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Quantum shortcut to adiabaticity for state preparation in a finite-sized Jaynes-Cummings lattice
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In noisy quantum systems, achieving high-fidelity state preparation using the adiabatic approach faces a
dilemma: either extending the evolution time to reduce diabatic transitions or shortening it to mitigate de-
coherence effects. Here we present a quantum shortcut to adiabaticity for state preparation in a finite-sized
Jaynes-Cummings lattice by applying counterdiabatic (CD) driving along given adiabatic trajectories. Leverag-
ing the symmetry of eigenstates in our system, we convert the CD driving to an implementable Hamiltonian
that only involves local qubit-cavity couplings for a two-site lattice with one polariton excitation. Additionally,
we derive a partial analytical form of the CD driving for the lattice with two excitations. Our numerical results
demonstrate that circuit errors and environmental noise have negligible effects on our scheme under practical
parameters. We also show that our scheme can be characterized through the detection of qubit operators. This
approach can lead to a promising pathway to high-fidelity state preparation in a significantly reduced timescale
when compared to conventional adiabatic methods.

DOI: 10.1103/PhysRevA.110.022621

I. INTRODUCTION

Adiabatic evolution involves a gradual transformation of a
quantum system from an initial state to a desired final state by
slowly varying a time-dependent Hamiltonian and has been
extensively studied for quantum state preparation in quan-
tum information processing [1,2]. In noisy quantum systems
[3,4], achieving high fidelity for the prepared states using
the adiabatic approach requires a balance in choosing the
evolution time: It should be long enough to reduce unwanted
diabatic transitions yet short enough to mitigate decoher-
ence from environmental noise. Various approaches have been
used to develop a quantum shortcut to adiabaticity, where
reverse engineering of diabatic transitions is employed to
accelerate a slow adiabatic process via nonadiabatic shortcuts
[5–8]. These approaches include counterdiabatic (CD) driving
[9–13], invariant-based approaches [14,15], the derivative re-
moval of an adiabatic gate [16], dressed-state approaches [17],
etc. The quantum shortcut to adiabaticity has been proposed
and experimentally demonstrated in many quantum systems,
such as superconducting qubits, defect qubits, quantum-dot
arrays, and cold atoms [18–30]. One hurdle that prevents
the general application of these quantum shortcut approaches
is the complexity of the Hamiltonian required for reverse
engineering, which often involves multipartite or nonlocal
interactions. A number of approaches have been explored to
overcome this hurdle by deriving local CD driving, including
an approach that explores the self-similar nature of a quantum
system, the mean-field approximation, a variational approach,
Floquet engineering, a digitalized approach, and an optimal
control approach [31–40].

*Contact author: ltian@ucmerced.edu

Jaynes-Cummings (JC) lattices [41–49] have been studied
in various experimental systems, including superconduct-
ing qubits coupled to cavities, solid-state defects coupled
to nanocavities, and trapped ions [50–57], and can exhibit
quantum or dissipative phase transitions between the Mott-
insulating and superfluid phases in the thermodynamic limit
[47,48,58,59]. The states of finite-sized JC lattices can also
carry related features, resulting in novel phenomena such
as the photon blockade effect and novel entanglement when
properly populated with polariton excitations [60,61]. A key
step in demonstrating these effects is to prepare the desired
quantum states with a finite number of excitations. In previous
works we employed an adiabatic approach and a quantum
optimal control approach for state preparation in this system
[62,63].

Here we present a quantum shortcut to adiabaticity for state
preparation in a finite-sized JC lattice by applying CD driving
during an adiabatic evolution. In our approach we explore
the symmetry of the system’s eigenstates to convert the CD
driving to an implementable Hamiltonian for two-site and
three-site lattices. We find that for a two-site lattice with one
excitation, the CD driving can involve only local qubit-cavity
couplings, and with two excitations, the CD driving can have
a partial analytical form that involves four-operator couplings
in the antisymmetric subspace. We also study the effects of
control errors and environmental noise on our scheme, which
complements previous CD driving studies on noisy and open
quantum systems [36,64,65]. Our numerical results demon-
strate that the effects of circuit errors and environmental noise
are negligible under practical parameters. Meanwhile, this
scheme can be characterized by performing measurement on
the qubits. This work hence presents an implementable CD
driving that can greatly shorten the evolution time of an adia-
batic process in a JC lattice and provides a promising avenue
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FIG. 1. Schematic of a two-site JC lattice with (a) one polariton
excitation and (b) two polariton excitations. Each site is composed
of a qubit (two-level system) coupled to a cavity mode with coupling
strength g and the cavities are connected by photon hopping with
rate J . The CD driving (a) includes only local qubit-cavity couplings
denoted by g′ and (b) is shown as H ′

1.

to achieving high-fidelity state preparation in a significantly
reduced timescale.

II. JAYNES-CUMMINGS LATTICE

Consider a finite-sized JC lattice composed of JC models
coupled via photon hopping between adjacent sites, as illus-
trated in Fig. 1. The Hamiltonian of the JC lattice can be
written as HJC = H0 + gVg + JVJ , where H0 = ∑

j (ω0a†
j a j +

ωz

2 σ jz ) is the Hamiltonian of the uncoupled qubits and cavity
modes, Vg = ∑

j (a
†
jσ j− + σ j+a j ) describes the on-site qubit-

cavity coupling, and VJ = −∑
j (a

†
i ai+1 + a†

i+1ai ) describes

the photon hopping between neighboring sites. Here aj (a†
j )

is the annihilation (creation) operator of the cavity modes,
σ j± and σ jz are the Pauli operators of the qubits, ω0 is the
frequency of the cavities, ωz is the qubit energy splitting, g is
the strength of the qubit-cavity coupling, J is the photon hop-
ping rate, and j ∈ [1, N], with N the number of sites. We have
assumed h̄ = 1 for convenience of discussion. In the rotating
frame defined by H rot

0 = ωz
∑

j (a
†
j a j + 1

2σ jz ), the Hamilto-

nian of the JC lattice becomes Hr = ∑
j �a†

j a j + gVg + JVJ ,
where � = ω0 − ωz is the detuning between the cavity modes
and the qubits.

We denote the basis states of a single JC model by |n, s〉,
with n � 0 the photon number of the cavity mode and s = g, e
the ground and excited states of the qubit, respectively. The
eigenstates of a single JC model include the ground state
|0, g〉 and the doublets |n,±〉 (n � 1), which are superposi-
tions of the basis states |n, g〉 and |n − 1, e〉 and correspond
to eigenstates with n polariton excitations. In the thermody-
namic limit with N → ∞, a JC lattice can exhibit various
many-body effects such as the quantum and dissipative phase
transitions between the Mott insulating and the superfluid

phases [41–43]. It can be shown that the ground states of a
finite-sized JC lattice exhibit similar features to these phases
[47,62,63].

A key step in studying novel phenomena in a JC lattice is
the preparation of desired quantum states for a finite number
of polariton excitations. One approach to generate such states
is adiabatic evolution [62], where the system is first prepared
in the ground state of an initial Hamiltonian Hr (t0) at time
t0, followed by adiabatic tuning of the system parameters to
reach the target Hamiltonian Hr (T ) at the final time T . The
ground state of the target Hamiltonian is designed to be the
desired state, which is often hard to prepare directly by gate
operations. In the end of the adiabatic evolution, the system
will reach the desired state. However, the adiabaticity of the
evolution and hence the fidelity of the prepared states can be
impaired by unwanted diabatic transitions to excited states.
Below we will employ a quantum shortcut to adiabaticity
approach to study the robust generation of quantum states in a
JC lattice within a significantly reduced time frame.

III. COUNTERDIABATIC DRIVING

Counterdiabatic driving can be applied to the Hamiltonian
Hr (t ) to cancel diabatic transitions and generate quantum
shortcut to adiabaticity during an adiabatic evolution. The CD
driving has the general form [5,9,10]

H1(t ) = i
∑
m �=n

|m(t )〉〈m(t )|∂t Hr|n(t )〉〈n(t )|
En(t ) − Em(t )

, (1)

where |m〉 and |n〉 are instantaneous eigenstates of Hr (t )
at time t , and Em and En are the corresponding eigenen-
ergies. The total Hamiltonian of this system then becomes
Htot = Hr (t ) + H1(t ). The exact CD Hamiltonian in (1) of-
ten includes nonlocal or multipartite interactions due to the
complexity of the quantum system of interest. Hence, it is
challenging to implement this Hamiltonian in systems with
practical parameters.

In this section we convert the CD driving in (1) to an
implementable Hamiltonian for adiabatic evolutions in two-
site and three-site JC lattices. Our results show that the CD
driving can comprise only local qubit-cavity couplings and is
implementable using current technology.

A. Two sites with one excitation

1. Eigenstates

We first study a two-site JC lattice with only one po-
lariton excitation. The allowable Hilbert space for this
system includes four basis states |1, g〉1|0, g〉2, |0, e〉1|0, g〉2,
|0, g〉1|1, g〉2, and |0, g〉1|0, e〉2, where the subscripts refer to
sites 1 and 2 in the lattice. Written in terms of this basis set,
the Hamiltonian has the form

Hr =

⎛
⎜⎜⎜⎝

� g −J 0

g 0 0 0

−J 0 � g

0 0 g 0

⎞
⎟⎟⎟⎠ (2)

022621-2



QUANTUM SHORTCUT TO ADIABATICITY FOR STATE … PHYSICAL REVIEW A 110, 022621 (2024)

FIG. 2. Eigenenergies En (n ∈ [1, 4]) of a two-site JC lattice with
one excitation. (a) En vs hopping rate J for g = 1 and � = 1. (b) En

vs coupling constant g for J = 2 and � = 1. All parameters are in
dimensionless units.

for given values of g, J , and �. The eigenvalues En (n ∈ [1, 4])
of this system are

E1,2 = 1
2 (�−

J ∓ χ−
1 ), E3,4 = 1

2 (�+
J ∓ χ+

1 ), (3)

with �±
J = � ± J and χ±

1 =
√

(�±
J )2 + 4g2 . The corre-

sponding eigenvectors are

v1 = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

χ−
1 −�−

J

χ−
1√

χ−
1 +�−

J

χ−
1

−
√

χ−
1 −�−

J

χ−
1√

χ−
1 +�−

J

χ−
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v2 = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
χ−

1 +�−
J

χ−
1√

χ−
1 −�−

J

χ−
1√

χ−
1 +�−

J

χ−
1√

χ−
1 −�−

J

χ−
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

v3 = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
χ+

1 −�+
J

χ+
1

−
√

χ+
1 +�+

J

χ+
1

−
√

χ+
1 −�+

J

χ+
1√

χ+
1 +�+

J

χ+
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v4 = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

χ+
1 +�+

J

χ+
1

−
√

χ+
1 −�+

J

χ+
1√

χ+
1 +�+

J

χ+
1√

χ+
1 −�+

J

χ+
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The eigenstate v1 is the ground state with eigenenergy E1.
From (4) we observe that the states v1 and v2 are symmetric
with respect to the exchange of the states on the two sites,
while the states v3 and v4 are antisymmetric and acquire a
factor of −1 when the states on the two sites are swapped.
In Fig. 2(a) we plot the energy spectrum of the system as a
function of the photon hopping rate J for g = 1 and � = 1.
At J = 0, �±

J = �, resulting in E1 = E3 (E2 = E4), which
indicates that the states v1 and v3 (v2 and v4) are degenerate.
In Fig. 2(b) we plot the energy spectrum vs the qubit-cavity
coupling g for J = 2 and � = 1. At g = 0 and � < J , E2 =
E3 = 0, and v2 and v3 are degenerate.

We want to emphasize that the symmetry of these eigen-
states is crucial for our development of an implementable CD
driving that only involves local qubit-cavity couplings. Dur-
ing an adiabatic evolution, the variation of the Hamiltonian
does not induce transition of the system from a symmetric
to an antisymmetric state due to the inherent symmetry of
the Hamiltonian. Furthermore, this symmetry also facilitates

the preparation of the ground state v1 at J = 0 via resonant
pumping, without inducing excitation to the state v3 that is
degenerate to v1.

2. Ramping of hopping rate J

We assume that the hopping rate J (t ) is continuously tuned
from J (0) = 0 at time t = 0 to J (T ) = Jf at the final time T ,
with Jf the target hopping rate, while keeping the qubit-cavity
coupling and the detuning unchanged during the adiabatic
process. At t = 0, the system is prepared in the ground state
v1 for J = 0 by resonantly pumping the system from the state
|0, g〉1|0, g〉2. The variation of J (t ) induces off-diagonal ma-
trix elements between the instantaneous eigenstates, resulting
in undesired transitions to the excited states. The nonzero
matrix elements are |〈v1|VJ |v2〉| = g/χ−

1 and |〈v3|VJ |v4〉| =
g/χ+

1 , along with their conjugate elements, which induce tran-
sitions between the states v1 and v2 and between the states v3

and v4, respectively. We then derive the CD driving using (1):

H1(t ) = i
g

(χ−
1 )2

dJ

dt
(|v1〉〈v2| − |v2〉〈v1|)

− i
g

(χ+
1 )2

dJ

dt
(|v3〉〈v4| − |v4〉〈v3|). (5)

Hence, when the system is in the ground state v1, the only
allowable transition is to the symmetric eigenstate v2. As
discussed above, this is due to the symmetry of the eigen-
states and the Hamiltonian. A variation of the hopping rate
in the Hamiltonian preserves the exchange symmetry of
the state, which can only induce a diabatic transition to the
state v2. Consequently, the state at an arbitrary time t during
the evolution remains symmetric and can only be a superpo-
sition of the instantaneous v1 and v2 states. Thus, the second
term in H1(t ) does not actively contribute to the elimination
of diabatic transitions and its amplitude can be adjusted with
flexibility, without affecting the adiabatic dynamics of this
system. Below we will construct an easier-to-implement CD
driving using this property.

We first convert the CD driving in (5) to physical op-
erators of the qubits and cavities to see if it can be easily
implemented. In the Hilbert space for one polariton exci-
tation, we have a†

1σ1− = |1, g〉1〈0, e| ⊗ |0, g〉2〈0, g|, a†
1a2 =

|1, g〉1〈0, g| ⊗ |0, g〉2〈1, g|, and so forth. Using the expression
of the eigenstates in (4), we derive

|v1〉〈v2| − |v2〉〈v1| = 1
2 (S†

+A+ − A†
+S+), (6a)

|v3〉〈v4| − |v4〉〈v3| = 1
2 (S†

−A− − A†
−S−), (6b)

with A± = a1 ± a2 and S± = σ1− ± σ2−. In addition, the CD
driving Hamiltonian can be written as

H1(t ) = i
g

2(χ−
1 )2

dJ

dt
(S†

+A+ − A†
+S+)

− i
g

2(χ+
1 )2

dJ

dt
(S†

−A− − A†
−S−). (7)

This Hamiltonian comprises local couplings between qubits
and cavities on the same site such as σ1+a1 and σ2+a2 as well
as nonlocal couplings between qubits and neighboring cavities
such as σ1+a2 and σ2+a1.

022621-3



CAI, PARAJULI, GOVINDARAJAN, AND TIAN PHYSICAL REVIEW A 110, 022621 (2024)

FIG. 3. Infidelity 1 − F (t ) vs t/T for a total evolution time of
T = 0.5π for (a) two-site and (c) three-site JC lattices and infidelity
1 − F (T ) vs T for (b) two-site and (d) three-site JC lattices. In all
plots, the blue solid line (blue circles) denotes the linear ramping of
hopping rate J for g ≡ 1, � ≡ 1, J (0) = 0, and Jf = 2 under the
adiabatic Hamiltonian Hr only (with the CD driving H ′

1 applied);
red dashed line (red squares), quadratic ramping of J for g ≡ 1,
� ≡ 1, J (0) = 0, and Jf = 2 under Hr (with H ′

1); and green dotted
line (green triangles), linear ramping of coupling g for J ≡ 2, � ≡ 1,
g(0) = 0, and gf = 1 under Hr (with H ′

1). All parameters are in
dimensionless units.

By changing the coefficient of the second term in (7) from
−ig/2(χ+

1 )2 to ig/2(χ−
1 )2, we obtain the following CD Hamil-

tonian:

H ′
1(t ) = ig′(a1σ1+ − a†

1σ1− + a2σ2+ − a†
2σ2−). (8)

This Hamiltonian includes only local qubit-cavity couplings
with coupling strength given by g′ = g

(χ−
1 )2

dJ
dt . It can be inter-

preted as a Jaynes-Cummings coupling with an eiπ/2 phase
and can be implemented by adjusting local qubit-cavity cou-
plings.

For demonstration, we simulate the time evolution of this
system under the adiabatic Hamiltonian Hr with either H1 or
H ′

1 applied. We consider both linear ramping of the hopping
rate with J (t ) = Jf

t
T and quadratic ramping of the hopping

rate with J (t ) = Jf ( t
T )2. For linear ramping, dJ/dt = Jf /T ;

for quadratic ramping, dJ/dt = 2Jf t/T 2. We choose the tar-
get hopping rate Jf = 2, the qubit-cavity coupling g ≡ 1,
the detuning � ≡ 1, and the total time T = 0.5π . We de-
fine the fidelity of the quantum state at time t as F (t ) =
|〈v1(t )|v(t )〉|2, where v(t ) is the state at time t and v1(t ) is
the instantaneous ground state of the adiabatic Hamiltonian
at time t . In Fig. 3(a) we plot the infidelity 1 − F (t ) vs t/T .
Without the CD driving, the infidelity increases significantly
during the evolution, as the diabatic transitions can be serious
for a very short evolution time of T = 0.5π . In contrast, when
the CD driving H ′

1 is applied, the infidelity, up to a small

numerical error below 10−10, is zero throughout the evolution
and the system is preserved in the ground state. In Fig. 3(b)
we plot the infidelity 1 − F (T ) of the final state vs the total
evolution time T . Without the CD driving, the infidelity can
be quite high for a short evolution time. This result demon-
strates that the CD approach can ensure high fidelity for a
short evolution time, which is crucial for devices in the noisy
intermediate-scale quantum regime [3]. As shown in Figs. 7(a)
and 7(b) in Appendix A, the infidelities under H1 and H ′

1 are
the same up to a small numerical error below 10−10, which
confirms our analysis that these two CD drivings yield the
same dynamics for the initial state v1.

3. Ramping of qubit-cavity coupling g

Now consider an adiabatic trajectory where the qubit-
cavity coupling is ramped linearly with g(t ) = g f

t
T , where

g f is the target coupling strength. The nonzero transition
matrix elements caused by the variation of g are |〈v1|Vg|v2〉| =
�−

J /χ−
1 , |〈v3|Vg|v4〉| = �+

J /χ+
1 , and their conjugate elements,

which induce transitions between the states v1 and v2 as
well as between the states v3 and v4, respectively, due to
the symmetry of the eigenstates. The CD driving can be
derived as

H1(t ) = i
�−

J

2(χ−
1 )2

dg

dt
(S†

+A+ − A†
+S+)

− i
�+

J

2(χ+
1 )2

dg

dt
(S†

−A− − A†
−S−). (9)

Similar to (7), this Hamiltonian includes nonlocal couplings
between qubits and neighboring cavities. As discussed above,
when |v1〉 is the initial state, only the state |v2〉 could be
excited by diabatic transitions. Therefore, we can vary the
coefficient of the second term in (9). By changing this co-
efficient from −i�+

J /2(χ+
1 )2 to i�−

J /2(χ−
1 )2, we obtain the

CD driving

H ′
1(t ) = ig′(a1σ

+
1 − a†

1σ
−
1 + a2σ

+
2 − a†

2σ
−
2 ), (10)

which only involves local qubit-cavity couplings with strength

g′ = �−
J

(χ−
1 )2

dg
dt . Consequently, implementing both the adiabatic

Hamiltonian and the CD driving only requires the tuning of
the local qubit-cavity coupling, which can significantly sim-
plify the experimental setup.

We perform a numerical simulation on this system with
a hopping rate of J ≡ 2, a detuning of � ≡ 1, and a target
coupling strength of g f = 1. At t = 0 and g(0) = 0, the initial
state is (|1, g〉1|0, g〉2 + |0, g〉1|1, g〉2)/

√
2, where the excita-

tion is stored in the cavity modes. The infidelity 1 − F (t ) vs
t/T for T = 0.5π is plotted in Fig. 3(a) and the infidelity
at the final time 1 − F (T ) vs the total time T is plotted in
Fig. 3(b). The results are similar to the case of ramping the
hopping rate J .

4. Self-protected trajectory

The magnitude of the CD driving in (10) is proportional
to �−

J = � − J . In the special case of � = J , �−
J = 0, lead-

ing to the interesting result H ′
1 = 0, which means that no

CD driving is required. It can be shown that the matrix el-
ement |〈v1|Vg|v2〉| ≡ 0 under this condition; hence the only
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allowable diabatic transition for the initial state v1 disap-
pears. The Hamiltonian Hr is thus self-protected from the
diabatic transition, i.e., there is no diabatic transition when
ramping the qubit-cavity coupling g. The ground state is

1√
2
(|1,−〉1|0, g〉2 + |0, g〉1|1,−〉2) throughout the evolution,

with the system occupying the lower polariton state |1,−〉 in
one of the lattice sites.

B. Three sites with one excitation

We now study a three-site lattice with one polariton
excitation under the open boundary condition with the pho-
ton hopping term VJ = −(a†

1a2 + a†
2a3 + H.c.), where sites

1 and 3 possess mirror reflection symmetry. The allowable
Hilbert space comprises six basis states |1, g〉1|0, g〉2|0, g〉3,
|0, e〉1|0, g〉2|0, g〉3, |0, g〉1|1, g〉2|0, g〉3, |0, g〉1|0, e〉2|0, g〉3,
|0, g〉1|0, g〉2|1, g〉3, and |0, g〉1|0, g〉2|0, e〉3. The Hamiltonian
in terms of this basis set has the form

Hr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� g −J 0 0 0

g 0 0 0 0 0

−J 0 � g −J 0

0 0 g 0 0 0

0 0 −J 0 � g

0 0 0 0 g 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

We numerically calculate the eigenstates of this system.
Four eigenstates exhibit symmetry regarding the exchange
of the states on sites 1 and 3. For g = 1, J = 2, and
� = 1, these symmetric states include the ground state v1,
the second excited state v3, the third excited state v4, and
the highest state v6. When ramping the hopping rate J ,
diabatic transitions occur only between v1 and v4 and be-
tween v3 and v6. Thus, the CD driving takes the form
of H1 = α1|v4〉〈v1| + α2|v6〉〈v3| + H.c. with coefficients α1

and α2. When expressed in terms of the physical operators,
we have

H1 = ign[(a†
1 + a†

3)σ2− + a†
2(σ1− + σ3−) − H.c.]

+ igl (a
†
1σ3− + a†

3σ1− − H.c.)

+ igl (a
†
1σ1− + 2a†

2σ2− + a†
3σ3− − H.c.), (12)

which includes nonlocal couplings with strengths gn and gl ,
such as the coupling between the cavities on sites 1 and 3 and
the qubit on site 2, as well as local couplings with strength gl

for sites 1,3 and strength 2gl for site 2.
We employ the same approach as in Sec. III A to convert

the CD Hamiltonian to a form that is easier to implement. As
discussed above, for the initial state v1, ramping of the hop-
ping terms only induces transition to the state v4. Therefore,
the coefficient α2 in H1 can be varied with flexibility without
affecting the dynamics of this system. By adjusting α2, we
find

H ′
1 = ig′(a†

1σ1− + 2a†
2σ2− + a†

3σ3− − H.c.)

+ ig′(a†
1σ3− + a†

3σ1− − H.c.), (13)

where the couplings between the qubit (cavity) on site 2 and
the cavities (qubits) on sites 1 and 3 are no longer required.
This Hamiltonian still includes nonlocal terms between sites

1 and 3 with coupling strength g′. This Hamiltonian can be
implemented for a small lattice of three sites by coupling the
qubits and cavities on sites 1 and 3. However, this result shows
that we cannot always find a local form of the CD driving. In
Figs. 3(c) and 3(d) we plot the infidelity of the prepared state
under the adiabatic Hamiltonian Hr both without and with the
CD driving H ′

1. The result is similar to that of the two-site
lattice discussed in Sec. III A.

C. Two sites with two excitations

1. Eigenstates

For a two-site JC lattice with two polariton excitations,
the Hilbert space includes eight basis states |2, g〉1|0, g〉2,
|1, e〉1|0, g〉2, |0, g〉1|2, g〉2, |0, g〉1|1, e〉2, |1, g〉1|1, g〉2,
|0, e〉1|1, g〉2, |1, g〉1|0, e〉2, and |0, e〉1|0, e〉2. In the first
four states, both excitations occupy one of the two sites, while
in the last four states, one excitation is located on each site.
Using this basis set, the Hamiltonian Hr can be expressed as

Hr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2�
√

2g 0 0 −√
2J 0 0 0√

2g � 0 0 0 −J 0 0

0 0 2�
√

2g −√
2J 0 0 0

0 0
√

2g � 0 0 −J 0

−√
2J 0 −√

2J 0 2� g g 0

0 −J 0 0 g � 0 g

0 0 0 −J g 0 � g

0 0 0 0 0 g g 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

For detuning � = 0, the eigenvalues of this Hamiltonian can
be derived analytically as

E1,2 = 0, (15a)

E3,4 = ∓
√

2g2 + J2, (15b)

E5,6 = ∓
√

6g2 + 5J2 −
√

4g4 + 60g2J2 + 9J4

√
2

, (15c)

E7,8 = ∓
√

6g2 + 5J2 +
√

4g4 + 60g2J2 + 9J4

√
2

. (15d)

In Fig. 4(a) we plot the eigenenergies vs the hopping rate J
at g = 1 and � = 0. We denote the eigenstates by vi with i ∈
[1, 8], corresponding to the eigenvalues given in (15). Here v7

is the ground state, while v1 and v2 are degenerate states with
E1,2 = 0.

2. Ramping of hopping rate J

Assuming that the hopping rate is linearly ramped with
J (t ) = Jf

t
T , the target hopping rate Jf = 1, g ≡ 1, and � ≡ 0.

The CD driving H1 can be obtained numerically using Eq. (1).
We simulate the dynamics of this system with the initial state
being the ground state v7 at J = 0 for a total evolution time of
T = 0.5π . In Fig. 4(b) we plot the infidelity 1 − F (t ) of the
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FIG. 4. (a) Eigenenergies En (n ∈ [1, 8]) vs hopping rate J .
(b) Infidelity 1 − F (t ) vs t/T for a total evolution time of T = 0.5π .
The blue solid line (blue circles) denotes the linear ramping of
hopping rate J under the adiabatic Hamiltonian Hr only (with the CD
driving H1 applied) with the initial state being the ground state v7 at
J = 0 and the red dashed line (red squares) the linear ramping of J
under Hr (with H ′

1) with the initial state being the first excited state
v3 at J = 0. Here g ≡ 1, � ≡ 0, J (0) = 0, Jf = 1, and all parameters
are in dimensionless units.

quantum state at time t as a function of t/T . The infidelity at
the final time T exceeds 0.4 under the adiabatic Hamiltonian
Hr, whereas it remains negligible when the CD driving is
applied.

By examining the eigenstates of Hr, we find that the eight
eigenstates can be divided into two subsets. The first subset
contains three states {v2, v3, v4}, while the second subset con-
tains the remaining five states, including the ground state v7.
When varying the hopping rate J , the only nonzero transition
matrix elements are between states within the same subset and
there is no diabatic transition between states in different sub-
sets. Thus, for an initial state in the first subset, we consider
the CD driving H ′

1 that only eliminates the diabatic transitions
between eigenstates in this subset. As detailed in Appendix B,
we derive

H ′
1(t ) = i

g

2(J2 + 2g2)

dJ

dt
(A†

2C2 − C†
2 A2), (16)

where A2 = a2
1 − a2

2 and C2 = a2σ1− − a1σ2−. This Hamil-
tonian consists of four-operator terms, which can be formed
through effective second-order couplings in the perturbative
regime.

To demonstrate the effectiveness of Eq. (16), we conducted
a numerical simulation of the adiabatic process on the ini-
tial state v3 from the first subset, which corresponds to the
first excited state in Fig. 4(a). As shown in Fig. 4(b), up to
a small numerical error below 10−10, the infidelity remains
zero throughout the evolution, indicating that the diabatic
transitions are completely canceled by the CD driving H ′

1.
In contrast, if the initial state is the ground state v7 from
the second subset, the infidelities both without and with the
CD driving H ′

1 will be the same [see the blue solid line in
Fig. 4(b)]. These numerical findings clearly show that the CD
driving H ′

1 is only effective for states in the first subset, but
not for states in the second subset, which is consistent with
our analysis above.

IV. ERROR, NOISE, AND MEASUREMENT

In this section we discuss the effects of control errors and
environmental noise on the adiabatic evolution under the CD
driving, as well as the characterization of the CD approach
through qubit measurements.

A. Control errors

Adjusting the system parameters can introduce classical
control errors, potentially impacting the performance of the
CD approach. To investigate the effects of these errors, we
conducted numerical simulations of the adiabatic process by
introducing random fluctuations to the time-dependent cou-
pling constants. Consider the linear ramping of the hopping
rate J (t ) discussed in Sec. III A, where the CD driving only
consists of time-dependent local qubit-cavity couplings. We
introduce a fluctuation δJ (t ) to the hopping rate with J (t ) →
J (t ) + δJ (t ) and a fluctuation δg(t ) to the qubit-cavity cou-
pling [including the CD terms in (10)] with g(t ) → g(t ) +
δg(t ). Here δJ (t ) and δg(t ) are Gaussian random numbers
with standard deviations αJf and αg, respectively, where α is
the ratio of the fluctuation amplitude to the coupling strength.
We choose α to be below 0.15, i.e., the fluctuations are below
15% of the coupling strengths. In superconducting quantum
devices, the couplings can be manipulated by various meth-
ods, as demonstrated in recent experiments [66–72], and the
ratio α can be well below 5% [73].1 In Fig. 5(a) the fidelity
F (t ) is plotted vs t/T for a single sample of errors with α =
0.05 and T = 0.5π . The fidelity exhibits small fluctuations
over the time t due to the presence of the errors. In Fig. 5(b)
the fidelity F (T ) averaged over 100 samples of errors is plot-
ted vs the ratio α. As α increases to 15%, the fidelity only
shows a mild decrease, demonstrating that control errors will
not strongly affect the system dynamics in practical systems.

B. Decoherence

Environmental noise induces decoherence in the qubits and
the cavity modes, potentially impacting the fidelity of the pre-
pared quantum states. To analyze the effects of decoherence,
we utilize a master equation approach with

dρ

dt
= −i[Htot, ρ] +

∑
j

(γ jLq j + κ jLa j )ρ, (17)

where Lq j = 1
2 (2σ j−ρσ j+ − ρσ j+σ j− − σ j+σ j−ρ) is the Li-

ouvillian operator for the qubit on site j with damping rate
γ j , La j = 1

2 (2a jρa†
j − ρa†

j a j − a†
j a jρ) is the Liouvillian op-

erator for the cavity mode on site j with damping rate κ j ,
and Htot is the total Hamiltonian of the system. We choose

1For simplicity of discussion, we assume that the standard devia-
tions of the circuit errors are αJf and αg, respectively, with the same
ratio α. Under this assumption, the error amplitude is on the scale of
a given percentage of the maximal hopping rate Jf or the coupling
strength g, which is reasonable in practical devices. Meanwhile, for
Jf = 2, g = 1, � = 1, and T � 0.5π (dJ/dt = Jf /T ), the strength
of the CD driving g′ is on the same order as the magnitudes of g and
Jf and hence will not introduce a large error beyond our assumption.
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FIG. 5. (a) Fidelity F (t ) vs t/T for one sample of errors with
α = 0.05. (b) Fidelity F (T ) vs α averaged over 100 samples of
errors. In (a) and (b) blue circles (red triangles) represent under the
adiabatic Hamiltonian Hr only (with the CD driving H ′

1 applied)
and the total evolution time is T = 0.5π . (c) Infidelity 1 − F (T )
vs T for γ = 5

π
× 10−5. The blue solid line (blue circles) is for

κ = 5 × 10−4 under the adiabatic Hamiltonian Hr only (with the CD
driving H ′

1 applied), the red dashed line (red squares) is for κ = 10−4

under Hr (with H ′
1), and the green dotted line (green triangles) is

for κ = 5 × 10−5 under Hr (with H ′
1). (d) Infidelity 1 − F (T ) vs κ

for γ = 5
π

× 10−5. The blue solid line (blue circles) is for T = 0.5π

under the adiabatic Hamiltonian Hr only (with the CD driving H ′
1

applied), the red dashed line (red squares) is for T = 3π under Hr

(with H ′
1), and the green dotted line (green triangles) is for T = 5.5π

under Hr (with H ′
1). All plots are for linear ramping of hopping rate

J with parameters given in Fig. 3 in dimensionless units.

γ1,2 = γ and κ1,2 = κ for simplicity of discussion. We also
assume that the dimensionless coupling strength g = 1 in our
discussion corresponds to g = 2π × 100 MHz in supercon-
ducting systems [62,63]. The measured decoherence time of
approximately 100 µs then corresponds to γ = 5

π
× 10−5 in

dimensionless units. When the cavity frequency is ω0 = 2π ×
5 GHz and the quality factor is Q = 106, the cavity decay rate
is κ = 5 × 10−5 in dimensionless units.

In Fig. 5(c) we plot the infidelity 1 − F (T ) vs the total
evolution time T for κ = 5 × 10−5, 10−4, and 5 × 10−4, with
γ = 5

π
× 10−5. It can be seen that for a short evolution time

T = 0.5π , the infidelity under only the adiabatic Hamiltonian
is much larger than the infidelity with the CD driving H ′

1, indi-
cating that the infidelity is dominated by diabatic transitions.
In contrast, for a long evolution time T = 5.5π , the infidelities
without and with the CD driving become comparable, indicat-
ing that it is dominated by the decoherence effect. In Fig. 5(d)
we plot 1 − F (T ) vs the cavity damping rate κ for T = 0.5π ,
3π , and 5.5π . Here the infidelity increases slightly with κ for
a short evolution time T = 0.5π , even when considering a
decoherence rate much higher than the experimental value.
In contrast, for a long evolution time such as T = 5.5π , the

FIG. 6. Operator average 〈σ1xσ2x〉 vs t/T for T = 0.5π . (a) Two
sites, one excitation with linear ramping of J and parameters given
in Fig. 3 in dimensionless units. (b) Two sites, two excitations with
linear ramping of J and parameters given in Fig. 4 in dimensionless
units. In both plots the blue solid line (blue circles) represents under
the adiabatic Hamiltonian Hr only (with the CD driving H ′

1 applied)
and the red dashed line the instantaneous ground-state average of Hr .

infidelity increases significantly with κ , indicating the dom-
inance of the decoherence effect. This result clearly shows
that by applying the implementable CD driving H ′

1, we can
greatly reduce the decoherence effect by choosing a short
evolution time and achieve high-fidelity quantum states. This
finding confirms the effectiveness of the CD approach in mit-
igating the impact of decoherence. Meanwhile, as discussed
in Sec. III A, the implementable CD driving H ′

1 generates the
same system dynamics as the CD driving H1 when the initial
state is v1. The effect of decoherence and circuit errors when
H ′

1 is applied is hence the same as that when H1 is applied.
Using H ′

1 will not be more robust to noise and control errors
than using H1.

C. Measurement

The performance of the CD approach can be characterized
by conducting measurement on the qubit operator σ1xσ2x. In
the case of one excitation in a two-site lattice, the ground
state at the initial parameters g = 1, J = 0, and � = 1 is
1
2 (|1,−〉1|0, g〉2 + |0, g〉1|1,−〉2), where |1,−〉 is the lower
polariton state with one excitation, and the excitation occupies
the sites in the form of a quantum superposition with the
operator average 〈σ1xσ2x〉 = 0.7236. When the hopping rate
becomes Jf = 2 at time T , the operator average of the ground
state decreases to 〈σ1xσ2x〉 = 0.2764, as shown in Fig. 6(a).
It is noticeable that the operator average for the adiabatic
evolution under Hr can significantly deviate from that of the
ground state, while the operator average with the CD driving
applied remains the same as that of the ground state. Similarly,
in the two-excitation case, the ground state at g = 1, J = 0,
and � = 0 is v7 = |1,−〉1|1,−〉2, where each site is occupied
by one excitation in the lower polariton state with the oper-
ator average 〈σ1xσ2x〉 = 0. When the hopping rate becomes
Jf = 1, the operator average increases to 〈σ1xσ2x〉 = 0.3659.
During the evolution, the operator average for the adiabatic
process without the CD driving shows a large discrepancy
from the operator average in the CD approach, as shown in
Fig. 6(b). Hence, the effectiveness of the CD approach can be
verified by measuring the operator average.
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V. CONCLUSION

We have studied a quantum shortcut to adiabaticity using
the counterdiabatic driving approach in a finite-sized JC lat-
tice, leveraging the symmetry inherent in its eigenstates. Our
analysis reveals that for a two-site lattice with one excitation,
the CD driving can be simplified to a realizable form that only
consists of local qubit-cavity couplings. For more complex
scenarios, such as a two-site lattice with two excitations or
a three-site lattice with one excitation, a simpler CD Hamil-
tonian can still be obtained, albeit involving nonlocal terms.
Our numerical simulations demonstrate that control errors and
environmental noise have negligible effects on our scheme
in practical systems and our scheme can be characterized
through measurements on the qubits. Overall, our findings
offer a promising avenue for achieving high-fidelity quantum
state preparation and hold potential for applications across
various systems exhibiting similar symmetries.
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APPENDIX A: RELATION BETWEEN H1 AND H ′
1

In Sec. III A our analysis showed that the system dynamics
under the CD driving H ′

1 will be exactly the same as that of
the CD driving H1, when the initial state is v1. In Figs. 3(a)
and 3(b) we plotted the infidelity for a two-site lattice with
one excitation under the CD driving H ′

1, where the infidelity
remains zero up to a small numerical error below 10−10. In
Figs. 7(a) and 7(b) we plot the infidelity of this system under
both H1 and H ′

1 for a linear ramping of the hopping rate J
using the same parameters as given in Figs. 3(a) and 3(b). It
can be clearly seen that the infidelities for both H1 and H ′

1
remain zero up to the numerical error, which confirms our
analysis.

Furthermore, we compare the effect of the CD drivings
H1 and H ′

1 by numerically calculating two quantities: (i) the
average energy of the system Eave = 〈v(t )|Htot (t )|v(t )〉 at time
t , with Htot the total Hamiltonian and v(t ) the instantaneous
wave function, and (ii) the energy cost �E = Eave − EG, with
EG the instantaneous ground-state energy at time t following
the definition in [74]. In Fig. 7(c) we plot Eave for linear
ramping of the hopping rate J on the initial state |v1〉 under
the adiabatic Hamiltonian only, with the CD driving H1 ap-
plied and with H ′

1 applied, respectively. The average energy
for the adiabatic Hamiltonian Htot = Hr is higher than that
with the CD driving H1 or H ′

1, indicating nonzero diabatic
transition to the excited states, while the average energy with
the CD driving H1 is the same as that with H ′

1, confirming
that these two CD Hamiltonians give the same dynamics. In
Fig. 7(d) we plot the energy cost �E vs the time t/T . For the
adiabatic process under the Hamiltonian Htot = Hr, �E = 0
at time t = 0, because the initial state is the ground state
of the instantaneous Hamiltonian. During the evolution, �E

FIG. 7. (a) Infidelity 1 − F (t ) vs t/T for total evolution time
T = 0.5π . (b) Infidelity 1 − F (T ) vs T . In (a) and (b) the red solid
line (blue circles) represents under the adiabatic Hamiltonian Hr

with the CD driving H1 (H ′
1) applied. (c) Average energy Eave vs

t/T . (d) Energy cost �E vs t/T . In (c) and (d) the blue solid line
represents under Hr only, red circles represent with H1 applied, and
blue dots are with H ′

1 applied. All the plots are for two sites, one
excitation with linear ramping of J , and the parameters are given in
Fig. 3 in dimensionless unit.

continuously increases due to the diabatic transition to the
excited state. Under the CD driving H1 or H ′

1, the energy cost
is nonzero. This is because the state v(t ) at an arbitrary time t
is the instantaneous ground state of Hr but not the ground state
of the total Hamiltonian with the CD driving H1 or H ′

1 being
nonzero at any time t including the initial and the final times.

APPENDIX B: CD DRIVING FOR TWO EXCITATIONS

For a two-site lattice with two polariton excitations, the
adiabatic Hamiltonian is given in Eq. (14). Solving this
Hamiltonian for � = 0, we can find its eigenvalues and eigen-
vectors. The eigenvalues are given in (15) and the eigenvectors
are

|v1〉 = (0,−JA1, 0,−JA1,−gA1, 0, 0, 1),

|v2〉 = (A2, 0,−A2, 0, 0,−1, 1, 0),

|v3,4〉 =
(

− 1

A2
,± 1

A3
,

1

A2
,∓ 1

A3
, 0,−1, 1, 0

)
,

|v5,6〉 = (±X−,Y−,±X−,Y−, Z−,±M−,±M−, 1),

|v7,8〉 = (∓X+,Y+,∓X+,Y+, Z+,∓M+,∓M+, 1),
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where we define

A1 = g

g2 − J2
, A2 = − J√

2g
, A3 = − J√

2g2 + J2
, A4 =

√
4g4 + 60g2J2 + 9J4,

X± = −24J

g2

[±2g6 + g4(±19J2 + A4) + J4(±3J2 + A4) + g2(±19J4 + 3J2A4)]√
6g2 + 5J2 ± A4(±2g2 ± 9J2 + A4)(±2g2 ± 3J2 + A4)

,

Y± = −8J

g

[16g6 + g4(166J2 ± 8A4) ± 12J4(±3J2 + A4) + g2(201J4 ± 29J2A4)]

(2g2 + 3J2 ± A4)(6g2 + 5J2 ± A4)(2g2 + 9J2 ± A4)
,

Z± = 2

g2

[8g6 + g4(90J2 ± 4A4) ± 8J4(3J2 + A4) + g2(125J4 ± 17J2A4)]

(±2g2 ± 9J2 + A4)(±6g2 ± 5J2 + A4)
,

M± = 2
√

2

g

[±2g4 + g2(±11J2 + A4) + J2(±3J2 + A4)]

(2g2 + 3J2 ± A4)
√

6g2 + 5J2 ± A4

.

Note that the eigenvectors given above have not been
normalized. We find that the eigenvectors can be grouped
into two subsets. The first subset is composed of the
antisymmetric eigenvectors {v2, v3, v4} and the second
subset is composed of the symmetric eigenvectors
{v1, v5, v6, v7, v8}.

Using the expressions of the eigenvalues, eigenvectors, and
Eq. (1), we can derive the CD driving H1 for this system, but
we cannot write H1 in an analytical form, nor can we find
an implementable CD driving as we did in Sec. III A for the
case of one excitation. As varying the adiabatic Hamiltonian
Hr only induces diabatic transitions between eigenstates of the
same symmetry, the CD driving only contains nonzero matrix

elements between eigenstates in the same subset. We find that
when considering only the matrix elements for the first subset
{v2, v3, v4}, the CD Hamiltonian can be written in terms of the
qubit and cavity operators as

H ′
1 = i

g

2(J2 + 2g2)

∂J

∂t
[(a†

1)2σ1−a2 − (a†
1)2a1σ2−

− (a†
2)2σ1−a2 + (a†

2)2a1σ2−] + H.c. (B1)

Defining A2 = a2
1 − a2

2 and C2 = a2σ1− − a1σ2−, it can be
shown that Eq. (B1) leads to Eq. (16) in Sec. III C. On the
other hand, we cannot find an analytical expression for the CD
driving for the second subset that contains the ground state v7.
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