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Precision measurement of hyperfine constants and isotope shift of the Rb 6S1/2
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Using Doppler-free two-photon spectroscopy of the Rb 5S1/2 to 6S1/2 transition in a temperature-controlled
vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and con-
stants, as well as the isotope shift of the 6S1/2 state. We lock a tunable microwave-driven electro-optic modulator
sideband of the 993-nm laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy
for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate
the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyper-
fine splittings of the 6S1/2 state in 85Rb and 87Rb, respectively, we find 717.195(3) MHz and 1614.709(3) MHz.
For the hyperfine constants A for the 6S1/2 states, we find 239.065(2) MHz and 807.355(2) MHz for 85Rb and
87Rb, respectively, and −99.189(3) MHz for the isotope shift (85Rb minus 87Rb). These hyperfine splittings and
constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly
85�87 of the 6S1/2 state to be −0.00350(1), which is about 20 times more accurate than previously published
results.

DOI: 10.1103/PhysRevA.110.022803

I. INTRODUCTION

Optical two-photon studies in Rb have produced measure-
ments of absolute frequency from the ground state to multiple
excited states [1–5], excited-state lifetimes [6,7], excited-state
hyperfine splittings, and magnetic dipole hyperfine constants
[8–15]. Such two-photon transitions in Rb are of interest for
applications in providing stable frequency references for satel-
lite navigation systems and for testing fundamental physics
using precision measurements.

The atomic Rb frequency standard has been a preferred
choice for timekeeping in space with its reduced size, weight,
and power consumption (SWaP), and relatively low levels of
frequency instability. Commercially available Rb microwave
atomic clocks exhibit a fractional drift rate as low as a few
parts in 1014 per day [16,17]. In principal, a clock based on
narrow optical transitions operating at frequencies 105 times
higher than microwave frequencies should be more stable.
A compact optical clock based on a two-photon transition
in a Rb vapor exhibiting a fractional drift rate of 4 × 10−15

per day was recently realized [18]. Higher stability clocks
based on near-infrared two-photon transitions in thermal Rb
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vapor from the ground state to the 5D5/2 state or the 6S1/2

state could enhance the real-time capabilities of the global
positioning system (GPS) in potential defense applications
[19–21]. The 5S1/2 ground state and the 6S1/2 excited state
both have the same Landé g factors and therefore the same
magnetic field shifts. As a result, the 5S1/2 → 6S1/2 transition
is less susceptible to fluctuations due to stray magnetic fields,
possibly making it superior to the 5S1/2 → 5D5/2 transition
for such applications.

The parity-forbidden dipole transition 5S1/2 → 6S1/2 be-
tween the ground state and the first excited state of Rb
has been proposed to study optical parity nonconservation
[22]. Atomic parity violation studies of cesium have been
performed as a low-energy precision means of testing the
standard model [23–25]. The most precise measurement of
the parity nonconserving 6S1/2 → 7S1/2 transition amplitude
was measured in 133Cs [23,26].

In this work, we investigate the 5S1/2 → 6S1/2 two-photon
transition in a thermal Rb vapor at 993 nm. We measure the
hyperfine splittings in the two naturally occurring isotopes,
the hyperfine constants A for each isotope, and the isotope
shift. The precision of our hyperfine constants allows us to
determine an improved hyperfine anomaly value, which can
lead to a better understanding of the Rb nuclear charge dis-
tribution and nuclear magnetization distribution [27,28], and
thus the Rb nuclear wave function and structure, and how
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they change when two neutrons are added [29]. There has
been some recent theoretical interest and work in calculating
the Bohr-Weisskopf (BW) hyperfine anomaly in Cs and Rb,
to test the atomic wave functions in the nuclear region at
the 0.2% level [30], and to test the difference between the
single-particle model and the uniform or Fermi models of
nuclear magnetization [30].

II. THEORY

The one-photon electric dipole transition from ground
state mS to excited state nS is forbidden. However, these
excitations are accessible by two-photon processes and have
selection rules �F = 0 and �mF = 0 [31,32]. In 1931,
Goppert-Mayer proposed two-photon processes in which two
photons are simultaneously absorbed by an atom provided that
the frequency sum of the two photons equals the excitation
frequency of the atomic transition [33]. In 1970, Vasilenko
et al. [34] noted that an atom in an electromagnetic standing
wave of frequency ω would absorb two photons, i.e., a single
photon from each beam, resulting in a first-order Doppler-free
line shape. Assuming �v is the atom velocity and �k is the wave
vector of light, the atom (in its rest frame) would absorb a
photon of frequency ω + �k · �v from one beam and a photon
of frequency ω − �k · �v from the other beam to go from the
ground state Eg to the excited state Ee. The two-photon reso-
nance condition in this case is [34]

Ee − Eg = h̄(ω + �k · �v) + h̄(ω − �k · �v) = 2h̄ω, (1)

showing that at resonance, all irradiated atoms, regardless of
velocity, absorb one photon from each beam, resulting in a
narrow first-order Doppler-free resonance.

These narrow-linewidth two-photon processes can be used
to probe the interactions between a nuclear magnetic dipole
and the magnetic field created by the electron at the nucleus.
Furthermore, we can use the hyperfine interaction to study
the magnetic moment distribution of the nucleus. The nuclear
quadrupole interaction with the magnetic field gradient of the
electrons vanishes for spherically symmetric J = 0,±1/2 or-
bitals [35]. The hyperfine splitting of the S electronic states is
due solely to the nuclear magnetic dipole moment interacting
with the magnetic field of the electrons. The effect is strongest
in S electronic orbitals because they have the largest overlap
with the nucleus. For spherically symmetric S orbital states,
the hyperfine constants B and C are exactly zero, and the
hyperfine energy level shifts Ehf of the 6S1/2 hyperfine states
are given by

Ehf = A

2
[F (F + 1) − I (I + 1) − J (J + 1)], (2)

where A is the hyperfine magnetic dipole constant, F is the
total angular momentum, I is the nuclear spin, and J is the
electronic angular momentum. Moreover, under the approxi-
mation that the nuclear magnetic dipole moment of the atom
is point sized, an expression for the hyperfine magnetic dipole
constant is Ahf,point = 4μ0

3πh gIμIμB|ψ (0)|2 fR, where gI is the
nuclear g factor, μI is the nuclear magnetic dipole moment, μB

is the Bohr magneton, |ψ (0)| is the electronic wave function
at the nucleus, and fR takes into account relativistic effects
[36]. The nuclear g factor is gI = μI/I . Because the nucleus

has a finite size, it is not actually a point particle with a
nuclear magnetic dipole moment. The hyperfine magnetic
dipole constant is smaller than what would be expected for
a point nucleus [37] and, as such, a more precise deriva-
tion of the constant involves adding two small corrections
to the pointlike model Ahf,extended = Ahf,point(1 + εBCRS)(1 +
εBW). The first correction, i.e., the Breit-Crawford-Rosenthal-
Schawlow correction (εBCRS), to the hyperfine interaction is
due to modification of the electronic wave function by a
uniform extended nuclear charge distribution. The second
correction, i.e., the Bohr-Weisskopf correction (εBW), is de-
termined by how the magnetization distribution throughout
the nuclear volume affects the hyperfine interaction. The
electronic wave function of different alkali isotopes in the
nucleus to a good approximation is the same, so the ratio of
the pointlike hyperfine constants of two different Rb isotopes
is roughly A85/A87 = gI85/gI87 .

However, precision experiments can measure anomalies
from this pointlike description of the hyperfine constants of
the different isotopes. Deviations from this pointlike descrip-
tion can be modeled by [27]

A85

gI85

gI87

A87
= 1 +85�87, (3)

where the differential hyperfine anomaly is 85�87 =
(ε85

BCRS − ε87
BCRS) + (ε85

BW − ε87
BW). Because there is less than

1% difference in the mean nuclear charge radii of the two
Rb isotopes, the BCRS correction between the two isotopes,
(ε85

BCRS − ε87
BCRS) can be neglected [29,38], making the Bohr-

Weisskopf correction dominant in the hyperfine anomaly [27].
The differential effect of the finite size of the nucleus and

the difference in the mass of the two isotopes results in a
measurable isotope shift in the electronic energy levels of
85Rb and 87Rb.

III. EXPERIMENT

Rubidium atoms in a thermal vapor are excited from the
5S1/2 ground state to the 6S1/2 excited state through a virtual
state by absorbing two 993-nm photons as shown in Fig. 1.
Atoms decay back to the ground state through the D1 tran-
sition or the D2 transition. An atom decaying through the
D1 line emits a 1324 -nm photon to reach 5P1/2, and then
emits a 795 -nm photon to decay back to the ground state.
An atom decaying to the ground state through the D2 line first
emits a 1367 -nm photon to reach the 5P3/2 level, followed
by a 780 -nm photon to decay to the ground state. We detect
780 -nm fluorescence photons using a filtered photomultiplier
tube (PMT).

To excite the two-photon transition, we use a Toptica model
DLC-TA-SHG Pro single-frequency continuous-wave tapered
amplifier diode laser system, with a maximum output power
of 850 mW at 993 nm and a single-mode tuning range of
approximately 15 GHz. A block diagram of the experiment
is shown in Fig. 2. A semiconductor tapered optical amplifier
increases the power of the 993-nm laser before it is directed
into the experiment. The main linearly polarized laser beam is
split into two beams at a 50/50 nonpolarizing beam splitter.
After the beam splitter, the equally intense collinear coun-
terpropagating beams pass through a quartz Rb vapor cell.
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FIG. 1. Energy diagrams for (a)85Rb and (b)87Rb (not drawn to
scale). The ground-state 5S1/2 hyperfine splittings are more than a
factor of four larger than the 6S1/2 hyperfine splittings. The transition
frequencies corresponding to the four actual observed transitions are
shown as ν85

2−2, ν85
3−3, ν87

1−1, and ν87
2−2. These four transitions are used

to calculate the 6S1/2 hyperfine splittings, ν85
hf and ν87

hf . The 5S1/2 →
6S1/2 centroid frequency differences for each isotope are also shown
as ν85 and ν87. These centroid frequencies are used to calculate the
isotope shift ν85 − ν87.

The beams are not focused and both have a FWHM diameter
of about 2.5 mm in the cell. Laser-induced fluorescence at
780 nm is detected by a PMT equipped with a short-pass filter
stack and a 780 -nm narrow line filter to eliminate detection
of 993-nm light. In order to measure the hyperfine splittings
and isotope shift to a high accuracy, a small pick-off beam is
sent to a 10 -GHz bandwidth electro-optic modulator (EOM).
A WindFreak SynthPro microwave synthesizer modulates this
EOM in the range between 800 and 3500 MHz to create
optical sidebands. The lower sideband is locked to one fringe
of an ultrastable cavity with a finesse of 300 000 and a free
spectral range of 1.5 GHz, locking the laser optical frequency
at an offset microwave frequency relative to the ultrastable

FIG. 2. Experiment block diagram. The 993-nm laser is passed
to a wave meter, a spectrum analyzer, and a high-bandwidth EOM
driven by a microwave synthesizer. The lower sideband of the EOM
is locked to an ultrastable cavity. The frequency is scanned over
the four Rb transitions shown in Fig. 1 by tuning the microwave
synthesizer.

optical cavity. The lower sideband is locked to this same
fringe throughout the experiment. The laser is scanned over
the 5S1/2 to 6S1/2 transitions for each isotope by tuning the
microwave synthesizer. We record the microwave frequency
difference between the lower sideband and the transition fre-
quency of the main 993-nm beam. We know this difference to
kilohertz accuracy from the microwave synthesizer. There-
fore, the relative tuning of the main laser beam is also known
to the same high degree of accuracy. The ultrastable cavity
drift is measured to be 13 kHz/day, but within the time re-
quired for the scans of the two hyperfine lines of one isotope
(about 50 minutes), the drift is no more than 0.5 kHz. In order
to tune the laser to the four separate transitions, two additional
pick-off beams are taken from the main beam: one is sent to a
spectrum analyzer to examine and verify the spectral mode of
the laser and the other is sent to a Bristol 621A wave meter,
with an absolute accuracy of 30 MHz, to roughly determine
the laser wavelength’s proximity to the transition wavelength.

The fused-quartz Rb cell is placed inside an anodized
aluminum housing, and compressed air is heated and flowed
across the cell. The housing is wrapped in aluminum foil to
stabilize the temperature of the cell. On the basis of the cell
temperature, we calculate the Rb density. Using a graph of the
vapor pressure versus temperature [39,40], we convert the cell
temperature T to the vapor pressure of Rb P. Using the ideal
gas law, n = P/kT at 60 ◦C, the atomic density of Rb is cal-
culated to be n = 3.0 × 1011 atoms/cm3. The experiments are
performed at 60 ◦C in the low-temperature regime, where we
are able to minimize the pressure broadening while retaining
a good signal-to-noise ratio.

Helmholtz coils are used to minimize ambient magnetic
fields. We measure the residual field to be less than 0.5 µT in
all three dimensions in the 2 cm3 interaction region. We find
that turning off and turning on the B-field reduction coils has
no effect on the line centers, to within 3 kHz.

A PMT (Hamamatsu R636) is used to detect the 780 -nm
cascade fluorescence from the 6S1/2 state decaying to the 5S1/2

ground state through the 5P3/2 state. We implement a few
techniques to reduce the detection of scattered 993-nm light
to improve the signal-to-noise ratio. A short-pass filter with a
cutoff wavelength of 850 nm is also placed between the cell
and the PMT. In addition, the PMT has a quantum efficiency
100 times lower at 993 nm than at 780 nm. In an effort to
further limit the detection of the 993-nm photons, we use a
narrow-bandpass filter centered at 780 nm. Due to this, we
inadvertently filter out the 795 -nm light of the D1 line.

To measure the hyperfine splittings, we scan the laser
across the peak of each transition by controlling the mi-
crowave frequency driving the EOM sideband. The resulting
line shape is a narrow Doppler-free peak on top of a broad
but shallow Doppler pedestal. The line shape for atoms in-
teracting with two counterpropagating beams is nominally a
Doppler-free Lorentzian profile. The atoms can also absorb
two copropagating photons from one beam such that the
Doppler shifts do not cancel. In this case, the atoms absorb
given that the energy defect Ee − Eg − 2h̄ω is equal to the
Doppler shift ±2kv cos θ . When the polarization of the beams
is the same, the probability of absorbing one photon from
each counterpropagating beam is four times the probability
of absorbing two photons from the same beam [41].
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FIG. 3. The four observed spectra of the 5S1/2 → 6S1/2 transition showing signal in kcounts/s vs transition frequency offset in MHz.

If the excitation beams are not exactly antiparallel or if
the beam is diverging as it passes through the cell, there is a
component of �k that is perpendicular to the beam axis, re-
sulting in a slight Doppler broadening of the central peak.
To minimize the broadening caused by beam divergence, we
leave the beams unfocused. To limit the broadening from
exciting the atoms with beams that are not perfectly antipar-
allel, we aligned the beams by observing the interference
pattern created by the two counterpropagating beams recom-
bining at the beam splitter after passing through the Rb cell.
These mechanisms add slight symmetric Doppler broadening
to our central peak, but do not cause a systematic shift of the
line center to within 3 kHz. The absorption of our Doppler-
broadened two-level system as a function of laser frequency
is nevertheless well modeled by a Voigt profile. Voigt fits of
the absorption line shapes are performed on each of the four
Rb transitions to extract the line centers and the Gaussian and
Lorentzian FWHM widths. The line centers and widths are
microwave frequencies that correspond to the absorption of
two photons to make the transition.

Additional broadening mechanisms, such as power broad-
ening and pressure broadening, are suppressed by performing
experiments at one-fifth the maximum laser power (160 mW)
and a low cell temperature (60 ◦C). These mechanisms re-
sult in symmetric broadening of the line about the center
frequency and do not change the line center itself to within
our statistical uncertainty. The second-order Doppler effect is
negligible to within 100 Hz.

IV. RESULTS AND DISCUSSION

A. Two-photon spectra

We measure the count rate of 780 -nm fluorescence pho-
tons using a PMT. Operating our laser at 160 mW, we have a
signal-to-noise ratio of 77

√
τ , where τ is the integration time,

which is 1 s for these data. The background rate due to nonres-
onant scattered light and PMT dark counts is 6000 counts/s,
whereas our two-photon signal peaks at 12 000 counts/s. In
one 500-point scan, we ramp the frequency from 50 MHz
below the approximate nominal central frequency of the tran-
sition to 50 MHz above it. We record roughly 10 times more
data points in the central 30 MHz of the scan to obtain finer
resolution in the center of the spectrum, as well as in the
upward and downward slopes of the spectrum peak. We ramp
the microwave frequency upward and measure the spectrum
and subsequently scan the frequency downward and measure
the spectrum. We find no difference between the line centers

of the upward scan and the downward scan to within 2 kHz.
Upon adding and removing a reference beam to normalize any
laser output power fluctuations, we observe consistent power
levels during a scan with no notable shift in the line position,
regardless of whether or not we normalize the scan signal with
this reference beam.

The two-photon transition selection rules allow for tran-
sitions only between levels of the same hyperfine quantum
number (�F = 0) [31,32], so we only observe the follow-
ing four transitions (shown in Fig. 3): 85Rb(F = 2 → F ′ =
2), 85Rb(F = 3 → F ′ = 3), 87Rb(F = 1 → F ′ = 1), and
87Rb(F = 2 → F ′ = 2). A typical spectrum of the 87Rb(F =
1 → F ′ = 1) transition is shown in Fig. 4. The two-photon
transition microwave frequency offset shown on the horizontal
axis is measured with respect to the fixed ultrastable cavity
resonance fringe. The horizontal axis shows the change in the
frequency sum of the two absorbed microwave photons, one
for each of the two absorbed laser photons.

We fit our spectra using the nonlinear Voigt fitting function
of the software program ORIGIN. The fitting program uses a
Levenberg-Marquart algorithm to minimize residuals based
on the shot noise. The Voigt line centers and their uncer-
tainties are determined with reduced χ -squared values that

FIG. 4. A typical data set. The top figure is a plot of the
87Rb(F = 1 → F ′ = 1) transition rate in counts per second vs the
two-photon microwave frequency offset in MHz. The Voigt fit to
the data is shown as a solid red line. The bottom figure shows the
residuals of the Voigt fit as a function of microwave frequency offset.
These residuals are of the order of the shot noise.
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TABLE I. Comparison of hyperfine splittings and magnetic
dipole hyperfine constants of the 6S1/2 state in 85Rb and 87Rb.

85Rb(MHz) 87Rb(MHz)

νhf 717.195(3)a (this work) 1614.709(3)a (this work)
717.54(10)a [46] 1615.32(16)a [46]

A 239.065(2)a (this work) 807.355(2)a (this work)
239.18(3)a [46] 807.66(8)a [46]
239.3(1.2)a [47]
238.2b [48]

aExperimental.
bTheoretical.

range from 1.10 to 2.05. Lorentzian fits are also performed,
but they result in larger reduced χ -squared values. A small
systematic shift of 0.5 kHz to 2.0 kHz is measured between
the set microwave frequency and the actual frequency output
from the synthesizer, and the Voigt line centers for each data
run are corrected by twice this shift to incorporate the energy
change due to the absorption of two photons. Larger mi-
crowave frequencies require larger corrections. For the sample
data set shown in Fig. 4, a Voigt fit gives a two-photon tran-
sition line center of 6913.950(7) MHz, a Lorentzian width
(FWHM) of 3.514(58) MHz, and a Gaussian width (FWHM)
of 1.468(98) MHz. The reduced χ -squared value is 1.18. The
Lorentzian spectral width (FWHM) of the 6S1/2 state corre-
sponds to a lifetime of 45.29(75) ns. This lifetime is consistent
with the 45.57(17) ns lifetime measurement of Gomez et al.
[6] and the 45(5) ns lifetime measurement of Marek et al. [42].

In fitting our spectra, we consider the line-center shift due
to one hyperfine line’s roughly 500 MHz Gaussian Doppler
width on another hyperfine line about 900 MHz or more away.
Since the counterpropagating two-photon Voigt line strength
is an order of magnitude larger and two orders of magnitude
narrower than the copropagating Gaussian peak, the line-
center pulling shift is no more than 0.3 kHz in the worst
case of the two closest peaks, 87Rb(F = 2 → F ′ = 2) and
85Rb(F = 3 → F ′ = 3). In the worst case, we estimate that
the error in the hyperfine splittings would be double the shift
of one single line. We include this shift in our error budget
in Table II. We also fit our lines using flat, tilted, and curving
backgrounds and find no significant change in the center of
the fitted line to within 3 kHz.

In Table II, we also consider the effect of the AC Stark
shift and the Rb-Rb pressure shift on the spectral lines. The
AC Stark shift for any one of the four allowed transitions
is calculated to be −0.2 kHz and the Rb-Rb pressure shift
is measured by Zameroski et al. [43] to be 2 kHz, but these
differential shifts for the hyperfine splittings (one line center
frequency subtracted from another) will be about 106 times
smaller and therefore negligible. The uncertainties resulting
from both are determined to be insignificant with respect to
our statistical error.

We consider the possibility of a quantum interference line
shift due to the fluorescence photon collection geometry and
interference in the decay pathways from the upper excited
states [44,45]. However, due to our strict selection rule (�F =
0) [31,32], we have only one possible excited state from a

TABLE II. Error budget (in kHz) for hyperfine splittings mea-
surement in 87Rb. The correction value in the hyperfine splitting and
the uncertainty in that value are shown. The correction to a single
line-center frequency is, in some cases, larger than the correction
we show for the splitting, which involves the subtraction of two
line-center frequencies.

Correction source Value Error

Ultrastable cavity drift 0.3 0.3
Pulse pile-up 0 0
Power broadening 0 0
Differential AC Stark shift 0 0
Differential pressure shift 0 0
Differential second-order Doppler shift 0 0
Line-pulling shift −0.6 0.1
Microwave frequency reference 1.5 0.4
Statistical errora 0 2.0

aStandard error of the mean.

given lower state, so there is no quantum interference and no
line shift due to this mechanism.

B. Hyperfine splittings

Several 85Rb and 87Rb spectra are collected to determine
the hyperfine splittings, ν85

hf and ν87
hf , shown in Fig. 1. Voigt

fits are performed on the 85Rb(F = 3 → F ′ = 3) and the
85Rb(F = 2 → F ′ = 2) spectra individually. From the Voigt
fits, we extract the transition line-center frequencies mea-
sured with respect to the 5S1/2 ground state. Doubling these
frequencies gives us the frequencies of the two-photon tran-
sitions, shown as ν85

3−3 and ν85
2−2 in Fig. 1. We then calculate

the hyperfine splitting for the 6S1/2 state of the 85Rb iso-
tope, ν85

hf , by taking the frequency difference between the
ground-state hyperfine splitting and the energy difference of
the two individual two-photon transitions. For 85Rb, the 6S1/2

hyperfine splitting is found using ν85
hf = 3035.732 MHz −

(ν85
2−2 − ν85

3−3), where 3035.732 MHz is the ground-state hy-
perfine splitting of the 5S1/2 state of 85Rb [39]. The 6S1/2

hyperfine splitting for 87Rb is found by calculating ν87
hf =

6834.683 MHz − (ν87
1−1 − ν87

2−2), where 6834.683 MHz is the
5S1/2 ground-state hyperfine splitting for 87Rb [40].

Averaging the hyperfine splittings determined for each
individual transition pair gives ν85

hf = 717.195(3) MHz and
ν87

hf = 1614.709(3) MHz, as shown in Table I and by the
dashed blue lines in Fig. 5. The total uncertainty in the
hyperfine splitting of 87Rb is determined using the error bud-
get listed in Table II. All errors are reported in kilohertz and
are associated with the two-photon process. The statistical
error for each isotope is reported as the standard error of
the mean for its data set. The error budget for the hyperfine
splitting in 85Rb is very similar to that of Table II, resulting
in the same total uncertainty. The standard deviation of each
data set is shown in Fig. 5. From the 6S1/2 hyperfine splittings,
the hyperfine constants A are determined using Eq. (2) and are
listed in Table I. The hyperfine constants resulting from these
average hyperfine splittings, calculated to be 239.065(2) MHz
and 807.355(2) MHz, are listed in Table I along with values
from previous experimental and theoretical work.
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FIG. 5. The hyperfine splitting for each data run. The dashed
blue line marks the average hyperfine splitting value and the red lines
above and below the dashed blue line show the standard deviation of
the measurement.

C. Isotope shift

The isotope shift (IS) of the 5S1/2 → 6S1/2 transition is de-
termined by the splitting of the 85Rb and 87Rb hyperfine lines.
In principle, it is calculated by subtracting the two centroid
transition frequencies marked ν85 and ν87 in Fig. 1. These
centroid transitions are not real transitions, but are determined
by setting the hyperfine interaction to zero. They contain
large optical transition frequencies that are not measured ac-
curately. In contrast, the relative (not absolute) frequency of
each hyperfine transition that we measure in this paper is very
accurately known as a microwave frequency offset from one
single ultrastable cavity fringe. Therefore, the difference in
the microwave frequency offsets for the 85Rb and 87Rb lines
allows the large optical frequency offset of both lines to be
subtracted exactly. In order to calculate the IS, all that is left
is to take into account the well-known splitting of the 5S1/2

ground state, and our measured microwave frequency offsets
(from the ultrastable cavity fringe, which is the same for both
isotopes) of the 85Rb and 87Rb hyperfine lines.

With reference to Fig. 1, we calculate

IS = ν85 − ν87 = (
ν85

2−2 + b85 − d85
) − (

ν87
1−1 + b87 − d87

)
,

(4)

where d85 and d87 are the frequency shifts from the 5S1/2

centroid to the lowest 5S1/2 hyperfine state (F = 2 for
85Rb and F = 1 for 87Rb), which are 1770.8439 MHz and
4271.6766 MHz, respectively [39,40]. In Eq. (4), b85 and b87

are the frequency shifts from the 6S1/2 centroid to the lowest
6S1/2 hyperfine state (F = 2 for 85Rb and F = 1 for 87Rb),
which are 418.3638 MHz and 1009.1931 MHz, respectively.
These b values are calculated to be 7/12 and 5/8 of the
6S1/2 hyperfine splittings shown in Table I. Thus, Eq. (4)
simplifies to

IS = (
ν85

2−2 − ν87
1−1

) + 1910.003 MHz. (5)

Each of ν85
2−2 and ν87

1−1 contains the large optical transition
frequency, but the difference ν85

2−2 − ν87
1−1 subtracts it out and

is simply the difference in the (doubled) microwave frequency
offset from the (same) ultrastable cavity reference fringe of
the 85 and 87 lines (the 85Rb to 87Rb line splitting), which is
measured to high accuracy.

TABLE III. Our A constants and gI values from previous work
[49,50] used to calculate the hyperfine anomaly of the 6S1/2 state
using 85Rb and 87Rb. The hyperfine anomaly values shown as data
points (a) and (b) in Fig. 6 are calculated using our A constants and
the gI values from [49,50], as shown below. The preferred value is
−0.00350(1). The other anomaly value labeled (b) is shown only to
compare with the value of Ref. [46], which used the newer but less
accurate gI values of Ref. [50].

A85 239.065(2) MHz (this work)
A87 807.355(2) MHz (this work)

Label on Fig. 6 gI × 105 Hyperfine anomaly
gI85 0.2936400(6) [49]

(a) −0.00350(1)
gI87 0.9951414(10) [49]
gI85 0.293636(22) [50]

(b) −0.00354(8)
gI87 0.995170(44) [50]

Our average value for the inter-isotope splitting ν85
2−2 −

ν87
1−1 is −2009.192 MHz, so we find that the isotope shift

is −99.189(3) MHz. Our value is consistent with the only
other previous 6S1/2 state isotope shift measurement of
−94(12) MHz by Orson et al. [4].

D. Hyperfine anomaly

The precision of our hyperfine magnetic dipole constants
allows us to calculate the values for the hyperfine anomaly
(85�87 or HFA), as reported in Table III and shown in Fig. 6.
Using our measured hyperfine constants and the accurate val-
ues of gI of White et al. [49], we calculate the HFA for 6S1/2

as −0.00350(1). Shown as data point (a) in Fig. 6, this is our
preferred value. Using the newer but less accurate gI values of
Duong et al. [50], we obtain an HFA value of −0.00354(8),
shown as the data point (b) in Fig. 6.

In previous work, Perez Galvan et al. [46], using gI values
from Duong et al. [50], found the HFA to be −0.0036(2),
shown as the data point (c) in Fig. 6.

The HFA value for 5S1/2 is shown as point (d) in Fig. 6
[51]. Morzynski et al. [3] and Barmes et al. [52] measured
precise values of hyperfine constants for the 7S1/2 state using
two-photon spectroscopy with an optical frequency comb ref-
erence, but did not report values for the HFA. Using gI values
from White et al. [49], the HFA values of Morzynski and

FIG. 6. Hyperfine anomaly values of various S states of Rb. The
results obtained in this work correspond to data points (a) and (b).
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Barmes are calculated to be −0.00348(3) and −0.00349(4),
respectively, and are shown as data points (e) and (f) in Fig. 6.
The HFA values are seen to be independent of the principal
quantum number n, as predicted by Bohr and Weisskopf [37].

V. CONCLUSIONS

We calculate the hyperfine splitting of the 6S1/2 state in
85Rb and 87Rb by measuring the Doppler-free two-photon
spectra of the four hyperfine lines allowed by the two-photon
selection rules. These hyperfine splittings allow us to calcu-
late hyperfine constants that are 25 times more accurate than
the previous measurements [46]. Our values of the hyperfine
constants and splittings, listed in Table I, are smaller than
the values of Perez Galvan et al. [46] by approximately 3.5
standard deviations, and our values have errors that are a
factor of at least 10 smaller. We attribute this difference to the
complex two-color laser excitation and line-center determina-
tion scheme of Ref. [46]. Their two-color laser scheme leads
to substantial Doppler broadening of the lines, in contrast to
our one-color laser scheme. We also determine an isotope shift
that is 4000 times more accurate than the previous measure-
ment [4].

The small uncertainty in our measured hyperfine constants
for both isotopes allows us to accurately determine the hyper-
fine anomaly. The uncertainty in our hyperfine anomaly value
is dominated by the uncertainty in the gI values, so we perform
calculations with two sets [49,50] of nuclear values. The hy-
perfine anomaly values that we obtain are consistent with, but
20 times more accurate than, the previous best experimental
measurements [46].

Precision measurements of atomic hyperfine structure and
anomalies are critical to accurate modeling of electronic wave
functions across the nucleus, where the weak interaction is

mediated by Z-boson exchange between the electrons and the
nucleus [53].

Atomic parity violation of the weak interaction is de-
pendent on the choice of model describing the nuclear
magnetization. The experimentally determined differential
hyperfine anomaly in Cs has supported the use of the single-
particle model of nuclear magnetization instead of the uniform
magnetization model [30]. The improved value of the Rb dif-
ferential hyperfine anomaly measured in this work, primarily
due to the εBW correction of the anomaly, can help guide and
verify new calculations of the nuclear magnetization moment
distribution inside the nucleus. Recent calculations of this
kind have been performed for Cs [30], and similar calculations
could be done for Rb, which would enable a test of atomic
wave functions in the nuclear region at the 0.2% level [30],
and would help in the development of precision atomic many-
body methods [30]. Precise calculations of wave functions for
alkali atoms are needed for tests of parity nonconservation in
atomic systems [54].

All data that support the findings of this study are included
within the article or are available from the authors.
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