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Quantum error cancellation in photonic systems: Undoing photon losses
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Real photonic devices are subject to photon losses that can decohere quantum information encoded in the
system. In the absence of full fault tolerance, quantum error mitigation techniques have been introduced to help
manage errors in noisy quantum devices. In this paper, we introduce an error mitigation protocol inspired by
probabilistic error cancellation (a popular error mitigation technique in discrete variable systems) for continuous
variable systems. We show that our quantum error cancellation protocol can undo photon losses in expectation
value estimation tasks. To do this, we analytically derive the (nonphysical) inverse photon loss channel and
decompose it into a sum over physically realizable channels with potentially negative coefficients. The bias
of our ideal expectation value estimator can be made arbitrarily small at the cost of increasing the sampling
overhead. The protocol requires a noiseless amplification followed by a series of photon subtractions. While
these operations can be implemented probabilistically, for certain classes of initial state one can avoid the burden
of carrying out the amplification and photon subtractions by leveraging Monte Carlo methods to give an unbiased
estimate of the ideal expectation value. We validate our proposed mitigation protocol by simulating the scheme
on squeezed vacuum states, cat states, and entangled coherent states.
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I. INTRODUCTION

Determining whether quantum advantage—defined as the
ability of a quantum computer to solve a useful problem sig-
nificantly faster than any classical method—can be achieved
in the near term constitutes a major open problem. The frag-
ile nature of quantum systems makes them susceptible to
errors that could corrupt the computation. Long term, we ex-
pect that quantum error correction will allow useful quantum
algorithms with a proven speedup over their classical coun-
terparts to be implemented reliably [1–5]. However, the large
hardware overhead and small error threshold requirements
[6,7] necessary for quantum error correction to be feasible
mean that fault-tolerant universal computation has yet to be
achieved.

Currently available quantum devices are characterized by
noisy operations and limited number of qubits. [8–11]. Con-
sequently, these noisy devices are suitable to execute limited
classes of quantum algorithms, including variational quantum
algorithms [12–14] and quantum simulations [15–17]. In the
absence of full fault tolerance, reducing the impact of noise is
an essential ingredient in achieving quantum advantage in the
near term. Quantum error mitigation (QEM) is one potential
route to tackling this challenge [10,18,19].
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The key insight underlying QEM protocols is that a noise-
free expectation value can be extracted from a noisy device by
sampling from multiple circuits with suitable postprocessing
of the noisy measurement data [20,21]. Removing unavoid-
able noise from quantum expectation values is clearly a task
with a domain of interest that also extends beyond quantum
computing. Therefore, while all these QEM strategies were
initially tailored towards the quantum computing community,
the techniques may be useful more generally.

QEM techniques have been shown to improve the compu-
tational capabilities of noisy devices [17,22–25], with notable
examples including zero-noise extrapolation [26,27] and vir-
tual distillation [28,29]. Another promising QEM protocol is
probabilistic error cancellation (PEC) [24–26,30–32]. Within
this framework, one decomposes the ideal system dynam-
ics into a sum of quantum channels (corresponding to noisy
evolutions) with potentially negative coefficients. One then re-
peatedly probabilistically selects one of these noisy channels,
runs the experiment, and records the measurement outcomes.
These are then appropriately linearly combined to obtain an
unbiased estimator of the ideal expectation value. The wide
range of applicability and lack of qubit overhead in PEC, com-
bined with the fact it provides an unbiased estimator, make
it one of the most promising QEM protocols for potentially
achieving quantum advantage in the near term.

The effectiveness of PEC under a sparse Pauli-Lindblad
noise model was demonstrated in Ref. [25], where a sparse
learning protocol was proposed that allowed the necessary
noise parameters to be accurately estimated. While a signifi-
cant improvement over unmitigated results was demonstrated,
the sampling overhead for this noise model scaled expo-
nentially in qubit number, noise strength, and circuit depth.
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Building on this work, PEC has recently been extended
to circuits that include measurement-based operations such
as midcircuit projective measurements and potential Pauli
feedforward operations dependent on those measurement out-
comes [33].

So far, most QEM literature has focused on discrete vari-
able (DV) quantum systems. The continuous variable (CV)
QEM literature [34,35] has mostly been targeted towards
Gaussian boson sampling, a nonuniversal form of quantum
computation in which one is interested in sampling from
the output photon number distribution obtained by sending
squeezed light into a multimode passive linear optical inter-
ferometer, a task that is believed to be classically intractable
under standard complexity theoretic conjectures [36–38]. The
authors of Ref. [34] proposed a PEC-inspired protocol to
mitigate against the effects of losses in a Gaussian boson
sampler. In particular, their “loss cancellation” scheme does
not require changes to the circuit and involves only classical
postprocessing of the noisy sampling probabilities to infer
their ideal counterparts. However, the protocol is limited to
photon number detection and its convergence to the noiseless
photon sampling distribution is, in general, difficult to assess
and only guaranteed in the small-to-intermediate loss regime.
Similarly, the authors of Ref. [39] recently introduced a family
of strategies for mitigating against losses in DV linear optical
quantum computers based around “recycled probabilities.”
While their approach outperforms postselection in the large
loss regime, postselection appears to achieve better results for
small-to-intermediate losses. It is also limited to DV input
states and again to photon number measurements.

In this paper, we develop a PEC-inspired scheme to mit-
igate against photon losses in (either DV or CV) photonic
systems in expectation value estimation tasks. To achieve this,
we first derive the inverse of the photon loss map. While such
a map is not completely positive (CP) [5], we show that it can
be expressed as a linear combination of physically realizable
(i.e., CP) noisy quantum operations. We then suggest how
these operations can be (probabilistically) implemented ex-
perimentally. These operations include both an amplification
and, counterintuitively, a series of photon subtractions. Sam-
pling from these circuits and applying simple postprocessing
weights to the measurement outcomes results in an improved
estimate of the noise-free ideal expectation value over running
the unmitigated circuit. The bias of such an estimate can
be made arbitrarily small, at the cost of an increasing the
sampling overhead. We also present a Monte Carlo based ap-
proach that involves sampling from different initial states and
linearly combining the measurement outcomes with suitable
weights to obtain an unbiased estimator. This approach scales
better to many modes than the first approach and can often
be implemented deterministically, but only works for specific
classes of input state. We highlight both these methods with
clear examples. Our main contribution is an analytic form of
the inverse photon loss channel, as well as possible methods
to implement this channel on average, which can thus be used
as a quantum error mitigation technique which we refer to as
quantum error cancellation.

This paper is structured as follows. In Sec. II, we intro-
duce the basics of quantum error mitigation and outline the
probabilistic error cancellation framework. We also describe

the noise model for photon losses used throughout this paper
and argue that, while not universally applicable, it is relevant
and accurate for a variety of important experimental setups.
In Sec. III B, we present our main results by introducing a
quantum error cancellation scheme based around a quasiprob-
ability decomposition of the inverse photon loss map. We
discuss its implementation, the classical postprocessing cost,
and sampling overhead, and provide theoretical guarantees
of accuracy. In Sec. III E we numerically investigate the
performance of our protocol via paradigmatic examples in-
volving single mode squeezed vacuum states and cat states.
This section considers just a single mode in order to high-
light the key ideas behind the proposed mitigation strategy.
In Sec. IV, we extend the scheme to the multimode setting
where we again discuss implementation, postprocessing costs,
and sampling overhead and provide a thorough error anal-
ysis. In Sec. IV E, we provide numerical simulations of our
scheme being applied to multimode entangled states, namely
two mode squeezed vacua (TMSVs) and entangled coherent
states. Finally, we offer concluding remarks in Sec. V.

II. PRELIMINARIES

A. Quantum error mitigation

In this paper, we are concerned with weak quantum er-
ror mitigation [21]. Given an initial state ρ0, and a generic
ideal unitary evolution Uideal, the aim of weak quantum er-
ror mitigation is to estimate the expectation value 〈O〉ideal =
Tr[OUideal[ρ0]] for a generic observable O. Any attempt to
perfectly implement the unitary dynamics ultimately fails
due to unavoidable interactions between the system and the
environment. As a result, one is only able to implement a
noisy evolution, which we denote with Unoisy. Consequently,
the noisy dynamics leads to a measured expectation value
that reads 〈O〉noisy = Tr[OUnoisy[ρ0]]. QEM protocols sample
from collections of noisy circuits and combine their measure-
ment outcomes with classical postprocessing to give a better
estimate of 〈O〉ideal, with respect to the unmitigated scenario.

The quality of an estimator Ō of 〈O〉ideal can be assessed by
the mean square error (MSE), which is given by

MSE[Ō] = E[(Ō − 〈O〉ideal )
2] (1)

= (Bias[Ō])2 + Var[Ō], (2)

where Bias[Ō] = |E[Ō] − 〈O〉ideal| and Var[Ō] = E[Ō2] −
E[Ō]2. For example, consider taking N measurements of O
on the noisy state Unoisy[ρ0]. The N measurement outcomes,
(O(noisy)

1 , O(noisy)
2 , . . . , O(noisy)

N ), may be averaged over to give
the noisy estimator Ōnoisy = 1

N

∑N
i=1 O(noisy)

i . The variance of
that estimator (often called shot noise) reads Var[Ōnoisy] =
1
N Var[Onoisy], where Var[Onoisy] = 〈O2〉noisy − 〈O〉2

noisy is the
single shot variance of O with respect to the noisy output state
Unoisy[ρ0]. Therefore, in the large N limit, the dominant source
of error is the bias, |〈O〉noisy − 〈O〉ideal|.

QEM protocols aim to provide an estimator of 〈O〉ideal,
denoted with Ōmit, with a smaller bias than Ōnoisy. However,
this comes at the cost of an increased variance and hence
to obtain a mitigated estimator with the same shot noise as
the unmitigated estimator will require more data samples to
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be taken. This sampling overhead approximately amounts to
Var[Ōmit]/Var[Ōnoisy] [18]. While the exact details of the bias-
sampling overhead tradeoff relation depend on the particular
mitigation scheme, the sampling overhead typically scales
exponentially with noise strength, circuit depth, and number
of qubits [20,21,40,41].

Probabilistic error cancellation

In Ref. [26], Temme et al. demonstrated that, given a
quasiprobability decomposition of the ideal dynamics Uideal

in terms of some arbitrary physically realizable (CP) noisy
quantum operations {F j} [42],

Uideal =
∑

j

ω j F j, (3)

it is possible to produce an unbiased estimate of 〈O〉ideal. Here,
{ω j} is a set of real coefficients that, in order for Uideal to
be trace preserving, satisfy

∑
j ω j = 1. We refer to ω j as a

quasiprobability distribution and to Eq. (3) as a quasiproba-
bility representation of Uideal.

In practice, given a noise completely positive trace-
preserving map, one computes the mathematical inverse of
such a map (assuming such an inverse exists). This is typi-
cally a non-CP map and hence cannot be physically realized.
However, the inverse map always admits a quasiprobabil-
ity representation in terms of physically realizable quantum
operations. This can then be combined with the full circuit
dynamics to write the ideal circuit dynamics in the quasiprob-
ability representation over noisy CP channels. We refer to
Ref. [25] for a detailed demonstration of how one can ob-
tain a quasiprobability decomposition of the ideal dynamics,
starting from the noise model. Note that by doing this, one is
implicitly assuming that the noise channel and ideal dynamics
can be separated (see, e.g., Ref. [43] for a detailed discussion
on this point).

We then use the quasiprobability distribution {ω j} to define
a new set of coefficients qj := |ω j |/S, where S = ∑

j |ω j |.
These coefficients satisfy 0 � qj � 1 and

∑
j q j = 1, and

hence form a valid probability distribution. The quasiproba-
bility representation of Uideal can then be rewritten as

Uideal = S
∑

j

|ω j |
S

sgn(ω j )F j . (4)

Via linearity, it is clear that

〈O〉ideal = S
∑

j

q j sgn(ω j )〈O〉F j , (5)

where 〈O〉F j = Tr[OF j[ρ0]]. Using a Monte Carlo approach,
the ideal expectation value can be estimated by sampling from
the channels {F j} according to the probability distribution
{q j}, and performing a single shot measurement of O—this
probabilistic choice of F j is where probabilistic error cancel-
lation gets its name. We thus obtain a list of measurement

outcomes (O
(F j1 )
1 , O

(F j2 )
2 , . . . , O

(F jN )
N ), where the superscript

(F j� ) tells us which channel was implemented in the �th run
of the experiment. These N samples may then be linearly

combined to obtain an unbiased mitigated estimator, namely

Ōmit = S

N

N∑
�=1

sgn(ω j� )O
F j�
� . (6)

Under the assumption that Var[OF j ]/Var[Onoisy] ≈ O(1) for
all j, the sampling overhead Var[Ōmit]/Var[Ōnoisy] can easily
be shown to scale with S2.

B. Noise model

In photonic platforms, the two dominant sources of noise
are photon losses and dephasing errors, while thermal noise
is negligible for systems at visible or infrared frequencies
near room temperature. In this paper, we focus on the photon
loss channel because it is the most significant issue impacting
photonic platforms. In Appendix D, we both discuss a strategy
for mitigating against dephasing errors and also show that the
introduction of a dephasing error channel has no impact on
our photon loss mitigation procedure.

Let �γ denote the single mode pure Markovian photon
loss channel with noise parameter γ ∈ [0, 1]. We model these
losses via a beam splitter acting on a single mode input state
ρ and an ancillary vacuum state, before tracing over the envi-
ronmental degrees of freedom, namely [44]

�γ [ρ] = Trenv[UBS,γ (ρ ⊗ |0〉〈0|)U †
BS,γ

]. (7)

Here, UBS,γ = earccos(
√

1−γ )(â†
envâ−â†âenv ) denotes the beam split-

ter unitary, and 1 − γ its transmissivity, while â and âenv

are the bosonic operators of the system and environment,
respectively. For future convenience, we exploit the state’s
Glauber-Sudarshan P representation [45]

ρ =
∫
C

d2α Pρ (α)|α〉〈α|, (8)

where |α〉 is a single mode coherent state and Pρ is the P
function of ρ. Hence, we may express Eq. (7) as

�γ [ρ] =
∫
C

d2αPρ (α)|
√

1 − γ α〉〈
√

1 − γ α|. (9)

One can also use Eq. (7) to obtain a Kraus representation of
the loss map, namely

�γ [ρ] =
∞∑
j=0

Kj (γ ) ρ K†
j (γ ), (10)

where the Kraus operators read

Kj (γ ) =
√

γ j

j!
(1 − γ )

n̂
2 â j =

√
1

j!

(
γ

1 − γ

) j

â j (1 − γ )
n̂
2 .

(11)

We prove the above identity in Appendix A. As the channel
is trace preserving, the Kraus operators satisfy

∑
j K†

j Kj = I,
where I denotes the identity operator on the Hilbert space.
Equivalently, it can be seen that Eq. (7) is a solution to the
Lindblad master equation

d

dt
ρ(t ) = κD[â](ρ(t )), (12)
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FIG. 1. Graphical representation of the decomposition of the
noisy dynamics into a pure loss map followed by an ideal unitary
evolution for a single mode, i.e., Unoisy = Uideal ◦ �γ . The loss map
is modeled via a beam splitter interaction between the system and an
environmental mode initialized in the vacuum state, followed by a
trace over the environmental degrees of freedom. The beam splitter
has a transmissivity of 1 − γ , where γ ∈ [0, 1) is the loss parameter.

where D[â](ρ) = âρâ† − 1
2 {â†â, ρ} is the dissipation super-

operator and κ > 0 is the dissipation rate, if we make the
identification γ = 1 − e−κt .

Crucially, we further assume that the noisy dynamics Unoisy

can be decomposed into a pure loss map taking place be-
fore the system undergoes an ideal evolution, i.e., we write
Unoisy = Uideal ◦ �γ , as depicted in Fig. 1. A more precise
modeling of the noisy dynamics would necessitate solving
the full Lindblad master equation in Eq. (12) with an ad-
ditional term on the right-hand side corresponding to the
ideal dynamics. Nonetheless, while the assumption above is
not universally applicable, we point out that it is generally
justified in a number of relevant cases, particularly in the
multimode setting, which we discuss below.

We now extend the above noise model to multiple modes,
under the assumption that each mode is subject to inde-
pendent single mode Markovian photon losses parametrized
by some learnable loss parameters. For M modes, let γ =
(γ1, γ2, . . . γM ) denote these loss parameters in each mode.
The full M-mode loss channel, �(M )

γ , can then be written as
a tensor product over the single mode loss channels, i.e.,

�(M )
γ =

M⊗
i=1

�γi,i (13)

where �γi,i only acts nontrivially on the ith mode. In the P
representation, an M-mode state can be written as

ρ =
∫
CM

d2MαPρ (α)|α1, . . . , αM〉〈α1, . . . , αM |, (14)

where α = (α1, α2, . . . , αM ) and |α1, . . . , αM〉 = ⊗M
i=1 |αi〉.

Photon losses then take the familiar form

�(M )
γ [ρ] =

∫
CM

dαPρ (α)|
√

1 − γ1α1〉〈
√

1 − γ1α1|

⊗ . . . ⊗ |
√

1 − γMαM〉〈
√

1 − γMαM |. (15)

It can be seen that uniform losses commute with linear optical
elements [46]. In this case, losses occurring at any point in

the dynamics (including uniform detector inefficiencies) can
be “shifted” to the front of the circuit. Therefore, a noisy
passive linear optical network in which each path is subject
to approximately the same level of loss is well modeled by
Unoisy = Uideal ◦ �(M )

γ .
In Ref. [47], Clements et al. provided an optimal decom-

position of any M-mode unitary U ∈ SU (2M ) using only
passive linear optical components. Their decomposition is
balanced because each path within the interferometer passes
through the same number of beam splitters. This in turn im-
plies that photon loses are well modeled as being uniform,
thus matching our noise model.

Nonuniform (i.e., path-dependent) losses cannot be per-
fectly separated from the ideal passive linear optical dynam-
ics. However, the authors of Ref. [48] showed that some
losses can still be shifted to the front of the circuit, leaving
behind a new noisy passive linear optical network (described
by U ′

noisy) with less noise, namely Unoisy = U ′
noisy ◦ �

(M )
γ ′ . In

principle, one could then use our protocol to partially mitigate
the effect of losses, i.e., those coming from �

(M )
γ ′ . However,

we point out that determining the individual loss parameters
(γ1, γ2, . . . , γM ) and the exact form of the new U ′

noisy may be
challenging.

In realistic settings, one would expect the loss parameter to
fluctuate slightly between shots. This can be modeled by se-
lecting γ from a Gaussian distribution centered on γ̄ := E[γ ]
with standard deviation σγ . Over longer time periods, the
average loss parameter γ̄ could vary and hence one should pe-
riodically remeasure the loss parameter. In practice however,
the high shot rate associated with photonic platforms means
we do not expect γ̄ to appreciably vary over the timescale of
a single experimental run.

While our discussion is focused on photonic platforms, our
results are applicable to generic bosonic systems described by
the canonical commutation relations [âi, â†

j ] = δi jI. Conse-
quently, our mitigation protocol can be applied in a diverse
range of bosonic architectures.

Learning the loss parameter

The average loss parameter can be estimated by in-
putting a multimode coherent state |α〉 = |α1, α2, . . . , αM〉
and measuring the output intensity, under the assumption of
uniform losses, noisy dynamics that can be decomposed as
in Fig. 1, and passive ideal dynamics. The input intensity
is proportional to the expected number of input photons,
〈N̂〉in = ∑M

i=1 |αi|2, where N̂ = ∑M
i=1 n̂i. The multimode pho-

ton loss channel transforms these coherent states into |α〉 �γ−→
|√1 − γα1,

√
1 − γα2, . . . ,

√
1 − γαM〉. Via energy con-

servation, the expected output number of photons will
therefore be given by 〈N̂〉out = Tr[N̂ Uideal ◦ �γ [|α〉〈α|]] =∑M

i=1 |√1 − γαi|2 = (1 − γ )〈N̂〉in. Denoting our estimate of
γ as γ̃ , we have

γ̃ = 1 − 〈N̂〉out

〈N̂〉in
= 1 − Iout

Iin
(16)

where Iin/out is the average total intensity summed across all
modes going in and out of the circuit. Due to the fact that
coherent states are well approximated by laser fields, which
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are among the most stable states one can prepare in quantum
optical experiments, this reduces the impact of state prepara-
tion errors on our estimate of γ . State preparation errors can
be further alleviated by varying across a variety of different
choices |α〉 and taking the average estimated loss parameter.
Inefficient detectors in quantum optics are modeled as a pho-
ton loss occurring immediately before detection, and can there
be incorporated into our estimate of γ (and hence mitigated
against by our error cancellation protocol).

If Uideal is a passive linear optical network, then the
output state will be the multimode coherent state |β〉 =
|β1, β2, . . . , βM〉. When estimating the output intensity by
making Nshots measurements, the variance of γ̃ will be

Var[γ̃ ] = 1

Nshots
Var

[
1 − Iout

Iin

]
= 1

Nshots
Var

[
〈N̂〉out

〈N̂〉in

]

= 1

Nshots〈N̂〉2
in

Var
M∑

i=1

〈ni〉out = (1 − γ )2

Nshots
∑

i |αi|2 . (17)

One can reduce this variance by increasing the number of
shots or increasing the total intensity of the initial coher-
ent state |α〉. This also provides guarantees about the level
of accuracy via Chebyshev’s inequality; for example, to
have a >99% probability of estimating γ to within an ac-
curacy <0.01 when

∑M
i=1 |αi|2 = M requires only Nshots >

(1×106)/M. Given that coherent states can be easily pro-
duced, this number of shots can be achieved in less than 1 s
for many optical platforms.

Alternatively, for passive linear optical networks one could
incorporate learning the losses with learning the exact ideal
unitary being implemented by using one of the methods pro-
posed in Refs. [49,50]. This has the advantage of also giving
information about exactly what Uideal is, but is a more involved
process.

III. QUANTUM ERROR CANCELLATION

In this section, our proposed quantum error cancellation
scheme is presented for a single mode.

A. Inverse loss map

In this section, we construct the inverse �−1
γ to the pure

loss map. In particular, Eq. (9) implies that the inverse photon
loss map, expressed using the P representation, must read

�−1
γ [ρ] =

∫
C

d2α Pρ (α)|g0α〉〈g0α|, (18)

where g0 = 1/
√

1 − γ > 1. This immediately leads to
�γ [�−1

γ [ρ]] = �−1
γ [�γ [ρ]] = ρ. In other words, �−1

γ ef-
fectively implements a noiseless amplification on every
constituent coherent state in the P representation [51] without
changing their relative weights.

An operator-sum representation of this inverse loss map is
given by

�−1
γ [ρ] =

∞∑
j=0

(−γ ) j

j!
â jgn̂

0 ρ gn̂
0(â†) j . (19)

The equivalence between Eqs. (18) and (19) is shown in
Appendix B. It can be easily seen that �−1

γ is Hermitian
preserving and trace preserving, but not completely positive
[as evident by the (−γ ) j term], and hence is nonphysical.
Nevertheless, Eq. (19) may be expressed as a linear combi-
nation of CP maps {E j}, namely

�−1
γ [ρ] =

∞∑
j=0

ω j (ρ)E j[ρ], (20)

where

E j[ρ] = 1

N j (ρ)
â jgn̂

0 ρ gn̂
0(â†) j, (21)

with

N j (ρ) = Tr[â jgn̂
0 ρ gn̂

0(â†) j], (22)

and the (possibly negative) coefficients are given by

ω j (ρ) = (−γ ) j

j!
N j (ρ). (23)

Note that while these maps are not trace preserving, we will
use a slight abuse of notation and refer to them as channels.

These channels can be, at least probabilistically, physically
realized. Subject to the noise model assumptions discussed
in the previous section, we conclude that any ideal system
evolution may be decomposed into a weighted sum of noisy,
physically realizable channels, i.e.,

Uideal[ρ] =
∑

j

ω j (ρ)(Unoisy ◦ E j )[ρ]. (24)

By making the identification F j = (Unoisy ◦ E j ), it can be seen
that this is a quasiprobability representation of the ideal dy-
namics Eq. (3).

We point out that for certain states Eq. (19) can be rewritten
to contain only a finite number of terms. For example, for
states containing at most K − 1 photons, it is clear that only
the first K terms of the operator-sum representation of �−1

γ

act nontrivially. Similarly, if ρ = |ψ〉〈ψ | and gn̂ |ψ〉 is an
eigenstate of âK , then Eq. (19) can be rewritten such that it
contains only K terms.

Intuition behind the inverse photon loss map

We now aim to briefly provide some physical intuition
behind the—somewhat unexpected—presence of photon-
subtracting terms â j in the inverse of the loss map Eq. (19).
For simplicity, let us consider the photon loss map and its
inverse acting on the Fock state |m〉〈m|, i.e.,

(
�γ ◦ �−1

γ

)
[|m〉〈m|] =

∞∑
i=0

∞∑
j=0

1

i!

1

j!

(
γ

1 − γ

)i( −γ

1 − γ

) j

× âi+ j |m〉〈m|(â†)i+ j . (25)

We can see that the noiseless amplification term gn̂ appearing
in �−1

γ cancels out with the g−n̂ term present in the loss map
expansion, leaving behind a series of photon subtraction terms
only. Using the fact that at most m photons may be subtracted
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from |m〉〈m|, one can show that Eq. (25) can be expressed as

m∑
n=0

⎡
⎣m−n∑

j=0

(−1) j

(
m − n

j

)⎤
⎦(

m

n

)(
γ

1 − γ

)m−n

|n〉〈n|. (26)

For n < m, the alternating sign causes the coefficient inside
the square brackets to vanish. We remind the reader that the
alternating sign originates from the operator-sum representa-
tion of the inverse loss map. On the other hand, for n = m,
said coefficient is equal to 1 and hence (�γ ◦ �−1

γ )[|m〉〈m|] =
|m〉〈m| as expected.

Physically, we can understand these cancellations in terms
of quantum trajectories. If we consider just the photon loss
map, then there is clearly only one trajectory in which the in-
put Fock state loses k photons (i.e., via the action of the Kraus
operator Kk). On the other hand, we can see from Eq. (25) that
the presence of the inverse loss maps allows the existence of
multiple trajectories in which the system loses k > 0 photons,
namely every i and j in Eq. (25) such that i + j = k. The
alternating sign in Eq. (19) leads to the cancellation of these
trajectories. Conversely, there is only one trajectory in which
the system does not lose any photons (i.e., i + j = 0), hence
in this case the cancellation cannot take place and the original
noise-free state is returned.

B. Quantum error cancellation protocol

Our mitigation scheme places all interventions before the
state undergoes its noisy dynamics Uideal ◦ �γ .

To realize the channels {E j}, one needs to implement an
amplification operation, gn̂, and a j-photon subtraction, â j .
The operator gn̂ is said to implement a (noiseless) amplifica-
tion operation because, up to normalization, it has the effect of
amplifying a coherent state’s amplitude by a factor of g > 1.
The standard implementation of photon subtraction requires
sending the input state through a beam splitter which further
attenuates the state [52]. However, we can compensate for this
spurious effect in the amplification step by considering a gain
factor gμ > g0 that depends on the beam splitter transmissiv-
ity. In the following sections we discuss these aspects in detail.

1. Amplification

Currently available protocols for noiseless amplification
are notoriously challenging to implement [51,53–55]. This is
primarily due to their inherent probabilistic nature and to their
demanding resources requirements, such as multiple single-
photon Fock states, that limits scalability to many modes.

One approach by Zavatta et al. [53] achieves noise-
less amplification in the Hilbert subspace spanned by the
Fock states {|0〉 , |1〉} by using a nonlinear optical element
to probabilistically implement the operator I + cn̂. Loop-
ing this scheme N times with different constants ci leads
to the implementation of the operator

∏N
i=1(I + cin̂). By

carefully tuning the parameters ci, one can implement ex-
act noiseless amplification within the subspace spanned by
{|0〉 , |1〉 , . . . , |N〉}. Alternatively, if the amplification factor
gμ is close to 1, one could use this same approach to im-
plement the truncated Taylor series, gn̂

μ ≈ ∑N
i=0 ln(gμ)in̂i/i!.

Similarly, the teleamplification scheme by Guanzon et al. [55]

is a generalized quantum scissor operation that transforms
a infinite-dimensional state |ψ〉 = ∑∞

n=0 bn |n〉 into a finite-
dimensional state |ψ〉 → ∑N

n=0 gnbn |n〉 in the Hilbert space
spanned by {|0〉 , |1〉 , . . . , |N〉}. While this technique does not
require nonlinear optical elements and has a larger success
probability than Zavatta et al.’s scheme (and in fact asymptoti-
cally saturates the maximal possible success probability when
amplifying in the two-dimensional subspace, see Ref. [56]), it
requires a resource state of many single-photon Fock states.

If the amplification operation takes place within the circuit,
it could then be advantageous to first do the photon subtraction
as the latter operation could force a larger fraction of the state
ρ0 into the subspace spanned by {|0〉 , . . . , |N〉} which would
lead to the amplification being applied with a better fidelity.
One can easily account for this new ordering of the operations
with the commutation relation in Eq. (A1).

We remark that the probabilistic nature of any noiseless
amplification protocol would dramatically increase the sam-
pling overhead of our scheme. One way around this involves
conducting the amplification offline and storing the success-
fully amplified state until it is required.

Alternatively, for many experimentally relevant classes of
states, one can avoid the burden of actually implementing the
amplification step, provided that the protocol’s input state is
the following amplified version of ρ0, namely

ρamp = 1

Namp(ρ0)
gn̂

μρ0gn̂
μ, (27)

where Namp(ρ0) = Tr[gn̂
μρ0gn̂

μ] is a normalizing factor. In par-
ticular, if the amplified state ρamp belongs to the same class of
states as ρ0, then noiseless amplification simply corresponds
to tuning the parameter that characterizes such class. For
example, if ρ0 is a cat state of magnitude α0, then ρamp is a cat
state of magnitude αamp = gμα0 > α0. Similarly, noiselessly
amplifying a squeezed vacuum state is equivalent to increas-
ing its squeezing parameter.

In this setting, we may also change perspective and, instead
of using ρ0 to define ρamp ∼ gn̂

μρ0gn̂
μ, we start from the ampli-

fied state ρamp and use it to determine ρ0 ∼ g−n̂
μ ρampg−n̂

μ , i.e.,
the state whose noise-free expectation value we are estimat-
ing. This approach is particularly helpful when experimental
limitations constrain the range of easily accessible states, as
illustrated in the following example. Suppose that the most
energetic coherent state we have experimental access to is
|αmax〉. It follows that, using ρamp = |αmax〉〈αmax| as an initial
state, we can estimate noise-free expectation values associated
with the state |αmax/gμ〉.

2. Photon subtraction

Photon subtraction can be probabilistically implemented
using a beam splitter and photon number resolving detector
[52]. Consider a beam splitter of transmissivity 1 − μ, its
unitary operation defined by UBS,μ = earccos(

√
1−μ)(â†

Aâ−â†âA ),
where the A subscript denotes the ancillary mode. If ρamp is
sent through the beam splitter together with a vacuum state in
the second input port, then a measurement of j photons in the
output port of the ancillary mode will herald the state (details
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FIG. 2. Schematic diagram depicting the full circuit used in
the single mode mitigation scheme as described in Sec. III B. If
one wants to estimate the noise-free expectation value 〈O〉ideal =
Tr[OUideal[ρ0]], one first prepares the amplified state ρamp ∼ gn̂

μρ0gn̂
μ.

This state is sent through the depicted beam splitter with a vacuum in
the ancilla input port. A measurement of j photons from the ancilla
output port will herald the state E j[ρ0]—this is as if we physically
started with ρ0 and implemented the CP channel E j . Which channel
is implemented in each individual shot is determined by the number
of detected photons j. Following this, the noisy dynamics Unoisy are
run and a measurement of O is made. This circuit is run many times
to obtain estimates of 〈O〉 j,noisy = Tr[O (Unoisy ◦ E j )[ρ0]] for different
values of j. These results are then linearly combined with the relevant
coefficients ω j (ρ0) to give the mitigated estimator Ōmit. All interven-
tions take place before the state undergoes its noisy dynamics and
so it is not necessary to reconfigure or change the circuit between
experimental shots.

can be found in Appendix C)

ρamp → 1

p j
Kj (μ)ρampK†

j (μ), (28)

where Kj (μ) are the Kraus operators defined in Eq. (11),
and p j = Tr[Kj (μ)ρampK†

j (μ)] is the probability of having
measured j photons. Finally, comparing Eq. (28) with Eq. (21)
reveals that, for the heralded state to be equal to E j[ρ0], the
amplification factor must be set to gμ = 1/

√
(1 − γ )(1 − μ).

Hence, assuming that we start our protocol with the amplified
state ρamp, the probabilistic nature of the photon subtraction
operation naturally allows us to sample from the set of states
{E j[ρ0]} according to the probability distribution {p j}. This is
depicted graphically in Fig. 2.

3. Postprocessing

Since the implementation of the maps {E j} is inherently
probabilistic, Monte Carlo methods cannot be straightfor-
wardly used to estimate 〈O〉ideal. Nevertheless, the linearity of
the expectation value lets us write

〈O〉ideal =
∞∑
j=0

ω j (ρ0)〈O〉 j,noisy, (29)

where 〈O〉 j,noisy = Tr[O (Unoisy ◦ E j )[ρ0]] is the noisy expec-
tation value of O given that the jth channel was implemented.
In other words, a suitable linear combination of the noisy
expectation values {〈O〉 j,noisy} allows us to estimate the noise-
free expectation value 〈O〉ideal. In N runs of the circuit
depicted in Fig. 2, we collect N measurement outcomes

{O( j� )
� }N

�=1, where the superscript j� denotes how many pho-
tons were measured by the photon number resolving detector
(i.e., which particular channel E j� was implemented) on the
�th run. The noisy expectation value 〈O〉k,noisy is estimated via
the sample average

Ōk,noisy = 1

Nk

∑
�| j�=k

O( j� )
� , (30)

where Nk is the number of times Ek was implemented. Notice
that the probability of subtracting j + 1 photons (if possible)
is typically a factor of O( μ

( j+1)(1−μ) ) smaller than subtracting
j photons. We will therefore assume to have a set of noisy
expectation values of increasing j up to some maximum cut-
off, Jmax, i.e., we have {Ō j,noisy}Jmax

j=0. We then linearly combine
these expectations values to obtain the mitigated estimator of
〈O〉ideal, namely

Ōmit =
Jmax∑
j=0

ω j (ρ0)Ō j,noisy, (31)

which has an expected value of

E[Ōmit] =
Jmax∑
j=0

ω j (ρ0)〈O〉 j,noisy. (32)

We may formally express the previous equation as E[Ōmit] =
Tr[Oρmit], where

ρmit =
Jmax∑
j=0

ω j (ρ0)(Unoisy ◦ E j )[ρ0] (33)

is a pseudostate, as it may not be a valid density matrix.
Nevertheless, the fidelity between ρmit and Uideal[ρ0] quanti-
fies the ability of our error mitigation protocol to recover the
noise-free expectation value for generic observables [57].

C. Error analysis

The bias and variance of the mitigated estimator Eq. (31)
for a particular choice of Jmax are respectively given by

Bias[Ōmit; Jmax] =
∣∣∣∣∣∣

∞∑
j=Jmax+1

ω j (ρ0)〈O〉 j,noisy

∣∣∣∣∣∣, (34)

Var[Ōmit; Jmax] =
Jmax∑
j=0

|ω j (ρ0)|2
Nj

Var[Oj,noisy], (35)

where Bias[Ōmit; Jmax] := |E[Ōmit|Jmax ] − 〈O〉ideal| and
Var[Oj,noisy] = 〈O2〉 j,noisy − 〈O〉2

j,noisy.
We point out that both the bias and variance fundamen-

tally arise from the finite number of samples considered and
therefore vanish in the infinite sampling limit. For a fixed
(and suitably large) choice of N , the value of Jmax can be
increased by increasing μ. As Jmax increases, the bias tends
to decrease while the variance (and hence sampling overhead)
monotonically increases—this accuracy-overhead tradeoff is
characteristic of many QEM schemes.

In practice, Jmax is implicitly defined as the smallest in-
teger J that satisfies Bias[Ōmit; J] < ϑbias, where ϑbias is the
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chosen acceptable level of bias that we want to achieve. As
the channel EJmax is implemented with probability pJmax , it
follows that the number of samples required to achieve ϑbias

scales as O(p−1
Jmax

). Once Jmax is fixed, any measurement result
corresponding to the kth channel for k > Jmax should be dis-
carded because these results will unnecessarily increase the
shot noise.

It is clear that in experimental settings Eq. (34) cannot be
used to estimate the bias, since its expression explicitly de-
pends on unknown noisy expectation values. Nonetheless, for
nonzero 〈O〉ideal the fractional bias (or equivalently percentage
bias), Bias[Ōmit; J]/〈O〉ideal, may still be approximately esti-
mated if we can assume that 〈O〉 j,noisy/〈O〉ideal ≈ O(1). With
this simplification, the fractional bias reads

Bias[Ōmit; J]

〈O〉ideal
≈

∣∣∣∣∣∣
∞∑

j=Jmax+1

ω j (ρ0)

∣∣∣∣∣∣, (36)

and we can therefore estimate the Jmax necessary to achieve
a target bias using the coefficients {ω j (ρ0)} only. Finally,
assuming Nj ≈ p jN , the sampling overhead reads

sampling overhead ≈
Jmax∑
j=0

|ω j (ρ0)|2
p j

Var[Oj,noisy]

Var[Onoisy]
. (37)

This can also be estimated using only {ω j} and {p j} under the
assumption that Var[Oj,noisy]/Var[Onoisy] ≈ O(1).

D. Monte Carlo approach

For specific classes of input states ρ0 it may be possible to
efficiently prepare each state E j[ρ0] appearing in the inverse
noise channel decomposition Eq. (20), without having to di-
rectly implement the amplification and the photon subtraction
(probabilistic) operations. In this scenario, our protocol can
be implemented using the standard Monte Carlo technique.
Explicitly, in each experimental shot one selects an initial state
from the ensemble {E j[ρ0]} with probability {q j = |ω j |/S}
where S = ∑∞

j=0 |ω j |. The measurement outcome in each
shot is then multiplied Ssgn(ω j ) before being averaged over.
This provides an unbiased estimate of 〈O〉ideal because there
is no finite cutoff acting on the operator-sum representation
of the inverse loss channel in Eq. (20). This Monte Carlo
approach can then be easily generalized to the multimode
setting (see Sec. IV D for details).

In Sec. III E 2, we provide a detailed example of the Monte
Carlo approach for the two-component cat state—for these
states, Eq. (20) can be rewritten in such a way that it contains
only two terms and hence we just have to sample from two
different initial states, {E0[ρ0], E1[ρ0]}.

Another notable example is given by the single-photon
Fock state ρ0 = |1〉〈1|. In this case, one easily shows that
�−1

γ [ρ0] = 1
1−γ

|1〉〈1| − γ

1−γ
|0〉〈0|. Hence, one can imple-

ment error cancellation by sending into the noisy circuit |1〉
(|0〉) with probability 1/(1 − γ ) [γ /(1 − γ )] and applying a
postprocessing weight of S = 1+γ

1−γ
(−S) to the measurement

outcome.

E. Examples

In this section, we provide explicit examples of our error
cancellation protocol to showcase its capabilities and assess
its performance. In particular, we will consider the following
classes of input states: single mode squeezed vacuum states
and two-component cat states.

1. Squeezed states

We first consider the input state to be a single mode
squeezed vacuum state, i.e., ρ0 = |S(r0)〉〈S(r0)|, defined as

|S(r0)〉 = S(r0) |0〉

= 1√
cosh(r0)

∞∑
n=0

(
tanh(r)

2

)n √
(2n)!

n!
|2n〉 . (38)

Here, r0 � 0 is the squeezing parameter and S(r0) =
e

r0
2 (â2−â†2 ) is the single mode squeezing operator. As previ-

ously mentioned, noiselessly amplifying |S(r0)〉 by a factor
of g > 1 produces a new squeezed vacuum state |S(ramp)〉 ∝
gn̂S(r0) |0〉, where tanh(ramp) = g2 tanh(r0). Notice that ramp

is not well defined when g2 tanh(r0) � 1. If this is the case
then it is not physically meaningful to exactly amplify |S(r0)〉
by a factor g [58]. Therefore, in order to exactly amplify by
increasing the squeezing of the initial state, one has to either
decrease μ or redefine r0 to r0 → r̃0 < r0, both of which come
with potential consequences. Alternatively, one could amplify
by g within some subspace, as discussed in Sec. III B 1. For
example, in Ref. [55], the authors show that their noiseless
linear teleamplification scheme is able to approximately am-
plify single mode squeezed vacua beyond this g2 tanh(r0) < 1
limit.

To assess the performance of our mitigation protocol, we
consider the scenario where the ideal unitary evolution Uideal

is the identity and the measured observable corresponds to a
projector onto the (pure) noiseless reference state, ρ0, i.e., we
consider the observable O = ρ0. Clearly, the expectation value
of ρ0 with respect to an arbitrary state σ corresponds to their
quantum fidelity, namely Tr[ρ0σ ] = F (ρ0, σ ) [5,57]. Hence,
in this scenario, the mitigated expectation value corresponds
to the fidelity F (ρ0, ρmit) between the target state ρ0 and the
pseudostate ρmit defined in Eq. (33). Intuitively, we expect that
if the state σ has a large fidelity with ρ0, then Tr[A σ ] provides
a good estimate of Tr[A ρ0] for most observables A. A value of
F (ρ0, ρmit) close to 1 then implies that (for most choices of A
and generic unitary dynamics U ) Tr[AU [ρmit]] will be a good
estimator of Tr[AU [ρ0]]. We therefore can use F (ρ0, ρmit) as
a metric of the mitigation scheme’s performance, independent
of any particular dynamics or observables.

In Fig. 3, we plot the exact percentage bias of Ōmit with
O = |S(r0)〉〈S(r0)| as a function of Jmax, for different values
of loss, γ , and squeezing, r0. We see significant improvements
with respect to the unmitigated results (horizontal lines), in-
dicating that the pseudostate ρmit has a higher fidelity with
ρ0 than �γ [ρ0]. For example, to ensure ϑbias < 10−3 (corre-
sponding to a percentage bias smaller than 0.1%) with γ =
0.1 and r0 = 1.0 only requires Jmax = 3. Even when Jmax = 0,
which corresponds to performing a zero photon subtraction
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FIG. 3. Percentage bias as a function of Jmax for different val-
ues of r0 and γ , for the estimation of the fidelity with respect to
the noiseless target state. The dashed horizontal lines represent the
percentage bias of the unmitigated estimators. In (a), we vary γ at
fixed r0 = 1. On the other hand, in (b) we fix γ = 0.1 and consider
different values of r0. The unmitigated percentage biases for r0 = 1
and 1.33 lie outside the graph, but are respectively given by 18.0
and 20.6%. In all displayed cases, we see an improvement over the
unmitigated result, even for modest values of Jmax.

[59] on the amplified state, we see an improvement in the bias
for all plotted cases.

In Fig. 4, we plot the sampling overhead and ramp as a
function of μ for different values of r0 and fixed γ . We choose
the acceptable level of bias, ϑbias, to be 1%. For suitably
small μ, we observe that increasing μ tends to decrease the
sampling overhead. This is because it increases the probability
that j �= 0 photons are subtracted which in turn will tend to
decrease the shot noise in Ō j �=0,noisy. This comes at the cost of
increasing the necessary level of squeezing, ramp. Finding the
optimal value of μ in the tradeoff between sampling overhead
and ramp will depend on experimental considerations such as

FIG. 4. Sampling overhead and ramp as a function of μ for
varied r0 with fixed γ = 0.1. For r0 = (0.75, 1.0, 1.1, 1.2), we
choose Jmax = (1, 2, 3, 3) which gives the percentage biases as
(0.72%, 0.21%, 0.23%, 0.65%) < 1%. The corresponding unmiti-
gated biases are (5.86%, 11.0%, 13.58%, 16.46%). We observe a
tradeoff between minimizing the sampling overhead and minimizing
the required amount of squeezing. The optimal choice of μ will
depend on the individual experimental details such as the difficulty in
preparing highly squeezed states and circuit shot rate. We point out
that we did not include the effect of discarding detection outcomes
corresponding to J > Jmax in the computation of the sampling over-
head and hence we are slightly underestimating its true value. Fixing
r0 and varying γ produces analogous looking behavior.

the difficulty of increasing the squeezing parameter and the
circuit shot rate.

Finally, we investigate the stability of our error cancellation
protocol in the presence of imperfect noise strength parameter
estimation. In particular, we imagine that the experimenter has
incorrectly estimated the loss parameter to be γ̃ and then study
the effects that implementing the mitigation scheme using loss
parameter γ̃ �= γ has on the bias. In Fig. 5, we plot E[Ōmit] =
F (ρ0, ρmit) as a function of γ̃ with r0 = 1, γ = 0.1 and
Jmax = 3—for this choice of parameters, when γ̃ = γ the
percentage bias is <0.1%.

We see that the percentage bias then grows approximately
linearly as γ̃ moves away from the true loss parameter, and
that the gradient of this curve is favorable—for example, a
25% error in estimation of the noise parameter leads to only a
4% bias in the expected value of the mitigated estimator. In or-
der for the mitigated bias to match the noisy expectation value
bias (which for these parameters is around 11%), one would
have to estimate γ̃ = 0 or 0.16. Therefore, for these parame-
ters as long as the experimental error in γ estimation is below
60%, the bias of the mitigated estimator outperforms the noisy
results. Notably, for all γ̃ < γ our mitigation scheme outper-
forms the noisy result and therefore even partially undoing the
losses is always better (from a bias perspective) than running
the noisy dynamics.

This slow growth of the bias with respect to |γ − γ̃ |/γ
constitutes a strong indication that our mitigation scheme is
robust against imperfect characterization of the noise strength.
This is because the impact of estimating γ̃ �= γ presents itself
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FIG. 5. E[Ōmit] = F (ρ0, ρmit ) as a function of γ̃ , with γ = 0.1,
r0 = 1, and Jmax = 3. These parameters gives a mitigated percentage
bias of 0.1% when we have perfect knowledge of the loss parameter,
i.e., γ̃ = γ . We observe that our mitigation scheme is stable under
imperfect knowledge of γ : for example, γ̃ = 0.075 (a 25% error on
the noise parameter characterization) only leads to a modest 4% bias
of the mitigated estimator.

as a moderate bias in the end result, but this bias is relatively
small for reasonable estimates of γ , such as within 10%.

2. Cat states

In this section, we provide an example of the Monte Carlo
approach previously outlined in Sec. III D. We do so by con-
sidering two-component cat states ρφ (α) = |Cφ (α)〉〈Cφ (α)|
as input states for our mitigation scheme. These are de-
fined as |Cφ (α)〉 = (|α〉 + eiφ |−α〉)/Aφ (α), where Aφ (α) =√

2(1 + cos(φ)e−2|α|2 ) denotes the normalization coefficient.
Since the two-component cat states are eigenstates of â2, it
follows that we only need the channels E0 and E1 to fully
describe the action of the inverse noise channel �−1

γ . One can
easily show that

E j[ρφ (α)] =
{
E0[ρφ (α)] j even

E1[ρφ (α)] j odd
(39)

which further implies that we can write

�−1
γ [ρφ (α)] = Wevenρφ (g0α) + Woddρφ+π (g0α), (40)

where the weights are given by

Weven =
∞∑
j=0

ω2 j = e
γ |α|2
1−γ cosh

(
γ |α|2
1 − γ

)∣∣∣∣Aφ (g0α)

Aφ (α)

∣∣∣∣
2

,

Wodd =
∞∑
j=0

ω2 j+1 = −e
γ |α|2
1−γ sinh

(
γ |α|2
1 − γ

)∣∣∣∣Aφ+π (g0α)

Aφ (α)

∣∣∣∣
2

.

(41)

We remind the reader that g0 = 1/
√

1 − γ and point out that
Wodd is negative. If one is able to directly prepare the states
|Cφ (g0α)〉 and |Cφ+π (g0α)〉, then the mitigation scheme may
be implemented simply by sending these two states through
the circuit with probabilities respectively given by qeven =

|Weven|/S and qodd = |Wodd|/S, where

S = |Weven| + |Wodd| = e
2γ

1−γ
|α|2 + cos(φ)e− 2

1−γ
|α|2

1 + cos(φ)e−2|α|2 . (42)

The mitigated estimator is then given by

Ōmit = S(Ōeven − Ōodd). (43)

The latter is unbiased because we did not include a cutoff
in the operator-sum representation of �−1

γ . The associated
sampling overhead reads

sampling overhead ≈ S

(
|Weven| Var[Oeven]

Var[Onoisy]

+ |Wodd| Var[Oodd]

Var[Onoisy]

)
. (44)

When Var[Oeven] ≈ Var[Oodd] ≈ Var[Onoisy], the sampling
overhead is approximately S2, exactly as in the DV PEC case.
This scaling arises because the task has been reduced to a
Monte Carlo estimation task. Notice that the leading term in
Eq. (42) is exponential in γ |α|2/(1 − γ ). In Fig. 6 we plot S2

(i.e., the approximate sampling overhead) as a function of α

and γ .

IV. EXTENSION TO MULTIPLE MODES

In this section, we extend our error cancellation protocol
to M modes. Conceptually, the multimode protocol is exactly
analogous to the single mode case. In order to highlight this
similarity, we introduce two new operators corresponding to a
multimode photon subtraction and a multimode amplification
or attenuation:

Â(M )
j :=

M⊗
i=1

â ji
i , Ĝ (M )

g :=
M⊗

i=1

gn̂i
i . (45)

Here, j = ( j1, . . . , jM ) is a vector of photon subtractions and
g = (g1, . . . , gM ) is a vector of the amplification factors gi in
the ith mode.

A. Inverse loss map

Our proposed mitigation scheme extends naturally from a
single mode to multiple modes when the photon losses are of
the form presented in Eq. (13). By comparison with the single
mode case, one can see from the P representation of �(M )

γ in
Eq. (15) that the multimode inverse loss map is given by a
tensor product of M single mode inverse loss maps with loss
parameters γ = (γ1, γ2, . . . , γM ):

�−1(M )
γ =

M⊗
i=1

�−1
γi,i

. (46)

Once again, this map is Hermitian preserving and trace pre-
serving but not completely positive and hence nonphysical.
Nevertheless, these operators can be expressed as a sum over
physically realizable operations with potentially negative co-
efficients. We consider the following set of maps {E (M )

j }:

E (M )
j [ρ] = 1

Ñ j (ρ)
Â(M )

j Ĝ (M )
g0

ρ Ĝ (M )
g0

Â(M )†
j , (47)
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FIG. 6. S2 ≈ sampling overhead as a function of (a) γ and
(b) |α|. When Var[Oeven] ≈ Var[Oodd] ≈ Var[Onoisy], we can approx-
imate the sampling overhead with S2, which is plotted. Despite the
exponential growth with respect to |α| and γ , there is a large and rel-
evant parameter space in which the sampling overhead is sufficiently
modest to be experimentally reasonable.

where ji ∈ {0, 1, 2, . . . } denotes how many photons are sub-
tracted from mode i, g0 = (g0,0, g0,1, . . . , g0,M ) with g0,i =
1/

√
1 − γi, and Ñ j (ρ) = Tr[Â(M )

j Ĝ (M )
g0

ρ Ĝ (M )
g0

Â(M )†
j ] is the

normalization. We again refer to these maps as channels
for simplicity. If the initial state ρ can be written as a
tensor product, ρprod = ⊗M

i=1 ρi, then the normalization re-
duces to Ñ j (ρprod) = ∏M

i=1 N ji (ρi ) where N ji (ρi ) is defined
in Eq. (22).

The M mode inverse loss map can then be decomposed
into physically realizable channels with potentially negative
coefficients via

�−1 (M )
γ [ρ] =

∞∑
j1=0

· · ·
∞∑

jM=0

� j (ρ)E (M )
j [ρ]. (48)

Once again, � j = (
∏M

i=1
(−γi ) ji

ji!
)Ñ j (ρ) is a quasiprobability

distribution and hence satisfies
∑∞

j1, j2,... jM=0 � j = 1. If ρ is a

product state then the coefficients reduce to a product of those
defined in Eq. (23), i.e., � j (ρprod) = ∏M

i=1 ω ji (ρi ).

B. Quantum error cancellation protocol

In order to physically implement the set of channels {E (M )
j },

we need to have access to (noiseless) amplification and
multiphoton subtractions. Photon subtractions are routinely
implemented via a beam splitter interaction that further at-
tenuates the state. In order to compensate for this unwanted
effect, we need to amplify each mode by a factor gμ,i > g0,i,
where i denotes the mode and gμ,i is a new parameter that
depends on the transmissivity of the beam splitter in the ith
mode. We then redefine the vector of amplification factors as
gμ = (gμ,1, gμ,2, . . . , gμ,M ). For an ideal initial state ρ0, the
amplified initial state, ρamp, is given by

ρamp = 1

Ñamp
Ĝ (M )

gμ
ρ0Ĝ (M )

gμ
, (49)

where Ñamp = Tr[Ĝ (M )
gμ

ρ0Ĝ (M )
gμ

] is the normalization. As in the
single mode case, we recommend (where possible) placing
this amplification in the state preparation stage—the dis-
cussion of this amplification within the single mode setting
in Sec. III B 1 is still highly relevant, particularly for prod-
uct states. For entangled initial states, there are still many
experimentally relevant states that maintain their functional
form under amplification. For example, amplifying a two
mode squeezed vacuum state of squeezing parameter r0 pro-
duces a two mode squeezed vacuum of squeezing parameter
ramp > r0. Similarly, amplification of two mode entan-
gled coherent state ∼ |α0〉 |β0〉 + |−α0〉 |−β0〉 implements
the transformations α0 → αamp > α0 and β0 → βamp > β0.
The photon subtraction term can be implemented with M
beam splitters and photon number resolving detectors. In
each mode, a beam splitter of transmissivity 1 − μi for i ∈
{1, 2, . . . , M} is used with a vacuum in the second entry
port. The photon number resolving detectors then measure
the output of the second exit port. A measurement of j =
( j1, j2, . . . , jM ) photons with the photon number resolving
detectors will implement a tensor product of Kraus operators,

K(M )
j,μ = Kj1 (μ1) ⊗ Kj2 (μ2) ⊗ · · · ⊗ KjM (μM ), (50)

on ρamp, where Kji (μi ) are defined in Eq. (10). This action
heralds the state

ρamp → 1

p̃ j
K(M )

j,μ ρampK(M )†
j,μ = E (M )

j [ρ0], (51)

where p̃ j = Tr[K(M )
j,μ ρampK(M )†

j,μ ] is the probability that j pho-
tons were subtracted. The equality in Eq. (51) is easily
be seen by expanding both ρamp and K(M )

j,μ . We therefore

have a way of sampling from {E (M )
j [ρ0]} with corresponding

probabilities { p̃ j}.
We can now consider measuring a generic M-mode ob-

servable O. It can be seen that the ideal expectation value,
〈O〉ideal = Tr[OUideal[ρ0]], can be decomposed into

〈O〉ideal =
∑

j

� j (ρ0)〈O〉 j,noisy, (52)
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where 〈O〉 j,noisy = Tr[O (Unoisy ◦ E (M )
j )[ρ0]] is the noisy ex-

pectation value of O given that the channel E j was im-
plemented and

∑
j symbolically represents a sum over all

possible j = ( j1, j2, . . . , jM ).
Now imagine running the circuit N times. The channel

that was implemented in each shot is stochastically deter-
mined by the number and distribution of detected photons
in the photon subtraction stage. We bin the results based on
j—the set of different channels implemented is denoted J.
For each element of j ∈ J, the associated noisy expectation
value 〈O〉 j,noisy is estimated by the arithmetic mean of the
O measurement outcomes in which the channel E (M )

j was
implemented—we denote this Ō j,noisy. The mitigated estima-
tor of 〈O〉ideal is then

Ōmit =
∑
j∈J

� j (ρ0)Ō j,noisy. (53)

C. Error analysis

The bias and variance of the mitigated estimator Ōmit are
given by

Bias[Ōmit; J] =
∣∣∣∣∑

j /∈J

� j (ρ0)〈O〉 j,noisy

∣∣∣∣ (54)

and

Var[Ōmit; J] =
∑
j∈J

|� j (ρ0)|2
N j

Var[O j,noisy], (55)

where Var[O j,noisy] = 〈O2〉 j,noisy − 〈O〉2
j,noisy is the single shot

variance of O given the channel E (M )
j was implemented and

N j is the number of measurement outcomes associated with
E (M )

j . Once again, the fractional bias can be estimated if one
assumes 〈O〉 j,noisy/〈O〉ideal ≈ O(1). Given an acceptable bias
ϑbias, a suitable set J can be chosen—this choice can have a
significant impact on bias. The variance grows monotonically
with |J| which leads to an accuracy-overhead tradeoff that one
has to optimize. There also exists an amplification-overhead
tradeoff governed by μ. Under the approximation N j = p̃ jN ,
the sampling overhead of the estimated observable O is ap-
proximately given by

sampling overhead[O] ≈
∑
j∈J

|� j (ρ0)|2
p̃ j

Var[O j,noisy]

Var[Onoisy]
, (56)

where Var[Onoisy] = 〈O2〉noisy − 〈O〉2
noisy is the single shot

variance of O given that only the noisy dynamics, Unoisy, were
run. If one is measuring a collection of local observables si-
multaneously, such as O1 := O1 ⊗ I2 ⊗ · · · ⊗ IM , O2 := I ⊗
O2 ⊗ · · · ⊗ IM , then the sampling overhead is given by the
largest individual sampling overhead,

sampling overhead ≈ max
i

[sampling overhead[Oi]]. (57)

D. Monte Carlo approach

As in the single mode case, if each state in the operator-
sum representation of �−1(M )

γ , namely E (M )
j [ρ0], can be

efficiently prepared, then our scheme can be reduced to Monte

Carlo estimation. By sampling from {E (M )
j [ρ0]} with proba-

bilities {|� j |/S} where S = ∑
j |� j |, an unbiased estimator

of 〈O〉ideal can be obtained by multiplying the measurement
outcomes associated with j by S sgn[� j (ρ0)]—this is exactly
analogous to the single mode Monte Carlo approach discussed
in Sec. III D.

We provide an explicit example of this approach for two
modes in Sec. IV E. This approach is also particularly useful
for systems in the dual-rail representation [60], where logical
qubits are encoded by a single photon shared between two
modes via

|0〉L := |0〉 |1〉 , |1〉L := |1〉 |0〉 . (58)

If one wanted to implement our error cancellation scheme
using the Monte Carlo approach for an initial state |0〉⊗N

L =
(|0〉 |1〉)⊗N then, under the assumption of uniform losses, S
can be shown to be

S =
(

1 + γ

1 − γ

)N

. (59)

Intriguingly, this means one can undo the photon losses by
stochastically sending fewer single photons into the circuit.
We provide some intuition for why this is in Sec. III A.

E. Examples

In this section we look at two classes of entangled ini-
tial states, namely two mode squeezed vacua and entangled
coherent states. As for the single mode squeezed vacuum
case, we again use the observable O = ρ0; for the pure initial
states considered here, this expectation value estimation task
corresponds to estimating the fidelity between ρnoisy and ρmit

with respect to ρ0. Furthermore, as argued in Sec. III E 1,
this provides an observable and unitary-dynamics independent
benchmark for our mitigation scheme. We also consider the
covariance matrix as an observable for the two mode squeezed
vacua example.

We allow the loss parameter to fluctuate between shots in
Figs. 8 and 9 in order to create a more realistic noise model,
as discussed in Sec. II B. Recovery of the ideal expectation
value in both of these simulations is strong evidence that
our mitigation scheme is robust against a fluctuating loss pa-
rameter, and hence demonstrates the applicability of quantum
error cancellation realistic scenarios. In Fig. 10, we plot an
archetypal histogram of different loss parameters used in a
1×106 shot experiment with average losses exceeding 50%.

1. Two mode squeezed vacua

Consider the TMSV states given by

|S2(r)〉 = er(â†
1 â†

2−â1â2 ) |00〉

= cosh[−1](r)
∞∑

n=0

tanh[n](r) |nn〉 . (60)

Let ρ0 = |S2(r0)〉〈S2(r0)|. Amplifying |S2(r0)〉 by G (M )
g=(g1,g2 )

gives |S2(ramp)〉 up to normalization, where tanh(ramp) =
g1g2 tanh(r0) and the amplification normalization is
Ñamp by g = cosh[2](ramp )

cosh[2](r0 ) . As in the single mode squeezed
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FIG. 7. On the left, we plot the bias of E[Ōmit] = F (ρ0, ρmit )
as a function of Jmax for the set J (local)(Jmax). Each curve is labeled
by (r0, γ1, γ2). The dashed lines give the noisy expectation values,
〈O〉noisy = F (ρ0,�γ [ρ0]). With the exception of the red curve, we see
a rapid convergence to the ideal expectation value as Jmax grows, and
even the zero-photon subtraction channel yields a drastic improve-
ment over the unmitigated results. Subtracting just up to one photon
from each mode is sufficient to achieve O(1%) bias and in the small
loss regime this is improved to O(0.1%). The red curve diverges
because � j increases as j1 and j2 increase in the regime where j
photon losses are non-negligible—this behavior can be calculated
a priori and hence can be avoided by redefining r0. On the right,
we plot the approximate sampling overhead,

∑
j∈J |� j |2/ p̃ j as a

function of Jmax under the same choice of parameters. We see a clear
exponential growth with respect to Jmax with a gradient that has a
larger dependence on the strength of noise than the initial squeez-
ing parameter. For each (r0, γ ), the beam splitter parameters μ =
(μ,μ) (beam splitter parameters are chosen to the nearest 0.005)
minimize sampling overhead when Jmax = 1. The squeezing param-
eters associated with Ĝg0 [ρ0] and Ĝgμ

[ρ0] for each curve (orange,
green, ..., purple, red) are given by (1.245, 1.746), (1.310, 1.734),
(1.452, 1.924), (1.420, 1.794), (1.365, 1.552), and (1.856, 2.335).
These are all accessible with current devices. One can decrease the
necessary amplification gμ by accepting a larger sampling overhead.

vacuum case, we require g1g2 tanh(r0) < 1 for the
amplification to converge and be physically meaningful.

One can show that the quasiprobability distribution � j is
given by

� j (|S2(r0)〉〈S2(r0)|) = (−γ1) j1 (−γ2) j2

cosh[2](r0)

∞∑
n=max[ j1, j2]

(
n

j1

)(
n

j2

)

×
(

tanh[2](r0)

(1 − γ1)(1 − γ2)

)n

. (61)

Again, this converges when tanh(r0)/
√

(1 − γ1)(1 − γ2) < 1.
For fixed choices of r0 and γ , if increasing j1 and/or j2 leads
to � j increasing, then the quasiprobability weight is pushed
towards the channels E (M )

j that cannot be implemented. This
leads to mitigated expectation values that can look divergent
in j1, j2 and places further constraints on what values r0

and γ can take. An example of this is seen in the red curve
of Fig. 7. This has parameters (r0, γ1, γ2) = (1, 0.2, 0.2)
and starts rapidly diverging away from the ideal result—in
principle, we know that 〈O〉ideal = ∑

j � j〈O〉 j but in practice,
any numerical cutoff we tested led to divergent behavior.

FIG. 8. Two histograms illustrating the distribution of results
from 100 simulated experiments in which (a) σ00 and (b) σ02 were
measured. The initial state, |S2(0.75)〉, was subject to losses stochas-
tically chosen from a discretized Gaussian distribution centered on
γ̄ = (0.15, 0.15) with standard deviation σγ = 0.1γ̄ in each shot.
We measured 1×106 shots in each experiment to give an estimate
of the dimensionless σk� and the photon subtraction beam splitters
were parametrized by μ = (0.105, 0.105). The red bars show the
unmitigated results, the blue bars show the mitigated results, and the
labeled vertical dashed lines give the ideal, noisy, and mitigated ex-
pectation values. The percentage bias decreases from (8.6%, 15.0%)
to (0.19%, 0.19%) while the sampling overhead is a modest ≈4.4
and hence our mitigation scheme gives a vast improvement over the
unmitigated results, as clearly demonstrated by the histograms.

Numerically, we found that keeping tanh(r0)/√
(1 − γ1)(1 − γ2) � 0.9 tends to ensure that, for the j

we are interested in, the expectation value converges to the
ideal result. This limit can be increased slightly if γ1 �= γ2

and γi � 1.
Interestingly, � j can initially decrease with j for “small”

values of j1 and j2 before beginning to increase with j for
“large” values of j1 and j2 in such a way that these higher
photon subtraction terms dominate the quasiprobability. For-
tunately, this effect is negated by the fact that within the Kraus
representation of �γ [ρ0], the terms corresponding to high
photon subtraction terms are themselves vanishingly small
and therefore the net effect is no appreciable impact on the
expectation value.

In Fig. 7, we plot the expected percentage bias of the miti-
gated estimator, F (ρ0, ρmit), as well as the sampling overhead
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FIG. 9. Simulation of 〈ρ0〉 = F (ρ0, ρmit ) against α for the entan-
gled coherent states ∝ |α, α〉 − |−α,−α〉 subject to losses using our
mitigation scheme. In each shot, the loss parameter was stochasti-
cally selected from a discretized Gaussian distribution centered on γ̄

with width σγ = 0.1γ̄ . In (a), the average losses are γ̄ = (0.2, 0.2)
while in (b) the average losses are γ̄ = (0.5, 0.6). For each value of
α, we conduct ten experiments with 1×106 shots per experiment—
each experiment is marked by a tick on the graph and the blue curve
is the average over the ten experiments. We see a clear recovery of the
ideal expectation value for α � 2.25 in (a) and α � 1 in (b). Beyond
these points, the large sampling requirements make individual ex-
periments unreliable and can give fidelities that drastically exceed 1.
The graphs on the right plot S2 ≈ sampling overhead and �, which is
defined as the difference between the maximum and minimum values
of Ōmit for each α. We see a clear relationship between the two which
indicates that the sampling overhead is accurately characterizing the
shot noise.

for various choices of (r0, γ,μ). We choose the set J = J (local)

which is defined in terms of a parameter Jmax by

J (local)(Jmax) = {( j1, j2) | j1 � Jmax, j2 � Jmax}. (62)

In other words, Jmax labels the maximum number of photons
subtracted locally in each mode. We note in passing that the
choice of J can have a large impact on the bias—for example,
the set J = J (global)(Jmax) := {( j1, j2)| j1 + j2 � Jmax} is often
outperformed by J (local), even in cases where J (local)(Jmax,1) ⊂
J (global)(Jmax,2).

The results show a fast convergence to the ideal ex-
pectation value for all the results except the red curve,
where (r0, γ1, γ2) = (1, 0.2, 0.2). This red diverging curve
is explained by the fact that � j increases with j—
the factor tanh(r0)/

√
(1 − γ1)(1 − γ2) ≈ 0.952 > 0.9. De-

creasing γi from = 0.2 to 0.15 changes the factor
to tanh(r0)/

√
(1 − γ1)(1 − γ2) ≈ 0.896 < 0.9 which does

FIG. 10. A histogram representative of the γ values sampled in
Fig. 9(b) for a particular experiment with 1×106 shots. The dis-
cretized Gaussian distribution depicted here has mean γ̄ = (0.5, 0.6)
and standard deviation σγ̄ = 0.1γ̄ . Despite the relatively large spread
in possible loss parameters in a particular shot (ranging all the way
from 30 to 90% in mode 2), the fidelity recovery seen in Fig. 9
demonstrates that our mitigation scheme is robust against fluctuating
losses and hence can be applied successfully in real experiments. In
each mode, the Gaussian distribution was linearly discretized into
21 possible values. The range of possible γ values was truncated at
the tails such that the probability of γ lying outside the discretized
distribution was ≈10−7.

converge correctly as discussed above. The sampling over-
head is also plotted. We see that it grows exponentially with
Jmax and the gradient is most significantly impacted by the
level of noise γ .

We will now briefly discuss the covariance matrix before
using it as the observable in simulations plotted in Fig. 8. For
further details on the covariance matrix, refer to Refs. [61,62].

Two mode continuous variable systems can be described
by the dimensionless quadrature operators x̂i = 1√

2
(âi + â†

i )

and p̂i = 1
i
√

2
(âi − â†

i ) for i ∈ {1, 2}. These can be collected

into single four-component vector r̂ = (x̂1, p̂1, x̂2, p̂2)T . The
covariance matrix σ has matrix elements [61]

σk� = 〈{r̂k, r̂�}〉 − 2〈r̂k〉〈r̂�〉 (63)

where {A, B} := AB + BA is the anticommutator. States that
admit a Gaussian Wigner function are called Gaussian states
and they can be fully characterized by 〈r̂〉 and σ [61]. TMSV
states and TMSV states that have been subject to loss are both
examples of Gaussian states with 〈r̂〉 = 0 and are hence fully
characterized by their respective covariance matrices—by
measuring σ, we are essentially carrying out state tomography
on |S2(r)〉〈S2(r)| and �(2)

γ [|S2(r)〉〈S2(r)|].
For both of these states, of the 16 matrix elements in σ, it

can be shown that (up to a sign) there are only two unique
nonzero terms:

σ(|S2(r)〉〈S2(r)|) =
(

cosh(2r)I sinh(2r)Z

sinh(2r)Z cosh(2r)I

)
(64)

where I is the 2×2 identity matrix and Z is the Z-Pauli matrix.
Hence if one measures σ00 and σ02, one has fully characterized
the state.
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In Fig. 8, we simulate measuring σ00 and σ02 from a TMSV
state with parameter r0 = 0.75 subject to losses centered on
γ̄ = (0.15, 0.15). In each shot, the true photon loss parameter
is stochastically taken from a discretized Gaussian distribution
of standard deviation 0.1γ̄ . To carry out the photon subtrac-
tions, two beam splitters of reflectivities μ = (0.105, 0.105)
were chosen [63]. This gave an amplified squeezing param-
eter of ramp by gμ

≈ 1.2041 (compare this with the minimum
necessary squeezing for mitigation, ramp by g0

≈ 0.9666). We
simulated 100 experiments with 1×106 shots per experiment
and chose J = J (local)(3).

Our error cancellation protocol successfully recovers the
noise-free results to within a good approximation, and vastly
outperforms the noisy results. The ideal expectation value re-
covery takes place in spite of a fluctuating γ which is evidence
that our scheme is robust in realistic settings.

Because σ00 and σ02 are sufficient to fully characterize
|S2(r0)〉, the recovery of the ideal expectation value means
we are able to conduct tomography on a Gaussian state that
has passed through an unwanted photon loss channel. One
can generalize this to tomography of an arbitrary state that
has undergone unwanted losses by measuring, for example,
the Wigner function as an expectation value [64].

2. Entangled coherent states

Consider now the two mode entangled coherent states
given by

|ψ±(α, β )〉 = 1

B±(α, β )
(|α〉 |β〉 ± |−α〉 |−β〉), (65)

where B±(α, β ) = √
2{1 ± exp[−2(|α|2 + |β|2)]} is

the necessary normalization. We define ρ±(α, β ) =
|ψ±(α, β )〉〈ψ±(α, β )|. If the system is subject to losses
γ = (γ1, γ2), then it can be shown that the operator-sum
representation of the inverse map acting on ρ−(α, α) can be
rewritten using only two terms, i.e.,

�−1(M )
γ [ρ−(α, α)] = W̃even ρ−(α̃1, α̃2) + W̃odd ρ+(α̃1, α̃2).

(66)

Here, α̃i = α/
√

1 − γi and the coefficients W̃even/odd are
given by

W̃even = eγ1|α̃1|2+γ2|α̃2|2
∣∣∣∣B−(α̃1, α̃2)

B−(α, α)

∣∣∣∣
2

× [cosh(γ1|α̃1|2) cosh(γ2|α̃2|2)

+ sinh(γ1|α̃1|2) sinh(γ2|α̃2|2)], (67)

W̃odd = − eγ1|α̃1|2+γ2|α̃2|2
∣∣∣∣B+(α̃1, α̃2)

B−(α, α)

∣∣∣∣
2

× [cosh(γ1|α̃1|2) sinh(γ2|α̃2|2)

+ sinh(γ1|α̃1|2) cosh(γ2|α̃2|2)]. (68)

Notice the key negative sign on W̃odd. If one can produce the
entangled coherent states |ψ±(α̃1, α̃2)〉, then the Monte Carlo
approach from Sec. IV D can be used to give an unbiased
estimator of 〈O〉ideal. The sampling overhead is approximately
given by S2, where S = |W̃even| + |W̃odd|.

In Fig. 9, we plot simulated experiments in which the
fidelity between ρ0 and ρmit was measured as an expecta-
tion value. As there is no cutoff in the inverse channel [i.e.,
Eq. (48)] with this implementation, this provides an unbiased
estimate for all values of α, β, and γ . On the right, we plot
S2 ∼ sampling overhead, and the difference between the max-
imum and minimum values of Ōmit for a given α, labeled �. In
both (a) and (b), the sampling overhead grows exponentially
with α, which leads to a drastic increase in the shot noise.
Beyond some critical coherent state magnitude, αcrit, the shot
noise dominates and makes individual experiments unreliable.
Nonetheless, there is a large and interesting parameter regime
in which losses can be mitigated, with just a modest number of
shots—for example, the ideal result is consistently recovered
for an entangled coherent state of magnitude � 1 even when
total losses exceed 50%.

In each shot of the simulation, we stochastically select
the specific loss parameter γ from a discretized Gaussian
distribution centered on γ̄ with standard deviation σγ̄ = 0.1γ̄ .
The recovery of the fidelity then indicates that our scheme
is robust against a randomly fluctuating loss parameter. In
particular, the results in Figs. 9(b) and 10 demonstrate that
recovery is robust even when the loss parameters are sampled
from surprisingly wide distributions. In fact, when comparing
these results with results in which the loss parameter was
equal to γ̄ for all shots, the authors could not distinguish a
noticeable difference.

V. DISCUSSION

In this paper, we have proposed a quantum error mitigation
protocol applicable to discrete or continuous variable photonic
systems subject to excitation losses, inspired by DV proba-
bilistic error cancellation. We have analytically inverted the
photon loss channel and expressed it using a quasiprobability
distribution over physically realizable CP channels. These CP
channels involve both a noiseless amplification and multipho-
ton subtractions and we have proposed viable experimental
protocols for implementing both these operations. Following
this, we have then shown how the noisy dynamics can be
run and the measurement outcomes combined to construct an
estimator of 〈O〉ideal with a bias that can be made arbitrarily
small. Furthermore, we have presented a second approach
based on Monte Carlo estimation for certain classes of in-
put states—single photon states, cat states, and entangled
coherent states—and proven that this produces an unbiased
estimator of 〈O〉ideal. In both cases, an unavoidable sampling
overhead is introduced. Similar to DV PEC, where the sam-
pling overhead scales exponentially with qubit number and
circuit depth, here it scales exponentially with the number of
modes and noise strength. A new behavior observed is the
exponential dependence on the energy of the system through
either the squeezing parameter for squeezed states, or the
coherent state magnitude for cat states and entangled coherent
states. Nevertheless, the high shot rate which is characteristic
of photonic platforms can ease the impact of this cost.

We have assessed the protocol’s performance via several
examples. The squeezed state example displays how the miti-
gation scheme will typically be employed, and shows that the
percentage bias can be made less than 1% within currently
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experimentally accessible parameter regimes. The protocol
was shown to be robust against imperfect characterization
of the loss parameter and a fluctuating loss parameter. On
the other hand, the cat state example illustrates a special
case where one can exploit the state’s property of being an
eigenstate of â2 to make the estimate’s bias vanish entirely.
This Monte Carlo approach has a better scaling to multiple
modes and can be implemented fairly straightforwardly for
single photon states, cat states, and entangled coherent states.

We hope this paper encourages new work on QEM in CV
systems, whether that be adapting existing DV techniques
to the CV setting or finding entirely new error mitigation
strategies. A pertinent research direction involves extending
this protocol to include dynamic circuits with midcomputation
projective measurements—this will be particularly relevant
due to the necessity of midcircuit measurements for univer-
sal linear optical quantum computing. This protocol would
also work particularly well with states that are naturally
robust against dephasing errors in noise-biased situations.
Finally, we hope this paper inspires experimental work in
this area.
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APPENDIX A: USEFUL COMMUTATION RELATION

In this section, we prove the following identity:

gn̂â j = g− j â jgn̂. (A1)

We start by showing via induction that the commutation rela-
tion

[â j, n̂] = jâ j (A2)

holds for all j. The j = 0 case is trivial and the j = 1 case can
be seen by using the canonical commutation relation [â, â†] =
I. The induction step reads

[â j+1, n̂] = ââ j n̂ − n̂â j â

= â j+1n̂ − â j n̂â + [â j, n̂]â

= â j+1n̂ − â j (ân̂ − â) + jâ j+1

= ( j + 1)â j+1, (A3)

concluding our proof of Eq. (A2). Next, we prove that

[â j, n̂k] = â j[n̂k − (n̂ − jI)k] (A4)

for all j and k by induction. For k = 0 this trivially holds for
arbitrary j. For k = 1, the right-hand side reduces to jâ j—we
have just proven that [â j, n̂] = jâ j for arbitrary j. Now, we
show that if Eq. (A4) holds for arbitrary j and a particular k,
then it must also hold for arbitrary j and k + 1:

[â j, n̂k+1] = â j n̂k+1 − n̂n̂k â j

= â j n̂k+1 − n̂(â j n̂k − [â j, n̂k])

= â j n̂k+1 − n̂â j (n̂ − jI)k

= â j n̂k+1 − â j (n̂ − jI)k+1

= â j[n̂k+1 − (n̂ − jI)k+1]. (A5)

By induction, we have therefore shown that Eq. (A4) holds for
arbitrary non-negative integers j and k.

We now Taylor expand gn̂ = ∑∞
k=0

ln(g)k

k! n̂k and look at
gn̂â j :

gn̂â j =
∞∑

k=0

ln(g)k

k!
n̂k â j = â j

∞∑
k=0

ln(g)k

k!
(n̂ − jI)k = â jgn̂− j .

(A6)

Here, we have used the commutation relation in Eq. (A4) in
the second line. This proves the useful relation between gn̂ and
â j in Eq. (A1). This allows us to exchange the order in which
the attenuation or amplification and the photon subtractions
occur in the loss map or inverse loss map by simply introduc-
ing a c number.

APPENDIX B: INVERSE PHOTON LOSS MAP PROOF

In this section, we prove that the P representation and
operator-sum representation of the inverse loss map are
equivalent. Let �

−1,(op.sum)
γ [ρ] be the operator-sum represen-

tation in Eq. (19). Via linearity, it is sufficient to show that
�

−1,op.sum
γ [|α〉〈α|] = |g0α〉〈g0α| because then every coherent

state in the integrand of Eq. (18) will be correctly amplified:

�−1,op.sum
γ [|α〉〈α|] =

∞∑
j=0

(−γ ) j

j!
â jgn̂

0|α〉〈α|gn̂
0(â†) j

= e(g2
0−1)|α|2

∞∑
j=0

â j |g0α〉〈g0α|(â†) j

= e
γ

1−γ
|α|2

∞∑
j=0

1

j!

(−γ |α|2
1 − γ

) j

|g0α〉〈g0α|

= |g0α〉〈g0α|. (B1)

In the third line we used the fact that g2
0 − 1 = γ /(1 − γ ).

Therefore, applying �−1
γ in the operator-sum representation to

ρ in the P representation will return �−1
γ in the P representa-

tion. This proves that these two representations are equivalent.

APPENDIX C: PHOTON SUBTRACTION

In this section, we prove that sending an arbitrary state ρ

through a beam splitter with a vacuum in the second entry port
and measuring j photons heralds a state conjugated by the jth
Kraus operators defined in Eq. (10).
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Let the input and output modes be described by
the annihilation operators âi and b̂i respectively, where
i ∈ {system, ancilla}. We let the input system state be pure
and given by |ψ〉 = ∑∞

n=0 cn |n〉 = ∑∞
n=0 cn

ân
S√
n!

|0〉 while the
ancilla input state is a vacuum, |0〉. The order of the tensor
product is system-ancilla (e.g., |0〉 |0〉 = |0〉S |0〉A).

In the Heisenberg picture, a beam splitter of transmis-
sivity 1 − μ, described by the unitary UBS,μ defined in
Sec. III B 2, will transform â†

S → √
1 − μ b̂†

S − √
μ b̂†

A. This
acts on |ψ〉 |0〉 to produce the state

UBS,μ |ψ〉 |0〉 =
∞∑

n=0

cn
(
√

1 − μ b̂†
S − √

μ b̂†
A)n

n!
|0〉 |0〉 ,

=
∞∑

n=0

n∑
m=0

cn(
√

1 − μ)n−m(−√
μ)m

×
(

n

m

) 1
2

|n − m〉 |m〉 , (C1)

where
(n

m

) = n!/(m!(n − m)!) is the binomial coefficient.
To calculate the state that is heralded by a measurement of

j photons in the ancilla output mode, we first apply 〈 j|A to the
above state:

〈 j|A UBS,μ |ψ〉S |0〉A

= (−1) j

√(
μ

1 − μ

) j ∞∑
n= j

cn(1 − μ)
n
2

(
n

j

) 1
2

|n − j〉

= (−1) j

√(
μ

1 − μ

) j ∞∑
n=0

cn(1 − μ)
n
2

×
(

n

j

) 1
2
√

(n − j)!

n!
â j |n〉

= (−1) j

√
1

j!

(
μ

1 − μ

) j

â j
∞∑

n=0

cn(1 − μ)
n
2 |n〉

= (−1) j

√
1

j!

(
μ

1 − μ

) j

â j (1 − μ)
n̂
2 |ψ〉

= (−1) jKj (μ) |ψ〉 , (C2)

where in the third line we used â j |n < j〉 = 0, in the fourth

line
(n

j

) 1
2

√
(n− j)!

n! =
√

1
j! , and in the fifth line gn |n〉 = gn̂ |n〉.

Using this, we can see that a projective measurement of j
photons from the ancilla output port will (up to normalization)
herald the state

|ψ〉〈ψ | → Tr[I ⊗ | j〉〈 j|)UBS,μ(|ψ〉〈ψ |S ⊗ |0〉〈0|A)U †
BS,μ

]

= 〈 j|A UBS,μ |ψ〉S |0〉A 〈ψ |S 〈0|A U †
BS,μ

| j〉A

= Kj (μ)|ψ〉〈ψ |K†
j (μ). (C3)

This proves the statement for pure states. Via linearity, it
can easily be seen that for an arbitrary density operator ρ =∑

i λi|ψi〉〈ψi|, a measurement of j photons from the ancillary

output port will (up to normalization) herald the state

ρ → Kj (μ)ρK†
j (μ). (C4)

APPENDIX D: DEPHASING ERRORS

In this section, we briefly discuss bosonic dephasing errors,
and the impact they have on our loss mitigation scheme,
and give a new dephasing error mitigation scheme based
around the inverse dephasing error map. The single mode pure
bosonic dephasing channel, �D,γD , is defined by

�D,γD [ρ] =
∞∑

n=0

∞∑
m=0

e− γD
2 (m−n)2〈m|ρ|n〉|m〉〈n|, (D1)

where γD ∈ [0,∞) is a parameter that determines the noise
strength. There is an exponential damping on the off-diagonal
terms that decoheres the state.

This can equivalently be seen to solve the Lindblad master
equation

d

dt
ρ(t ) = κDD[n̂][ρ(t )], (D2)

where D[n̂](ρ) = n̂ρn̂ − 1
2 {n̂2, ρ} is the dephasing Lindbla-

dian and κD > 0 is the dephasing rate, if we make the
identification γD = κDt .

The joint loss-dephasing channel, denoted �LD,γ ,γD , gives
the solution to the Lindblad master equation:

d

dt
ρ(t ) = [κD[â] + κDD[n̂]][ρ(t )]. (D3)

The fact that the two Lindbladians commute means that the
joint loss-dephasing channel can be decomposed into a pure
loss channel of strength γ taking place before or after a
pure dephasing channel of strength γD; i.e., �LD,γ ,γD = �γ ◦
�D,γD = �D,γD ◦ �γ . This in turn means that if our system is
subject to a joint loss-dephasing channel of strength (γ , γD),
then we can use our quantum error cancellation protocol to
mitigate against the losses, leaving behind an expectation
value that is equivalent if the system was just subject to the
pure dephasing channel of strength γD. In other words, our
error cancellation scheme for photon losses is robust against
the introduction of a dephasing error channel.

We now briefly introduce a scheme for mitigating against
the pure dephasing channel. A discrete Kraus representation
of the dephasing channel is given by

�D,γD [ρ] =
∞∑
j=0

γ
j

D

j!
n̂ je− γD

2 n̂2
ρ e− γD

2 n̂2
n̂ j, (D4)

where we have explicitly expanded out the Kraus operators

Dj (γD) =
√

γ
j

D/ j! n̂ je− γD
2 n̂2

. Using this, one can then easily
show that the inverse dephasing channel has an operator-sum
representation of

�−1
D,γD

[ρ] =
∞∑
j=0

−γ
j

D

j!
n̂ je

γD
2 n̂2

ρ e
γD
2 n̂2

n̂ j . (D5)

This corresponds to simply changing the the sign of γD →
−γD in Eq. (D4). Similarly to the photon loss inverse map,
Eq. (D5) can be expressed as a weighted sum (with some
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negative coefficients) of CP maps. Consider the channels
defined by

ED, j[ρ] = 1

ND, j (ρ)
n̂ je

γD
2 n̂2

ρ e
γD
2 n̂2

n̂ j, (D6)

where ND, j (ρ) is a normalization coefficient. The inverse
can then be written as linear sum over these channels with
coefficients ωD, j (ρ) = (−γD) jND, j (ρ)/ j!. Using this, if one
can realize the channels ED, j then one can mitigate against
the dephasing channel using similar ideas that have been dis-
cussed in this paper for mitigating against the loss channel.

Unfortunately, an experimental realization of the chan-
nels {ED, j} seems particularly challenging. In fact, a re-
alization of n̂ j alone requires postselection that makes
scaling beyond a couple of modes unfeasible. Addition-
ally, unlike the noiseless amplification term present in the
inverse excitation loss map, the operator e

γD
2 n̂2

may not
be easily incorporated in the state preparation stage. Un-
less a way around these difficulties is found, the error
cancellation protocol presented in this paper is unlikely
to be experimentally viable to mitigate against dephasing
errors.

[1] A. Montanaro, Quantum algorithms: An overview, npj
Quantum Inf. 2, 15023 (2016).

[2] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[3] L. K. Grover, Quantum mechanics helps in searching for a
needle in a haystack, Phys. Rev. Lett. 79, 325 (1997).

[4] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, New York,
2010).

[6] D. Gottesman, An introduction to quantum error correction and
fault-tolerant quantum computation, in Quantum Information
Science and its Contributions to Mathematics, Proceedings of
Symposia in Applied Mathematics Vol. 68 (American Mathe-
matical Society, Washington, DC, 2010), pp. 13–58.

[7] D. A. Lidar and T. A. Brun, Quantum Error Correction
(Cambridge University Press, New York, 2013).

[8] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[9] B. Cheng, X.-H. Deng, X. Gu, Y. He, G. Hu, P. Huang, J. Li,
B.-C. Lin, D. Lu, Y. Lu et al., Noisy intermediate-scale quantum
computers, Front. Phys. 18, 21308 (2023).

[10] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys.
94, 015004 (2022).

[11] S. Chen, J. Cotler, H.-Y. Huang, and J. Li, The complexity of
NISQ, Nat. Commun. 14, 6001 (2023).

[12] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S.
Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio
et al., Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[13] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth et al., The variational
quantum eigensolver: A review of methods and best practices,
Phys. Rep. 986, 1 (2022).

[14] S. Endo, J. Sun, Y. Li, S. C. Benjamin, and X. Yuan, Variational
quantum simulation of general processes, Phys. Rev. Lett. 125,
010501 (2020).

[15] A. J. McCaskey, Z. P. Parks, J. Jakowski, S. V. Moore, T. D.
Morris, T. S. Humble, and R. C. Pooser, Quantum chemistry as
a benchmark for near-term quantum computers, npj Quantum
Inf. 5, 99 (2019).

[16] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M.
Troyer, and P. Zoller, Practical quantum advantage in quantum
simulation, Nature (London) 607, 667 (2022).

[17] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S.
Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme et al.,
Evidence for the utility of quantum computing before fault
tolerance, Nature (London) 618, 500 (2023).

[18] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y.
Li, J. R. McClean, and T. E. O’Brien, Quantum error mitigation,
Rev. Mod. Phys. 95, 045005 (2023).

[19] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid quantum-
classical algorithms and quantum error mitigation, J. Phys. Soc.
Jpn. 90, 032001 (2021).

[20] R. Takagi, S. Endo, S. Minagawa, and M. Gu, Fundamental
limits of quantum error mitigation, npj Quantum Inf. 8, 114
(2022).

[21] Y. Quek, D. S. França, S. Khatri, J. J. Meyer, and J. Eisert,
Exponentially tighter bounds on limitations of quantum error
mitigation, Nat. Phys. (2024).

[22] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M.
Chow, and J. M. Gambetta, Error mitigation extends the com-
putational reach of a noisy quantum processor, Nature (London)
567, 491 (2019).

[23] V. Russo, A. Mari, N. Shammah, R. LaRose, and W. J.
Zeng, Testing platform-independent quantum error mitigation
on noisy quantum computers, IEEE Trans. Quantum Eng. 4,
2500318 (2023).

[24] C. Song, J. Cui, H. Wang, J. Hao, H. Feng, and Y. Li, Quantum
computation with universal error mitigation on a superconduct-
ing quantum processor, Sci. Adv. 5, eaaw5686 (2019).

[25] E. Van Den Berg, Z. K. Minev, A. Kandala, and K. Temme,
Probabilistic error cancellation with sparse Pauli-Lindblad
models on noisy quantum processors, Nat. Phys. 19, 1116
(2023).

[26] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation
for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509
(2017).

[27] Y. Li and S. C. Benjamin, Efficient variational quantum simu-
lator incorporating active error minimization, Phys. Rev. X 7,
021050 (2017).

[28] W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C. Rubin,
S. Boixo, K. B. Whaley, R. Babbush, and J. R. McClean,
Virtual distillation for quantum error mitigation, Phys. Rev. X
11, 041036 (2021).

[29] B. Koczor, Exponential error suppression for near-term quan-
tum devices, Phys. Rev. X 11, 031057 (2021).

022622-18

https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/s11467-022-1249-z
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/s41467-023-41217-6
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1103/PhysRevLett.125.010501
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/s41586-022-04940-6
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1103/RevModPhys.95.045005
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1038/s41534-022-00618-z
https://doi.org/10.1038/s41567-024-02536-7
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1109/TQE.2023.3305232
https://doi.org/10.1126/sciadv.aaw5686
https://doi.org/10.1038/s41567-023-02042-2
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.11.041036
https://doi.org/10.1103/PhysRevX.11.031057


QUANTUM ERROR CANCELLATION IN PHOTONIC … PHYSICAL REVIEW A 110, 022622 (2024)

[30] S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error
mitigation for near-future applications, Phys. Rev. X 8, 031027
(2018).

[31] C. Piveteau, D. Sutter, and S. Woerner, Quasiprobability de-
compositions with reduced sampling overhead, npj Quantum
Inf. 8, 12 (2022).

[32] Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, Quantum error
mitigation as a universal error reduction technique: Applica-
tions from the NISQ to the fault-tolerant quantum computing
eras, PRX Quantum 3, 010345 (2022).

[33] R. S. Gupta, E. van den Berg, M. Takita, K. Temme, and A.
Kandala, Probabilistic error cancellation for dynamic quantum
circuits, Phys. Rev. A 109, 062617 (2024).

[34] D. Su, R. Israel, K. Sharma, H. Qi, I. Dhand, and K. Brádler,
Error mitigation on a near-term quantum photonic device,
Quantum 5, 452 (2021).

[35] T.-Y. Yang, Y.-X. Shen, Z.-K. Cao, and X.-B. Wang, Post-
selection in noisy Gaussian boson sampling: Part is better than
whole, Quantum Sci. Technol. 8, 045020 (2023).

[36] S. Aaronson and A. Arkhipov, The computational complexity
of linear optics, Theor. Comput. 9, 143 (2013).

[37] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.
O’Brien, and T. C. Ralph, Boson sampling from a Gaussian
state, Phys. Rev. Lett. 113, 100502 (2014).

[38] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Gaussian boson sampling, Phys. Rev.
Lett. 119, 170501 (2017).

[39] J. Mills and R. Mezher, Mitigating photon loss in linear optical
quantum circuits: Classical postprocessing methods outper-
forming postselection, arXiv:2405.02278.

[40] K. Tsubouchi, T. Sagawa, and N. Yoshioka, Universal cost
bound of quantum error mitigation based on quantum estima-
tion theory, Phys. Rev. Lett. 131, 210601 (2023).

[41] R. Takagi, H. Tajima, and M. Gu, Universal sampling lower
bounds for quantum error mitigation, Phys. Rev. Lett. 131,
210602 (2023).

[42] The set of noisy operators {F j} should form a noisy operator
basis into which Uideal can be decomposed.

[43] J. Sun, X. Yuan, T. Tsunoda, V. Vedral, S. C. Benjamin, and S.
Endo, Mitigating realistic noise in practical noisy intermediate-
scale quantum devices, Phys. Rev. Appl. 15, 034026
(2021).

[44] M. S. Kim and N. Imoto, Phase-sensitive reservoir modeled by
beam splitters, Phys. Rev. A 52, 2401 (1995).

[45] R. J. Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[46] M. Oszmaniec and D. J. Brod, Classical simulation of pho-
tonic linear optics with lost particles, New J. Phys. 20, 092002
(2018).

[47] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S.
Kolthammer, and I. A. Walmsley, Optimal design for universal
multiport interferometers, Optica 3, 1460 (2016).

[48] D. J. Brod and M. Oszmaniec, Classical simulation of linear
optics subject to nonuniform losses, Quantum 4, 267 (2020).

[49] S. Rahimi-Keshari, M. A. Broome, R. Fickler, A. Fedrizzi, T. C.
Ralph, and A. G. White, Direct characterization of linear-optical
networks, Opt. Express 21, 13450 (2013).

[50] I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, Accurate and
precise characterization of linear optical interferometers, J. Opt.
18, 035204 (2016).

[51] T. C. Ralph and A. Lund, Nondeterministic noiseless linear
amplification of quantum systems, AIP Conf. Proc. 1110, 155
(2009).

[52] M. Kim, Recent developments in photon-level operations on
travelling light fields, J. Phys. B 41, 133001 (2008).

[53] A. Zavatta, J. Fiurášek, and M. Bellini, A high-fidelity noiseless
amplifier for quantum light states, Nat. Photon. 5, 52 (2011).

[54] M. S. Winnel, N. Hosseinidehaj, and T. C. Ralph, Generalized
quantum scissors for noiseless linear amplification, Phys. Rev.
A 102, 063715 (2020).

[55] J. J. Guanzon, M. S. Winnel, A. P. Lund, and T. C. Ralph, Ideal
quantum teleamplification up to a selected energy cutoff using
linear optics, Phys. Rev. Lett. 128, 160501 (2022).

[56] J. J. Guanzon, M. S. Winnel, D. Singh, A. P. Lund, and T. C.
Ralph, Saturating the maximum success probability bound for
noiseless linear amplification using linear optics, PRX Quantum
5, 020359 (2024).

[57] Z. Cai, A practical framework for quantum error mitigation,
arXiv:2110.05389.

[58] Since gn̂ is an unbounded operator, we cannot expect it to
produce physical states when acting on arbitrary CV states. This
is a generic property of unbounded operators acting on states in
an infinite-dimensional Hilbert space.

[59] C. M. Nunn, S. U. Shringarpure, and T. B. Pittman, Trans-
forming photon statistics through zero-photon subtraction,
Phys. Rev. A 107, 043711 (2023).

[60] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and
G. J. Milburn, Linear optical quantum computing with photonic
qubits, Rev. Mod. Phys. 79, 135 (2007).

[61] A. Serafini, Quantum Continuous Variables: A Primer of Theo-
retical Methods (CRC Press, Boca Raton, FL, 2017).

[62] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum informa-
tion, Rev. Mod. Phys. 84, 621 (2012).

[63] This choice of μ was selected because, to the nearest 0.005, it
optimized the sampling overhead.

[64] A. Royer, Wigner function as the expectation value of a parity
operator, Phys. Rev. A 15, 449 (1977).

022622-19

https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1038/s41534-022-00517-3
https://doi.org/10.1103/PRXQuantum.3.010345
https://doi.org/10.1103/PhysRevA.109.062617
https://doi.org/10.22331/q-2021-05-04-452
https://doi.org/10.1088/2058-9565/acf06c
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.119.170501
https://arxiv.org/abs/2405.02278
https://doi.org/10.1103/PhysRevLett.131.210601
https://doi.org/10.1103/PhysRevLett.131.210602
https://doi.org/10.1103/PhysRevApplied.15.034026
https://doi.org/10.1103/PhysRevA.52.2401
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1088/1367-2630/aadfa8
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.22331/q-2020-05-14-267
https://doi.org/10.1364/OE.21.013450
https://doi.org/10.1088/2040-8978/18/3/035204
https://doi.org/10.1063/1.3131295
https://doi.org/10.1088/0953-4075/41/13/133001
https://doi.org/10.1038/nphoton.2010.260
https://doi.org/10.1103/PhysRevA.102.063715
https://doi.org/10.1103/PhysRevLett.128.160501
https://doi.org/10.1103/PRXQuantum.5.020359
https://arxiv.org/abs/2110.05389
https://doi.org/10.1103/PhysRevA.107.043711
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevA.15.449

