
PHYSICAL REVIEW A 110, 022616 (2024)

Ballistic Frenkel-exciton gate with a high on-off ratio
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Here it is shown that the exciton interactions within organic dye aggregates, as modeled by the Frenkel
Hamiltonian, enable the construction of an on-off switchable exciton gate. In this construction, a single exciton
residing on a controlling gate molecule may pass or inhibit the ballistic propagation of an exciton in a proximal
gate channel consisting of an array of dye molecules. High on-off ratios in excess of 102 can be achieved through
the use of static difference dipole-dipole interactions between the gate and the gate channel which effectively
creates a switchable Bragg grating. The gate channel and controlling gate molecule exhibit entanglement with
the quantum-mechanical superposition of the presence and absence of exciton occupation on the gate molecule.
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I. INTRODUCTION

In an aggregate of densely packed organic dye molecules,
the excitation resulting from the transition of a dye molecule
from the singlet ground state S0 to the singlet excited state
S1 behaves as a particle that can propagate throughout the
aggregate in a quantum-mechanical wavelike manner. This
quasiparticle is referred to as a Frenkel exciton [1]. Its
coherent transfer between molecules is mediated by the
dipole-dipole coupling of transition dipoles between pairs of
dye molecules. Frenkel excitons can also exhibit two-particle
interactions. The two-particle interaction between excitons
residing on separate dyes arises from the change in the static
charge distribution resulting from the S0 to the S1 molecular
transition. For asymmetric molecules the dipole component
of the electric field of the static charge distribution may be
dominant. In that case the exciton-exciton interaction has
the form of a dipole-dipole interaction for which the dipoles
are the difference between the excited-state and ground-state
dipoles [1]. We refer to these as difference static dipoles [2,3].
A two-particle interaction also arises when two excitons reside
on the same dye [4,5], that is, when the dye is excited to a
singlet state Sn having a higher energy than the singlet state
S1. The strength of this interaction is the energy cost of double
occupancy. Frenkel-exciton theory models well the coherent
transfer of excitons between dyes and the interdye and in-
tradye exciton-exciton interactions, succinctly describing the
exciton dynamics of dye aggregates when the coupling of
these excitons with molecular vibrations can be neglected. In
addition, it is a very useful tool when considering processes
that are fast compared to the exciton dephasing time.

The Frenkel model belongs to a class of models in which a
complete set of gates for scalable universal quantum computa-
tion can be realized [6–8]. Frenkel excitons are thus attractive
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candidates for applications in quantum information process-
ing. They are also attractive candidates for ultrafast switching
and information processing applications. The switching speed
of these gates is set by the transition dipole-dipole interac-
tion energy and by the exciton-exciton interaction energy.
The strength of both of these interactions can be in the 100-
eV range [3,9,10], thereby enabling switching on a 10-fs
timescale with possible room-temperature operation. Due to
these desirable features, the design of exciton-based gates
for quantum computing [11–13] and for switching [14] has
received considerable attention. Although the concern here
is with systems employing optical transitions between the
singlet ground state and first singlet excited state typical of
organic dyes, we note that systems employing singlet fission
and triplet annihilation have also received attention for infor-
mation processing applications [15].

Here we present a gate that controls the ballistic propaga-
tion of excitons through a gate channel via static difference
dipole interactions between the gate and channel. Through
these interactions, a compact switchable excitonic Bragg grat-
ing is implemented that enables the gate to achieve a high
on-off ratio. The device is depicted in Fig. 1. Two attached
linear arrays of dye molecules serve as transmission lines
along which an exciton can propagate ballistically, that is,
without loss of energy. They attach to the left and right of
the gate, as shown, and one provides a source channel of
excitons as input to the gate and if permitted by the gate may
propagate through to a second transmission line referred to
as the drain. The gate is referred to as off when transmission
to the drain is highly suppressed. As shown, the gate consists
of a single control molecule C and the gate channel consists
of a short array of dye molecules wrapped around the gate
molecule. The excitons are to be prepared on the source side
of the gate (and read on the drain side) by antennas attached
to the transmission line, which convert photons into excitons
(and vice versa). These antennas are tailored to couple to a
desired polarization; therefore the gate, source, and drain can
be independently excited.
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FIG. 1. Schematic representation of the aggregate structure of
the Frenkel-exciton gate. Here the black circles represent dye
molecules which interact via nearest-neighbor dipole interactions.
The interior black symbols represent the transition dipoles, with
dots representing dipoles directed out of the page. The red marks
represent the static difference dipoles, with dots representing dipoles
directed out of the page and the crosses representing dipoles directed
into the page. The gate region of the device is marked by the green
dotted circle, with the controlling gate molecule marked with a C.

As configured, the gate molecule C and gate-channel
molecules interact only through the exciton-exciton in-
teractions afforded by different static dipole interactions.
Interactions between the gate molecule and gate channel
via the transition dipole-dipole interaction are suppressed
by orienting the transition dipole of the gate molecule to
be orthogonal to the transition dipoles of the gate-channel
molecules. Such an arrangement is depicted in Fig. 1 where
the transition dipole of the gate molecule lies in the plane of
the figure, while all the other transition dipoles are orthog-
onal to the figure plane. This prevents a gate exciton from
hopping onto the gate channel or a gate-channel exciton from
hopping onto the gate. That the molecules can be arranged
to set the transition dipole-dipole coupling between the gate
and the gate channel to zero without simultaneously causing
the difference static dipole coupling to vanish is possible due
to the existence of dye molecules for which the transition
dipole and the static difference dipole are not parallel [9]. In
the system shown in Fig. 1, this is achieved by employing a
gate molecule for which the transition dipole and the static
difference dipole are orthogonal, while for the gate-channel
molecules the transition dipole and static difference dipoles
are parallel. The input and output transmission-line channels
may be constructed of symmetric molecules for which there
is no difference static dipole.

The availability of dyes with differing static difference
dipole moments also enables the construction of gate chan-
nels for which the exciton-exciton couplings between the
gate molecule and the gate-channel molecules are not all the
same. In particular, the coupling strengths can be modulated
in magnitude or sign such that an exciton in the gate channel
experiences a periodic potential when an exciton resides on
the gate molecule. In the system depicted in Fig. 1, this is
simply accomplished by choosing successive molecules in
the gate channel to be aligned in an antiparallel manner. In
the absence of an exciton on the gate molecule, this periodic
potential is absent. In this manner an on-off switchable Bragg
grating is implemented. If the Bragg grating has a periodicity

of 2 compared to the spacing between neighboring dyes, the
grating will open a band gap at the center of the channel
band for a grating of infinite extent, thereby blocking exciton
passage through the gate channel when their energy lies within
this band gap. The width of this band gap is proportional to the
amplitude of the periodic modulation of the exciton-exciton
interaction energy. For a grating of finite length, the blockage
will not be complete. For a gate channel wrapped around a
gate molecule, the length of the grating is limited to about
2.5 periods. However, we show that even such a short grating
is effective in suppressing exciton transmission through the
gate channel, thereby enabling on-off ratios in excess of 102.

This gate provides a means for generating quantum-
mechanical states in which the gate subsystem becomes
entangled with the channel subsystem. At the level of approx-
imation we have employed, the system is energy conserving
and the exciton-exciton coupling between the gate and chan-
nel molecules is number conserving: The number of excitons
on the gate molecule is fixed. Thus, for a system prepared
with the gate molecule in a superposition state with an ex-
citon present or absent, the gate remains in that superposition
as long as no measurement is performed to collapse it. The
incoming channel exciton, upon interacting with the gate, will
then be put into a superposition of states consisting of passing
through and reflecting off of the gate, thereby entangling the
gate with an exciton heading rightward or leftward down the
attached transmission lines.

Prior to considering the operation of the gate, a couple of
limitations are worthy of mention. First, the analysis below
neglects exciton-vibration coupling that causes exciton de-
phasing in real aggregate systems. Hence, the analysis applies
for cases when exciton switching is carried out on a timescale
that is fast compared to the exciton dephasing time, which
at cryogenic temperatures can be in the 102-fs range [16].
Second, it is desirable to consider the operation of this gate
as a transistor in which the gate molecule controls the flow of
a large number of excitons in the gate channel. This extension
of the analysis below is also made difficult because of the
exciton-exciton interactions that can occur when more than
one exciton resides in the gate channel. The analysis of such a
gate then becomes a complex many-body problem, which we
have not attempted to solve.

II. HAMILTONIAN

In order to avoid dealing with the complex many-body
problem that results if multiple excitons reside in the gate
channel and/or on the input and output exciton transmission
lines, our analysis is restricted to the case when at most one
exciton resides on the gate-channel–transmission-line system
and at most one exciton resides on the gate molecule. For sys-
tems such as this, which have been rigged to prevent exciton
double occupancy, the Hamiltonian has the form [1]

H =
∑

n

Ena†
nan +

∑
n,m

Jn,m(a†
nam + a†

man)

+
∑
n,m

Kn,m(a†
na†

manam), (1)
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where an is the annihilation operator for an exciton at a site n
on the aggregate. The annihilation operators satisfy the usual
boson commutation relations

[an, am] = 0 (2)

and

[an, a†
m] = δn,m. (3)

The transition energy En is the energy required to optically
excite a chromophore at site n into its first excited state.
The energy Jn,m will be referred to as the hopping energy
and is modeled as a dipole-dipole interaction [1] between the
transition dipoles of the chromophores at sites n and m,

Jn,m = μnμm

4πεR3
[nn · nm − 3(nn,m · nn)(nn,m · nm)], (4)

where nn is the unit vector representing the direction of the
dipole moment whose magnitude μn is the dipole moment, R
is the separation distance between the chromophores at sites
n and m, and nn,m represents the unit vector whose direc-
tion points from the center of chromophore n to the center
of chromophore m. Thus, by designing the orientations and
distance between the chromophores in an aggregate, one can
engineer the hopping energies (frequencies) to have a particu-
lar desired value. Here Kn,m is the exciton-exciton interaction
energy between an exciton residing on chromophore n and
another exciton residing on chromophore m. This interaction
is modeled by considering the difference static dipoles whose
magnitude at site n is dn and whose unit orientation vector is
mn. Thus the interaction energy is the dipole-dipole interac-
tion [1]

Kn,m = dndm

4πεR3
[mn · mm − 3(nn,m · mn)(nn,m · mm)]. (5)

By manipulating the orientation of the chromophores we can
design the system to have a particular exciton-exciton interac-
tion energy or frequency. Of particular note is that, in general,

nn × mn �= 0, (6)

meaning we have the freedom to manipulate Jn,m and Kn,m

independently. This strategy is employed to engineer an ag-
gregate configuration in which the gate-molecule dye and the
gate-channel dyes have the desired Jm,n and Km,n values.

III. TRANSMISSION LINES

The exciton gate is an input-output device and as such
is characterized by its scattering matrix. As a step toward
the computation of the scattering matrix, we first consider
exciton propagation on an exciton transmission line consisting
of a one-dimensional aggregate of identical dyes [17]. From
the form of the energy in Eq. (4) we see that the hopping
energy decreases as the cube of the distance between the dyes;
therefore, the interaction strength falls off dramatically for
dyes that are anything but nearest neighbors, enabling us to
first order in utilizing the nearest-neighbor approximation so
that the hopping sector of the Hamiltonian (1) takes the form

HJ =
∑

n

Jn,n+1(a†
nan+1 + a†

n+1an). (7)

Since we are considering the case when a single exciton re-
sides on the gate-channel–transmission-line system, we can
set Km,n = 0 for dyes m and n in this system. To take advan-
tage of translation invariance we now consider a transmission
line of infinite extent in both directions. The Hamiltonian for
this transmission line is given by

H =
∞∑

n=−∞
h̄ωE a†

nan +
∞∑

n=−∞
h̄ωJ (a†

nam + a†
man), (8)

where En = h̄ωE and Jn,n+1 = h̄ωJ .
The Heisenberg equations of motion for the annihilation

operators are given by

dan

dt
= −iωE an − iωJ (an−1 + an+1) for − ∞ � n � ∞,

(9)

and from Bloch’s theorem we can expand these solutions as
Fourier modes

an = 1√
2π

∫ π

−π

eikna(k, t )dk. (10)

Substituting this Fourier expansion into Eq. (9) and restricting
our attention to the bandwidth 0 � k � π , we can write our
solution as the sum of an exciton pulse moving to the right
and to the left,

an = 1√
2π

∫ π

0
e−i(ωkt−kn)a+(k)dk

+ 1√
2π

∫ π

0
e−i(ωkt+kn)a−(k)dk, (11)

where the dispersion relation is

ωk = ωE + 2ωJ cos(k). (12)

Thus we see that the exciton along a transmission line
behaves as a quasiparticle propagating freely (ballistically)
either to the right or to the left along the transmission line.
A variety of one-exciton devices can be implemented as
assemblies of transmission-line segments [17]. Given the ar-
chitecture of the exciton-controlled exciton gate of Fig. 1, with
the simple context and formalism of the Frenkel Hamiltonian,
we next show how the gate may be implemented.

IV. EXCITON-CONTROLLED EXCITON GATE

The device under consideration is shown in Fig. 1. The
switching on-off action of this gate will be controlled by
the excitation of the gate molecule C. This could be accom-
plished by optical pumping, for example. Note that since
the transition dipole of the gate molecule is orthogonal to
the transition dipoles of all other molecules, the excitation
of the transmission-line–gate-channel system can be avoided
with a proper choice of the optical pump pulse.

The exciton in this gate molecule will interact via the static
difference dipole-dipole interaction in Eq. (5) with excitons
that are moving through the gate channel, represented as a se-
ries of molecules arranged as a ring around the gate molecule
in Fig. 1. Note that the transition dipole moment of the gate
molecule is perpendicular to the transition dipoles of the trans-
mission lines, and therefore excitons will not hop from the
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transmission line to the control molecule. The static differ-
ence dipole moments of the molecules in the gate region also
alternate in direction, which causes a periodic variation in the
exciton-exciton interaction energy as the exciton propagates
through the gate channel. This up-down corrugation from the
alternating dipole configurations in the gate channel effec-
tively creates a switchable Bragg grating, prompted merely
by the excitation of the central, controlling gate molecule.

The number of molecules in the gate channel will be re-
ferred to as the gate size G. To maximize this interaction as
much as possible by minimizing the distance between the gate
molecule and the gate-channel molecules, we will limit the
gate size to be no greater than six molecules.

Numbering the molecules of the transmission-line–gate-
channel system consecutively such that the first gate-channel
molecule is n = 1 and the last gate-channel molecule is n =
G, we can separate the transmission lines into a source and
drain, where the solution given by Eq. (11) for the source
(n � 0) is

an = 1√
2π

∫ π

0
e−i(ωkt−kn)ain

S dk

+ 1√
2π

∫ π

0
e−i(ωkt+kn)aout

S dk (13)

and for the drain (n � G + 1) is

an = 1√
2π

∫ π

0
e−i(ωkt−kn)aout

D dk

+ 1√
2π

∫ π

0
e−i(ωkt+kn)ain

Ddk. (14)

We are assuming here that for the band 0 � k � π , the incom-
ing signal in the source and the outgoing signal in the drain
are moving towards positive n, and the outgoing signal in the
source and incoming signal in the drain are moving towards
negative n. From the dispersion relation (12) we can see that
the group velocity is given by

vg = −2ωJ sin(k) (15)

and that such definitions can be satisfied for positive k if ωJ

is negative, which is realizable as can be seen in Eq. (4). This
is arbitrary however, and an equivalent analysis can be carried
out by reversing convention of what constitutes the incoming
and outgoing signals, in which case ωJ is positive for positive
k. We note that the transition dipoles of the transmission-line–
gate-channel system molecules of Fig. 1 are aligned side by
side, a configuration for which ωJ is positive.

The gate-channel molecules are arranged such that the
static difference dipole-dipole interaction with the gate
molecule alternates in sign for successive gate-channel
molecules (see Fig. 1). This alternating increase and decrease
of energy in the gate will give rise to exciton reflections and
will open a band gap in between the frequencies ωE − 2|ωJ |
and ωE + 2|ωJ |. This band gap will be centered at a midband
value of k = π/2, for which it is expected that transmission
through the device will be minimized.

The Hamiltonian for the transmission-line–gate-channel
system along with the gate molecule can be written as

H = HS + HD + HG + HJ , (16)

where HS is the Hamiltonian for the source side transmission
line, HD is the Hamiltonian for the drain transmission line, HJ

is the hopping Hamiltonian for the entire transmission-line–
gate-channel system, and HG is the Hamiltonian for the gate
region. These parts of the full system Frenkel Hamiltonian are
given by

HS =
0∑

n=−∞
h̄ωE a†

nan, (17)

HD =
∞∑

n=G+1

h̄ωE a†
nan, (18)

HJ =
∞∑

n=−∞
h̄ωJ (a†

n+1an + a†
nan+1), (19)

and

HG =
G∑

n=1

h̄ωE a†
nan + h̄ωGb†b −

G∑
n=0

(−1)nh̄ωK a†
nb†ban,

(20)

where b is the exciton annihilation operator for the gate
molecule, h̄ωG is the excitation energy for the gate molecule,
and ωK is defined such that h̄ωK = |Kn,m| where here the
index m in Eq. (5) refers to the control molecule. We adopt
a configuration where Km,n is positive when n is odd and
negative when n is even.

The Heisenberg equations of motion generated from the
Hamiltonian (16) for the annihilation operators are

dan

dt
= − iωE an − iωJ (an−1 + an+1)

for n � 0, n � G + 1, (21)

dan

dt
= − iωE an − iωJ (an−1 + an+1) + (−1)niωK b†ban

for 1 � n � G, (22)

and

db

dt
= −iωGb + iωK

G∑
n=0

(−1)na†
nanb for 1 � n � G. (23)

From Eq. (23) it is found that

d (b†b)

dt
= 0 (24)

so that b†b = NG is a constant of motion and represents the
number of excitons present on the gate molecule. Since we
are restricting ourselves to the case when there is at most
one exciton on the gate molecule, NG is either zero or one.
Equation (22) can now be written as

dan

dt
= − i[ωE − (−1)nωK NG]an − iωJ (an−1 + an+1)

for 1 � n � G. (25)

Note that if NG = 0 then Eq. (9) is recovered and an exciton
transmits through the gate unimpeded.

It should be noted that, while we are treating the transmis-
sion line to be infinitely long, for which noise and decoherence
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are a concern, such a treatment is for the purposes of modeling
incoming and outgoing exciton pulses. The actual transmis-
sion lines in this device are envisioned to be short, making
loss of coherence and noise less of a concern.

V. TRANSMISSION THROUGH THE EXCITON
GATE IN THE OFF STATE

For the exciton gate in the off state (state preventing exciton
flow), NG = 1, and the eigenmode solutions in the gate region
(1 � n � G) become

an = 1√
2π

∫ π

0
e−iωkt ak,ndk, (26)

where ak,n no longer have the simple form of the Bloch modes
of the solutions in the source and drain transmission lines. In
order to relate the values of ak,n to the values of ain

S , aout
S , ain

D ,
and aout

D , we substitute Eqs. (26), (13), and (14) into Eqs. (25)
and (21) for n values of 0 through G + 1, which gives a
system of equations comprised of G + 2 equations and G + 4
unknowns. From this system of equations we can eliminate
all the values of ak,1 through ak,G and express ain

D and aout
D in

terms of ain
S and aout

S . These relationships provide us with a
transfer matrix, from which we can determine the probability
that an exciton propagating along the source transmission line
will continue into the drain transmission line, analogous to
quantum tunneling. This tunneling probability will serve as
the switching ratio of our device.

In order to simplify our system of equations we can intro-
duce the physical parameter

x = ωK

ωJ
, (27)

which we can see from Eqs. (4) and (5) defines the rela-
tive value of the transition dipole-dipole interactions of the
molecules in the transmission lines to that of the difference
static dipole-dipole interactions between the gate molecule
and the gate-channel molecules. We then, for purposes of
algebraic convenience, define the associated parameter

Wn = ωJ [2 cos(k) + (−1)nx]. (28)

The resulting system of equations can best be understood
when expressed in matrix form. Towards this end we define
the G-component column matrices

αD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ain
D

aout
D

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

and

αS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ain
S

aout
S

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

and the G-component column matrix

αk =

⎛
⎜⎜⎜⎜⎝

ak,1

ak,2

...

ak,G

⎞
⎟⎟⎟⎟⎠. (31)

We will also define the G × G square matrices QD and QS and
the G × G matrices M and N such that

QDαD = Mαk (32)

and

Nαk = QSαS. (33)

Performing the aforementioned substitutions, we arrive at a
system of equations such that these matrices are defined as

QD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−iGK eiGk 0 0 · · · 0

e−i(G+1)k ei(G+1)k 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
... 0 . . .

...

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

QS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eik e−ik 0 0 · · · 0

1 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
... 0 . . .

...

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 0 0 1

0 · · · 0 0 0 0 −1 WG

0 · · · 0 0 0 −1 WG−1 −1

0 · · · 0 0 −1 WG−2 −1 0
... · · · 0 ... ... ... · · · 0

−1 W2 −1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(36)

and

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · · 0

W1 −1 0 0 0 · · · 0

−1 W2 −1 0 0 · · · 0

0 −1 W3 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 −1 WG−1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

From Eqs. (32) and (33) we see that

αD = (
Q−1

D M
)
(N−1QS )αS. (38)

The elements of the transfer matrix will be the upper 2 × 2
block of the matrix

T = (
Q−1

D M
)
(N−1QS ). (39)
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In order to calculate these matrix elements we must calculate
the inverse matrices Q−1

D and N−1.

A. Matrix inverses

Since the matrix QD is block diagonal, with a nonzero
upper 2 × 2 block and lower (G − 2) × (G − 2) block that
equals the unity matrix, the inverse matrix can easily be found
to be

Q−1
D = 1

δD

⎛
⎜⎜⎜⎜⎜⎜⎝

ei(G+1)k −eiGk 0 0 · · · 0
−e−i(G+1)k eiGk 0 0 · · · 0

0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
... 0 . . .

...

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (40)

where δD is the determinant of the upper 2 × 2 block of the
matrix QD:

δD = 2i sin(k). (41)

Matrix N is of rectangular tridiagonal form. According to
Eq. (33), we wish to calculate the left-inverse matrix N−1,
which is a G × G matrix. Such inverses can be calculated
using induction methods [18,19] such that each row of N−1 is
calculated recursively from each previous row. Since we only
need the upper 2 × 2 block of the matrix defined in Eq. (39),
we only need the first two columns of the matrix N−1QS , along
with the first two rows of the matrix Q−1

D M. From the matrices
in Eqs. (36) and (40), the first two rows of Q−1

D M will be

1

δD
(0, . . . , 0, eiGk, ei(G+1)k − WGeiGk ) (42)

and

1

δD
(0, . . . , 0, −e−iGk, −e−i(G+1)k + WGe−iGk ), (43)

respectively. Note that only the last two elements are nonzero.
Therefore, of the first two columns of N−1QS , we only need
the last two elements of each, meaning that of the matrix N−1

we only need to calculate the rows G − 1 and G. As a final
simplification, since only the first two elements of the first two
columns of the matrix QS are nonzero, we conclude that, of the
rows G − 1 and G of matrix N−1, we only need to calculate
the first two elements.

To summarize, the transfer matrix for the exciton transistor
can be fully described by the lower left 2 × 2 block of the
matrix N−1, meaning we only require the matrix elements
N−1

G−1,1, N−1
G−1,2, N−1

G,1, and N−1
G,2. We find from our recursive

calculations that, for the first column of N−1,

N−1
2n+1,1 =

n+1∑
j=1

(−1) j−1

(
2n + 1 − j

j − 1

)
W n− j+1

1 W n− j+1
2 (44)

and

N−1
2n,1 =

n∑
j=1

(−1) j−1

(
2n − j

j − 1

)
W n− j+1

1 W n− j
2 , (45)

while for the second column of N−1,

N−1
2n+1,2 =

n∑
j=1

(−1) j

(
2n − j

j − 1

)
W n− j

1 W n− j+1
2 (46)

and

N−1
2n,2 =

n∑
j=1

(−1) j

(
2n − j − 1

j − 1

)
W n− j

1 W n− j
2 , (47)

where
(y

z

)
is the combination function y choose z:

(y
z

) =
y!

z!(y−z)! . From these we can calculate the required elements of

the matrix N−1.

B. Transfer matrix

From the definition of the matrix T in Eq. (39), the transfer
matrix is (

ain
D

aout
D

)
=

(
T11 T12

T21 T22

)(
ain

S

aout
S

)
. (48)

Similarly constructed is the scattering matrix S, connecting
the output transmitted waves from those input. It is(

aout
S

aout
D

)
=

(
S11 S12

S21 S22

)(
ain

S

ain
D

)
. (49)

Comparing these gives

S = T −1
12

( −T11 1

− det(T ) T22

)
. (50)

We identify the transmission coefficient as t = T −1
12 and the

transmission probability as

T = |t |2 = 1

|T12|2 . (51)

We find, from the above,

T12 = ei(G+1)k

2i sin(k)

{
e−2ikN−1

G−1,1 − [2 cos(k) ± x]e−2ikN−1
G,1

+ N−1
G,2 + e−ikN−1

G−1,2 + e−ikN−1
G,1

− [2 cos(k) ± x]e−ikN−1
G,2

}
, (52)

and given values of k and x, we can use this expression to
calculate the transmission probability

T −1 = ω2
J

4 sin2(k)

{(
N−1

G−1,1

)2 + (
N−1

G−1,2

)2

+ [1 ± 2x cos(k) + x2]
[(

N−1
G,1

)2 + (
N−1

G,2

)2]
+ 2 cos(k)[1 ± 2x cos(k) + x2]

(
N−1

G,1N−1
G,2

)
− 2[2 cos2(k) − 1 ± x cos(k)]

(
N−1

G,1N−1
G−1,2

)
− 2[cos(k) ± x]

(
N−1

G−1,1N−1
G,1 + N−1

G,2N−1
G−1,2

)
− 2[1 ± x cos(k)]

(
N−1

G−1,1N−1
G,2

)
+ 2 cos(k)

(
N−1

G−1,1N−1
G−1,2

)}
. (53)
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FIG. 2. Plot of the transmission probability T versus the inter-
action strength x = |ωK |

|ωJ | for gate sizes G ranging from G = 1 to 5.
The transmission probability is the switching ratio of the exciton
transistor device.

This, along with Eqs. (44)–(47), is used to find the switching
ratio of the exciton gate in the off state.

VI. ANALYTICAL RESULTS

The switching ratio of the exciton transistor at midband
is calculated from Eq. (53) with the wave number k = π/2.
The results are plotted in Fig. 2. As expected, as x increases
we see the switching ratio improve, that is, largely denying
excitonic passage to the drain since we are increasing the
interaction strength between the gate molecule and the gate-
channel molecules, thereby improving the Bragg grating and
its band-gap effect.

For chromophores with difference static dipole strengths
of x > 1, which are achievable [9], the analytical value of the
transmission probability is given in Table I for a particular
set of example values of x. In the application regime of scal-
able quantum computation, in order to implement quantum
error correction, it is preferred that the gate errors not exceed
one part in 100 [20,21]. We conclude that for an operational
switchable gate, a control molecule engineered for a larger
value of x near x = 2.0 requires a gate size of G � 4 to
achieve this error threshold. A gate size of G = 5 would natu-
rally allow a smaller interaction strength, given these desired
constraints.

In order to fully characterize the exciton transistor we also
want to analyze the switching ratios over a range of exciton
group velocities. For the desired gate sizes of G = 4 and 5,

TABLE I. Transmission probability T at midband, with k = π/2.

T

G x = 1.5 x = 1.7 x = 2

1 0.640 0.581 0.500
2 0.221 0.167 0.111
3 6.06 × 10−2 3.84 × 10−2 2.00 × 10−2

4 1.55 × 10−2 8.33 × 10−3 3.46 × 10−3

5 3.40 × 10−3 1.79 × 10−3 5.95 × 10−4
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FIG. 3. Plot of the transmission probability T versus the wave
number k for a gate size of G = 4.

these results are shown in Figs. 3 and 4, respectively. Im-
mediately noteworthy is that the fastest excitons are readily
suppressed: They are essentially squelched for G � 4 over a
wide range of difference static dipole interaction strengths.
This is a result of an effective Bragg grating, which largely
blocks signals with wavelengths near twice the periodicity of
the grating.

We also recognize that for smaller interaction strength
x and at slow speeds, the system exhibits source-drain
bleedthrough of excitons having de Broglie wavelengths not
effectively blocked by the Bragg grating. This is not ideal
behavior and greatly limits the bandwidth of the device. We
therefore require this bleedthrough to be suppressed, which
in turn requires increasing the difference static dipole-dipole
interaction strength between the control molecule and the
gate-channel molecules above a certain threshold. We can
see from the values in Table II that, for a gate size of either
four or five molecules, an interaction strength of x = 2 would

0 π
6

π
3

π
2

2π
3

5π
6

π
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0.2

0.4

0.6

0.8

1

k

T

x = 1.5
x = 1.7
x = 2.0

FIG. 4. Plot of the transmission probability T versus the wave
number k for a gate size of G = 5.
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TABLE II. Values for the local maxima of the transmission prob-
abilities seen in Figs. 3 and 4.

Tmax

G x = 1.5 x = 1.7 x = 2

4 0.152 2.61 × 10−2 5.60 × 10−3

5 1.0 4.06 × 10−2 2.16 × 10−3

allow us to achieve our desired performance over the entire
bandwidth of the device. This conclusion is further demon-
strated in Fig. 5, for which we can see that for G = 4 or 5,
our switching ratio remains below the desired threshold over
the entire device bandwidth for a gate-molecule–gate-channel
molecule interaction strength of x = 2. The antennas which
feed the excitons on the source side of the device can be tai-
lored to couple to a specific wave number k and polarization,
allowing for control of the group velocity such that the device
can operate in its ideal state.

VII. CONCLUSION

In this paper we have demonstrated the viability of a sim-
ple, switchable exciton gate device. Its design enables on-off
control through the excitation of a single controlling gate
molecule. It interacts via a difference static dipole coupling
with a number of nearby molecules comprising the gate chan-
nel. While the exciton gate is in the off state, the exciton
propagating along the transmission-line–gate-channel system
will transmit with a much reduced probability, and the exciton
gate acts in this capacity as an off switch. Contrastingly,
deexcitation of the control molecule uncouples it from the gate
channel and incident excitons freely pass through, and the gate
operates in the on-switch configuration.

Given the ideal operation of the device is for a small
number of gate molecules G = 4 or 5, along with the fact

0 π
6
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π
2

2π
3

5π
6

π

0

0.5

1

1.5

2

10
T

2

k

G = 3
G = 4
G = 5

FIG. 5. Plot of the transmission probability T versus the wave
number k for a gate-molecule–gate-channel molecule interaction
strength of x = 2.

that actual transmission lines feeding the gate will be short,
decoherence effects due to noise is expected to be minimized,
allowing the gate to operate as presented. Such exciton gates
can be incorporated into quantum information processing
systems as well as ultrafast switching applications. The in-
teraction between an exciton of the gate molecule and the
exciton propagating along the gate channel is nondissipative
and therefore the gate can serve to create entangled superpo-
sition states.

In order to maintain small gate errors, we have shown
that an ideal exciton gate will have a gate size of no less
than four chromophores, and the gate molecule should have
a difference static dipole interaction strength between the gate
molecules and the gate-channel molecules not significantly
less than two times the hopping energy of the transmission
lines. Organic dyes are attractive for the assembly of exci-
ton gates with these coupling strengths, since such dyes can
exhibit transition dipoles and difference static dipoles in the
10-D range [3,9,10]. Furthermore, the assembly of such dyes
into transmission lines and other well-defined structures using
DNA-based self-assembly techniques has received consider-
able attention [22]. We therefore conclude that the proposed
scheme is a good candidate for a switching gate incorporated
into quantum information processing systems.

A final note regards the means by which inputs can be
fed into the gate and outputs delivered from the gate. It is
essential that such dynamics takes place on a timescale that is
fast compared to the decoherence time. This consideration is
beyond the scope of the present paper, but an intriguing com-
plication for these systems and for applications for quantum
information processing. For optical switching applications,
the interconversion of photons and excitons is desirable. Since
the device presented here employs coherent interactions it
is imperative that photons be transduced into excitons and
injected into the device on a timescale that is fast compared to
the dephasing time and that the conversion of the output exci-
tons back into photons occurs on a similarly fast timescale. We
suggest that requisite shortening of the radiative lifetime may
be achievable with photon to exciton transducers that employ
both superradiance [23] and Purcell cavity enhancement [24].
Such a device could be created by embedding a superradiant
antenna array in an optical microcavity with small effective
mode volume [25].
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