatter-
ing matrices are smooth functions of the energy. Second,
the scattering matrix for the whole system is obtained by
restoring the configuration interactions of the previously
omitted bound-type configurations with the calculated pure-
continuum-type eigenchannels in Eq. (14), which is similar
to Fano’s configuration-interaction procedure [13,22–26]. For
details of the theoretical derivation, see Sec. II. In the present
approach, only low-dimensional matrix operations are in-
volved without repeatedly calculating the R matrix for dense
energies. This feature makes our approach highly efficient
and flexible for the calculation of the structure and scattering
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TABLE II. Six levels of QCBSs for the ionic target states and corresponding ten R-R-eigen calculation models defined by the number of
target states.

Basis set index

Parameter I II III IV V VI

Configurationsa 2s22p3 2s22p3 2s22p3 [2s22p3 − 3̃s3̃p]S, D [2s22p3 − 3̃l]S, D [2s22p3 − 3̃l 4̃l]S, D

[2s12p4]S, D [2s12p4]S, D [2s12p4 − 3̃s3̃p]S, D [2s12p4 − 3̃l]S, D [2s12p4 − 3̃l 4̃l]S, D

[2p5]S, D [2s22p23s − 3̃s3̃p]S, D [2s22p23s − 3̃l]S, D [2s22p23s − 3̃l 4̃l]S, D

Number of targetsb 5 13 15 15 46 57 15 46 15 46
Index of models 1 2 3 4 5 6 7 8 9 10

aConfiguration space for each QCBS: nl , principal and angular quantum numbers for spectroscopic orbitals; ñl , principal and angular quantum
numbers for the extended pseudo-orbitals; S, single-electron excitation; D, double-electron excitation.
bThe total number of physical and computational targets considered in the R-R-eigen calculation, where the first five target states
{4S3/2,

2D5/2,3/2,
2P3/2,1/2} of the ground-state configuration 2s22p3for O+ are the physical targets.

processes including non-Rydberg resonant states. In addition,
our approach allows us to check and calibrate all bound states
and autoionization resonances, including the non-Rydberg
ones, against the spectroscopic measurements in a unified
manner using the semianalytical graphical MQDT proce-
dures, namely the JHANGZ plot [57].

Our method is applied to the calculation of the challeng-
ing electron collision with singly charged oxygen ion (e +
O+) problem for the symmetry block Jπ = 1−, where two
non-Rydberg states (3Po

1 and 1Po
1) are present for the 2s12p5

configuration. With the bound-continuum interaction matri-
ces and pure-continuum eigenchannel MQDT parameters, the
eigenchannel scattering matrix including the non-Rydberg
resonances is obtained and shown in Fig. 3. By applying the
graphical solution of the MQDT equations of the scattering
matrices, the bound and autoionization states are all obtained
in Fig. 4, which shows excellent agreement with existing
spectroscopic measurements.

With this efficient method, we can further analyze the
influence of the non-Rydberg resonances on the accuracy of
the calculations in Sec. III C. We show that the non-Rydberg
states are the main reason for the puzzling accuracy dilemma
in the atomic oxygen system, where the higher computational
effort would not promise better agreement with experimental
observations. Figure 5 shows that the channels strongly cou-
pled to the non-Rydberg states are more prone to be plagued
by the less accurate non-Rydberg states. The propagation of
inaccuracy manifests itself in such a way that simply in-
creasing the computational targets for these channels would
not improve their accuracy. Instead, it is found that the best
agreement with the experiment is achieved by a medium-
scale calculation that optimally balances the precision of
the non-Rydberg resonant states with that of the Rydberg
states.

In summary, we have developed a nonperturbative ap-
proach for the efficient calculation of the non-Rydberg states
in the MQDT framework. In combination with the proposed
estimation of calculation inaccuracy, we can calibrate and
improve the calculation with the presence of non-Rydberg
states against the existing experimental spectroscopic mea-
surements. This method will provide highly accurate atomic
oxygen oscillator strength data, including the non-Rydberg

states, to solve the problem of diagnosing the electron density
in astro-objects.
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APPENDIX

In the present paper, the atomic orbitals (AOs) for the target
states are calculated using the quasicomplete basis scheme
(QCBS) extended layer by layer using multiconfiguration self-
consistent field (MCSCF) methods [2,72–74,78], using our
extended GRASP-JT program based on GRASP-2K code [79].
Details of the calculation schemes for the QCBS of the tar-
get (O+ ion) are listed in Table II. In QCBS I, all AOs of
the ground-state configuration 2s22p3are obtained as spec-
troscopic orbitals. For QCBS II and III, we choose {2s22p3,
2s12p4} and {2s22p3, 2s12p4, 2p5} as reference configurations
to extend the configuration state functions and to optimize all
levels by the extended optimal level in the MCSCF calcula-
tion, respectively.

To account for adequate electronic correlations, more and
more AOs are included in QCBS IV, V, and VI, in addition
to the fixed wave functions for spectroscopic orbitals {1s,
2s, 2p} optimized in QCBS I. In QCBS IV, the AOs sets
are extended to 3̃s and 3̃p (here tilde orbitals mean that they
are pseudo-orbitals) by single (S) and double (D) substitution
of electrons from orbitals in reference configuration {2s22p3,
2s12p4,2s22p23s} to the specific active orbital set {3̃s3̃p}.
Similarly, 3̃d and 4̃l are included in QCBS V and VI respec-
tively. In the optimization of each QCBS stage, we optimize
only the newly added orbitals and keep the previously decided
orbitals fixed.

The theoretical energies for the first five states obtained
from the six QCBSs are listed in Table III. The relative ener-
gies to the ground states compared to the experimental values
from NIST [64] are also listed in the table. It can be seen
that the calculated results converge to the experimental data
(within 3% for QCBS VI) as the active space increases.

In our R-R-eigen calculation, the number of compu-
tational targets determines the number of computational
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TABLE III. Total energies for the five physical target states in six different QCBSs and their relative differences to the ground states in
comparison with experimental values.

Basis set index

Parameter Excitation I II III IV V VI

4S3/2 −148.8546 −148.8513 −148.8514 −148.9296 −149.0568 −149.0998
2D5/2 −148.5790 −148.5783 −148.5783 −148.6559 −148.7930 −148.8485

Total energy (Ry) 2D3/2 −148.5790 −148.5783 −148.5783 −148.6560 −148.7931 −148.8486
2P3/2 −148.3952 −148.3962 −148.4813 − 148.5670 −148.6694 −148.7234
2P1/2 −148.3953 −148.3963 −148.4813 −148.5670 −148.6694 −148.7234

4S3/2
2D5/2 12.71 11.75 11.79 12.00 7.97 2.84

Relative difference (%)a 2D3/2 12.81 11.65 11.69 11.89 7.86 2.74
2P3/2 24.55 23.40 0.35 −1.67 5.06 2.06
2P1/2 24.57 23.37 0.34 −1.67 5.05 2.05

aThe relative deviations between the theoretical values and the experimental values from NIST [64].

channels used to consider adequate electronic correlations.
All five target states {4S3/2,

2D5/2,3/2,
2P3/2,1/2} of the O+

ground-state configuration 2s22p3are used as physical tar-
get states, forming 14 physical channels with the excited
electron in a specific energy region with total angular mo-
mentum Jπ = 1−. The details of the computational targets

are listed in the fifth row of Table II; for QCBS I, II, and
III all available states are taken as target states, meaning
that they have 5, 13, and 15 computational targets, re-
spectively. For QCBS IV, V, and VI, we experiment with
a different limited number of states to be taken as target
states.
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