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With the increased availability of quantum technological devices, it becomes more important to have tools
to guarantee their correct nonclassical behavior. This is especially important for quantum networks, which con-
stitute the platforms where multipartite cryptographic protocols will be implemented, and where guarantees of
nonclassicality translate into security proofs. We derive linear and nonlinear Bell-like inequalities for networks,
whose violation certifies the absence of a minimum number of classical sources in them. We do so, first, without
assuming that nature is ultimately governed by quantum mechanics, providing a hierarchy interpolating between
network nonlocality and full network nonlocality. Second we insert this assumption, which leads to results more
amenable to certification in experiments.
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I. INTRODUCTION

Bell’s theorem asserts that models based on classical
shared randomness cannot replicate the probabilistic predic-
tions of quantum theory in all circumstances [1]. In particular,
certain correlations generated from local measurements on
entangled quantum systems [2] cannot be simulated by lo-
cal hidden variable models. Bell nonlocality, which can be
generated from any bipartite entangled system regardless of
its dimension [3], represents a type of quantumness that is
significant both in the fundamental theory and in various ap-
plications [4–8]. The methods for detecting nonlocality can
be readily extended to multipartite scenarios by separating
the parties along bipartitions [9–11]. Traditionally, the parties
within a bipartition are allowed to communicate with each
other, and genuine multipartite nonlocality is then defined as
the impossibility to write a multipartite probability distribu-
tion with a local model along any possible bipartition of the
parties.

A recent trend consists of investigating the correlations
that can be generated in network structures where, instead
of considering a global joint system being shared between
the parties, several independent sources distribute systems
to different collections of them. For example, quantum net-
works use sources of entangled systems, as depicted in Fig. 1,
providing a scalable framework for constructing the quan-
tum internet and implementing diverse quantum applications
[12–16]. Quantum multipartite nonlocality has been investi-
gated in these scenarios [17–23], leading to new fundamental
insights on quantum theory [16,24]. Nevertheless, exploring
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nonlocal correlations in networks implies considerable chal-
lenges since the relevant sets of correlations are not convex,
and thus objects such as linear Bell inequalities cannot char-
acterize them completely.

Nonlinear Bell inequalities have been used to study net-
work nonlocality (NN), especially in the tripartite network
underlying entanglement swapping depicted in Fig. 1(a)
[18,25–27]. These inequalities have been extended to more
general networks with more parties and sources of physical
systems ([28–32], see also the review [23]). However, in anal-
ogy with the need to define genuine multipartite nonlocality

FIG. 1. The main networks discussed in this work. (a) The
network underlying simple entanglement swapping experiments.
Correlations generated in the network are considered NN if they
cannot be generated as in the top-left setup, FNN if they cannot
be generated as in the bottom-left setup, and FQNN if they cannot
be generated as in the top-right setup. In the appendices we show
that realizations in the bottom-right setup produce all these types
of correlations. (b) The generalization of the previous scenario to
chains, and (c) its generalization to stars.
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as a means to guarantee global nonclassical phenomena, the
observation of network nonlocality only guarantees nonclas-
sical behavior in some part of the network. It is possible to
guarantee a complete absence of classical components via
observing genuine multipartite nonlocality, but it is known
that accounting for the network structure allows for milder
requirements in experimentally relevant parameters, such as
detection efficiency [33]. Currently, there exist two com-
plementary definitions of genuinely nonlocal behaviors in
networks: genuine network nonlocality [34] and full network
nonlocality (FNN) [35]. The latter uses minimal assumptions,
and has been recently observed in experimental implementa-
tions of different network structures [36–39].

In this work, we study fully network nonlocal correlations
under the assumption that physical systems are ultimately
governed by quantum mechanics. We derive Bell-like inequal-
ities, both linear and nonlinear, for star and chain networks
[see Figs. 1(b) and 1(c)]. The violation of these inequalities
certifies that the corresponding statistics could not have been
produced had there been at least a number of classical sources
in the network. In many cases, we are able to provide a single
inequality that guarantees that no source in the network dis-
tributes classical physical systems, in contrast with previous
works [35,38] that needed one inequality per source in the net-
work. In other cases, we provide bounds for each number of
classical sources in the network. In addition to this, we provide
FNN bounds for the inequalities, and demonstrate violations
of both types of bounds within quantum mechanics. Finally,
we discuss how these results can be exploited to guarantee
nonclassicality of the sources of arbitrary networks.

II. MODELS FOR NON-FULL CORRELATIONS

Nonlocality in networks is defined in an analogous manner
to the bipartite case [1,5], namely, by opposition to having
a local model. This is, network nonlocal correlations do not
admit a decomposition in the following form:

P(�a|�x) =
∫

�

m∏
j=1

dμ(λ j )
n∏

i=1

P(ai|xi, λ̄i ), (1)

where �a = a1 . . . an denotes the parties’ outputs, �x = x1 . . . xn

their inputs, λ j the classical variable distributed by source j,
and λ̄i the set of variables that arrive to party i, i.e., the set
of classical physical systems that arrive to party i from the
sources that connect to it. As an illustration, take the net-
work known as the bilocality scenario, depicted in Fig. 1(a).
Network-local correlations in this network (i.e., bilocal corre-
lations) admit a description of the form [18,25]

P(a, b, c|x, y, z) =
∫

dμ(λ1)dμ(λ2)

× P(a|x, λ1)P(b|y, λ1, λ2)P(c|z, λ2).

When m = 1, Eq. (1) recovers the standard notion of a local
hidden variable model [5].

Many works have focused on detecting when multipartite
correlations do and do not admit realizations in the form of
Eq. (1), producing many Bell-like inequalities [18,23,25,28–
32]. However, in generalizing the standard notion of a
Bell inequality, inequalities tailored for detecting network

nonlocality can be violated even when just one of the sources
in the network is nonclassical [19]. This motivated the devel-
opment of new notions beyond network nonlocality whose
observation guarantees stronger quantum properties, for in-
stance the absence of sources of classical systems [35] or the
presence of joint quantum measurements [34] in the network.
Concretely, Ref. [35] defines as “not interesting” correlations
[i.e., the analogous of Eq. (1) in the setting of network nonlo-
cality] those that can be generated if and only if there is at least
one source in the network that distributes classical physical
systems. Correlations that cannot be generated in this way are
called FNN.

In this work we consider two refinements of the definition
of FNN in Ref. [35]. First, we define a hierarchy of levels
between NN and FNN, determined by the number of classical
sources that can be used for reproducing the correlation.

Definition 1 (�-level network nonlocality). A multipartite
probability distribution is �-level network nonlocal (�-NN)
relative to a network if it cannot be generated when at least
� sources in the network distribute classical physical systems,
and the rest are allowed to distribute physical systems only
limited by no-signaling. Otherwise, the distribution is �-level
network local (�-NL).

It is clear that the above definition coincides with that of
NN when � equals the number of sources in the network [i.e.,
when � = m in Eq. (1)], and with FNN when � = 1. As an
illustration, consider the star network in Fig. 1(c) with three
branch parties, {A1, A2, A3}. �-NL correlations in this network
admit distributions of the forms

P2-NL(a1, a2, a3, b|x1, x2, x3, y)

=
∫

dμ(λ1)dμ(λ2)P(a1|x1, λ1)P(a2|x2, λ2)

× PNSI(a3, b|x3, y, λ1, λ2), (2)

P1-NL(a1, a2, a3, b|x1, x2, x3, y)

=
∫

dμ(λ1)P(a1|x1, λ1)

×PNSI(a2, a3, b|x2, x3, y, λ1), (3)

or of analogs under permutations of the branch parties.
PNSI are distributions only constrained by the princi-
ples of no-signaling and the independence of the sources
[40]. This means that for the distribution in Eq. (2)
we have that

∑
a3

PNSI(a3, b|x3, y, λ1, λ2) = PNSI(b|y, λ1, λ2)
and

∑
b PNSI(a3, b|x3, y, λ1, λ2) = P(a3|x3), and for the

case of the distribution in Eq. (3) we require that∑
ai

PNSI(a2, a3, b|x2, x3, y, λ1) = PNSI(a j �=i, b|x j �=i, y, λ1) and∑
b PNSI(a2, a3, b|x2, x3, y, λ1) = P(a2|x2)P(a3|x3).
Definition 1 allows us to make theory-independent state-

ments on the presence of classical sources in networks [38].
However, inserting the additional assumption that the non-
classical sources in the network distribute systems that obey
quantum theory is a natural one that, as we show, leads to
milder requirements on the experimentally relevant param-
eters (such as the visibility under white noise) needed to
observe nonlocality. Thus, we also study the hierarchy in
Definition 1 under this assumption. This leads to an analogous
hierarchy, and to the definition of fully quantum network
nonlocality (FQNN):
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Definition 2 (�-level quantum network nonlocality). A
multipartite probability distribution is �-level quantum net-
work nonlocal (�-QNN) relative to a network if it cannot be
generated when at least � sources in the network distribute
classical physical systems, and the rest are allowed to dis-
tribute arbitrary multipartite quantum systems. Otherwise, the
distribution is �-level quantum network local (�-QNL). We
say that a correlation is fully quantum network nonlocal if it
is 1-QNN.

Going back to the example of the star network with three
branch parties, the corresponding distributions P2-QNL and
P1-QNL have the same form as Eqs. (2) and (3), where now
the distributions PNSI are instead distributions that follow the
corresponding Born’s rule, i.e., Tr(�x3

a3
⊗ �

y,λ1,λ2

b · ρA3B) for

Eq. (2) and Tr(�x2
a2

⊗ �x3
a3

⊗ �
y,λ1

b · ρA2B ⊗ ρA3B) for Eq. (3).
In the remainder of this paper we analytically prove in-

equalities, both linear and nonlinear, satisfied by �-NL and
�-QNL correlations in large families of networks and for
several values of �, including complete hierarchies (i.e., � ∈
[1, . . . , m]) for some scenarios. We must note that, in general,
obtaining analytical results for �-NL is hard. This is due to
the lack of a formal description of all generalized states and
effects that lead to nonsignaling distributions. For a more
systematic analysis than the one done in this work one could
use inflation methods (see, e.g., Refs. [35,38,41] for examples
of its use in the derivation of witnesses of FNN), to create
tractable relaxations of the sets of �-NL distributions.

III. NONLINEAR INEQUALITIES
FOR CHAIN NETWORKS

The first family of networks that we study is that of chain
networks, depicted in Figs. 1(b) and 2. Chain networks are
comprised of sources of bipartite states with the parties ar-
ranged in the form of a chain, such that with the exception
of the two, extremal parties, all the remaining ones receive
systems from two different sources. We initially analyze the
simplest case of the tripartite chain network, and extend our
results to longer chains in a second step.

A. The tripartite chain

Let us begin with the tripartite chain network depicted
in Fig. 1(a), also known as the bilocality network [18,25].
It comprises two bipartite sources, that distribute systems to
three parties, in such a way that one of the parties receives a
system from each of the sources. This is the simplest nontriv-
ial network and thus has received substantial attention in the

FIG. 2. The n-partite chain network. Correlations that do not
admit a realization neither in the form of panel (a) nor with any other
positioning of the classical variable are FQNN, and those that do not
admit a realization neither in the form of panel (b) nor with any other
positioning of the classical variable are FNN. There exist correlations
of both types that can be produced in the setup depicted in panel (c).

literature [18,25–27,31]. When the parties have binary inputs
and outputs, the inequality derived in Ref. [18], commonly
known as the bilocality inequality or the I-J inequality, holds
for bilocal correlations. This is, that correlations that admit
an expression in terms of Eq. (1) for the bilocality network
satisfy √

|I| +
√

|J| � 1, (4)

where I and J are defined by I = 1
4 〈A0B0C0 + A1B0C0 +

A0B0C1 + A1B0C1〉 and J = 1
4 〈A0B1C0−A1B1C0−A0B1C1 +

A1B1C1〉, Ai and Ck are the (dichotomic) measurement opera-
tors of the extremal parties, B denotes one measurement with
two-bit outcomes, depicted b0b1, and the correlator 〈AxByCz〉
is given by

∑
a,b0b1,c(−1)a+by+cP(a, b0b1, c|x, z).

In this section we compute bounds on the left-hand side of
Eq. (4) under the models considered in Definitions 1 and 2.
The case of � = 2 is, as discussed before, the standard notion
of network nonlocality given by Eq. (1). Let us then consider
the case of � = 1, i.e., when only one of the sources distributes
classical systems. Without loss of generality, let us assume
that the source distributing classical systems is that between
Alice and Bob. This implies that

√
|I| +

√
|J| = 1

2

√
|〈A0B0C0 + A1B0C0 + A0B0C1 + A1B0C1〉| + 1

2

√
|〈A0B1C0 − A1B1C0 − A0B1C1 + A1B1C1〉|

� 1
2

√
|〈A0 + A1〉||〈B0C0 + B0C1〉| + 1

2

√
|〈A0 − A1〉||〈B1C0 − B1C1〉|. (5)

Now, assume that 〈A0 + A1〉 � 0 and define x = 〈A0+A1〉−1, so that x ∈ [−1, 1]. Note that |〈A0 − A1〉|+|〈A0+A1〉|�2
max{|〈A0〉|, |〈A1〉|} � 2. Therefore, we have that |〈A0 − A1〉| � 2 − |〈A0 + A1〉| = 1 − x. Using this, Eq. (5) reads

√
|I| +

√
|J| � 1

2 (
√

(1 + x)|〈B0C0 + B0C1〉| +
√

(1 − x)|〈B1C0 − B1C1〉|)
= 1√

2
(cos θ

√
|〈B0C0 + B0C1〉| + sin θ

√
|〈B1C0 − B1C1〉|) (6)

� 1√
2

√
|〈B0C0 + B0C1〉| + |〈B1C0 − B1C1〉|, (7)
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where in Eq. (6) we have rewritten 1 + x := 2 cos2 θ and
1 − x := 2 sin2 θ , and in Eq. (7) we have used that a cos θ +
b sin θ � (a2 + b2)1/2. If, instead, 〈A0 + A1〉 < 0, one can de-
fine x = 〈A0 + A1〉 + 1 and the same result follows.

Next, note that the object By only considers the yth bit of
Bob’s output. One can thus view the correlators 〈ByCz〉 as
generated by the following simulated, two-input, two-output
distribution:

Psim(b, c|y, z) = P(b = by, c|z) =
∑
b0,b1

δb,by P(b0b1, c|z),

which is obtained by Bob outputting only the yth bit
upon choosing measurement y. Moreover, it is easy
to see that |〈B0C0 + B0C1〉| + |〈B1C0 − B1C1〉| is the
largest of |〈B0C0 + B0C1 + (B1C0 − B1C1)〉| and |〈B0C0 +
B0C1 − (B1C0 − B1C1)〉|. These are two variants of the
Clauser–Horne–Shimony–Holt (CHSH) operator under
relabeling of Charlie’s input. Thus, it follows that√

|I| +
√

|J| � 1√
2

√
CHSH(B,C).

Therefore, the bounds on
√|I| + √|J| for FNN and FQNN

are connected to the maximum value of the CHSH inequality
[42] that Bob and Charlie can achieve. When Bob and Charlie
share a classical physical system, CHSH(B,C) � 2 and thus
any value

√|I| + √|J| >
√

2/
√

2 = 1 implies standard net-
work nonlocality, as derived in Refs. [18,25]. If they share
an arbitrary system only limited by the no-signaling prin-
ciple, then CHSH(B,C) � 4, and any value

√|I| + √|J| >√
4/

√
2 = √

2 implies FNN, as derived in Ref. [35]. Finally,
if the parties share a quantum system, then CHSH(B,C) �
2
√

2 and any value
√|I| + √|J| >

√
2
√

2/
√

2 = 21/4 im-
plies FQNN. This is a proof that the bound first provided in
Ref. [43] is tight.

The same argumentation can be done for the case where the
classical source is shared between Bob and Charlie, arriving
to the same inequality,

√|I| + √|J| � 21/4. Therefore, this is
a single inequality whose violation guarantees that none of
the sources in the scenario is classical. This is in contrast with
earlier works on detection of FNN [35,38], which needed to
violate as many inequalities as sources in the network in order
to guarantee that all of them were nonclassical. Moreover,
both bounds are tight: the bound for FQNN is saturated by the
strategy in Ref. [43] and the bound for FNN is saturated by
the strategy in Ref. [35]. In fact, the bound for FNN coincides
with the algebraic maximum of

√|I| + √|J|, computed in
Ref. [35]. This means that

√|I| + √|J| cannot be used for
detecting FNN, but it can be used for detecting FQNN. Indeed,
take the sources to distribute pure states, ρi = |φi〉〈φi|, given
by

|φi〉 = cos θi|00〉 + sin θi|11〉, (8)

where θi ∈ (0, π
2 ). Let also Ax = cos ϑσ3 + (−1)x sin ϑσ1 and

likewise for Cz, and Bb0b1 ∈ {0,1, �0, �1}, where σ1 and
σ3 are the Pauli matrices, and ρ = |ρ〉〈ρ| with |i〉 = (|00〉 +
(−1)i|11〉)/

√
2 and |�i〉 = (|01〉 + (−1)i|10〉)/

√
2 being the

Bell states. A straightforward evaluation leads to

I = cos2 ϑ, J = sin2 ϑ sin 2θ1 sin 2θ2,

and we thus have that√
|I| +

√
|J| = cos ϑ + sin ϑ

√
sin 2θ1 sin 2θ2.

This quantity exceeds 21/4, for instance, for any θi satis-
fying sin 2θ1 sin 2θ2 �

√
2 − 1 ≈ 0.4142, whenever choosing

ϑ such that cos ϑ = (1 + sin 2θ1 sin 2θ2)−1/2. Moreover, the
maximum value over all possible θ1, θ2, ϑ is

√
2, which is the

algebraic maximum.

B. Long chains

The bilocality inequality can be extended to chain networks
of arbitrary length by using the notion of k-independent sets of
parties [31],1 and with it building appropriate operators I and
J in order to construct Bell-like inequalities whose violations
witness �-NN and �-QNN. Indeed, Ref. [31] showed that a
suitable generalization of the I and J operators is

I = 〈�odd iA
+
xi
�even jAx j=0

〉
,

J = 〈�odd iA
−
xi
�even jAx j=1

〉
,

with A±
xi

= (Axi=0 ± Axi=1)/2, and the correlators represent-
ing the combination of probabilities given by 〈Ax1 · · · Axn〉 =∑

�a(−1)
∑n

i=1 ai P(�a|�x). Reference [31] proved that for any k-
independent network the correlations generated by classical
sources satisfy the Bell inequality |I| 1

k + |J| 1
k � 1, and that

this inequality admits quantum violations using maximally
entangled and GHZ states.

In the following we analyze the case where the network
contains an odd number of parties and the nonclassical sources
are required to follow quantum theory. In other words, we
restrict to the case of �-QNN in chain networks with an odd
number of parties. We defer the analysis of the remaining
cases, namely, calculations for �-NN and for chain networks
with an even number of parties, to Appendix A. We further-
more distinguish two subcases, namely, when the network
contains � � (n − 1)/2 classical sources, and when it contains
� < (n − 1)/2 classical sources.

Case � � (n − 1)/2. In this case, there are more classical
than quantum sources. This implies that there are no more than
(n − 1)/2 nonadjacent pairs of parties (Ai, Ai+1) who share
a quantum system, and thus, the network is a k-independent
network [31] with k � (n − 1)/2. Let S consist of all odd
integers, i, such that Ai receives only classical sources. The
fact that there are more classical than quantum sources implies
that |S| � 1, and from the classicality of the measurements of
Ai when i ∈ S it follows that

I
2

n+1 + J
2

n+1 =
〈∏

odd i

A+
xi

∏
even j

Ax j=0

〉 2
n+1

+
〈∏

odd i

A−
xi

∏
even j

Ax j=1

〉 2
n+1

�
〈∏

i∈S

A+
xi

〉 2
n+1
〈 ∏

odd i;i �∈S

A+
xi

∏
even j

Ax j=0

〉 2
n+1

+
〈∏

i∈S

A−
xi

〉 2
n+1
〈 ∏

odd i;i �∈S

A−
xi

∏
even j

Ax j=1

〉 2
n+1

,

(9)

1As defined in Ref. [31], k independence indicates that the maxi-
mum number of parties in the network that share no source with each
other is k.
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where, recall, A±
xi

= 1
2 (Axi=0 ± Axi=1).

Reference [31] gave a quantum bound in the k-independent
network, which when k = n−1

2 reads〈 ∏
odd i;i �∈S

A+
xi

∏
even j

Ax j=0

〉 2
n−1

+
〈 ∏

odd i;i �∈S

A−
xi

∏
even j

Ax j=1

〉 2
n−1

�
√

2.

Considering this, and taking into account that
0 � 〈�odd i;i �∈SA+

xi
�even jAx j=0〉 2

n−1 � 1 and that 0 �

〈�odd i;i �∈SA−
xi
�even jAx j=1〉 2

n−1 � 1, it is possible to write〈 ∏
odd i;i �∈S

A+
xi

∏
even j

Ax j=0

〉 2
n−1

�
√

2 cos2 θ,

〈 ∏
odd i;i �∈S

A−
xi

∏
even j

Ax j=1

〉 2
n−1

�
√

2 sin2 θ (10)

for some θ ∈ [0, π/2]. Moreover, using the fact that |〈Axi〉| � 1 when i ∈ S it follows that∣∣∣∣∣
〈∏

i∈S

A+
xi

±
∏
i∈S

A−
xi

〉∣∣∣∣∣ � 1

2|S|−1
max

{∣∣∣∣∣
∑

(xi,i∈S);⊕i∈Sxi=0

〈∏
i∈S

Axi

〉∣∣∣∣∣,
∣∣∣∣∣

∑
(xi,i∈S);⊕i∈Sxi=1

〈∏
i∈S

Axi

〉∣∣∣∣∣
}
� 1

2|S|−1
× 2|S|−1 = 1

because |{(xi, i ∈ S)| ⊕i∈S xi = 0}| = |{(xi, i ∈ S)| ⊕i∈S xi = 1}| = 2|S|−1, the operation ⊕ representing addition modulo 2. It is
thus possible to write |〈∏i∈S A+

xi
〉| � cos2 ϑ and |〈∏i∈S A−

xi
〉| � sin2 ϑ for some ϑ ∈ [0, π/2]. Substituting all the above in Eq. (9)

it follows that

I
2

n+1 + J
2

n+1 � 2
n−1

2(n+1)

⎡
⎣〈∏

i∈S

A+
xi

〉 2
n+1

cos
2n−2
n+1 θ +

〈∏
i∈S

A−
xi

〉 2
n+1

sin
2n−2
n+1 θ

⎤
⎦ � 2

n−1
2(n+1)

(
cos

4
n+1 ϑ cos

2n−2
n+1 θ + sin

4
n+1 ϑ sin

2n−2
n+1 θ

)
. (11)

The unique extreme point of the continuous function
cos

4
n+1 ϑ cos

2n−2
n+1 θ + sin

4
n+1 ϑ sin

2n−2
n+1 θ is given by tan ϑ =

tan θ . By defining ϑ := θ , Eq. (11) reads

I
2

n+1 + J
2

n+1 � 2
n−1

2(n+1) (cos2 θ + sin2 θ ) = 2
n−1

2(n+1) , (12)

where the equality holds if and only if ϑ = θ = π/4.
Case � < (n − 1)/2. An example of this is, e.g., when the

sources connecting parties A2i and A2i+1 distribute classical
variables, and the sources connecting parties A2i−1 and A2i

distribute quantum systems [recall that i = 1, . . . , (n + 1)/2].
This network, and in fact any network with fewer than half
of its sources being classical, is a (n + 1)/2-independent net-
work [31], and so the joint correlations satisfy the inequality

I
2

n+1 + J
2

n+1 �
√

2, (13)

where the equality holds if all the bipartite quantum sources
are maximally entangled EPR states [2].

In summary, we have that for chain networks composed
of an odd number of parties, �-QNL correlations satisfy the
following inequality:

I
2

n+1 + J
2

n+1 �
{

2
n−1

2(n+1) � � n−1
2√

2 � < n−1
2 .

(14)

There are a few aspects to note of this inequality. First, the
bounds obtained are valid for any � within each of the ranges,
and thus, a violation guarantees the strongest case (namely,
any value above 2

n−1
2(n+1) guarantees n−1

2 -QNN and any value
above

√
2 guarantees FQNN). Second, the bound for � � n−1

2
increases with n, which means that it is more demanding to
demonstrate �-QNN with increasing n. Third, the gap between
the two bounds closes in the limit of n → ∞. Thus, in infinite
chain networks demonstrating nonclassicality of even just one

of the sources is as demanding as demonstrating nonclas-
sicality of all of them. Finally,

√
2 is the maximum value

achievable with quantum sources [31], so Eq. (14) cannot be
used to witness FQNN. In Appendix A we derive analogous
inequalities in the case when the chain has an even number of
parties, and that are satisfied by �-NL correlations.

IV. NONLINEAR �-(Q)NN HIERARCHIES
FOR STAR NETWORKS

The bilocality inequality has also been generalized to star
networks [26] [recall Fig. 1(c)], whereby n branch parties,
A1, . . . , An, share each a bipartite system with a central node,
B. The symmetry of this setup with respect to permutations
of the branch parties allows for easier treatment, that leads to
families of inequalities detecting �-(Q)NN for each �.

Let us begin with the analysis of �-QNN for fixed �. In this
case, we set that the central party can perform two measure-
ments By, y ∈ {0, 1}, with binary outcomes, b ∈ {0, 1}. In this
setup, the quantities I and J are given by I = 〈B0�

n
i=1A+

xi
〉 and

J = 〈B1�
n
i=1A−

xi
〉 [26]. Consider thus the network in Fig. 3(a),

where there are � parties sharing classical variables with B
while the remaining ones share quantum states. Without loss
of generality, one can assume that said parties are A1, . . . , A�.
It follows that

|I| 1
n + |J| 1

n =
∣∣∣∣∣
〈

�∏
i=1

A+
xi

〉∣∣∣∣∣
1
n
∣∣∣∣∣
〈

B0

n∏
j=�+1

A+
x j

〉∣∣∣∣∣
1
n

+
∣∣∣∣∣
〈

�∏
i=1

A−
xi

〉∣∣∣∣∣
1
n
∣∣∣∣∣
〈

B1

n∏
j=�+1

A−
x j

〉∣∣∣∣∣
1
n

, (15)

where, as in previous sections, A±
xi

= (Axi=0 ± Axi=1)/2. For
any set of quantum observables A±

xi
, the following inequality

022617-5



LUO, YANG, AND POZAS-KERSTJENS PHYSICAL REVIEW A 110, 022617 (2024)

FIG. 3. The (n + 1)-partite star network. Correlations that do not
admit a realization neither in the form of panel (a) nor with any other
positioning of the classical variable are FQNN, and those that do not
admit a realization neither in the form of panel (b) nor with any other
positioning of the classical variable are FNN. There exist correlations
of both types that can be produced in the setup depicted in panel (c).

holds: ∣∣∣∣∣
〈

B0

n∏
j=�+1

A+
x j

〉∣∣∣∣∣
1

n−�

+
∣∣∣∣∣
〈

B1

n∏
j=�+1

A−
x j

〉∣∣∣∣∣
1

n−�

�
√

2.

This follows from the quantum bound of the nonlinear Bell-
type inequality for the (n − k)-independent quantum network
in Ref. [31]. Therefore, one can write that∣∣∣∣∣

〈
B0

n∏
j=�+1

A+
x j

〉∣∣∣∣∣
1

n−�

�
√

2 cos2 θ,

∣∣∣∣∣
〈

B1

n∏
j=�+1

A−
x j

〉∣∣∣∣∣
1

n−�

�
√

2 sin2 θ (16)

for some θ ∈ [0, π/2]. Additionally, since all the par-
ties A1, . . . , A� are independent, we have the classical
bounds |〈∏�

i=1 A±
xi
〉| �∏�

i=1 |〈A±
xi
〉|. In combination with

|〈A+
xi

± A−
xi
〉| = |〈Axi〉| � 1, one can define |〈∏�

i=1 A+
xi
〉| �∏�

i=1 cos2 ϑi and |〈∏�
i=1 A−

xi
〉| �∏�

i=1 sin2 ϑi for some ϑi ∈
[0, π/2]. Substituting this into Eq. (15) we have that

|I| 1
n + |J| 1

n

= 2
n−�
2n

(
�∏

i=1

cos
2
n ϑi cos

2n−2�
n θ +

�∏
i=1

sin
2
n ϑi sin

2n−2�
n θ

)
.

The maximum of the right-hand side is achieved at ϑ1 =
· · · = ϑ� := ϑ . This implies that

|I| 1
n + |J| 1

n � 2
n−�
2n (cos

2�
n ϑ cos

2n−2�
n θ + sin

2�
n ϑ sin

2n−2�
n θ ).

Finally, the continuous function cos
2�
n ϑ cos

2n−2�
n θ +

sin
2�
n ϑ sin

2n−2�
n θ has a unique extreme point, given by

ϑ = θ . We thus have that

|I| 1
n + |J| 1

n � 2
n−�
2n (cos2 θ + sin2 θ ) = 2

n−�
2n . (17)

The right-hand side of Eq. (17) has a different value for
each �, thereby giving a hierarchy of inequalities that detects
�-QNN for every � ∈ [1, . . . , m].

Consider now the situation when there are � extremal
parties (e.g., A1, . . . , A�) that share classical randomness
with B while the remaining parties share nonsignaling sys-
tems. In this case, the bounds in Eq. (16) are replaced by
|〈B0�i>�A+

xi
〉| � 1, |〈B1�i>�A−

xi
〉| � 1, since there exist dis-

tributions built out of PR boxes that saturate these bounds,
in analogy with the construction in Appendix A 2 for chain
networks. We thus have that

|I| 1
n + |J| 1

n �
∣∣∣∣∣
〈

�∏
i=1

A+
xi

〉∣∣∣∣∣
1
n

+
∣∣∣∣∣
〈

�∏
i=1

A−
xi

〉∣∣∣∣∣
1
n

�
�∏

i=1

cos
2
n ϑi +

�∏
i=1

sin
2
n ϑi (18)

:= cos
2�
n ϑ + sin

2�
n ϑ (19)

� 2
n−�

n , (20)

where we have used the fact that |〈A+
xi
〉| � cos2 ϑi and

|〈A−
xi
〉| � sin2 ϑi for some ϑi in Eq. (18), which stem from

the inequality |〈A+
xi

± A−
xi
〉| � 1. Inequality (19) follows in a

way analogous to that of �-QNN studied above, and Eq. (20)
follows from computing the unique extreme point of the con-
tinuous function cos

2�
n ϑ + sin

2�
n ϑ , which is ϑ = π/4. We

thus, again, obtain a hierarchy of bounds that detects �-NN
for every �. Note also that, for any placement of the classical
sources, the same inequality is obtained, and thus a violation
of the single inequality (20) is a certification of �-NN.

Both sets of inequalities, Eqs. (17) and (20), can be violated
in quantum mechanics. If each of the sources distributes a
bipartite quantum system in the state given by Eq. (8), and the
parties perform the measurements given by Axi = cos ϑσ3 +
(−1)xi sin ϑσ1 and By = (1 − y)σ⊗n

3 + yσ⊗n
1 [31] one has that

|I| 1
n + |J| 1

n = cos ϑ + sin ϑ

n∏
i=1

sin
1
n 2θi.

If we choose ϑ such that cos ϑ = (1 +∏n
i=1 sin

2
n 2θi )−

1
2 ,

we have a violation of Eq. (17) whenever∏n
i=1 sin

2
n 2θi > 2

n−�
n − 1, and a violation of Eq. (20)

when
∏n

i=1 sin
2
n 2θi > 2

2n−2�
n − 1. Take as an example the

case when the sources distribute maximally entangled EPR
states, i.e., θi = π/4 ∀ i. In this case the value achieved is
|I| 1

n + |J| 1
n = √

2. This is larger than 2
n−�

n for all � > n/2, so
Eq. (20) is useful for verifying �-NN in such star networks
only for � > n/2.

V. LINEAR FULL NETWORK NONLOCALITY
INEQUALITIES FOR CHAINS

Up to now, we have used nonlinear inequalities to detect
�-NN and �-QNN. On one hand, nonlinear inequalities are
useful because they approximate better the boundaries of the
relevant sets, which are known to be nonlinear [25]. However,
the nonlinearities make it difficult to optimize these inequal-
ities and to find explicit models. In this section and in the
following one we present linear inequalities whose violations
detect FNN. For deriving them, we exploit the fact that re-
alizing entanglement swapping is not possible when parties
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are connected by classical sources. It is known that at least
some supra-quantum theories do not allow for entanglement
swapping [44], and this fact has been exploited to develop NN
inequalities in the tripartite chain scenario [45]. However, we
are interested in guaranteeing nonclassical phenomena, so as
long as there exists a nonclassical theory that allows for en-
tanglement swapping (as it is the case of quantum mechanics),
the inequalities below can, in principle, be used for detecting
FNN.

A. The tripartite chain

Let us begin, as in Sec. III, with analyzing the tripartite
chain scenario, depicted in Fig. 1(a). A way to guarantee that
both sources are not classical is by completing entanglement
swapping, so that after Bob’s measurement the joint state of
Alice and Charlie can violate the CHSH inequality. Using this
fact, consider the following operator, where Alice can per-
form two dichotomic measurements, Bob performs a single,
four-outcome measurement, and Charlie can perform three
dichotomic measurements:

B3 := A0B0C0 + A0B1C0 + A0B0C1 − A0B1C1

+ A1B0C0 + A1B1C0 − A1B0C1 + A1B1C1

+ A0B2C1 − A0B3C1 + A0B2C2 + A0B3C2

− A1B2C1 + A1B3C1 + A1B2C2 + A1B3C2.

In the case where Bob and Charlie share classical ran-
domness, the operator B3 is a linear combination of Charlie’s
operators, and since Charlie only receives classical shared
randomness we can, without loss of generality, assume de-
terministic outputs and have Ci ∈ {±1}. By substituting all
possibilities for Ci, one arrives at

〈B3〉 = 〈C0(B0A0 + B0A1 + B1A0 + B1A1)〉
+ 〈C1(B0A0 − B0A1 − B1A0 + B1A1)〉
+ 〈C1(B2A0 − B2A1 − B3A0 + B3A1)〉
+ 〈C2(B2A0 + B2A1 + B3A0 + B3A1)〉

� max{±〈2(B0 + B2)A0 + 2(B1 + B3)A1〉,
± 〈2(B0 + B2)A1 + 2(B1 + B3)A0〉,
± 〈2(B0 − B3)A1 + 2(B1 − B2)A0〉,
± 〈2(B3 − B0)A0 + 2(B2 − B1)A1〉}

� 2,

where the last bound can be found by individually obtain-
ing the maximum value for each case, using |〈Ai〉| � 1 and∑3

i=0 Bi = 1.
Similarly, consider the alternative scenario, where Alice

and Bob share the classical source. Since B3 is also linear in
Alice’s measurements, one can proceed analogously by as-
suming deterministic outputs for Alice, so Ai ∈ {±1}, arriving
at

〈B3〉 = 〈A0(B0C0 + B1C0 + B0C1 − B1C1)〉
+ 〈A1(B0C0 + B1C0 − B0C1 + B1C1)〉
+ 〈A0(B2C1 − B3C1 + B2C2 + B3C2)〉

+ 〈A1(−B2C1 + B3C1 + B2C2 + B3C2)〉
� max{±〈2(B0 + B1)C0 + 2(B2 + B3)C2〉,

± 〈2(B0 − B1)C1 + 2(B2 − B3)C2〉}
� 2.

This means that the inequality

〈A0B0C0 + A0B1C0 + A0B0C1 − A0B1C1〉
+ 〈A1B0C0 + A1B1C0 − A1B0C1 + A1B1C1〉
+ 〈A0B2C1 − A0B3C1 + A0B2C2 + A0B3C2〉
− 〈A1B2C1 + A1B3C1 + A1B2C2 + A1B3C2〉

� 2 (21)

holds whenever one of the sources distributes classical sys-
tems, regardless of the nature of the other and of which
specific source is the one distributing the classical systems. Its
maximal quantum value is 2

√
2, which can be derived directly

from the upper bound to the CHSH inequality. Moreover,
quantum strategies based on maximally entangled states satu-
rate this bound (see Appendix B for an example realization).

B. Long chains

The reasoning above can be generalized to chain networks
of arbitrary length, by exploiting the fact that nonclassical cor-
relations between the extremal parties can only be established
if all the sources are nonclassical. Consider thus the following
operator:

Bn := A(1)
0 B00A(n)

0 + A(1)
0 B01A(n)

0 + A(1)
0 B00A(n)

1

− A(1)
0 B01A(n)

1 + A(1)
1 B00A(n)

0 + A(1)
1 B01A(n)

0

− A(1)
1 B00A(n)

1 + A(1)
1 B01A(n)

1 + A(1)
0 B10A(n)

1

− A(1)
0 B11A(n)

1 + A(1)
0 B10A(n)

2 + A(1)
0 B11A(n)

2

− A(1)
1 B10A(n)

1 + A(1)
1 B11A(n)

1 + A(1)
1 B10A(n)

2

+ A(1)
1 B11A(n)

2 ,

where the extremal parties are A1 and An, which have op-
erators A(1)

i and A(n)
i , respectively, and Bst are products of

operators of all the nonextremal parties A2, . . . , An−1, given
by Bst =∑⊕n−1

k=2 ik jk =st Mi2 j2 · · · Min−1 jn−1 , with ⊕ denoting the
bitwise XOR operation, i.e., xy ⊕ uv = (x ⊕ u, y ⊕ v), and
Mik jk are the projectors corresponding to the single measure-
ment of party Ak . Similarly to Eq. (21), the extremal party An
has three dichotomic measurements.

Let us begin by assuming that the classical source is that
connecting A1 and A2. This network can be understood as a
tripartite chain network where the central party is composed
of parties A2, . . . , An−1. Then, following the previous section,
we can assume deterministic outputs for A(1)

x1
∈ {±1}, finding

that

〈Bn〉 = 〈
A(1)

0

(
B00A(n)

0 + B01A(n)
0 + B00A(n)

1 − B01A(n)
1

)〉
+ 〈A(1)

1

(
B00A(n)

0 + B01A(n)
0 − B00A(n)

1 + B01A(n)
1

)〉
+ 〈A(1)

0

(
B10A(n)

1 − B11A(n)
1 + B10A(n)

2 + B11A(n)
2

)〉
+ 〈A(1)

1

(−B10A(n)
1 + B11A(n)

1 + B10A(n)
2 + B11A(n)

2

)〉
022617-7
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� max
{±〈2(B00 + B01)A(n)

0 + 2(B10 + B11)A(n)
2

〉
,

± 〈
2(B00 − B01)A(n)

1 + 2(B10 − B11)A(n)
2

〉}
� 2,

where the terms in the maximization are found by apply-
ing the triangle inequality and forming groups that can be
jointly maximized. Then, the bound follows from optimiz-
ing individually each of the elements under the constraints∑

b0,b1
Bb0b1 = 1 and |〈A(n)

i 〉| � 1.
Now consider the case where the classical source is not in

the extreme of the chain. In that case, we can rewrite Bn as

Bn = B00(A(1)
0 A(n)

0 + A(1)
0 A(n)

1 + A(1)
1 A(n)

0 − A(1)
1 A(n)

1

)
+ B01

(
A(1)

0 A(n)
0 − A(1)

0 A(n)
1 + A(1)

1 A(n)
0 + A(1)

1 A(n)
1

)
+ B10

(
A(1)

0 A(n)
1 − A(1)

0 A(n)
2 + A(1)

1 A(n)
1 + A(1)

1 A(n)
2

)
+ B11

(−A(1)
0 A(n)

1 + A(1)
0 A(n)

2 + A(1)
1 A(n)

1 + A(1)
1 A(n)

2

)
.

Each line above corresponds to a different CHSH test,
weighted by a different probability of obtaining certain out-
comes in the central parties (recall that the Bst are defined
by Bst =∑⊕n−1

�=2 i� j�=st Mi2 j2 · · · Min−1 jn−1 , with ⊕ being the bit-
wise XOR). Therefore, the expectation value of each of the
lines above can be bounded by 2

∑
⊕n−1

i=2 ai=00 p(a2, . . . , an−1),

and using the fact that
∑n−1

i=2

∑
ai

p(a2, . . . , an−1) = 1 the up-
per bound of 2 follows. We are thus left with the inequality

〈Bn〉 = 〈
A(1)

0

[
(B00 + B01)A(n)

0 + (B00 − B01)A(n)
1

]〉
+ 〈A(1)

1

[
(B00 + B01)A(n)

0 + (B00 − B01)A(n)
1

]〉
+ 〈A(1)

0

[
(B10 − B11)A(n)

1 + (B10 + B11)A(n)
2

]〉
+ 〈A(1)

1

[
(−B10 + B11)A(n)

1 + (B10 + B11)A(n)
2

]〉
� 2. (22)

The maximal quantum bound for Eq. (22) is, as before,
2
√

2 from the CHSH inequality. As in the previous cases,
this is a single inequality whose violation certifies that all
sources in the network are not classical, i.e., it detects FNN in
chain networks. Moreover, it can be violated within quantum
mechanics, as we also show in Appendix B.

VI. LINEAR FULL NETWORK NONLOCALITY
INEQUALITIES FOR STARS

It is possible to use the results of the previous section to
witness FNN in star networks, in two different ways. The
first one is by decomposing the star network into a collec-
tion of tripartite chain subnetworks comprised by the parties
(Ai, A j �=i, B), and testing Eq. (21) on each of them. This leads
to witnesses in scenarios where the central party performs a
single, four-outcome measurement, and the branch parties can
perform one of either two or three measurements, depending
on the particular inequalities that are used for the testing.

The second one is by exploiting the same principle,
namely, that only measurements on nonclassical systems can
produce nonlocal correlations. In this case, we are interested
in detecting genuinely multipartite nonlocality in the branch
parties after the measurement of the central party. One way of

detecting genuine multipartite nonlocality for n parties is via
the Mermin-Svetlichny inequality [9,46,47]:〈

S
(

A(�i)
x1 , . . . , A(�i)

xn

)〉
� 2n−1, (23)

where the operator S (A1, . . . , An) ≡ Sn is built recursively via

Sn = (Axn=0 + Axn=1)Sn−1 + (Axn=0 − Axn=1)S′
n−1,

with S1 = Ax1=0, and S′
k being obtained from Sk by flipping all

the inputs of all the parties. By creating one such operator
for every outcome of the central party B, one obtains the
inequality〈∑

�i
M�iS (�i )

(
A(�i )

x1 , . . . , A(�i )
xn

)〉
� 2n−1, (24)

where {M�i} denotes the projection measurement of B with
outcome �i := i1, . . . , in, and A(�i)

x j represents the corresponding
measurement for party A j . If one of the sources in the network
is classical, then the measurement of the central party projects
the joint state of the extremal parties into a biseparable-
type state, thus satisfying Eq. (23) for any measurements
A(�i)

x1
, . . . , A(�i)

xn
[9,46,47], and thus satisfying Eq. (24).

Equivalently, from the quantum bound of the Mermin-
Svetlichny operator it is easy to see that the maximum
quantum value of Eq. (24) is 2n−1

√
2. A violation of Eq. (24)

can be achieved, for instance, having the sources distribute
states of the form in Eq. (8). Take the measurement of B to be
given by {M�i} with

M�i = ∣∣φi1
0i[n−1]

〉〈
φ

i1
0i[n−1]

∣∣,
where i[n−1] := i2 . . . in, |φi1

0i[n−1]
〉 = 1√

2
(|0, i[n−1]〉 +

(−1)i1 |1, j[n−1]〉), and j[n−1] denotes the complement bit
series of i[n−1], i.e., i[n−1] ⊕ j[n−1] = 1 . . . 1 with ⊕ being
the bitwise XOR. For each measurement outcome �i, with
probability p(�i ), the joint system of particles owned by all
A js will collapse into

|0i[n−1]〉 = γ0i[n−1] |0, i[n−1]〉 + (−1)i1δ1i[n−1] |1, j[n−1]〉,
where γ0i[n−1] and δ1i[n−1] are defined by

γ0i[n−1] = 1√
p(�i)

α0

n∏
j=2

αi j , δ1i[n−1] = 1√
p(�i)

α1

n∏
j=2

αi j
,

with p(�i ) = α2
0

∏n
j=2 α2

i j
+ α2

1

∏n
j=2 α2

i j
, αi j=0 = cos θ j , and

αi j=1 = sin θ j , j = 1, . . . , n. This type of state can be
transformed into generalized GHZ states [48] by using
local unitary operations Ui2 , . . . ,Uin , i.e., |GHZ0i[n−1]〉 :=
⊗n

j=1Uij |0i[n−1]〉.
Now, define the quantum observables of A j conditional

on the outcome �i as A(i[n−1] )
a j=i j

∈ {U †
i j

(cos ϑ�iσ1 ± sin ϑ�iσy)Uij },
with ϑ�i ∈ (0, π ) and j = 1, . . . , n. From Ref. [49], we
have that by choosing proper phases ϑ�i one can obtain

that 〈GHZ0i[n−1] |S (A(�i)
1 , . . . , A(�i)

n )|GHZ0i[n−1]〉 exceeds 2n−1 for
some θ j satisfying 2γ0i[n−1]δ1i[n−1] > 2−(n−1)/2. Therefore, using
the necessary phases ϑ�i, we have a violation of Eq. (24) when-
ever the θ j satisfy the condition mini[n−1]{2γ0i[n−1]δ0i[n−1]} >

2−(n−1)/2.
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FIG. 4. Decomposition of an arbitrary network into stars and
chains. Here, the network can be decomposed into two star subnet-
works (N1 and N5) and three chain subnetworks (N2, N3, and N4).

VII. INEQUALITIES FOR GENERAL NETWORKS

In general, one can use all the inequalities derived in this
work to test for FQNN and FNN in arbitrary networks. For the
case of networks composed exclusively of bipartite sources,
one can decompose the network in a set of chain and star
networks (see Fig. 4 for an example), and test F(Q)NN in the
different subnetworks using Eqs. (14), (17), (20), (22), and
(24). In particular, cycles can be decomposed in terms of chain
networks. Since all sources belong to at least one subnetwork,
observation of F(Q)NN in all subnetworks implies that the full
correlation is F(Q)NN.

When the networks contain sources that distribute systems
to more than two parties, one can use the strategy that we
used for star networks, namely, building a Svetlichny-type
inequality of the form of Eq. (24) for all the parties that share
states with parties that receive from the multipartite source,
considering as the operators M the projections on all possible
outcomes of the parties that are connected by the multipartite
source. In this case, if there are k parties that share states with
parties that receive from the multipartite source, non-FNN
correlations satisfy〈∑

�t
M�tS (�t )

(
B(�t )

xi1
, . . . , B(�t )

xik

)〉
� 2k−1. (25)

VIII. NOISE ROBUSTNESS

To conclude, we present a few remarks on the robustness to
noise of the inequalities developed in this work. To analyze the
robustness to experimental imperfections of the inequalities in
the paper, we consider quantum realizations based on Werner
states, ρvi , given by

ρvi = vi|φi〉〈φi| + 1 − vi

d2
Id2 ,

where |φi〉 are arbitrary bipartite entangled pure states with
local dimension d , Id is the d × d identity matrix, and
0 � vi � 1, i = 1, . . . , m.

Using the states |φi〉 and the measurements that achieve
the quantum violations described throughout the paper (see,
e.g., Sec. IV and Appendix A 3), the corresponding quantities
I and J get multiplied by a factor

∏m
i=1 vi. This implies that,

in order to observe a violation, the visibilities of the sources
must satisfy

∏m
i=1 vi > 1√

2
when using maximally entangled

states. Similarly, using maximally entangled states for |φi〉
in the n + 1-partite star network, �-NN correlations can be

detected via the violation of Eq. (20) for
∏m

i=1 vi > 2−(�− n
2 ),

while �-QNN correlations can be detected via the violation of
Eq. (17) whenever

∏m
i=1 vi > 2− �

2 . As discussed in Sec. IV,
this shows that Eq. (20) cannot be used for detecting FNN
(although it can be used for detecting �-NN as long as � >

n/2), while Eq. (17) can be used for detecting �-QNN in a
noise-robust manner independently of the number of sources
in the network, since the critical visibility only depends on �.

For the case of the linear inequalities for detecting FNN,
both allow for violations when using Werner states as long
as
∏m

i=1 vi > 1/
√

2. When instead using noisy generalized
EPR states (8), the critical visibilities needed for observing
a violation of Eq. (22) relate to the angles θi via

n∏
i=1

vi >
1√

1 +∏n−1
j=1 sin2 2θ j

.

Analogously, when decomposing star networks into sets of
tripartite chain networks, FNN can in principle be guaranteed
when every pair of visibilities satisfies

viv j >
1√

1 + sin2 2θi sin2 2θ j

.

Note how, in both cases, the lowest requirements on the vis-
ibilities are obtained for θi = π/4 ∀ i, i.e., for maximally
entangled states.

IX. DISCUSSION

In this work we have provided Bell-like inequalities that
witness genuinely quantum phenomena in networks, in the
sense that their violations by particular distributions guarantee
that these cannot be reproduced when at least a number of the
sources in the network are classical. We have done so using
two different assumptions on the nonclassical sources. First
we assumed that they are only constrained by the no-signaling
principle. This leads to a hierarchy of levels of network nonlo-
cality, that interpolates from the standard definition of network
nonlocality [23] to that of full network nonlocality [35]. Sec-
ond, we assumed that the sources distribute systems described
by quantum mechanics. This gives rise to a hierarchy anal-
ogous to the previous one, that has milder requirements for
experimental observations and is thus more suitable for appli-
cations in quantum communication. More concretely, we have
provided Bell-like inequalities whose violation guarantees (i)
n/2-QNN and �-NN in the n-partite chain network [Eq. (14)
and Eq. (A5) in Appendix A, respectively], (ii) �-NN and
�-QNN for any � in the (n + 1)-partite star network [Eqs. (20)
and (17), respectively], and (iii) FNN in arbitrary chain and
star networks [Eqs. (22) and (24), respectively].

Being able to guarantee, from observed statistics, the ab-
sence of classical sources in a network is an important step
in the development of network-based quantum information
protocols. Concrete protocols exist, for instance for quan-
tum conference key agreement [50–52] or quantum secret
sharing [53,54]. However, their proofs of security rely on
guaranteeing global multipartite nonclassicality, which leads
to demanding requirements. Our work paves the way to the
development of protocols and security proofs that exploit the
network structure, which has received limited attention so
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far [54–56]. Indeed, consider the (n + 1)-partite star network.
Following Refs. [54,55] one can bound the predictive power
of an adversary for all outcomes �a by the value obtained in
Eq. (17) via

D

(
P(�e |�a; �x, y, �z ),

n∏
i=1

P(ei|zi)

)
� (2 − S�)n,

where D(p, q) is the total variation distance between distri-
butions p and q, and S� is the value achieved for Eq. (17).
By substituting the bounds for S� in Eq. (17), it is possible to
bound the predictive power of an eavesdropper if the existence
of � classical sources in the network cannot be discarded.
This, and more importantly, the demonstrations of quantum
realizations that lead to FNN and FQNN that we show in this
work, strongly motivate the development of novel quantum
information protocols tailored to networks.

Having inequalities for detecting �-NN and �-QNN allows
us to easily see how inserting the assumption that nature is
governed by quantum mechanics results in milder conditions
to guarantee nonclassicality, which is relevant for experimen-
tal realizations. For instance, detection of FNN (� = 1) in the
star network with n = 3 via Eq. (20) is not possible with noisy
versions of the generalized EPR states considered throughout
for any visibility, while detection of FQNN is possible when
the product of the states’ visibilities exceeds 2−1/6 ≈ 0.891.

All the inequalities we have presented require some of the
parties to have a choice of input. However, a fundamental
aspect of network nonlocality is that it can be realized in
setups without input choices [19,24,57–59]. Seeing whether
the hierarchies of nonlocality developed here are also present
in scenarios without inputs is an interesting problem that
we leave open, and that can have consequences useful in
applications such as quantum random number generation. Nu-
merical tools allow us to easily address these scenarios for
arbitrary networks (see, e.g., Ref. [41] or the computational
Appendix of Ref. [35]), thus in principle permitting the ex-
ploration of �-(Q)NN beyond the situations discussed here.
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APPENDIX A: NONLINEAR INEQUALITIES
FOR CHAIN NETWORKS

In this appendix we analyze the cases that are missing in
Sec. III B, namely, �-QNN in chain networks with an even
number of parties, and �-NN in chain networks with an arbi-
trary number of parties. The core of the derivations is based
on the concept of k-independent sets of sources [31].

1. �-QNL bounds for even number of parties

Let us begin discussing the case when the nonclassical
sources distribute quantum systems. An inequality for the
case of chains with an odd number of parties was derived in
Sec. III B, namely,

I
2

n+1 + J
2

n+1 �
{

2
n−1

2(n+1) � > n
2√

2 � < n
2 .

For the case of even n, begin considering that the chain net-
work contains � classical sources with � � n/2. Consider the
two subnetworks N1 and N2, where N1 contains the parties
A1, . . . , An−1, and N2 contains the parties A2, . . . , An. Either
subnetwork is a network with an odd number of parties which
has, at least, � − 1 classical sources. From Eqs. (9)–(12), the
correlations in N1 and N2 satisfy the inequality (12) for n − 1
parties, i.e., I

2
n + J

2
n � 2

n−2
2n . One can thus test this inequality

in the first n − 1 parties and in the last n − 1 parties to verify
�-QNN with � � n/2.

If less than half of the sources in the network are classical,
the situation is similar to that in Eq. (13). Namely, the joint
correlations generated by either N1 or N2 achieve the maxi-
mal bound of

√
2 for the inequality (12) with n − 1 parties,

i.e., I
2
n + J

2
n �

√
2. This means that, in the case of an even

number of parties and less than half of the sources being
classical, it is not currently possible to witness �-QNN with
� < n/2.

2. �-NN bounds

Now we focus on the bounds that are achieved when
the only constraint on the nonclassical sources is that they
distribute systems that satisfy the no-signaling principle. As
in the previous section, we distinguish the cases of networks
with odd and even number of parties.

Case 1. Odd n with n � 3. Suppose that the chain network
consists of � classical variables with � � 1 while the other
sources distribute arbitrary nonsignaling systems, as shown in
Fig. 2(b). Equation (9) holds for this kind of networks. How-
ever, in contrast with the derivation in Sec. III B, for sources
distributing nonsignaling systems the objects in Eq. (10) are
bounded by ∣∣∣∣∣

〈 ∏
odd i;i �∈S

A+
xi

∏
even j

Ax j=0

〉∣∣∣∣∣ � 1,

∣∣∣∣∣
〈 ∏

odd i;i �∈S

A−
xi

∏
even j

Ax j=1

〉∣∣∣∣∣ � 1. (A1)

Take n = 5 as an example, and S = {1}, i.e., that only the
source connecting A1 and A2 distributes classical randomness.
Given a PR box, defined by PR(a, b|x, y) = 1/2 if a ⊕ b = xy
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and 0 otherwise, and defining the total correlation as

P(a2, . . . , a5|x2, . . . , x5)=PR(a2, a3|x2, x3)PR(a4, a5|x4, x5),

straightforward evaluation leads to saturating the
upper bounds, i.e., 〈Ax2=0A+

x3
Ax4=0A+

x5
〉 = 1 and

〈Ax2=1A−
x3

Ax4=1A−
x5
〉 = 1. Similar results hold for general

n � 3.
Now, let S consist of all odd integers i such that Ai

shares classical variables with both Ai−1 and Ai+1. Combining
Eq. (9) with the inequalities in Eq. (A1), one finds

I
2

n+1 + J
2

n+1 �
〈∏

i∈S

A+
xi

〉 2
n+1

+
〈∏

i∈S

A−
xi

〉 2
n+1

�
∏
i∈S

cos
4

n+1 ϑi +
∏
i∈S

sin
4

n+1 ϑi (A2)

� sin
4|S|
n+1

(
π

2
− 1

|S|
∑
i∈S

ϑi

)
+sin

4|S|
n+1

(
1

|S|
∑
i∈S

ϑi

)

(A3)

:= cos
4|S|
n+1 ϑ + sin

4|S|
n+1 ϑ (A4)

� 21− 2|S|
n+1 , (A5)

where in Eq. (A2) we have used that |〈A+
xi
〉| � cos2 ϑi and

|〈A−
xi
〉| � sin2 ϑi for ϑi ∈ [0, π/2] as in the derivation of

Eq. (11). The inequality (A3) is from Ref. [31, Lemma
1], namely,

∏k
i=1 sin

1
k ϑi � sin(k−1∑k

i=1 ϑi ), where k = |S|.
Note that, in this case, the relevant quantity for the bound
is not the number of classical sources in the network, �, but
the number of parties which only receive classical systems,
|S|. In Eq. (A4), we have defined ϑ = |S|−1∑

i∈S ϑi. The last
inequality is from the fact that the unique extreme point of
the continuous function cos

4k
n+1 ϑ + sin

4k
n+1 ϑ for ϑ ∈ [0, π/2]

is ϑ = π/4.
Case 2. Even n with n � 4. As in the case

in the previous section, a chain network with an
even number of parties can be decomposed into
subnetworks consisting of n − 1 parties. If there are �

classical sources, each subnetwork contains no less than
� − 1 classical sources, and thus the n − 1-partite joint
correlations satisfy the inequality (A5) for n − 1 parties.

3. Quantum violations

Now we prove that it is possible to violate Eq. (14) with
realizations consisting of quantum states for models with
� � n−1

2 . In quantum scenarios, suppose that each pair of
parties, Ai and Ai+1, shares one generalized EPR state defined
in Eq. (8), as shown in Fig. 2(c).

For odd n � 3, Ref. [31] gave quantum observables
Ax1 , . . . , Axn such that

I
2

n+1 + J
2

n+1 =
(

1 +
n−1∏
i=1

sin
4

n+1 2θi

)1/2

. (A6)

These measurements exceed the bound in Eq. (12) whenever
the θi satisfy �n−1

i=1 sin 2θi > (2
n−1
n+1 − 1)

n+1
4 , thus certifying �-

QNN for long chain quantum networks with � � (n − 1)/2.
Moreover, as explained above, inequality (14) cannot guaran-
tee �-QNN of any quantum network if � < (n − 1)/2.

For even n, consider two connected n − 1-partite subnet-
works N1 and N2, where N1 consists of A1, . . . , An−1 and N2

consists of A2, . . . , An. The strategy of Ref. [31] gives �-QNN
correlations in each subnetwork, since it also gives the value
in Eq. (A6) for � � n/2 − 1.

Note that the bound in the inequality (A5) is larger than
the maximal quantum bound [31] if |S| � (n + 1)/2 for odd
n. From the definition of S before Eq. (A2), if there are at
most �(n − 1)/4� sources of nonsignaling systems the bound
in the inequality (A5) is smaller than the bound in the in-
equality (14), where �x� denotes the largest integer smaller
than x. This means that �-NN in chain networks with � � n −
�(n − 1)/4� = �(3n − 1)/4� may be verified by violating the
inequality (14), where �x� denotes the smallest integer larger
than x. However, with our results it is not possible to verify
FNN in any chain network if it has less than �(3n − 1)/4�
classical sources. This result can be extended for n-partite
chain networks with even n, again, by using two (n − 1)-
partite connected subnetworks.

APPENDIX B: QUANTUM VIOLATIONS OF LINEAR
FULL NETWORK NONLOCALITY INEQUALITIES

FOR CHAIN NETWORKS

In this appendix we show quantum strategies that violate
the inequalities (21) and (22).

1. The tripartite chain

In quantum scenarios, consider the case where each source
distributes generalized EPR states given by Eq. (8). The total
state is thus given by

|〉 = cos θ1 cos θ2|0000〉 + cos θ1 sin θ2|0011〉
+ sin θ1 cos θ2|1100〉 + sin θ1 sin θ2|1111〉. (B1)

Let A0 = cos ϑσ3 + sin ϑσ1, A1 = cos ϑσ3 − sin ϑσ1,
B0 = |φ+〉〈φ+|, B1 = |φ−〉〈φ−|, B2 = |ψ+〉〈ψ+|, B3 =
|ψ−〉〈ψ−|, C0 = σ3, C1 = σ1, and C2 = σ1σ3σ1, where
|φ±〉 = 1√

2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉). After

Bob’s local measurement, the joint system shared by Alice
and Charlie is, depending on Bob’s outcome, one of the
following states:

|�0〉 = r1(cos θ1 cos θ2|00〉 + sin θ1 sin θ2|11〉),

|�1〉 = r1(cos θ1 cos θ2|00〉 − sin θ1 sin θ2|11〉),

|�2〉 = r2(cos θ1 sin θ2|01〉 + sin θ1 cos θ2|10〉),

|�3〉 = r2(cos θ1 sin θ2|01〉 − sin θ1 cos θ2|10〉),

with r1 = (cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2)−1/2 and
r2 = (cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2)−1/2. Moreover,
we have p(b= 0) = p(b= 1) = 1/(2r2

1 ) and p(b= 2) =
p(b= 3) = 1/(2r2

2 ).
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Note that B3 can be written as a different CHSH game for
each outcome of Bob. Thus, we have that

CHSH0 := 〈�0|A0C0 + A0C1 + A1C0 − A1C1|�0〉
= 2 cos ϑ + r2

1 sin ϑ sin 2θ1 sin 2θ2, (B2)

CHSH1 := 〈�1|A0C0 − A0C1 + A1C0 + A1C1|�1〉
= 2 cos ϑ + r2

1 sin ϑ sin 2θ1 sin 2θ2, (B3)

CHSH2 := 〈�2|A0C1 + A0C2 − A1C1 + A1C2|�2〉
= 2 cos ϑ + r2

2 sin ϑ sin 2θ1 sin 2θ2, (B4)

CHSH3 := 〈�3| − A0C1 + A0C2 + A1C1 + A1C2|�3〉
= 2 cos ϑ + r2

2 sin ϑ sin 2θ1 sin 2θ2. (B5)

Substituting Eqs. (B2)–(B5) into Eq. (21) gives

〈|B3|〉 =
∑

i

p(b = i)CHSHi

= 2(cos ϑ + sin ϑ sin 2θ1 sin 2θ2).

If, for instance, we choose ϑ such that it satisfies
cos ϑ = (1 + sin2 2θ1 sin2 2θ2)−1/2, we have that 〈|B3|〉 =
2(1 + sin2 2θ1 sin2 2θ2)1/2, therefore violating Eq. (21) for any
θ1, θ2 ∈ (0, π

2 ).

2. Long chains

Consider the quantum realization in which all n − 1
sources in the chain distribute states of the form (8). The total
state of the system is

|〉 =
∑
i1,,̇in

⎛
⎝ n∏

j=1

αi j

⎞
⎠|i1, i1i2, . . . , in−1in, in〉

=
∑

i2,...,in

⎡
⎣
⎛
⎝n−1∏

j=2

αi j

⎞
⎠|0, 0i2, . . . , in−10, 0〉 +

⎛
⎝n−1∏

j=2

αi j

⎞
⎠|1, 1i2, . . . , in−11, 1〉 +

⎛
⎝n−1∏

j=2

αi j

⎞
⎠|0, 0i2, . . . , in−11, 1〉

+
⎛
⎝n−1∏

j=2

αi j

⎞
⎠|1, 1i2, . . . , in−10, 0〉

⎤
⎦,

where j = 1 ⊕ j, αi j=0 = cos θ j , and αi j=1 = sin θ j . Moreover, define the quantum measurement observables

A(1)
0 = cos ϑσ3 + sin ϑσ1, A1 = cos ϑσ3 − sin ϑσ1,

M0,0 = |φ+〉〈φ+|, M1,1 = |φ−〉〈φ−|,
M0,1 = |ψ+〉〈ψ+|, M1,0 = |ψ−〉〈ψ−|,
A(n)

0 = σ3, A(n)
1 = σ1, A(n)

2 = σ1σ3σ1.

After all the projection measurements of A2, . . . , An−1, each of which has a two-bit outcome a2, . . . , an−1 ∈ {00, . . . , 11}, the
joint system of the particles held by A1 and An collapses into a state in one of the following four sets:

S00 :=
⎧⎨
⎩r�i

⎛
⎝ n∏

j=1

αi j |00〉 +
n∏

j=1

αi j
|11〉

⎞
⎠∀ a2, . . . , an−1 s.t. ⊕n−1

j=2 a j = 00

⎫⎬
⎭,

S01 :=
⎧⎨
⎩r�i

⎛
⎝ n∏

j=1

αi j |01〉 +
n∏

j=1

αi j
|10〉

⎞
⎠∀ a2, . . . , an−1 s.t. ⊕n−1

j=2 a j = 01

⎫⎬
⎭,

S10 :=
⎧⎨
⎩r�i

⎛
⎝ n∏

j=1

αi j |01〉 −
n∏

j=1

αi j
|10〉

⎞
⎠∀ a2, . . . , an−1 s.t. ⊕n−1

j=2 a j = 10

⎫⎬
⎭,

S11 :=
⎧⎨
⎩r�i

⎛
⎝ n∏

j=1

αi j |00〉 −
n∏

j=1

αi j
|11〉

⎞
⎠∀ a2, . . . , an−1 s.t. ⊕n−1

j=2 a j = 11

⎫⎬
⎭,

where ⊕ denotes the bit-wise XOR, and r�i = (�n
j=1α

2
i j

+ �n
j=1α

2
ī j

)−1/2.

Let pi j =∑⊕n−1
s=2 as=i j p(a2, . . . , an−1), i.e., the total probability of all the measurements of A2, . . . , An−1 such that the

collapsed state is in the set Si j . Similarly to Eqs. (B2)–(B5), for any state |φ〉 in one subset S0i with i = 0, 1, there exists ϑ
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independent of |φ〉 such that

CHSH|φ〉 :=〈A(1)
0 A(n)

2i + A(1)
0 A(n)

2i+1 + A(1)
1 A(n)

2i − A(1)
1 A(n)

2i+1

〉
φ

= 2 cos ϑ+2 sin ϑr�i

n∏
j=1

αi j � 2 cos ϑ+2 sin ϑ min
⊕n−1

i=1 ai=0i

⎧⎨
⎩r�i

n∏
j=1

αi j

⎫⎬
⎭.

(B6)

Now, if we define ϑ such that sin ϑ = min⊕n−1
i=1 ai=0i(1 + r2

�i �
n
j=1α

2
i j

)−1/2, it follows from inequality (B6) that

CHSH|φ〉 � 2

√√√√√1 + min
⊕n−1

i=1 ai=0i

⎧⎨
⎩r2

�i

n∏
j=1

α2
i j

⎫⎬
⎭ = min

⊕n−1
i=1 ai=0i

⎧⎨
⎩2

√√√√1 + r2
�i

n∏
j=1

α2
i j

⎫⎬
⎭.

Similarly, for any state |φ〉 in one subset S1i, it follows the same result as above, just with −ϑ instead of ϑ . Substituting both
in Eq. (22) one has

Bn =
∑

i, j=0,1

pi jCHSH|φ〉∈Si j � 2(p00 + p10) min
⊕n−1

i=1 ai=00

⎧⎨
⎩
√√√√1 + r2

�i

n∏
j=1

α2
i j

⎫⎬
⎭+ 2(p01 + p11) min

⊕n−1
i=1 ai=01

⎧⎨
⎩
√√√√1 + r2

�i

n∏
j=1

α2
i j

⎫⎬
⎭

> 2
∑

i, j=0,1

pi j = 2,

violating Eq. (22). We note that this result can be extended for general bipartite entangled pure states [3], using the subspace
spanned by two basis states following Ref. [31].
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[34] I. Šupić, J.-D. Bancal, Y. Cai, and N. Brunner, Genuine network
quantum nonlocality and self-testing, Phys. Rev. A 105, 022206
(2022).

[35] A. Pozas-Kerstjens, N. Gisin, and A. Tavakoli, Full network
nonlocality, Phys. Rev. Lett. 128, 010403 (2022).

[36] E. Håkansson, A. Piveteau, S. Muhammad, and M. Bourennane,
Experimental demonstration of full network nonlocality in the
bilocal scenario, arXiv:2201.06361.

[37] C.-X. Huang, X.-M. Hu, Y. Guo, C. Zhang, B.-H. Liu, Y.-F.
Huang, C.-F. Li, G.-C. Guo, N. Gisin, C. Branciard, and A.
Tavakoli, Entanglement swapping and quantum correlations via
symmetric joint measurements, Phys. Rev. Lett. 129, 030502
(2022).

[38] N.-N. Wang, A. Pozas-Kerstjens, C. Zhang, B.-H. Liu, Y.-F.
Huang, C.-F. Li, G.-C. Guo, N. Gisin, and A. Tavakoli, Certifi-
cation of non-classicality in all links of a photonic star network
without assuming quantum mechanics, Nat. Commun. 14, 2153
(2023).

[39] X.-M. Gu, L. Huang, A. Pozas-Kerstjens, Y.-F. Jiang, D. Wu, B.
Bai, Q.-C. Sun, M.-C. Chen, J. Zhang, S. Yu, Q. Zhang, C.-Y.
Lu, and J.-W. Pan, Experimental full network nonlocality with
independent sources and strict locality constraints, Phys. Rev.
Lett. 130, 190201 (2023).

[40] N. Gisin, J.-D. Bancal, Y. Cai, P. Remy, A. Tavakoli, E.
Z. Cruzeiro, S. Popescu, and N. Brunner, Constraints on
nonlocality in networks from no-signaling and independence,
Nat. Commun. 11, 2378 (2020).

[41] E.-C. Boghiu, E. Wolfe, and A. Pozas-Kerstjens, Inflation: A
Python library for classical and quantum causal compatibility,
Quantum 7, 996 (2023).

[42] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed experiment to test local hidden-variable theories,
Phys. Rev. Lett. 23, 880 (1969).

[43] D. J. Saunders, A. J. Bennet, C. Branciard, and G. J. Pryde, Ex-
perimental demonstration of nonbilocal quantum correlations,
Sci. Adv. 3, e1602743 (2017).

[44] A. J. Short, S. Popescu, and N. Gisin, Entanglement swapping
for generalized nonlocal correlations, Phys. Rev. A 73, 012101
(2006).

[45] M. Weilenmann and R. Colbeck, Self-testing of physical the-
ories, or, is quantum theory optimal with respect to some
information-processing task? Phys. Rev. Lett. 125, 060406
(2020).

[46] N.-D. Mermin, Extreme quantum entanglement in a superposi-
tion of macroscopically distinct states, Phys. Rev. Lett. 65, 1838
(1990).

[47] D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani,
Bell-type inequalities to detect true n-body nonseparability,
Phys. Rev. Lett. 88, 170405 (2002).

[48] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s
Theorem, Quantum Theory, and Conceptions of the Universe
(Springer, Dordrecht, 1989), Chap. 10, pp. 69–72.
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