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Quantitative characterization of two-qubit entanglement purification protocols is introduced. Our approach
is based on the concurrence and the hit-and-run algorithm applied to the convex set of all two-qubit states.
We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of
almost uniformly sampled density matrices; however, as it is known, they still generate pairs of qubits in a
state that is close to a Bell state. We also develop a more efficient protocol and investigate it numerically
together with a recent proposal based on an entangling rank-2 projector. Furthermore, we present a class of
variational purification protocols with continuous parameters and optimize their output concurrence. These
optimized algorithms turn out to surpass former proposals and our protocol by means of not wasting too many
entangled states.
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I. INTRODUCTION

Entanglement purification protocols aim to overcome the
destructive effects of nonideal channels by generating highly
entangled states from a large number of noisy entangled states
[1]. In this approach, the almost perfectly entangled pairs
obtained are used in quantum teleportation [2], and thus quan-
tum data can be transmitted across the channels. The other
possible solution to this problem is to use quantum error
correction [3], when quantum data is sent through the channel
by adding enough redundancy, e.g., increasing the number of
qubits, such that the original information is recoverable even
in the presence of noise. While in quantum error correction
the sources of errors and their models have to be identi-
fied, the first entanglement purification protocols [4,5] offer
solutions for general noisy two-qubit states. However, these
protocols convert a general two-qubit state to either Werner or
Bell diagonal states by using local random transformations,
which waste useful entanglement [6,7]. This was found by
investigating particular entangled states, whose entanglement
is destroyed in the first step of the protocol, and this issue
was also confirmed in a different entanglement purification
approach [8]. A quantitative characterization of the ratio be-
tween wasted and improved entangled states is missing and
this paper is devoted to investigating this question.

The quest for optimality is ongoing and important research
in quantum physics ranging from experimental protocols to
algorithms. In most cases, numerical optimization based on
continuous and discrete parameters is carried out to enhance
performances with respect to different figures of merit. This
has recently led to the improvement of entanglement gen-
eration [9], unitary compilation and state preparation [10],
quantum error correction [11], communication [12,13], and
algorithms [14], which are only a few examples of the vast
literature. Concerning entanglement purification, discrete op-
timizations have been considered for Werner states [15] and
we have started to investigate continuous optimization for

certain families of states [16]. Therefore, in this paper we not
only evaluate some existing proposals but also search for more
optimal protocols with a lower amount of wasted entangled
states.

In this study we avail ourselves of the hit-and-run algo-
rithm to generate asymptotically and effectively uniformly
distributed two-qubit density matrices [17]. It is known that
approximately 24.24% of the generated two-qubit states are
separable, a numerical result that has also been confirmed
by other methods [18–21]. Therefore, almost one-fourth of
the states are immediately useless in an entanglement purifi-
cation protocol. In the case of entangled states, we use the
concurrence [22] to measure the improvement or deterioration
induced by a protocol. The choice of the concurrence and its
advantage over the usually employed fidelity will be explained
in the context of those protocols, which have two Bell states
as stable fixed points. We calculate the average concurrence
over the whole sample, which will be our cost function. Any
change of this cost function characterizes only the whole
sample of two-qubit states, whereas the concurrence of in-
dividual states may show different behaviors. The obtained
estimates allow us to compare quantitatively some existing
entanglement purification protocols and to search numerically
for more optimal scenarios. These scenarios consist of the use
of the SU(4) × SU(4) group to find optimal locally entangling
gates. We assume throughout the whole paper that these op-
erations can be performed without errors on both sides of the
noisy channel.

Our search for optimal protocols is based on the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGSB) opti-
mization algorithm with bounds [23,24]. To use this method
we employ the Euler angle parametrization of the SU(4) ×
SU(4) group [25], where the group is constructed from angles,
which form a hyperrectangle in a 30-dimensional Euclidean
vector spaces. Thus, every vector represents an element of
the group and its neighborhood is defined by the Euclidean
norm. The resulting parametrization allows us to construct a
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variational cost function that depends on a unitary in SU(4) ×
SU(4) and that can be minimized with the LBFGSB method
due to automatic differentiation [26]. With this strategy, we
demonstrate that it is possible to increase the percentage
of entangled states purified by computer-designed protocol
and achieve better performances. Furthermore, our approach
introduces a systematic and general way to compare differ-
ent proposals for entanglement purification protocols, where
more realistic experimental considerations can be incorpo-
rated upon request.

The paper is organized as follows. In Sec. II we recall
the mathematical description of some known entanglement
purification protocols. Furthermore, we present a controlled-
NOT(CNOT) gate-based protocol and also our variational
approach. A brief description of the numerical approach
is given in Sec. III. Numerical results are presented and
discussed in Sec. IV. Section V contains a summary and
our conclusions. Some technical details are provided in the
Appendices.

II. ENTANGLEMENT PURIFICATION

Entanglement purification describes a protocol between
two nodes of a quantum network with the task of extract-
ing highly entangled states, e.g., Bell states, from arbitrarily
entangled states. There are several categories of purification
protocols, based on the way the entangled states are dis-
tilled: filtering, recurrence, hashing, and breeding protocols
[1]. Here our focus lies on bipartite recurrence protocols,
where the two nodes A and B initially share a pair of identical
two-qubit states

� = ρA1,B1 ⊗ ρA2,B2 . (1)

The goal is to increase the entanglement of one of the pairs
by performing local entangling operations and measurements
in the nodes. Finally, classical communication between A and
B is used. In this paper we consider two-qubit states in the
representation

ρ =
4∑

i, j=1

ri j |i〉〈 j|, (2)

with the Bell states

|1〉 = 1√
2

(|01〉 − |10〉), |2〉 = 1√
2

(|01〉 + |10〉),

|3〉 = 1√
2

(|00〉 − |11〉), |4〉 = 1√
2

(|00〉 + |11〉).

Furthermore, we use the notation r j = r j j . The properties
Tr(ρ) = 1 and ρ† = ρ yield the following relations:

r1 + r2 + r3 + r4 = 1, ri j = (r ji )
∗. (3)

In the following, we give a short overview of three purifica-
tion protocols and introduce a CNOT-based approach and our
variational method for the search of more optimal strategies.

A. Bennett protocol

The seminal protocol introduced in Ref. [4] is based on the
CNOT gate and allows one to distill the Bell state |1〉 from a

large ensemble of initial two-qubit states ρ. In fact, the state
|1〉 is only reached in the asymptotic limit of the purification
rounds. The protocol operates only on Werner states [27]

ρW = r1|1〉〈1| + 1 − r1

3
(I4 − |1〉〈1|), (4)

where I4 is the 4 × 4 identity matrix. The transformation of
a general state ρ of Eq. (2) into a Werner state ρW can be
achieved by local random unitary rotations [6], i.e., the so-
called twirling operation, which is given by

ρW = 1

12

3∑
j=1

K†
j

(
4∑

i=1

K†
i K†

i ρKiKi

)
Kj, (5)

with the transformations

Kj = uA
j ⊗ uB

j , u1 = I2 + iσx√
2

, u2 = I2 − iσy√
2

,

u3 = i|0〉〈0| + |1〉〈1|, u4 = I2, (6)

the Pauli matrices σx and σy, and the 2 × 2 identity matrix I2.
The protocol consists of the following steps.

(i) Bring the state ρ into Werner form by using Eq. (5).
(ii) Apply local σy rotations on qubits A1 and A2.
(iii) Perform the bilateral operation U A1→A2

CNOT ⊗ U B1→B2
CNOT .

(iv) Measure the target pair (A2, B2) in the eigenbasis of
the Pauli matrix σz with corresponding results (m, n), where
m, n ∈ {0, 1}. Keep the pair (A1, B1) if the measurement result
is either m = n = 0 or m = n = 1 and finally perform a σy

rotation on A1.
An elementary step of the protocol yields ρ ′

W with

r′
1 = 1 − 2r1 + 10r2

1

5 − 4r1 + 8r2
1

(7)

and success probability Ps = (5 − 4r1 + 8r2
1 )/9. The state ρ ′

W
becomes more entangled than ρW if

2r1 − 1 > 0. (8)

B. Deutsch protocol

This protocol is conceptually similar to the previous one
and operates on Bell diagonal states [5]

ρB =
4∑

i=1

ri|i〉〈i|. (9)

The transformation of a general state ρ of Eq. (2) into a Bell
diagonal state reads

ρB = 1

4

4∑
i=1

K†
i K†

i ρKiKi, (10)

where the Ki are given in Eq. (6). The Deutsch protocol can
be summarized in three steps.

(i) Apply the unitary operation u†A1
1 ⊗ u†A2

1 ⊗ uB1
1 ⊗ uB2

1
[see Eq. (6)].

(ii) Perform the bilateral operation Û A1→A2
CNOT ⊗ Û B1→B2

CNOT .
(iii) Measure the target pair (A2, B2) in eigenbasis of σz

with corresponding results (m, n), where m, n ∈ {0, 1}. Keep
the pair (A1, B1) if the measurement result is either m = n = 0
or m = n = 1.
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After applying the purification protocol, we obtain a new
Bell diagonal state ρ ′

B, which is described by the map

r′
1 = 2r2r3

C
, r′

2 = r2
2 + r2

3

C
,

r′
3 = 2r1r4

C
, r′

4 = r2
1 + r2

4

C
, (11)

where C = (r1 + r4)2 + (r2 + r3)2 = Ps is the success prob-
ability. Entanglement of the state ρ ′

B compared to ρB is
enhanced if

(2r1 − 1)(1 − 2r4) > 0 or (2r2 − 1)(1 − 2r3) > 0. (12)

Depending on which one of the above conditions is fulfilled,
the protocol distills asymptotically either |4〉〈4| or |2〉〈2| [28],
i.e., the Bell states |4〉 and |2〉.

C. Matter-field interaction-based protocol

A key step in the previous protocols is the application of an
entangling unitary transformation in the nodes A and B. The
motivation to choose the abstract CNOT gate comes mainly
from classical computer science. However, any entangling
quantum operation can serve the same purpose, as shown
in Ref. [29] for a cavity QED setup, where an entangling
transformation emerges from matter-field interactions and is
modeled by a rank-2 projector [29]

M = |1〉〈1| + |3〉〈3|. (13)

The purification protocol based on this projector consists of
the following steps.

(i) Apply M in both nodes, which results in the state

�′ = ���†

Tr(�†��)
, � = MA1,A2 ⊗ MB1,B2 .

(ii) Measure one of the pairs, say, pair (A2, B2), in the
eigenbasis of σz with corresponding results (m, n), where
m, n ∈ {0, 1}. This results in the state ρA1,B1

m,n .
(iii) The final two-qubit state is then given by

ρ ′ = (
vA1

m ⊗ v
B1
n+1

)
ρA1,B1

m,n

(
vA1

m ⊗ v
B1
n+1

)†
,

where vn = (i|0〉〈0| + |1〉〈1|)σ n
x .

The resulting state ρ ′ depends only on seven real parame-
ters instead of fifteen and the map of the protocol reads

r′
1 = r2

1 + r2
3 − r2

13 − r2
31

D
, r′

3 = 2
r2r4 − |r24|2

D
,

r′
2 = r2

2 + r2
4 − r2

24 − r2
42

D
, r′

4 = 2
r1r3 − |r13|2

D
, (14)

r′
12 = r2

12 + r2
34 − r2

14 − r2
32

D
, r′

34 = 2
r21r43 − r23r41

D
,

r′
13 = r′

14 = r′
23 = r′

24 = 0,

where the success probability Ps = D/2 and

D = (r1 + r3)2 + (r2 + r4)2 − (r13 + r31)2 − (r24 + r42)2.

Due to the relations in Eq. (3), we also have r′
21 = (r′

12)∗ and
r′

43 = (r′
34)∗. Therefore, r′

1, r′
2, r′

3, r′
4, r′

12, r′
21, r′

34, and r′
43 are

the nonvanishing elements of ρ ′. This protocol was analyzed
in Ref. [8] and it was found that either

(2r1 − 1)(1 − 2r3) > −[2 Im(r13)]2 − [2 Re(r24)]2 (15)

or

(2r2 − 1)(1 − 2r4) > −[2 Im(r24)]2 − [2 Re(r13)]2 (16)

is fulfilled, and then ρ ′ becomes more entangled than ρ. In a
further iteration, the output state ρ ′′ remains in the same form
as the input state ρ ′ and according to Eq. (14) its elements read

r′′
1 = r′2

1 + r′2
3

D′ , r′′
2 = r′2

2 + r′2
4

D′ , r′′
3 = 2

r′
2r′

4

D′ ,

r′′
4 = 2

r′
1r′

3

D′ , r′′
12 = r′2

12 + r′2
34

D′ = (r′′
21)∗,

r′′
34 = 2

r′
21r′

43

D′ = (r′′
43)∗,

where

D′ = (r′
1 + r′

3)2 + (r′
2 + r′

4)2.

In the asymptotic limit, the protocol converts all states fulfill-
ing Eq. (15) into |1〉〈1| and Eq. (16) into |2〉〈2|.

D. A CNOT-based protocol

The proof presented in Ref. [8] is very general and one
can apply it to obtain a better CNOT-based protocol, where the
transformations into either a Werner or Bell diagonal state are
omitted. Our proposed protocol reads as follows.

(i) Apply the unitary operation u†A1
1 ⊗ u†A2

1 ⊗ uB1
1 ⊗ uB2

1
[see Eq. (6)].

(ii) Perform the bilateral operation Û A1→A2
CNOT ⊗ Û B1→B2

CNOT .
(iii) Measure the target pair (A2, B2) in eigenbasis of σz

with corresponding results (m, n), where m, n ∈ {0, 1}. Keep
the pair (A1, B1) if the measurement result is m = n = 1.

The protocol is described by the map

r′
1 = 2

r2r3 − |r23|2
E

, r′
2 = r2

2 + r2
3 + r2

23 + r2
32

E
,

r′
3 = 2

r1r4 − |r14|2
E

, r′
4 = r2

1 + r2
4 + r2

14 + r2
41

E
, (17)

r′
13 = 2

r24r31 − r21r34

E
, r′

24 = r2
21 + r2

31 + r2
24 + r2

34

E
,

r′
12 = r′

14 = r′
23 = r′

34 = 0,

where the success probability Ps = E/2 and

E = (r1 + r4)2 + (r2 + r3)2 + (r14 − r41)2 + (r23 − r32)2.

According to Eq. (3), we also have r′
31 = (r′

13)∗ and r′
42 =

(r′
24)∗. Therefore, r′

1, r′
2, r′

3, r′
4, r′

13, r′
31, r′

24, and r′
42 are the

nonvanishing elements of ρ ′. To increase the degree of entan-
glement of ρ ′, the state ρ has to fulfill either

(2r1 − 1)(1 − 2r4) > −[2 Im(r23)]2 − [2 Re(r14)]2 (18)

or

(2r2 − 1)(1 − 2r3) > −[2 Im(r14)]2 − [2 Re(r23)]2. (19)

It is worth noting that one can keep the pair (A1, B1) if the
measurement result on (A2, B2) is m = n = 0. However, in
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this case, the entanglement purification works only if either

(2r1 − 1)(1 − 2r4) > [2 Im(r23)]2 + [2 Re(r14)]2 (20)

or

(2r2 − 1)(1 − 2r3) > [2 Im(r14)]2 + [2 Re(r23)]2 (21)

is fulfilled. These conditions are more restrictive than their
counterparts in Eqs. (18) and (19). They work for Bell diag-
onal states, but many states do not obey them, and therefore
for a general purification strategy the pair (A1, B1) has to be
discarded whenever the pair (A2, B2) is measured in the state
|00〉. In a further iteration, the output state ρ ′′ remains in the
same form as the input state ρ ′ and according to Eq. (17) its
elements read

r′′
1 = 2

r′
2r′

3

E ′ , r′′
2 = r′2

2 + r′2
3

E ′ , r′′
3 = 2

r′
1r′

4

E ′ ,

r′′
4 = r′2

1 + r′2
4

E ′ , r′′
13 = 2

r′
24r′

31

E ′ = (r′′
31)∗,

r′′
24 = r′2

31 + r′2
24

E ′ = (r′′
42)∗,

where

E ′ = (r′
1 + r′

4)2 + (r′
2 + r′

3)2.

If the states fulfill the condition given in Eq. (18), then the
protocol can distill |4〉〈4|; otherwise, in the case of Eq. (19),
the state |2〉〈2| is obtained. It is worth noting that these Bell
states can also be reached not only in the asymptotic limit.
Based on the second example in Ref. [8], one can pick r2 = c,
r1 = r4 = (1 − c)/2, and r14 = (r41)∗ = i(1 − c)/2 with c ∈
(0, 1] to observe that one iteration of the protocol yields |2〉〈2|
with success probability c2/2. This state cannot be purified by
the Bennett protocol. If c ∈ (0.5, 1], then the Deutsch protocol
approaches the Bell state |2〉 only asymptotically.

E. Variational purification protocols

In order to implement a numerical search for optimal pro-
tocols, a cost function has to be defined. A convenient choice
for the measure of the performance of a two-qubit-based en-
tanglement purification protocol is the concurrence [16], for
which we use the definition introduced in Ref. [22]:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (22)

Here λ1, λ2, λ3, λ4 are the square roots, listed in decreasing
order, of the non-negative eigenvalues of the non-Hermitian
matrix

ρ̃ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy),

where the asterisk denotes the complex conjugation in the
standard basis. The advantage of the concurrence lies in the
fact that it treats all maximally entangled states equivalently.
As we have discussed in the previous sections, the maps there
can have two stable fixed points corresponding to two Bell
states and they can approach both of them depending on the
properties of the input density matrix. Therefore, picking a
fidelity with respect to a Bell state would not work, because
the optimization would suppress the convergence towards an-
other Bell state or any maximally entangled state, which can

be reached otherwise. A different argument against the use of
fidelity with an example is given in Ref. [16].

Let us consider a general unitary matrix V ∈ SU(4) ⊗
SU(4) acting on (A1, A2) and (B1, B2). We employ the Euler-
angle parametrization of SU(4) [25],

U (α) = eiσ3α1 eiσ2α2 eiσ3α3 eiσ5α4 eiσ3α5 eiσ10α6 eiσ3α7 eiσ2α8

×eiσ3α9 eiσ5α10 eiσ3α11 eiσ2α12 eiσ3α13 eiσ8α14 eiσ15α15 ,

with α = (α1, α2, . . . , α15)T ∈ R15 (T denotes the transposi-
tion) and

0 � α1, α3, α5, α7, α9, α11, α13 � π,

0 � α2, α4, α6, α8, α10, α12 � π

2
,

0 � α14 � π√
3
, 0 � α15 � π√

6
, (23)

where σi (i = 1, . . . , 15) form a Gell-Mann-type basis of the
Lie group SU(4) (see the Appendix in Ref. [16], where the
same approach to angle parametrization was used). Then we
have

V (αAB) = U A1,A2 (αA) ⊗ U B1,B2 (αB), (24)

where αAB = (αA,αB)T and thus αAB ∈ R30. The Euler-angle
parametrization guarantees that the group is not naively over-
counted [25]. It is worth noting that due to the nature of the
problem, one cannot consider operations that improve entan-
glement across the channel, i.e., general SU(16) operations on
A and B, because badly entangled states are the result of the
noisy channel.

The purification protocol for our numerical investigations
reads as follows.

(i) Apply entangling operations in both nodes, which re-
sults in the state

�′ = ���†

Tr(�†��)
, (25)

where � is a quantum operation. In the numerical simulations,
apart from one particular case, � equals V (αAB).

(ii) Measure the pair (A2, B2) in eigenbasis of σz with
corresponding results (m, n), where m, n ∈ {0, 1}. The four
projectors of the (m, n) measurement results are

(0, 0) → P1 = IA1,B1 ⊗ |00〉〈00|A2,B2 , (26)

(0, 1) → P2 = IA1,B1 ⊗ |01〉〈01|A2,B2 , (27)

(1, 0) → P3 = IA1,B1 ⊗ |10〉〈10|A2,B2 , (28)

(1, 1) → P4 = IA1,B1 ⊗ |11〉〈11|A2,B2 . (29)

We define a selection function π (measurement policy) that
chooses which measurement result is kept,(

ρ
A1,B1
1 , ρ

A1,B1
2 , ρ

A1,B1
3 , ρ

A1,B1
4

) 
→ {1, 2, 3, 4}, (30)

where

ρ
A1,B1
k = TrA2,B2 (Pk�

′Pk )

Tr(Pk�′)
. (31)
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This function can be arbitrarily modified to suit different im-
plementations. A possibility is to choose a greedy policy:

π = arg max
k=1,2,3,4

[
C
(
ρ

A1,B1
k

)]
. (32)

In this case, one measures the subsystem (A2, B2) along all
four measurement directions and keeps the measurement that
corresponds to the highest concurrence. Alternatively, we also
consider the case with only one of the measurement results,
e.g., k = 1 (m = n = 0). We will explore both these policies
in our optimization.

If we employ � = V (αAB) as the entangling operation,
the output density matrix ρout of the variational purification
protocol will depend on the value of αAB:

ρ → ρout(αAB). (33)

III. NUMERICAL METHODS

A. Markov chain Monte Carlo sampler

In this approach, the main mathematical object is the
vector space M4(C) of 4 × 4 matrices with complex en-
tries. This vector space with the Hilbert-Schmidt inner
product 〈A, B〉HS = Tr(A†B), where A, B ∈ M4(C) is a 16-
dimensional Hilbert space. In this vector space, self-adjoint
matrices form a subspace. This subspace can be identified
with the Euclidean space R16 if the orthonormal basis is
constructed from tensor products of Pauli matrices and the
2 × 2 unit matrix I2. There are also other possibilities, like
the Gell-Mann-type basis of SU(4) or the Weyl operator basis
[30], and they either result in the same Euclidean structure or
are unsuitable for our numerical approach based on R16. If ρ

is a density matrix, then

ρ =
16∑

i=1

aiBi with Tr(ρ) = 1, ρ � 0, (34)

where the Bi are the basis vectors and ai ∈ R for all i.
The positive-semidefinite condition ρ � 0 implies that the ai

have to fulfill three conditions based on Newton identities
and Descartes’ rule of signs [17,31]. Finally, one arrives at
the result that all 4 × 4 density matrices are presented by
a 15-dimensional convex body K around the origin of R15,
because due to Tr(ρ) = 1 one real parameter out of 16 is
fixed. Hence, if we consider B16 = I4/2, then a16 = 1

2 and
the origin of R15 is the maximally mixed state. The vector
a = (a1, a2, . . . , a15)T ∈ R15 with the positive-semidefinite
condition yields a complete description of K . The hit-and-run
algorithm introduced by Smith [32] realizes a random walk
inside K and it was shown that the underlying Markov chain
converges to the uniform stationary distribution in polynomial
time [33]. The convergence to the uniform distribution is
independent of the starting point inside K [34]. This algorithm
provides a fast method of sampling large numbers (106–107)
of density matrices. There exist other numerical approaches
[17,19,20,35,36] that can also sample uniformly distributed
density matrices, albeit with longer running times. All the
statistical evaluations of the purification protocols are based
on samples generated by the hit-and-run algorithm, whose
details are shown in Appendix A.

B. Optimization with a quasi-Newton method

Our task is to improve the concurrence of the output state,
which is a nonlinear function of αAB (see Sec. II E). In ad-
dition, based on Eq. (23), αAB has lower and upper bounds.
Then, by using Eq. (33) we define the cost function f : R30 →
R as

f (αAB) = 1 − C[ρout(αAB)]. (35)

The cost function is based on the concurrence of the
two-qubit state emerging after one iteration of the protocol.
Let us consider that the sample of two-qubit density matri-
ces consists of N elements ρ1, . . . , ρN , which are mapped
onto ρout,1, . . . , ρout,N . The average output concurrence is es-
timated by

C̄(αAB) = 1

N

N∑
j=1

C[ρout, j (αAB)]. (36)

Then the average cost function reads

f̄ (αAB) = 1 − C̄(αAB), (37)

which ensures that the optimal unitary transformations char-
acterized by αAB increase the average concurrence of the
whole sample. This method is the extension of the one de-
veloped in our previous investigation [16], where the cost
function depends only on 15-dimensional vectors, and the
optimal search is constrained to specific families of two-
qubit states. We implement again one of the most effective
quasi-Newton methods, the LBFGSB optimization algorithm
[23,24]. The gradient ∇ f̄ (αAB) is obtained via automatic
differentiation [26]. The algorithm does not require second
derivatives, because the Hessian matrix is approximated. This
approach yields a local minimum α∗

AB of f̄ , i.e., f̄ (α∗
AB) �

f̄ (αAB) for all αAB in the Euclidean norm defined neighbor-
hood of α∗

AB. Now we briefly describe the methodology used
to optimize the variational purification protocols of Sec. II E.
The optimization is subject to general two-qubit density ma-
trices parametrized by a 15-dimensional real vector a. As the
number of samples needed to cover the space of two-qubit
quantum states with sufficient precision is particularly large
(106–107 samples; see [37]), the algorithm struggles with a
particularly slow optimization. Therefore, as a first attempt,
we use smaller subsets of density matrices to find optimal
unitary matrices and then test their performance on the whole
sample.

The general optimization routine is presented in Algorithm
1. First, general density matrices are sampled, which is fol-
lowed by the optimization of the average cost function. The
output density matrices are reinserted in the protocol for a
successive purification round. This is also optimized, until the
maximal number of iterations Lmax is reached. In every step of
the iteration, we find different optimal unitary matrices, which
yields an adaptive purification protocol [16].

IV. RESULTS

A. Statistics of purification protocols

In this section we compare the recurrence protocols of
Secs. II A–II D based on their average performance on a
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ALGORITHM 1. Optimization with the hit-and-run (HR) given
in Algorithm 2.

Input ρ(a),
a ∈ R15, P1, P2, P3, P4 as in Eqs. (26)–(29), Lmax iterations,
optimizer (OPT)
Output ρ(a)

1: a0 = 0
2: for j = 1 to N do
3: a j = HR(a j−1)
4: ρ j = ρ(a j )
5: end for
6: for i = 1 to Lmax � with random restart
7: V (αAB ) = U A1,A2 (αA) ⊗ U B1,B2 (αB )
8: for j = 1 to N do
9: � j = ρ

A1,B1
j ⊗ ρ

A2,B2
j

10: σ j (αAB ) = V (αAB )� jV †(αAB)
11: for k = 1 to 4 do

12: ρ jk (αAB ) = TrA2 ,B2 [Pkσ j (αAB )Pk ]

Tr[Pkσ j (αAB )]

13: end for
14: kmax = π (ρ j1, ρ j2, ρ j3, ρ j4)
15: ρ j (αAB) = ρ jkmax (αAB)
16: end for
17: f̄ (αAB) = 1 − 1

N

∑N
j=1 C[ρ j (αAB)]

18: α∗
AB = OPT[ f̄ (αAB ),∇αAB f̄ (αAB)]

19: for j = 1 to N do
20: ρ j = ρ j (α∗

AB)
21: end for
22: end for

sample of two-qubit states drawn from an almost uniform
distribution [17]. More formally, let ρ1, . . . , ρN be N den-
sity matrices generated by the hit-and-run algorithm. As
the composition of completely positive maps is again com-
pletely positive [38], every entanglement purification protocol
presented in this work acts as a completely positive trace-
preserving nonlinear map. We denote this by 	, which maps
the set of two-qubit quantum states

D(C4) = {ρ ∈ M4(C) : ρ � 0, Tr(ρ) = 1}, (38)

i.e., positive-semidefinite matrices with unit trace, onto itself

	 : D(C4) 
→ D(C4), 	(ρ) = ρ ′. (39)

A purification map 	 is iteratively applied to a density
matrix to purify it towards a maximally entangled state, that
is, to extract a state with higher concurrence. If successful, the
protocol approaches usually the concurrence value C = 1 in
the limit of infinite iterations, but there are also known cases
of one-step purifiable states [6,8]. If unsuccessful, then a state
with nonzero concurrence is mapped to a state with zero con-
currence, thereby destroying entanglement, which happens at
the first iteration of each protocol. The average concurrence
after i iterations is estimated by

C̄ (i) = 1

N

N∑
j=1

C[	i(ρ j )]. (40)

The sample standard deviation reads

s(i)
C =

√√√√ 1

N − 1

N∑
j=1

{C[	i(ρ j )] − C̄ (i)}2 (41)

and the standard error, i.e., the standard deviation of C̄ (i), is
given by

σ
(i)
C̄ = s(i)

C√
N

. (42)

Similarly, the average success probability can be estimated. In
this case, we should first point out that for a general two-qubit
density matrix ρ the success probability can only be defined
for those states whose concurrence is nonzero, that is, in those
cases where the entanglement purification protocols are not
failing. The probability of a measurement at the ith iteration
can be described as

pk = Tr[Pk	
i(ρ j )], k ∈ {1, 2, 3, 4}, (43)

P(i)
s (k, ρ j ) =

{
pk if C[	i(ρ j )] � 0
0 otherwise,

(44)

where Pk is the projector on (A2, B2) defined in
Eqs. (26)–(29). In the case of the protocols presented in
Secs. II A–II C, different measurement results yield the
same probability, and analytical formulas are given for the
success probability P(i)

s (ρ j ). In the case of the matter-field
interaction-based (MFI) protocol, the success probability
is given by the probability of successfully performing the
quantum operation given in Eq. (13) and the probability of
measuring the state in one of the four possible outcomes
is 1

4 . The success probability of the approach in Sec. II D
is also shown. However, in the optimized variational case,
P(i)

s (ρ j ) is a function of P(i)
s (k, ρ j ), where k is selected by

the policy π introduced in Eq. (30). It is worth noting that
the condition in Eq. (44) is decisive only in the first step for
the protocols in Secs. II A and II B, because after that all the
remaining entangled two-qubit states are improved towards a
Bell state. The average success probability is estimated after
each iteration step by

P̄(i)
s = 1

N

N∑
j=1

P(i)
s (ρ j ), (45)

which corresponds to the probability of successfully imple-
menting the ith step of the entanglement purification protocol
on an unknown two-qubit state with nonzero concurrence. In
this case, the standard deviation of the sample is then given by

s(i)
Ps

=
√√√√ 1

N − 1

N∑
j=1

{
P(i)

s (ρ j ) − P̄(i)
s

}2
, (46)

with the standard error

σ
(i)
P̄s

= s(i)
Ps√
N

. (47)

The initial average concurrence is calculated over N = 107

density matrices and yields

C̄ (0) = 0.1257(2), (48)
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(a) (b)

FIG. 1. (a) Average concurrence and (b) success probability as a
function of the number of iterations for which a sample of N = 107

density matrices was used (ten runs of the hit-and-run algorithm,
each one outputting 106 density matrices). Numerical evaluations
are done for the four different purification protocols presented in
Secs. II A–II D, i.e., the Bennett-based, Deutsch-based, MFI-based,
and CNOT-based protocols, respectively. Horizontal dashed lines
show the theoretical limits of the protocols for the average con-
currence, which are given in Eqs. (49)–(52) for the Bennett-based,
Deutsch-based, MFI-based, and CNOT-based protocols, respectively.
The points are connected by lines to guide the eye. The MFI-based
protocol and our proposed CNOT protocol turn out to produce the
same average values, to the point that the green points are barely
visible beyond the purple ones. The standard errors of the means are
not visible in the plots. Values for the unbiased sample variance are
available in Appendix B.

which represents the amount of entanglement present in the
sample. Here we use parentheses to denote the standard error.
We consider this number as a threshold and expect that en-
tanglement purification protocols can improve it. The results
of the four protocols are shown in Fig. 1. It is immediate to
see that all protocols destroy entanglement in their very first
iteration. The twirling operations used in both the Bennett and
Deutsch protocols to obtain Werner or Bell diagonal states,
respectively, destroy a significant portion of the entangled
states. The remaining entangled states reach C = 1 in the limit
of infinite iterations. We find these limits by imposing the
conditions given by Eqs. (8) and (12) on the whole sample.
If a state does not satisfy it, then we assign C = 0 to it;
otherwise, we set C = 1. In other words, every state satisfying
the conditions can be purified into a Bell state in the limit of
infinite iterations. This limit for the Bennett protocol yields

C̄ (∞)
Bennett = 0.018 65(4), (49)

while the Deutsch approach results in

C̄ (∞)
Deutsch = 0.0709(1). (50)

We would like to stress that this value is lower than the initial
average concurrence in Eq. (48) for both protocols. Further-
more, they require several iterations to approach these limits.
The other two protocols yield

C̄ (∞)
MFI = 0.2128(1) (51)

and

C̄ (∞)
CNOT = 0.2133(1), (52)

which are based on the conditions in Eqs. (15), (16), (18), and
(19). The performance of these protocols is almost the same

and despite destroying entanglement in the first iteration, they
can improve the average concurrence of the sample beyond its
starting value. They achieve this already after four iterations
(see Fig. 1). It is worth noting again that the asymptote of
the Bennett protocol contains only the Bell state |1〉, being a
stable fixed point, while the other three protocols have two
relevant stable fixed points in the limit of infinite iterations.
These findings, together with the average success probabili-
ties, characterize the performances and they show that both
the MFI-based and our CNOT protocols are superior to the
pioneering ones. However, one can define an ultimate limit of
every known or future proposal for entanglement purification,
namely, when all entangled two-qubit states are converted to
a maximally entangled state, which for our sample results in
the numerical estimate

C̄ (∞)
ultimate = 0.7569(1). (53)

Given this number, one can conclude that all four evaluated
protocols are not very effective. The performance is confirmed
by the analysis of the fidelities with respect to the stable fixed-
point states of the protocols, i.e., r1 for the Bennett, r4 and
r2 for the Deutsch, r1 and r2 for the MFI, and r4 and r2 for
the CNOT protocols, as a function of the number of protocol
iterations, which are shown in Appendix C. This raises the
question of how one can obtain better performance, which will
be discussed in the subsequent section.

B. Optimization of variational recurrence protocols

In this section we investigate numerically the variational
purification protocol described in Sec. II. The optimization is
based on the method given in Sec. III B, where the gradient
of the cost function associated with the protocol is computed
through automatic differentiation. First, we generate N = 106

density matrices using the hit-and-run algorithm to obtain
an almost uniformly distributed sample. Afterward, to speed
up the optimization, we randomly pick Ns = 1000 density
matrices from this sample and calculate the gradient. This
approach guarantees that optimization is less time consuming
and the convex set of all two-qubit states is well represented.
Nevertheless, the sampling of only 103 density matrices is
not enough to ensure uniform distribution, in particular for
the statistics of the CNOT and MFI protocols. The optimiza-
tion results in a numerical value for α∗

AB. We then apply the
α∗

AB-dependent protocol on the whole sample. We also try
different strategies for the measurement policy π of Eq. (30).
In particular, we test the policy of Eq. (32) together with the
case in which we only track the measurement result k = 1
(m = n = 0) in each iteration.

Our first try is the case when � in Eq. (25) is equal to
V (αAB) with policy π of Eq. (32). In Fig. 2 we present the
result, which demonstrates that this strategy does not destroy
initial entanglement, as one expects. However, the actual in-
crease in average concurrence is quite limited, which implies
that an enormous number of iterations are needed to purify
the density matrices towards a maximally entangled state.
As we seek to obtain a more efficient protocol, we need to
consider additional operations performed on the sample of
density matrices.

022619-7



FRANCESCO PRETI AND JÓZSEF ZSOLT BERNÁD PHYSICAL REVIEW A 110, 022619 (2024)

(a) (b)

FIG. 2. (a) Average concurrence and (b) success probability of
the optimized purification protocols as a function of the number of
iterations. The values shown in the plot represent the average over
N = 107 density matrices (ten runs of the hit-and-run algorithm,
each one outputting 106 density matrices). The asymptote of the
MFI-based protocol in Eq. (51) and the ultimate limit of Eq. (53)
are also shown. The points are connected by lines to guide the eye.
The strategy of first destroying entanglement and then improving it
(green points) delivers the best performance compared also to the
protocols of Fig. 1. If we only keep the measurement result k = 1
(m = 0 and n = 0), the average concurrence turns out to be lower
compared to the case where the arg max policy of Eq. (32) is used.
The standard error of the mean is not visible in the plot. Values for
the unbiased sample variance are available in Appendix B.

An interesting feature of Sec. IV A is that every protocol
first destroys entanglement before it starts to improve the
remaining two-qubit quantum states. Next we consider the
hypothesis that entanglement must be destroyed in order to
find an efficient protocol. Therefore, for the first iteration, we
use the projector

� = MA1,A2
2 ⊗ MB1,B2

2 with M2 = I4 − |2〉〈2| (54)

as the operation of the purification protocol, and for the rest
of the iterations we make use of the optimization with � =
V (αAB), which leads to higher average concurrence. Here
we have tested both of our measurement policies π . In both
cases, these approaches outperform the limits of the MFI-
based and the CNOT protocols, which are shown in Fig. 2. We
remind the reader that every optimized step of the variational
protocol yields a different entangling gate. The resulting per-
formance for many iterations seemingly approaches a limit,
which is almost halfway between the ultimate asymptote and
the asymptote defined by the MFI-based or the CNOT protocol.
The average success probability of this optimized protocol
oscillates as a function of the number of iterations. We do not
have a proper explanation for this effect, as it depends on the
nonlinear optimizer. However, we can see that the values of
the success probability are almost always higher than those
produced by the protocols considered in Fig. 1.

Finally, we need to address the realization of these opti-
mized and abstract protocols. Concerning the two-qubit gates
in V (αAB), one can always employ quantum compilation
strategies [10,11,39,40], where the optimal unitary matrix
V (α∗

AB) is translated into native gates on the chosen experi-
mental platform. However, we are not aware of any possible
implementation of M2 in Eq. (54), but it seems necessary to
first destroy entanglement before any variational purification
protocol is applied.

V. CONCLUSION

To summarize, we have presented a numerical method that
is capable of characterizing the performance of entanglement
purification protocols. We have presented a CNOT protocol,
which was evaluated together with two pioneering protocols
and a recent proposal based on matter-field interactions. Our
results show that all the protocols destroy entanglement in
the very first iteration. This was known for the pioneering
protocols, and here in addition we have demonstrated quan-
titatively that only a small set of entangled states is kept. Even
though these states are turned into a Bell state in the limit
of infinite iterations, the average concurrence of the whole
sample stays below its starting value. The MFI-based and the
CNOT protocols perform better and they can turn slightly more
than 21% of the two-qubit states into a Bell state.

We have defined the ultimate limit of all possible purifi-
cation protocols, which is nothing other than the percentage
of all entangled states within the set of all quantum states,
i.e., approximately 75%. In other words, an ultimate protocol
can purify all entangled states into maximally entangled ones.
In this context, we have searched for optimal asymmetric
entangling gates in the nodes A and B. We have found that this
approach is improving the average concurrence very slowly.
Therefore, motivated by the other approaches, we have in-
cluded in the first iteration an entangling projection, which
destroys some entanglement. This strategy turns out to be a
boost for the optimized variational approach, which can out-
perform all protocols discussed in this paper. However, even
the variational approach seems unable to reach the ultimate
bound for entanglement purification. At the current stage, we
cannot determine whether this result could be improved by
implementing different quantum operations or optimization
methods. There might also be an upper bound for this family
of protocols that lies below the ultimate asymptote.

Our numerical analysis focuses on the improvement of the
average concurrence. However, we would like to point out
that all the protocols investigated in this work have a common
property. If some information about the input state is known,
e.g., the state has an overlap strictly larger than 0.5 with one of
the Bell states, then we know beforehand whether or not these
protocols convert entangled states into a fixed maximally en-
tangled state, which is usually a Bell state. A further difficulty
is that the iterations of the protocol are nonlinear quantum
state transformations, which lead to chaotic behavior [41–44].
Therefore, in the trace norm topology [38], seemingly close
density matrices might have different future trajectories. Our
approach avoids this interesting but complicated behavior
by using the average concurrence, a choice which we have
demonstrated to be also successful in finding different and
effective entanglement purification protocols.

Finally, some comments on the average success probabili-
ties are in order. It is known that improving the concurrence
alone is not a good enough measure, because success prob-
abilities play a crucial role in the identification of required
resources, i.e., how many qubits are required to perform
some iterations. To improve the success probabilities as well,
this leads to a multiobjective optimization task. This is not
included here, because this work aims to introduce a gen-
eral evaluation scheme based on the hit-and-run algorithm
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and the concurrence, which have given insight into the per-
formance of entanglement purification protocols and shown
that improvements are possible in computer-based protocol
designs.
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APPENDIX A: HIT-AND-RUN ALGORITHM

In this Appendix we briefly describe the steps of the hit-
and-run algorithm in Algorithm 2. Given a K ⊆ R15, we
generate for an a ∈ K a random uniform vector x on the
sphere, which is around a and has unit radius. We generate
a random uniform number λ on the interval [−√

3/2,
√

3/2],
because K is inside the sphere of radius

√
3/2 around the ori-

gin [17]. If a′ = a + λx ∈ K , then we move there; otherwise
we start all over from a. We always start the sampling from
a = 0, i.e., the maximally mixed state.

ALGORITHM 2. Hit-and-run.

1: j = 1 and a(1) = 0
2: while j < N do
3: x( j) ∼ N (0, I15)
4: x( j) = x( j)/‖x( j)‖
5: Set I = [−r, r] with r = √

3/2
6: m = 0
7: while m = 0 do
8: λ ∼ UI

9: if a( j) + λx( j) ∈ K then
10: a( j+1) = a( j) + λx( j)

11: j = j + 1
12: m = 1
13: else
14: if λ > 0 then
15: I = [−r, λ]
16: else
17: I = [λ, r]
18: end if
19: end if
20: end while
21: end while

APPENDIX B: STATISTICS OF
ENTANGLEMENT PURIFICATION

In this Appendix, details concerning the sample mean
and standard deviation are discussed. The primary task is to
estimate numerically different averages of the concurrence or
the success probability over all two-qubit density matrices. In
the main text we have already identified this set with the con-
vex body K in the Euclidean space R15. Thus, every density
matrix ρ in Eq. (34) is uniquely described by a vector a ∈ K .
In this context, the average concurrence reads

C̄ = 1

vol(K )

∫
a∈K

C[ρ(a)]d15a (B1)

with respect to the Lebesgue measure in R15. If ρ1, . . . , ρN

are generated by the hit-and-run algorithm, then the estimated
value of C̄ reads

∑N
j=1 C(ρ j )/N . Similarly, the average success

probability

P̄s = 1

vol(K )

∫
a∈K

Ps[ρ(a)]d15a (B2)

is estimated by
∑N

j=1 Ps(ρ j )/N . The standard deviations of
these means are given in Eqs. (42) and (47). In the limit of
infinite iterations, the distribution of the concurrence assumes
a specific form: The entanglement purification protocol has
purified a certain number S of density matrices, while the
other N − S have concurrence zero. This means that the av-
erage concurrence in Eq. (40) is given by

lim
i→∞

C̄ (i) = S

N
, (B3)

and the sample standard deviation in Eq. (41) reads

lim
i→∞

s(i)
C =

√
S

N − 1

(
1 − S

N

)2

+ N − S

N − 1

S2

N2

=
√

S

N − 1

(
1 − S

N

)
. (B4)

Now let us assume that after the ith iteration quantum state
ρ j belonging to the set of purifiable density matrices has the
concurrence

C (i)(ρ j ) = 1 − ε
(i)
j with 1 > ε

(i)
j > 0. (B5)

This model describes how far the concurrence of ρ j from C =
1 is, which is attained for i → ∞. Now we have

C̄ (i) = S

N
− 1

N

S∑
j=1

ε
(i)
j < lim

i→∞
C̄ (i), (B6)

i.e., the average concurrence is always smaller than S/N [see
Eq. (B3)]. Then the sample standard deviation reads

s(i)
C =

√√√√ 1

N − 1

S∑
j=1

(
1 − ε

(i)
j − C̄ (i)

)2 + N − S

N − 1
(C̄ (i) )2

=
√

S − 2εi

N − 1

(
1 − S

N

)
− ε2

i

N (N − 1)
+ βi

N − 1
, (B7)
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(a) (b)

(d)(c)

FIG. 3. Unbiased sample variances of the concurrence and the
success probability as a function of the number of iterations for
(a) and (b) the nonvariational and (c) and (d) the optimized varia-
tional protocols. We use the same color scheme as in Figs. 1 and
2. We observe that the sample variance grows with the number of
iterations and reaches its maximum asymptotic values when all the
density matrices are all mapped to either one or zero concurrence [see
Eq. (B4)]. The fraction of density matrices with nonzero concurrence
in the limit of infinite iterations determines the performance of the
protocol and also the maximum of the sample variance.

where

εi =
S∑

j=1

ε
(i)
j , βi =

S∑
j=1

(
ε

(i)
j

)2
. (B8)

Since (ε (i)
j )2 < ε

(i)
j for all j, we get βi < εi. Hence

−2εi

(
1 − S

N

)
− ε2

i

N
+ βi < −εi

(
1 − 2S

N

)
− ε2

i

N
. (B9)

If 2S < N , which is the case of the protocols discussed in
IV A, we obtain, based on Eqs. (B7) and (B9), that

s(i)
C < lim

i→∞
s(i)
C , (B10)

i.e., the sample standard deviation reaches its maximum in the
limit of infinite iterations. This property is shown in Fig. 3.
Finally, we also want to visualize the distribution of the con-
currence for the samples of density matrices that are generated
by the hit-and-run algorithm using bar charts. We know that
approximately 24.24% of them are separable quantum states
and have concurrence zero. These cannot be used by the
purification protocols discussed in the main text. Therefore,
we remove the bar chart corresponding to these matrices from
our histograms, as they would be simply represented by a
single enormous peak around zero. The distribution of the
concurrence for the remaining randomly sampled two-qubit
density matrices is given in Fig. 4. It seems that the concur-
rence resembles a (skew) Gaussian distribution; however, this
is only a hypothesis and one should prove or disprove it by

(a) (b)

FIG. 4. (a) Bar chart of the distribution of the concurrence for a
sample of two-qubit density matrices after removing the states with
concurrence zero and (b) average initial concurrence as a function
of the number of samples generated by the hit-and-run Monte Carlo
algorithm. Vertical bars show the standard error of the mean. We
see that the average approximately stabilizes after N = 103 samples.
This is only true for the initial concurrence, as the average con-
currence after each run of the purification protocol needs a higher
resolution (empirically we find N > 104, especially for the MFI
protocol). Plot (a) uses 106 density matrices, obtained by running
the hit-and-run algorithm once.

using methods developed in random matrix theory concerning
density matrices [47].

In Fig. 5 we see the iteration-based evolution of the distri-
bution of the concurrence for C > 0. Each column represents
one of three different points in the purification protocols: the
left column, i = 2; the middle column, i = 7; and the right
column, i = 15. We show here nine plots, where Figs. 5(a)–
5(c) represent the Bennett protocol, Figs. 5(d)–5(f) the MFI
protocol, and Figs. 5(g)–5(i) the CNOT protocol. We find, as
expected, that the number of states with nonzero concurrence
is much lower in the case of the Bennett protocol than for the
other two, although every protocol improves the distribution
of the concurrence towards C̄ = 1.

APPENDIX C: STATISTICAL EVALUATION
OF FIDELITIES

To provide the reader with a better understanding of how
the protocols transform noisy entangled states into Bell states,
we investigate here the evolution of the fidelities with respect
to the stable fixed points. The study of fidelity is always
conditioned on the properties of the input states. As we have
already discussed in Sec. II, these properties define differ-
ent stable fixed points towards which the state is mapped
by the protocol. Thus, the whole sample of input states will
be separated into sets according to their stable fixed points
and fidelities will be evaluated only in the corresponding set.
This consideration allows us to exclude situations when the
output state is separable and converges towards the maximally
mixed state, which has an overlap of 0.25 with any Bell states
and therefore would contribute to and at the same time skew
the average output fidelity of the protocol. It is obvious that
the set with the maximally mixed state as a fixed point will
be not considered. This step is not necessary when one uses
the concurrence.

For a density matrix ρ, we consider the overlaps

rk = tr(ρ|k〉〈k|), (C1)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Bar charts representing 50 bins of the concurrence distribution for the (a)–(c) Bennett, (d)–(f) Deutsch, and (g)–(i) optimized
protocols [using the arg max policy in Eq. (32) and the projector � in Eq. (54)], each one for the second, seventh, and fifteenth iteration,
corresponding to the first, second, and third columns of the plots. States with concurrence zero have been removed to allow us to visualize
the action of the protocols, as they skew the distribution due to their generally high number. As a consequence, the bar charts exhibit different
heights, since the three protocols map different numbers of states to concurrence zero. Vertical axes have been set to range between 0 and
6 × 104 so that the reader can visualize the growth of the number of states with concurrence equal to one on the right as the number of
iterations grows. We see that the optimized protocol preserves the most states, whereas the number of purified states for the Deutsch and
Bennett protocols is significantly lower. These bar charts use N = 106 samples of the concurrence (one run of the hit-and-run algorithm).

where the states k = 1, 2, 3, 4 are the Bell states defined be-
fore Eq. (3). We then use them to define the output fidelity for
the Bennett protocol [2]

FBennett(ρ) =
{

r1 if 2r1 > 1,

0 otherwise. (C2)

Similarly, we define the output fidelities for the other pro-
tocols using their respective conditions for purification. For

the Deutsch protocol, we have

F (4)
Deutsch(ρ) =

{
r4 if (2r1 − 1)(1 − 2r4) > 0
0 otherwise.

(C3)

F (2)
Deutsch(ρ) =

{
r2 if (2r2 − 1)(1 − 2r3) > 0
0 otherwise.

(C4)

In the case of the MFI protocol, we get

F (1)
MFI(ρ) =

{
r1 if (2r1 − 1)(1 − 2r3) > − (2 Im[r13])2 − (2 Re[r24])2

0 otherwise,
(C5)

F (2)
MFI(ρ) =

{
r2 if (2r2 − 1)(1 − 2r4) > −(2 Im[r24])2 − (2 Re[r13])2,

0 otherwise.
(C6)
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Finally, the CNOT protocol yields

F (4)
CNOT(ρ) =

{
r4 if (2r1 − 1)(1 − 2r4) > −(2 Im[r23])2 − (2 Re[r14])2

0 otherwise,
(C7)

F (2)
CNOT(ρ) =

{
r2 if (2r2 − 1)(1 − 2r3) > −(2 Im[r12])2 − (2 Re[r23])2

0 otherwise.
(C8)

Output fidelities need to be computed according to
Eqs. (C2)–(C8) for each sampled density matrix at each it-
eration of the corresponding protocol. The average fidelity is
defined as

F̄ (k)
protocol(ρ) = 1

N

N∑
j=1

F (k)
protocol(ρ j ), (C9)

where k ∈ {1, 2, 4} is the label of the Bell states which are
stable fixed points and N is the sample size.

The average fidelities for the purifiable states with respect
to all stable fixed points for the Bennett, Deutsch, MFI, and
CNOT protocols are given in Fig. 6. We see that the number of
states that can be brought to a stable fixed point by the MFI
and CNOT protocols is significantly larger than those of the
Bennett and Deutsch protocols. This is in accordance with the
findings presented in the main text.

Prior knowledge of the input state is essential because most
of the protocols currently available in the literature can only
work if one knows that the states to be purified have cer-
tain underlying properties, which need to be known to avoid

FIG. 6. Average output fidelities [calculated using Eqs. (C2)–
(C9) for the different fixed points] with respect to the attractors of
the different protocols as a function of the number of iterations.
For the Bennett protocol, |1〉 is the only fixed point. For the other
protocols, the attractors are |2〉 and |4〉 (Deutsch), |1〉 and |2〉 (MFI),
and |4〉 and |2〉 (CNOT). We see that for each of their attractors, the
shares of purifiable states of both the MFI and the CNOT protocols are
significantly larger than the ones of Bennett and Deutsch. The plot
is obtained by running ten simulations of the hit-and-run algorithm,
each one with N = 106 samples.

failure. In the subsequent discussion, we elucidate this ar-
gument by a simple demonstration. Let us now consider a
general two-qubit density matrix that we wish to purify to-
wards a Bell state. The Bennett protocol starts with a twirling
operation, whose only goal is to bring the state ρ into the
Werner form

ρ
twirling−→ ρW = r1|1〉〈1| + 1 − r1

3
(I4 − |1〉〈1|). (C10)

This operation, however, does not guarantee the success of
the purification because the Bennett protocol can only work if
the condition r1 > 0.5 is fulfilled. If it does, then the Bennett
protocol in the asymptotic limit brings this state to the Bell
state |1〉. In all other cases, the purification protocol fails and
leads to a mixed state. The infinite-limit output of the Bennett
protocol for a general two-qubit density matrix is therefore
a classical mixture of the purified states (with concurrence
one) and the mixed states for which the protocol failed (with
concurrence zero). It turns out that for most of the density
matrices, the protocol fails, i.e., the twirling operation maps
them to Werner states with r1 < 0.5, which is why the blue
curve in Fig. 1 has such small values. The asymptotic value of
the curve represents exactly the fraction of states that can be
purified. The output of the Bennett protocol with asymptote
C̄ (∞)

Bennett for a general random density matrix in the limit of
infinite iterations will be approximately

ρBennett = C̄ (∞)
Bennett|1〉〈1| +

(
1 − C̄ (∞)

Bennett

)
3

(I4 − |1〉〈1|), (C11)

which is again a Werner state, but with fidelity C̄ (∞)
Bennett. This

presents a limitation of using the Bennett protocol on larger
classes of states, especially if their generation cannot be con-
trolled in such a way that the condition r1 > 0.5 is met. This
implies that for the Bennett protocol information about the
input state has to be given; otherwise we get a very noisy
entangled output state even after infinitely many iterations.
The Deutsch protocol, unlike the Bennett, has three stable
fixed points with two Bell states, which is often not mentioned
in the literature [1], but after the appearance of the proposal
this has been thoroughly investigated in Ref. [28]. Now one
obtains a classical mixture of three states with weights de-
fined by C̄ (∞)

Deutsch, where the states |2〉〈2| and |4〉〈4| have the
same weights as it is shown in Fig. 1. This leads also to a
noisy entangled state. In conclusion, one cannot start with an
unknown density matrix and just run the protocols without
having some prior information beforehand, because, as we
see, the protocols mostly fail if certain conditions are not met.
These conditions, as we have shown, may be very restrictive
or more relaxed, in which case a broader class of input states
can be successfully purified.
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