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Non-Gaussian quantum gates are essential components for optical quantum information processing. However,
the efficient implementation of practically important multimode higher-order non-Gaussian gates has not been
comprehensively studied. We propose a measurement-based method to directly implement general, multimode,
and higher-order non-Gaussian gates using only fixed non-Gaussian ancillary states and adaptive linear optics.
Compared to existing methods, our method allows for a more resource-efficient and experimentally feasible
implementation of multimode gates that are important for various applications in optical quantum technology,
such as the two-mode cubic quantum nondemolition gate or the three-mode continuous-variable Toffoli gate,
and their higher-order extensions. Our results will expedite the progress toward fault-tolerant universal quantum
computing with light.

DOI: 10.1103/PhysRevA.110.022614

I. INTRODUCTION

Continuous-variable (CV) optical systems are a promis-
ing platform for large-scale quantum information process-
ing. Alongside the large-scale Gaussian operations enabled
by cluster states [1,2], non-Gaussian operations are cru-
cial elements [3,4] for many practical tasks ranging from
fault-tolerant universal quantum computing [5] to quantum
simulation [6]. The single-mode cubic phase gate (CPG) [5],
whose Hamiltonian is x̂3, has been intensively explored [5,7]
as the simplest example of such non-Gaussian operations,
and has been demonstrated in a proof-of-principle experiment
[8]. However, for practical tasks such as the generation and
manipulation of code words for quantum error correction
[5], or the quantum simulation of complex quantum systems
[6], multimode and/or higher-order non-Gaussian gates are
required.

Direct deterministic implementations of such non-
Gaussian gates are challenging in optical systems because
of their small intrinsic nonlinearity. Thus, ancilla-assisted
implementations with offline probabilistic ancilla states are
a common approach [7,8]. However, in most proposals,
only the implementation of elementary single-mode gates
such as CPGs is discussed, and multimode, higher-order
gates are implemented via decomposition of the gates
into multiple CPGs and Gaussian operations [9–11]. This
requires a large number of CPGs and the noise from each
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gate accumulates, making the composed gate noisy. As a
complementary approach, a method has been proposed to
directly perform the higher-order and/or multimode gates
using higher-order and/or multimode non-Gaussian ancillary
states and nonlinear feedforward [12]. This scheme has the
advantage that it requires fewer steps to implement the gate,
at the expense of more complex non-Gaussian ancillary
states. However, this proposal is somewhat incomplete, as it
requires an adaptive preparation of different non-Gaussian
states depending on previous measurement outcomes, whose
experimental implementation is not trivial.

In this work, we propose a general methodology to im-
plement high-order multimode non-Gaussian gates, requiring
only the offline preparation of fixed ancillary states that de-
pend solely on the gate to be implemented, and adaptive
linear optics, which are experimentally concrete and feasi-
ble resources. Our protocol is measurement based [13], and
thus compatible with quantum information processing us-
ing cluster states [1]. Our protocol allows different choices
of non-Gaussian ancillary states for implementing the same
gate. Exploiting this degree of freedom, we propose some
heuristic approaches based on Chow decomposition [14] of
polynomials to reduce the number of ancillary modes. We
apply our method to several important examples, including
the cubic quantum nondemolition (QND) gate [9], which is
a lowest-order non-Gaussian entangling gate, and the CV
Toffoli gate [9], which provides a minimal universal gate
set together with the Hadamard gate, and their higher-order
extensions. We show that in both third-order cases and higher-
order cases, one can reduce the number of required Gaussian
and non-Gaussian ancillary modes compared to the conven-
tional decomposition into single-mode non-Gaussian gates
[9,11,15]. Our results open up new possibilities for CV
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quantum circuit optimization, which not only expedites the
progress toward fault-tolerant universal quantum computing
and efficient quantum simulation, but also leads to a better
understanding of complex multimode quantum dynamics.

The structure of the paper is as follows. In Sec. II, we
introduce some preliminary notations used throughout this
paper. In Sec. III, we discuss that an arbitrary gate can
be decomposed into “quadrature gates,” whose Hamiltonian
only includes one of the orthogonal quadrature operators. In
Sec. IV, we introduce the measurement-based implementation
of quadrature gates, showing the equivalence of measure-
ments and gates. In Sec. V, we propose implementations
of multimode third-order gates, introducing the concept of
generalized linear coupling, which provides the freedom to
choose different non-Gaussian ancillary states. In Sec. VI,
we describe some examples of third-order gates and their
implementations. In Sec. VII, we describe the general method-
ology of how to implement higher-order gates. In Sec. VIII,
we propose some heuristic approaches to reduce the number
of ancillary modes using mathematical tools such as Chow
decomposition. In Sec. IX, we present some examples of
higher-order gates. We demonstrate the resource efficiency
of our scheme compared to conventional schemes by using
the strategies to reduce the ancillary modes introduced in
Sec. VIII.

II. DEFINITIONS AND NOTATIONS

The variables x and p represent quadrature operators of an
optical mode, which satisfy a commutation relation [x, p] = i.
Hats (·̂) of operators are omitted whenever it is clear from the
context. We define the quadrature operator of arbitrary phase
θ as

pθ = p cos θ + x sin θ. (1)

Bold symbols such as s and x represent vectors of either c-
numbers or operators.

For diagrammatic notations, we use the notation illustrated
in Fig. 1(a) for multimode states in circuit diagrams. We
define a mode-wise beam splitter for two parts of multimode
states, with arbitrary numbers of modes n, n′ for each part.
It is characterized by a vector of amplitude transmittances
t = (t1, . . . , tmin(n,n′ ) ). We define it as in Fig. 1(c), and thus
when n �= n′, some of the modes just pass through without
interaction.

We define a multimode beam splitter described by an or-
thogonal matrix O as an operation U such that

U †xU = Ox, (2)

U † pU = Op. (3)

We depict this as a rectangle with O as in Fig. 1(b).
For multivariable polynomials, we use the tensor notation

f (x) =
N∑

k=0

f (k)x⊗k (4)

=
N∑

k=0

∑
i1,...,ik

f (k)
i1,...,ik

xi1 . . . xik , (5)

(a)

(b)

(c)

FIG. 1. (a) Notation for n-mode states in circuit diagrams.
(b) Multimode beam splitter corresponding to an orthogonal matrix
O. (c) Mode-wise beam splitter with transmittance t .

where f (k) is a symmetric tensor of rank k, corresponding to
the kth-order coefficient of f (x). For a homogeneous polyno-
mial f , we sometimes just denote f (N ) as f , by a slight abuse
of notation.

III. GATE DECOMPOSITION INTO QUADRATURE GATES

We consider a general multimode unitary operation

exp[iH (x1, . . . , xn)], (6)

with an arbitrary Hamiltonian H in the form of a finite-order
polynomial,

H (x1, . . . , xn) =
∑

i

(
ci

∏
k

xmik
k pnik

k + c∗
i

∏
k

pnik
k xmik

k

)
. (7)

Using Trotter-Suzuki approximation [10,16], this can be de-
composed into linear operations and Hamiltonians of the form∏

k

xmk
k . (8)

This only includes x quadratures. We shall refer to this as a
quadrature gate. Thus, in this form, it is directly suitable for a
measurement-based implementation. In the rest of this paper,
we will focus on how to realize these multimode quadrature
gates.

Note that such decomposition is not unique for a given
Hamiltonian. In Appendix A, we explicitly provide an exam-
ple of such decomposition for an arbitrary Hamiltonian, as a
generalization of the method in Ref. [10].
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HBS

FIG. 2. Measurement-based implementation of the Hamiltonian
V (x1, . . . , xn), with a constant squeezing factor. This setup includes
ancillary squeezed states, a mode-wise half beam splitter [HBS, as
illustrated in Fig. 1(b)], measurements of nonlinear operators m(V ),
and feedforwarded displacement D̂p(m) to the p quadrature based on
the measurement outcomes m.

IV. MEASUREMENT-BASED IMPLEMENTATION
OF QUADRATURE GATES

We consider a quadrature gate U = exp[iV (x1, . . . , xn)]
with an arbitrary x-Hamiltonian V in the form of a finite-order
polynomial,

V (x) =
N∑

k=1

V (k)x⊗k . (9)

We consider a measurement-based implementation of the
gate U . We define n commuting operators,

mi(x, p;V ) = U † piU = pi − ∂

∂xi
V (x1, . . . , xn). (10)

We write this as

m(x, p;V ) = p − ∂

∂x
V (x), (11)

in short. We also just write this as m(V ), when x, p are clear
from the context.

Then we consider the circuit in Fig. 2, which consists
of n modes of ancillary squeezed states (x eigenstates),
a half beam splitter, and simultaneous measurements of
mi. The quadrature operators after the beam splitter are
written as

x′
out = 1√

2
(xin + xs), (12)

p′
out = 1√

2
(pin + ps), (13)

xm = 1√
2

(xin − xs), (14)

pm = 1√
2

(pin − ps). (15)

By measuring the operator m(xm, pm;V ) and performing a
displacement to p′

out by a feedforward, the output quadratures

are expressed as

xout = 1√
2

(xin + xs), (16)

pout = p′
out + m(xm, pm;V ) (17)

=
√

2pin −
√

2
∂

∂xin
V

[
1√
2

(xin − xs)

]
. (18)

Because we take the x eigenstate as the ancillary state, xs can
be substituted by 0, obtaining

xout = 1√
2

xin, (19)

pout =
√

2pin −
√

2
∂

∂xin
V

(
1√
2

xin

)
. (20)

This can be written as

xout = U †S†xinSU, (21)

pout = U †S† pinSU, (22)

with a squeezing operator S satisfying

S† pS =
√

2p, (23)

S†xS = 1√
2

x. (24)

This means the circuit implements the operation U up to
constant squeezing S.

Thus, the problem of implementing the gate is now reduced
to finding an implementation for the simultaneous measure-
ment of the non-Gaussian operators mi. From here on, we
focus exclusively on this measurement-based model. There-
fore, when we refer to the implementation of a gate V , we
mean the implementation of a measurement of m(V ). In the
following sections, we demonstrate that this measurement can
be performed using multimode non-Gaussian ancillary states
and linear optics, and we discuss methods to minimize the
required resources for this implementation.

Note that in a realistic situation where we use finitely
squeezed states instead of the x eigenstates as the ancil-
lary states, the output state has additional classical Gaussian
displacement noises expressed by xs, as can be seen from
Eqs. (16) and (18).

V. IMPLEMENTATION OF THIRD-ORDER
HAMILTONIANS

In order to see how a non-Gaussian measurement can be
implemented using non-Gaussian ancillary states and non-
linear feedforward, we first consider the simplest case of a
third-order Hamiltonian. Suppose we want to implement a
Hamiltonian

V (x1, . . . , xn) = V x⊗3 (25)

=
∑
i jk

Vi jkxix jxk, (26)

where Vi jk is an arbitrary symmetric tensor of rank 3. In
order to implement this operation using the measurement-
based method explained in Sec. IV, one needs to measure the
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operators,

m = m(xm, pm;V ) (27)

= pm − 3V x⊗2
m . (28)

Below, we introduce two methods for implementing this
measurement. The first method involves mode-wise coupling
using mode-specific beam splitters and adaptive homodyne
measurements, which require minimal resources for imple-
mentation. The second method generalizes this scheme using
the concept of generalized linear coupling that we introduce.
In this approach, a virtual Gaussian operation can be adap-
tively performed on the ancillary state using only adaptive
linear optics. This second method enhances the flexibility of
the implementation and is crucial for the implementation of
higher-order gates discussed in Sec. VII.

A. Mode-wise coupling

We first consider the circuit in Fig. 3(a). The input state is
combined with an n-mode non-Gaussian ancillary state using
mode-wise half beam splitters. The quadrature operators of
the input and the ancillary modes are denoted as xm, pm and
x′, p′, respectively. The quadrature operators after the beam
splitters are expressed as

x− = 1√
2

(xm − x′), p− = 1√
2

(pm − p′), (29)

x+ = 1√
2

(xm + x′), p+ = 1√
2

(pm + p′). (30)

When we define

m′ = m(x′, p′; −V ) (31)

= p′ + 3V x′⊗2 (32)

and

δ = m + m′, (33)

we obtain

δ = pm + p′ − 3V
(
x⊗2

m − x′⊗2
)

(34)

=
√

2p+ − 6V (x+ ⊗ x−). (35)

Then we measure x− and suppose we get the outcomes
x− = s. This makes the measurement of δ equivalent to the
measurement of the linear quadrature operators,

δ =
√

2p+ − 6V (s ⊗ x+) (36)

=
√

2(p+ + Ax+), (37)

where we define a rank-2 tensor (matrix),

A = −3
√

2V s. (38)

Thus, δ is a set of commuting linear combinations of the
quadrature operators. These operators can be simultaneously
measured using a multimode beam splitter followed by homo-
dyne measurements on each mode, as shown in Appendix B.
Hence the measurement of δ can be performed using the
circuit in Fig. 3(a). The orthogonal matrix O(s) and the phases

HBS

post-process

(a)

(b)

post-process

(c)

FIG. 3. (a) Implementation of a third-order Hamiltonian with
mode-wise coupling. The multimode beam splitter O(s) and the
phase θ are determined by the homodyne measurement outcomes s.
Note that the input field xm, pm corresponds to the measured field
in Fig. 2, and the scheme implements the measurement of m(V ).
(b) Definition of generalized linear coupling characterized by a ma-
trix K and measurement s. We draw them as a double square and
a double-line detector, respectively. (c) Implementation of a third-
order Hamiltonian with generalized linear coupling K . The function
f corresponding to the ancillary states should satisfy Eq. (75).

of the homodyne measurement θi(s) are determined via the
diagonalization of A as follows:

A = OT

⎛
⎜⎝

tan θ1

. . .

tan θn

⎞
⎟⎠O. (39)

Since these parameters are nonlinear functions of s, nonlinear
feedforward is required for implementing the measurement.

When we choose the ancillary state to be the eigenstate of
m′ satisfying

m′ = 0, (40)

the measurement of δ is equivalent to the measurement of
m. In the presence of imperfections of the ancillary state, m′
introduces extra noise to the measurement.

022614-4



IMPLEMENTING ARBITRARY MULTIMODE … PHYSICAL REVIEW A 110, 022614 (2024)

B. Generalized linear coupling

In Ref. [17], it is mentioned that one can effectively control
the ancilla squeezing by changing the transmittance of the
beam splitter. This is useful because it can save squeezing
resources using only linear optics and it allows for adap-
tive squeezing operations on the ancillary state, which are
required for the implementation of higher-order gates, as we
will discuss in Sec. VII. We generalize this idea for multimode
cases, resulting in a structure that enables a broader range of
multimode Gaussian operations on the ancillary state, not just
mode-wise squeezing.

Suppose we have n input modes and n′ ancillary modes.
For any n × n′ matrix K , let

K = O′T �O (41)

be the singular-value decomposition of K . O and O′ are
n × n and n′ × n′ orthogonal matrices, respectively, and �

is a n′ × n diagonal matrix. Figure 3(b) defines a generalized
linear coupling characterized by K as a combination of three
multimode beam splitters O, O′, OT and a mode-wise beam
splitter t , where t is determined so that

ri

ti
= λi, i = 1, . . . , min(n, n′), (42)

for the diagonal elements λi of � [see Sec. II and Fig. 1 for
the diagrammatic notations used in Fig. 3(b)]. We express it
as a double square as in Fig. 3(b). The quadrature operators of
the input and ancillary modes are denoted as x, p and x′, p′.
The quadrature operators of the output modes are denoted as
x−, p− and x+, p+. We also define a measurement s expressed
by a double-line detector in Fig. 3(b) as a measurement of
s = O′T T ′x−, where

T ′ =
{

diag(t1, . . . , tn′ ) if n′ � n

diag(t1, . . . , tn, 1, . . . , 1) otherwise.
(43)

This can be done either by first measuring x− and postpro-
cessing the measurement outcomes or by measuring x− after
applying the multimode beam splitter O′T T ′. Then, we have
the following theorem.

Theorem 1. For arbitrary f , g, there is a relation

P(K )m(x, p; f ) + KP(K )m(x′, p′; g)

= m(x+, p+; f �K,s g), (44)

where we define a matrix P(K ) as

P(K ) = (I + KT K )−1/2, (45)

and a binary operator �K,s between two functions f , g as

( f �K,s g)(x) = f [P(K )x + KT s] + g[KP(K )x − s]. (46)

The proof of Theorem 1 is given in Appendix C. For a
third-order Hamiltonian V and a third-order function f , we
have

(V �K,s f )(x) = V [P(K )x + KT s]⊗3 + f [KP(K )x − s]⊗3

(47)

= (V + f K⊗3)[P(K )x]⊗3 + O(x2). (48)

Thus, if one finds a function f such that

V + f K⊗3 = 0, (49)

then V �K,s f becomes a second-order function of x, and so
the measurement of m(xout, pout;V �K,s f ) can be performed
using beam splitters and homodyne measurement using the
same method as in Sec. V A. Therefore, if we use the eigen-
state of m(x′, p′; f ) as the ancillary states, the measurement
of m(xin, pin;V ) can be implemented with the scheme in
Fig. 3(c).

From the form of the condition given by Eq. (49), this
generalized linear coupling effectively applies a multimode
Gaussian operation

x → Kx (50)

to the input state. Note that the case of mode-wise HBS
coupling described in Sec. V A corresponds to the case where
K = I .

VI. EXAMPLES OF THIRD-ORDER GATES

A. Cubic-QND gate

The simplest example of a third-order multimode Hamil-
tonian is the cubic-QND gate, whose Hamiltonian can be
written as

V (x1, x2) = x1x2
2 . (51)

This can be implemented using the scheme in Fig. 4(a), which
consists of half beam splitters, feedforwarded variable beam
splitters (VBSs), homodyne measurements, and a two-mode
ancillary state satisfying

p1 + x2
2 = 0, p2 + 2x1x2 = 0. (52)

Note that a physical approximation of this state is discussed in
Ref. [12]. The transmittance of the variable beam splitter t and
the phases θi of the homodyne measurement are determined
from the measurement outcomes s1, s2, by performing the
following eigenvalue decomposition:

√
2

(
0 s2

s2 s1

)
=
(

t −r
r t

)(
tan θ1 0

0 tan θ2

)(
t r

−r t

)
.

(53)

An alternative way of implementing the gate can be ob-
tained by rewriting Eq. (51) as

V (x1, x2) = 1
6

[
(x1 + x2)3 + (x1 − x2)3 − 2x3

1

]
(54)

(such a decomposition is called Waring decomposition [18];
see, also, Sec. VIII D). From this, we can take

f (x1, x2, x3) = −(x3
1 + x3

2 + x3
3

)
(55)

and

K = 1
3
√

6

⎛
⎜⎝

1 1

1 −1

− 3
√

2 0

⎞
⎟⎠ (56)
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HBS

HBS

(a)

(b)

FIG. 4. Implementation of the cubic-QND gate. (a) When mode-
wise coupling is used. (b) When single-mode ancillary states and
generalized linear coupling are used.

in the scheme of Fig. 3(c). This K has a singular value decom-
position,

K = O′ · 1
3
√

6

⎛
⎜⎝

√
2 + 2−2/3 0

0
√

2

0 0

⎞
⎟⎠, (57)

where the orthogonal matrix O′ can be expressed as a product
of two two-mode beam-splitter matrices:

O′ =

⎛
⎜⎜⎝

1√
2

− 1√
2

0

1√
2

1√
2

0

0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

21/3√
1+22/3 0 1√

1+22/3

0 1 0

− 1√
1+22/3 0 21/3√

1+22/3

⎞
⎟⎟⎠. (58)

Thus, the gate can be implemented using the cir-
cuit in Fig. 4(b). Here, three cubic-phase states (CPSs)
|p + 3x2 = 0〉⊗3 are used as the ancillary state.

In the first case, using the two-mode ancilla of Eq. (52),
the number of ancillary modes (two non-Gaussian, two Gaus-
sian) is less than for the decomposition of the gate into three

HBS

HBS

HBS

(a)

HBS

HBS

HBS

HBS HBS

HBS HBS

(b)

FIG. 5. Implementations of Toffoli gates. (a) When mode-wise
coupling is used. (b) When single-mode ancillary states and general-
ized linear coupling are used.

CPGs, which requires three non-Gaussian and three Gaussian
ancillary modes [9]. Even in the second case using three CPSs
as the ancillary states, the number of the Gaussian ancillary
modes is reduced to two without changing the non-Gaussian
ancillary states.

B. Toffoli gate

Another important example is the CV Toffoli gate [9],

V (x1, x2, x3) = x1x2x3, (59)

which provides a universal gate set together with the
Hadamard gate. The Toffoli gate can be implemented with
the scheme in Fig. 5(a), using a three-mode ancillary state
satisfying

p1 + x2x3 = 0,

p2 + x3x1 = 0,

p3 + x1x2 = 0, (60)
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and a three-mode VBS, which can be realized using three two-
mode VBSs. The orthogonal matrix O corresponding to the
VBS and the phases θi of the homodyne measurements can be
obtained from the following eigenvalue decomposition:

√
2

⎛
⎜⎝0 s3 s2

s3 0 s1

s2 s1 0

⎞
⎟⎠ = OT

⎛
⎜⎝tan θ1 0 0

0 tan θ2 0
0 0 tan θ2

⎞
⎟⎠O.

(61)

This implementation of the Toffoli gate requires three non-
Gaussian and three Gaussian ancillary modes, which is a
reduced number of modes compared to a known decompo-
sition of the gate into four CPGs, requiring four non-Gaussian
and four Gaussian ancillary modes [9]. Similar to the example
of the cubic-QND gate in Sec. VI A, one can also use four
CPSs as the ancillary state, keeping the number of squeezed
ancillary states at three, as in Fig. 5(b). This is because the
Waring decomposition of V is given by

V (x) = 1
24 [(x1 + x2 + x3)3 + (−x1 − x2 + x3)3

+ (−x1 + x2 − x3)3 + (x1 − x2 − x3)3], (62)

and thus one can take

f (x) = x3
1 + x3

2 + x3
3 + x3

4, (63)

K = 1
3
√

24

⎛
⎜⎜⎝

1 1 1
−1 −1 1
−1 1 −1

1 −1 −1

⎞
⎟⎟⎠ = O′ · 1

3
√

3

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎟⎠,

(64)

O′ =

⎛
⎜⎜⎝

1 1 0 0
−1 1 0 0

0 0 1 1
0 0 −1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

1 1 0 0
−1 1 0 0

0 0 1 1
0 0 −1 1

⎞
⎟⎟⎠. (65)

VII. IMPLEMENTATION OF HIGHER-ORDER
HAMILTONIANS

In this section, we consider the general N th-order
Hamiltonian,

V (x) =
N∑

k=1

V (k)x⊗k, (66)

for n modes [x = (x1, . . . , xn)]. Reference [17] shows that
the measurement corresponding to a single-mode quadrature
phase gate eixN

of an arbitrary order N can be implemented
using N − 2 non-Gaussian ancillary states and linear optics,
by sequentially decreasing the order of the measured polyno-
mial using nonlinear feedforward operations. We generalize
this idea to the multimode case given by Eq. (66). In Fig. 6, we

FIG. 6. Procedure to implement the measurement m(V ) corre-
sponding to the general multimode Hamiltonian V [Eq. (66)]. For
the details, see Secs. VII and VIII.

summarize the whole procedure to implement the measure-
ment of m(V ), which is explained in this and the following
sections.

From Theorem 1, if one can find f1, . . . , fm, K1, . . . , Km,
and A(s), b(s), c(s) satisfying(

V �K1,s1 f1 �K2,s2 · · · �Km,sm fm
)
(x)

= xT A(s)x + b(s)T x + c(s) (67)

for arbitrary measurement outcomes si, then the measurement
of m(x, p;V ) can be implemented using the scheme in Fig. 7.
Here the beam-splitter matrix O and the phases of the homo-
dynes θi are determined via the eigenvalue decomposition of
A(s) [Eq. (39)]. For finding such a sequence, it is convenient
to define an operator �K,s as

( f �K,s g)(x) = f (x) + g(Kx − s), (68)

because we have the following theorem.
Theorem 2. For any sequences f1, . . . , fm, K1, . . . , Km,

there exist K ′
1, . . . , K ′

m and A such that for any s1, . . . , sm,
there exist s′

1, . . . , s′
m and b satisfying(

V �K ′
1,s1 f1 �K ′

2,s2 · · · �K ′
m,sm fm

)
(x)

= (V �K1,s′
1

f1 �K2,s′
2
· · · �Km,s′

m
fm
)
(Ax + b). (69)

The proof of Theorem 2 is given in Appendix D. From
Theorem 2, it is sufficient to find a sequence fk, Kk , and A, b, c
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post-process

FIG. 7. Implementation of higher-order Hamiltonian, consisting of multiple non-Gaussian ancillary states, linear optics (generalized linear
coupling, Sec.V B), and homodyne measurements. Part of the linear optics and measurements are adaptively changed depending on previous
measurement outcomes.

such that(
V �K1,s1 f1 �K2,s2 · · · �Km,sm fm

)
(x) = xT Ax + bT x + c. (70)

More specifically, if we write

(
V �K1,s1 f1 �K2,s2 · · · �Kj ,s j f j

)
(x) =

Nj∑
k=1

V ( j,k)x⊗k, (71)

where Nj = deg(V �K1,s1 f1 �K2,s2 · · · �Kj ,s j f j ), we have

V ( j+1,k) = V ( j,k) +
Nj∑

l=k

(
l
k

)
f (l )

j+1(−s)⊗l−kK⊗k
j+1. (72)

In particular, we have

V ( j+1,Nj ) = V ( j,Nj ) + f
(Nj )
j+1 K

⊗Nj

j+1 . (73)

Thus, if one takes f j+1 and Kj+1 so that

V ( j,Nj ) + f
(Nj )
j+1 K

⊗Nj

j+1 = 0, (74)

one has Nj = N − j and Eq. (70) can be satisfied with m =
N − 2 steps. When f j+1 is taken to be a homogeneous poly-
nomial of order N − j satisfying

V ( j,Nj ) + f j+1K
⊗Nj

j+1 = 0, (75)

Eq. (72) becomes

V ( j+1,k) = V ( j,k) +
(

Nj

k

)
f j+1(−s)⊗Nj−kK⊗k

j+1. (76)

If one can adaptively prepare the ancillary non-Gaussian
states depending on the measurement outcomes si, the whole
process can be implemented using only (N − 2) × n ancillary
modes by choosing

fk = −V (k−1,N+1−k), Kk = I. (77)

However, in an actual setup, it is often difficult to prepare non-
Gaussian states adaptively, and a better strategy is to prepare
fixed ancillary states fk and adaptively change Kk . When this
strategy is taken, fk should not depend on the measurement
outcomes s1, . . . , sk−1. In the following sections, we consider
this situation.

VIII. REDUCTION OF THE NUMBER
OF ANCILLARY MODES

In this section, we consider the problem to minimize the
number of the non-Gaussian ancillary modes, when those

states cannot be adaptively prepared depending on the previ-
ous measurement outcomes s. Although the general solution
for finding the global minimum is still an open question, we
give several observations and heuristic strategies. In Sec. IX,
we apply those strategies to some examples and compare the
performances.

We recommend the reader to first check the example in
Sec. IX A before reading the following discussion, to gain
intuition about our idea.

A. Sign problem

Before beginning the discussion about the number of ancil-
lary modes, we first describe a subtle problem caused by the
indefinite sign of the measurement outcomes. For example,
suppose one wants to implement a single-mode quadrature
phase gate V (x) = xN [17]. One can naturally choose f1(x) =
−xN , K1 = 1 and get

V �1,s f1 = xN − (x − s)N (78)

= NsxN−1 + · · · . (79)

Now one wants to choose f2(x) = −xN−1 and K2 = (Ns)
1

N−1

so that f2(K2x) = −NsxN−1, but this works only when N − 1
is odd or s > 0 because K2 should be a real number.

Solutions of this problem would be either (a) to allow finite
success probability of the gate and assume s > 0, or (b) to
prepare two ancillary states with different signs (e.g., xn−1

and −xn−1) and switch them depending on the sign of the
measurement outcome s. When we choose (a), the gate is no
longer deterministic, while when we take (b), the number of
necessary ancillary modes increases. For example, in the case
of the quadrature phase gate, one needs N − 2 + 
(N − 2)/2�
modes instead of N − 2 as in Ref. [9].

The same problem also exists in the general cases of the
multimode non-Gaussian gates that we consider here. How-
ever, because this problem exists in all the schemes that we
compare in Sec. VIII E and it only causes an increase of the
number of modes by a constant factor, in the rest of the paper
we ignore this problem for simplicity and assume that all
measurement outcomes sk are positive.

B. The a-rank of tensor

For the coefficients of the polynomial [Eq. (71)], we write

V ( j,Nj ) = V ( j,Nj )(s), (80)
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as a function of all previous measurement outcomes s =
(s1, . . . , s j−1). We define the a-rank of V ( j,Nj )(s) as the mini-
mum dimension of f j that does not depend on s and satisfies
Eq. (75). Equivalently, for a tensor A(s) depending on s, we
define the a-rank of A(s) as

arank[A(s)] = min dim F

such that ∃K (s), A(s) = FK (s)⊗k. (81)

Using this, the number of necessary ancillary modes is upper
bounded by

N−2∑
k=1

arank
[
V (k−1,N+1−k)(s)

]
, (82)

where arank(V (0,N ) ) = arank(V (N ) ) = n (the number of input
modes). The a-rank has the following properties.

Theorem 3.
arank[A(s)K (s)⊗k] � arank[A(s)], (83)

arank[A1(s) + A2(s)] � arank[A1(s)] + arank[A2(s)]. (84)

Proof. The first property directly follows from the
definition.

For the second property, suppose we have decompositions

A1(s) = B1K1(s)⊗k, (85)

A2(s) = B2K2(s)⊗k, (86)

where B1 and B2 are n1-dimensional and n2-dimensional ten-
sors. We define a (n1 + n2)-dimensional tensor B1 ⊕ B2 as

(B1 ⊕ B2)x⊗k = B1x⊗k
1 + B2x⊗k

2 , (87)

where we divide x = (x1, . . . , xn1+n2 )T into x1 =
(x1, . . . , xn1 )T and x2 = (xn1+1, . . . , xn2 )T , and define the
matrix K1(s) ⊕ K2(s) as

K1(s) ⊕ K2(s) =
(

K1(s) 0

0 K2(s)

)
. (88)

Then we have

A1(s) + A2(s) = (B1 ⊕ B2)[K1(s) ⊕ K2(s)]⊗k, (89)

which leads to Eq. (84). �

C. Chow decomposition and b-rank

The following decomposition of a polynomial A(x) is
called Chow decomposition [14],

A(x) =
r∑

i=1

li∏
j=1

(∑
k

m(i)
jk xk

)n(i)
j

. (90)

Here, r is called Chow rank and denoted as crank(A). Here we
allow m(i) in general to depend on s. We define the b-rank of
A as

brank(A) =
r∑

i=1

li. (91)

For a homogeneous polynomial A of order n, the b-rank is
related to the Chow rank by

brank(A) = n · crank(A). (92)

The Chow decomposition and b-rank are useful for finding the
a-rank of tensors because we have the following theorem.

Theorem 4. The a-rank of a tensor A(s) is upper bounded
as

arank[A(s)] � brank[A(s)]. (93)

Proof. Writing each term of Eq. (90) as Ai(s) gives

Ai(s)x⊗N =
li∏

j=1

[∑
k

m(i)
jk (s)xk

]n(i)
j

, (94)

and we define tensors Bi as

Bix
⊗N =

li∏
j=1

x
n(i)

j

j . (95)

Then, we have

Ai = Bi[M
(i)(s)]⊗N , (96)

where the matrix M (i)(s) is defined as

[M (i)(s)x] j =
∑

k

m(i)
jk (s)xk. (97)

Because Bi does not depend on s, we have

arank[Ai(s)] � li. (98)

Thus, from A(s) =∑i Ai(s) and Theorem 3, it follows that

arank[A(s)] �
∑

i

li. (99)

More explicitly, defining

B[A(s)] =
⊕

i

Bi, (100)

M[A(s)] =
⊕

i

Mi, (101)

we have

A(s) = B[A(s)]M[A(s)]⊗N , (102)

and B[A(s)] is not dependent on s from its definition. �
Furthermore, because from Eq. (76) V ( j,k) has the form

V ( j,k) =
∑

i

Ais
⊗ni , (103)

the following theorem gives another upper bound of the
a-rank.

Theorem 5. If Ax⊗k is a monomial,

Ax⊗k =
l∏

i=1

xni
i , (104)

then, for j < k,

arank(As⊗ j ) � l. (105)
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Proof. We define

q j = (As⊗k )
1

k− j (106)

=
(

l∏
i=1

sni
i

) 1
k− j

. (107)

Note that here we assume si > 0 (see Sec. VIII A). We also
define

Dj (s) = diag

(
s1

q j
, . . . ,

sl

q j

)
. (108)

Then we get

As⊗ j[Dj (s)x]⊗k− j =
∑

i1,...,ik

Ai1,...,ik si1 . . . si j

si j+1

q j

× xi j+1 . . .
sik

q j
xik (109)

= 1

qk− j
j

l∏
i=1

sni
i

∑
i1,...,ik

Ai1,...,ik xi j+1 . . . xik

(110)

=
∑

i1,...,ik

Ai1,...,ik xi j+1 . . . xik (111)

= A′x⊗k− j, (112)

where A′ is a tensor which does not depend on s,

A′ = A1⊗ j, (113)

defined using a constant vector

1 = (1, . . . , 1)T . (114)

Thus,

As⊗k = A′[Dj (s)−1]⊗N−k, (115)

and we get

arank(As⊗ j ) � arank(A′) � l (116)

from Theorem 3. �
Corollary 1. For a tensor A not depending on s and j < k,

arank(As⊗ j ) � brank(A). (117)

Proof. The proof follows from Theorems 3 and 5. �
When f j is taken to be a homogeneous polynomial of order

N − j + 1, from Eq. (76), Theorem 3, and Corollary 1, we
have

arank
(
V ( j+1,k)

)
� arank

(
V ( j,k)

)+ brank( f j+1), (118)

and thus

arank(V ( j,Nj ) ) �
j∑

i=1

brank( fi). (119)

D. Decomposition into single-mode gates

A complementary approach to our method is to
decompose the multimode gate into many single-mode
gates [9,11]. However, essentially, this can be included

in our measurement-based scheme without changing the
non-Gaussian ancillary modes, in the following fashion.

Theorem 6. If V x⊗N has a decomposition (called Waring
decomposition [18])

V x⊗N =
r∑

i=1

(∑
k

m(i)
k xk

)N

, (120)

the measurement of m(V ) can be implemented using r(N − 2)
non-Gaussian ancillary modes. [r is called the Waring rank
and denoted as wrank(V ).]

Proof. Let M be a matrix whose components are

Mik = m(i)
k . (121)

Then, when one takes

f j (x) =
r∑

i=1

xN− j+1
i (122)

and

Kj = DjM, (123)

where Dj = diag(d j,1, . . . , d j,N ) is a diagonal matrix, then
V ( j,Nj ) also has a form

V ( j,Nj )x⊗Nj =
r∑

i=1

ci(si)

(∑
k

m(i)
k xk

)N− j

, (124)

where ci(si) is a coefficient only depending on si. Thus,
by setting d j+1,i = [−ci(si)]

1
N− j , the condition Eq. (74) is

satisfied. �
Note that in our implementation, the number of necessary

ancillary squeezed states is given by the number of the input
modes, n, where the usual decomposition into single-mode
gates [9] requires the same number of squeezed states as the
number of the gates, as we also mentioned in Sec. VI for
specific examples. Thus, it can be more resource efficient
in cases where the Waring rank is larger than the number
of the modes. Indeed, this is the case for all examples in
Secs. VI and IX.

E. Strategies for minimizing the number of ancillary modes

Although the minimum number of ancillary modes is still
an open problem, based on the theorems proven in the preced-
ing sections, we propose three strategies for minimizing the
number of ancillary modes.

Strategy I. Based on Theorem 4, f j and Kj are chosen by
performing Chow decomposition of V ( j−1,Nj−1 ).

Strategy II. Based on Corollary 1, f j and Kj are chosen by
performing Chow decomposition of fk for all k < j.

Strategy III. Based on Theorem 6, f j and Kj are chosen by
performing Waring decomposition of V .

In general, the best strategy depends on the problem that
is being considered, as we will see in Sec. IX. Below we give
more details for each strategy.
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1. Strategy I

From the construction in the proof of Theorem 4, fk, Kk are
determined as

f1 = −V, K1 = I, (125)

fk = B(−V (k−1,N−k+1)), (126)

Kk = M(−V (k−1,N−k+1)), (127)

using B[A(s)] and M[A(s)] in Eqs. (100) and (101). The num-
ber of the ancillary modes is given by

n +
N−3∑
k=1

brank(V (k,N−k) ). (128)

2. Strategy II

From the construction in the proofs of Theorem 5 and
Corollary 1, fk is chosen as

f1 = −V, (129)

fk+1 = −
k⊕

j=1

B( f j )1
k− j+1 (130)

= −[ fk ⊕ B( fk )]1, (131)

using B[A(s)] defined in Eq. (100). Kk is also determined as

K1 = I, (132)

Ki+1 =
i⊕

k=1

(
Nj

k

)1/k

DN−k[M( fk )sk]M( fk )Kk, (133)

using Dj (sk ) in Eq. (108) and M[A(s)] in Eq. (101). From
Eq. (119), the total number of the ancillary modes is given
by

N +
N−3∑
k=1

k∑
i=1

brank( fi ). (134)

3. Strategy III

From the construction in the proof of Theorem 6, fk is
given by Eq. (122) and Ki is given by Eq. (123). The corre-
sponding ancillary states are separable and consist of

rk =
N∑

i=k

wrank(V (i) ) (135)

modes of kth-order quadrature phase states |p − kxk−1 = 0〉
for 3 � k � N . Thus, the total number of the ancillary modes
is given by

N∑
i=3

(i − 2)wrank(V (i) ). (136)

In particular, when V is a homogeneous polynomial of the
order of N , it is simply

(N − 2)wrank(V (N ) ). (137)

IX. EXAMPLES OF HIGHER-ORDER GATES

Here we give some examples of higher-order non-Gaussian
gates and their implementations.

A. A small example

In order to get an intuition about how the number of non-
Gaussian ancillary modes is reduced, we first consider the
following specific example:

V (x) = x2
1x2

2 + x4
1 . (138)

Suppose one chooses

f1(x) = −x2
1x2

2 − x4
1, (139)

K1 = I. (140)

Then one has

V (1,3)(x) = 2s1x1x2
2 + 2s2x2

1x2 + 4s1x3
1 . (141)

Now, one wants to choose f2, K2 such that

V (1,3) + f2K⊗3
2 = 0. (142)

One way to do this is to decompose Eq. (141) as

V (1,3)(x) = 2s1x1x2
2 + x2

1 (4s1x1 + 2s2x2) (143)

(Chow decomposition of V (1,3)), and take

f2(x) = −x1x2
2 − x2

3x4, (144)

K2 =

⎛
⎜⎜⎜⎝

2s1 0
0 1
1 0

4s1 2s2

⎞
⎟⎟⎟⎠. (145)

This corresponds to strategy I, and we get

arank(V (1,3)) � 4. (146)

In this case, 2 + 4 = 6 non-Gaussian ancillary modes are re-
quired in total.

Another way is to observe that Eq. (138) is Chow decom-
posed into x2

1x2
2 and x4

1, and take

f2(x) = −(2x1x2
2 + 2x2

1x2
)− 4x3

3 . (147)

Then if we take

K2 =

⎛
⎜⎜⎜⎝
(
s1s2

2

)1/3
/s1 0 0

0
(
s1s2

2

)1/3
/s2 0

0 0
(
s3

1

)1/3
/s1

⎞
⎟⎟⎟⎠
⎛
⎜⎝

1 0

0 1

1 0

⎞
⎟⎠,

(148)

Eq. (142) holds. This corresponds to strategy II, and we get

arank(V (1,3)) � 3. (149)

In this case, 2 + 3 = 5 non-Gaussian ancillary modes are re-
quired in total.

One can also decompose the gate into single-mode gates
(strategy III). The gate given by Eq. (138) can be decomposed

022614-11



FUMIYA HANAMURA et al. PHYSICAL REVIEW A 110, 022614 (2024)

HBS

HBS

FIG. 8. Implementation of the gate given by Eq. (138), when one
uses strategy II.

into three x4 gates because it has a Waring decomposition,

V (x) = 1
2 (x1 + 6−1/2x2)4 + 1

2 (x1 − 6−1/2x2)4 − 1
36 x4

2 . (150)

In this case, 2 × 3 = 6 non-Gaussian ancillary modes are re-
quired in total.

Therefore, in this case, strategy II is optimal in terms of the
number of the non-Gaussian ancillary modes. Figure 8 shows
the corresponding scheme for implementing the gate given by
Eq. (138).

B. Controlled-phase gate

We consider the following controlled-phase gate:

V (x1, x2) = x1xN−1
2 . (151)

First, we apply strategy I. It is straightforward to see that

B(V (i,N−i+1))x⊗N−i+1 = x1xN−i
2 . (152)

Thus, we can take

fi = x1xN−i
2 . (153)

This implementation requires only

2(N − 2) (154)

ancillary modes. It is better than applying strategy II.
On the other hand, if we apply strategy III, because

wrank(V ) = N (155)

[18], the decomposition into single-mode gates requires

N (N − 2) (156)

ancillary modes. Therefore, our scheme requires a smaller
number of non-Gaussian ancillary modes [Eq. (156)] com-
pared to the conventional decomposition into single-mode
gates [Eq. (156)].

C. CNZ gate

We consider the following CN Z gate:

VN (x1, . . . , xN ) = x1 . . . xN . (157)

We first apply strategy I. It can be inductively shown that
V (i,Ni )

N has the form

V (i,Ni )
N x⊗Ni =

∑
S⊂{1,...,N},|S|=Ni

aS

∏
j∈S

x j . (158)

TABLE I. Comparison of the number of necessary non-Gaussian
ancillary modes between different strategies for choosing the ancil-
lary states, for the CN Z gate [Eq. (157)]. The calculation of each
number is based on the Chow decompositions of the polynomials
described in Appendix E.

N 3 4 5 6 7 8

Strategy I 3 8 27 114 639 3936
Strategy II 3 10 29 67 155 333
Strategy III (conventional [9,11,18]) 4 16 48 128 320 768

The number of ancillary modes is obtained by calculating the
b-rank of this tensor and using Eq. (128). Although, in gen-
eral, it is difficult to find the minimal Chow decomposition of
a polynomial, we conjecture the form of b-rank of V (i,N−i+1)

in Appendix E.
When we apply strategy II, it can be inductively shown that

B( fi ) has the form

B( fi) =
crank( fi )⊕

k=1

VN−i+1. (159)

Thus, we have

brank( fi) = (N − i + 1)crank( fi ), (160)

and from Eqs. (129) and (130),

crank( f1) = 1, (161)

crank( fi+1) =
i∑

k=1

cN−k+1,N−icrank( fk ), (162)

where we define

cn,k = crank(Vn1⊗n−k ) (163)

= crank

⎛
⎝ ∑

S⊂{1,...,n},|S|=k

∏
j∈S

x j

⎞
⎠. (164)

In Appendix E, we conjecture an analytical form of cn,k . Once
one gets brank( fi ), the number of non-Gaussian ancillary
modes can be calculated using Eq. (134).

On the other hand, when we apply strategy III, because

wrank(VN ) = 2N−1 (165)

[18], the number of necessary ancillary modes is given by

(N − 2)2N−1, (166)

from Eq. (137).
Table I shows the comparison between strategies I, II, and

III. The calculation of each number is based on the Chow
decompositions of the polynomials described in Appendix E.
Strategy I gives the minimum number of the ancillary modes
for N = 4, 5, whereas strategy II is better for larger N . Strat-
egy II has an advantage over strategy III for any N , which
corresponds to the conventional single-mode decomposition.
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X. CONCLUSION AND DISCUSSION

We have proposed a methodology including an experimen-
tally accessible toolbox to implement, in principle, arbitrary
multimode high-order non-Gaussian gates, relying on the con-
cept of measurement-based quantum gates. For the third-order
cases, we have introduced a generalized linear coupling as a
generalization of the technique used in the implementation
of a CPG, which includes degrees of freedom that allow
virtually applying adaptive Gaussian operations to the ancil-
lary state. For the higher-order cases, we have proposed an
implementation based on cascaded generalized linear cou-
plings and feedforwards. We have also proposed a heuristic
algorithm to reduce the number of non-Gaussian ancillary
modes, based on Chow decomposition of polynomials. Our
scheme does not require adaptive preparation of non-Gaussian
states depending on previous measurement outcomes, and
it requires only offline preparation of fixed non-Gaussian
states, together with adaptive linear optics, unlike previous
proposals [12].

We applied our method to some important examples,
namely, the cubic-QND gate, the CV Toffoli gate, the
controlled-phase gate, and the CnZ gate. In all cases, we ob-
serve that our method requires a smaller number of ancillary
modes compared to conventional methods that decompose the
gates into multiple single-mode gates [9]. For higher-order
cases, we found that different strategies for reducing the num-
ber of ancillary modes lead to different performances, and the
best strategy to adopt depends on the types of gates. Thus,
though general and systematic, our approach provides suffi-
cient degrees of freedom for further optimization by refining
the algorithms.

Our results enable a more resource-efficient and experi-
mentally feasible implementation of CV gates compared to
conventional schemes. This will accelerate the progress to-
ward fault-tolerant universal quantum information processing,
especially with light, and it highlights the inherent computa-
tional potential that CV quantum systems have. As a future
extension of our work, methods for generating the multimode
non-Gaussian ancillary states needed for our scheme could
be explored, potentially through optimization of Fock-basis
coefficients, which has been discussed for the case of the
cubic-QND gate [12] and experimentally demonstrated for
the CPG [8].
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APPENDIX A: DECOMPOSITION OF ARBITRARY GATES
INTO QUADRATURE GATES

In this section, we explicitly give a decomposition of an
arbitrary Hamiltonian,

H (x1, . . . , xn) =
∑

i

(
ci

∏
k

xmik
k pnik

k + c∗
i

∏
k

pnik
k xmik

k

)
,

(A1)

into quadrature gates,

∏
k

xmk
k , (A2)

using Trotter-Suzuki approximation [10,16]. The goal here is
to express the Hamiltonian given by Eq. (A1) using sum (split-
ting) and commutators of quadrature gates given by Eq. (A2).
Because Eq. (A1) can be rewritten as

H (x1, . . . , xn) =
∑

i

(
Re(ci )

{∏
k

xmik
k ,
∏

k′
pnik′

k′

}

+ iIm(ci )

[∏
k

xmik
k ,
∏

k′
pnik′

k′

])
, (A3)

where {·} is an anticommutator and [·] is a commutator, it
suffices to give a decomposition of the term

{∏
k

xmik
k ,
∏

k′
pnik′

k′

}
. (A4)

For doing this, we generalize the following single-mode
result in Ref. [10]:

{xM, pN } = − 2i

(N + 1)(M + 1)
[xM+1, pN+1]

− 1

N + 1

N−1∑
k=1

[pN−k, [xM , pk]], (A5)

to the multimode case. Note that here we rewrite the original
equation, where they use the convention [x, p] = i/2, with our
convention [x, p] = i. We write

x = (x1, . . . , xn), p = (p1, . . . , pn), (A6)

and introduce a vector exponent notation: for M =
(M1, . . . , Mn),

xM = xM1
1 . . . xMn

n . (A7)

Using the equation

[xM, pN ] = iM
N−1∑
k=0

pkxM−1 pN−k−1 (A8)
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[10], we have

[xM, pN] = [
xM1

1 , pN1
1

]
xM2

2 . . . xMn
n pN2

2 . . . pNn
n + · · · + pN1

1 . . . pNn−1
n−1 xM1

1 . . . xMn−1
n−1

[
xMn

n , pNn
n

]
(A9)

=
n∑

j=1

pN< j
[
x

Mj

j , p
Nj

j

]
xM/ j pN> j (A10)

=
n∑

j=1

iMj

Nj−1∑
k=0

pN< j pk
jx

M/ j x
Mj−1
j p

Nj−k−1
j pN> j (A11)

=
n∑

j=1

iMj

Nj−1∑
k=0

pN< j+ke j xM−e j pN> j+(Nj−k−1)e j (A12)

= i

2

n∑
j=1

Mj

Nj−1∑
k=0

(
pN< j+ke j xM−e j pN> j+(Nj−k−1)e j + H.c.

)
(A13)

=
n∑

j=1

⎛
⎝ iMjNj

2
{xM−e j , pN−e j } + iMj

2

Nj−1∑
k=0

[
pN> j+(Nj−k−1)e j , [xM−e j , pN< j+ke j ]

]⎞⎠. (A14)

Here, e j is a vector whose jth component is 1 and the others are 0. N< j is a vector whose 1, . . . , ( j − 1)th components are the
same as N and the others are 0. N/ j is a vector whose jth component is 0 and the others are the same as N.

Thus, the decomposition of {xM, pN} can be calculated as

{xM, pN} = − 2i

(M1 + 1)(N1 + 1)

(
[xM+e1 , pN+e1 ] − i(M1 + 1)

2

N1∑
k=0

[pN−ke1 , [xM, pke1 ]]

−
n∑

j=2

iMjNj

2
{xM+e1−e j , pN+e1−e j } −

n∑
j=2

iMj

2

Nj−1∑
k=0

[
pN> j+(Nj−k−1)e j , [xM+e1−e j , pN< j+e1+ke j ]

]⎞⎠. (A15)

The anticommutator in the third term can be recursively decomposed using the same equation. This recursion stops after a finite
number of steps because the exponents M + e1 − e j, N + e1 − e j have the same sum of the components as M, N, while M1, N1

keep increasing by one for each step. Note that in the final expression after the recursive application of Eq. (A15), some of the
terms in the sum could be combined because the same exponent may appear multiple times.

Here we give some examples:

{x1x2, p1 p2} = − i

2

[
x2

1x2, p2
1 p2
]− 2i

9

[
x3

1, p3
1

]+ 1

2
[p2, [x1x2, p1]] + 1

3

[
p1,
[
x2

1, p1
]]

= − i

2

[
x2

1x2, p2
1 p2
]− 2i

9

[
x3

1, p3
1

]+ 7

6
, (A16)

{
x3

1x2, p2
1 p2

2

} = − i

6

[
x4

1x2, p3
1 p2

2

]− i

10

[
x5

1, p4
1 p2
]+ 1

3

[
p1 p2

2,
[
x3

1x2, p1
]]+ 1

3

[
p2

2,
[
x3

1x2, p2
1

]]

+ 1

3

[
p2,
[
x4

1, p3
1

]]+ 1

4

[
p2

1 p2,
[
x4

1, p1
]]+ 1

4

[
p1 p2,

[
x4

1, p2
1

]]
, (A17)

{x1x2x3, p1 p2 p3} = − i

2

[
x2

1x2x3, p2
1 p2 p3

]− i

18

[
x3

1x3, p3
1 p3
]− i

16

[
x4

1, p4
1

]− i

18

[
x3

1x2, p3
1 p2
]

+ 1

2
[p2 p3, [x1x2x3, p1]] + 1

3

[
p3,
[
x2

1x3, p2
1

]]+ 1

12

[
p1 p3,

[
x2

1x3, p1
]]+ 1

4

[
p2

1,
[
x3

1, p1
]]

+ 1

12

[
p1 p2,

[
x2

1x2, p1
]]+ 1

12

[
p2,
[
x2

1x2, p2
1

]]
. (A18)

Note that this decomposition usually includes less nesting of commutators compared to known decompositions into
single-mode and Gaussian entangling gates [10,15]. For example, a naive application of the method in Ref. [10] to the
Hamiltonian in Eq. (A16) leads to

{x1x2, p1 p2} = 1
72

[
p2

2,
[
p2

1,
[
x3

2,
[
x3

1, p1 p2
]]+ 1

2 , (A19)
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which includes a deeply nested commutator, requiring a
higher number of gates for getting a certain accuracy of
the gate. Thus, our direct decomposition into multimode
quadrature gates, combined with our measurement-based di-
rect implementation of multimode quadrature gates, gives a
more efficient way to implement high-order multimode gates.

APPENDIX B: SIMULTANEOUS MEASUREMENT
OF LINEAR QUADRATURE OPERATORS USING

LINEAR OPTICS

In this section, we show the following theorem:
Theorem 7. A set of n linear combinations of quadrature

operators,

q = p + Ax, (B1)

where A is a real symmetric matrix, i.e., Ai j = Aji, can be
simultaneously measured only using beam splitters and ho-
modyne measurements.

Proof. Because the matrix A = (Ai j ) is symmetric, it can
be diagonalized as

A = OT DO (B2)

using an orthogonal matrix O and a diagonal matrix

D = diag(λ1, . . . , λn). (B3)

Thus, Eq. (B1) can be written as

q̂ = p̂ + OT DOx̂ (B4)

= OT (O p̂ + DOx̂) (B5)

= OT ( p̂′ + Dx̂′), (B6)

where we denote p̂′ = O p̂ and x̂′ = Ox̂.
Based on Eq. (B6), the protocol to measure qi is the fol-

lowing. First, a multimode beam splitter corresponding to O
is applied; then, homodyne measurements of operators

p̂θi = p̂i cos θi + x̂i sin θi (B7)

are performed on each mode. The phases θi are determined as

θi = arctan(λi ). (B8)

Finally, after obtaining the homodyne measurement out-
comes,

p̂θi = yi, (B9)

the values of q̂i can be obtained by classical postprocessing,

qi =
∑

j

OT
i jy j cos θ j . (B10)

�
As a generalization of the 7, we have the following

theorem:
Theorem 8. A set of n commuting linear combinations of

quadrature operators,

q = Bp + Cx, (B11)

can be simultaneously measured only using beam splitters and
homodyne measurements.

Proof. Equation (B11) can be rewritten as

q̂i =
∑

j

(Ai j â j + A∗
i j â

†
j ), (B12)

where Ai j = 1√
2
(Ci j − iBi j ). From the condition that all q̂i

commute, the matrix A = (Ai j ) should satisfy

(AA†)T = AA†. (B13)

As AA† is a symmetric real matrix, it can be diagonalized as

AA† = O′D1O′T , (B14)

where O′ is an orthogonal matrix and D1 is a
real diagonal matrix. Thus, A has a singular value
decomposition of the form

A = O′D1V, (B15)

where V is a unitary matrix.
Now we use the fact that any unitary matrix V can be

decomposed as

V = O′′�O, (B16)

where O′′, O are orthogonal matrices and � is a diagonal ma-
trix having complex diagonal elements eiφi [19]. Combining
Eqs. (B15) and (B16), we obtain

A = O′D1O′′�O. (B17)

Thus, by denoting the real matrix O′D1O′′ as P, Eq. (B12) can
be written as

q̂ = P(�Oâ + �∗O∗â†), (B18)

where q̂ = (q̂i ), â = (âi ) are vectors of operators.
Equation (B18) means the simultaneous measurement of q̂i

can be achieved by using passive beam splitters correspond-
ing to O followed by homodyne measurements in the phase
determined by φi. Then one can use classical postprocessing
of measurement outcomes corresponding to the matrix P to
get values of q̂i. �

APPENDIX C: PROOF OF THEOREM 1

In this section, we give a proof of Theorem 1. We consider
the scheme in Fig. 3(b). We define n × n matrix T , n′ × n′
matrix T ′, and n′ × n matrix R as

T =
{

diag(t1, . . . , tn) if n � n′

diag(t1, . . . , tn′ , 1, . . . , 1) otherwise,
(C1)

T ′ =
{

diag(t1, . . . , tn′ ) if n′ � n

diag(t1, . . . , tn, 1, . . . , 1) otherwise,
(C2)

R =
{

diag(r1, . . . , rn) if n � n′

diag(r1, . . . , rn′ ) otherwise.
(C3)

Then, the relation between the input and output quadratures
can be written as

x− = ROx − T ′O′x′, (C4)

p− = ROp − T ′O′ p′, (C5)

x+ = OT (T Ox + RT O′x′), (C6)

p+ = OT (T Op + RT O′ p′). (C7)
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Then we have

OT T Om(x, p; f ) + OT RT O′m(x′, p′; g)

= p+ − ∂

∂x+
{ f [OT (T Ox+ + RT x−)]

+ g[O′T (ROx+ − T ′x−)]}. (C8)

If one measures x− and gets O′T T ′x− = s,

f [OT (T Ox+ + Rx−)] + g[O′T (ROx+ − T x−)]

= f [P(K )x+ + KT s] + g[KP(K )x+ − s], (C9)

where we used

K = O′T RT −1O, (C10)

P(K ) = (I + KT K )−1/2 (C11)

= OT T O. (C12)

Using Eq. (C9), Eq. (C8) can be rewritten as

P(K )m(x, p; f ) + KP(K )m(x′, p′; g) = m(x+, p+; f �K,s g),

(C13)

which is the statement of Theorem 1.

APPENDIX D: PROOF OF THEOREM 2

We introduce the notation

[ f ◦ (A, b)](x) = f (Ax + b). (D1)

Then we have

{[ f ◦ (A, b)] �KA,s g}(x)

= f [AP(KA)x + AAT KT s + b] + g[KAP(KA)x − s]

(D2)

= ( f �K,KAb+(I+KAAT KT )s g) ◦ (A, b) ◦ [P(KA), AT KT s].

(D3)

Theorem 2 can be proven by repeating this transformation.

APPENDIX E: CHOW DECOMPOSITION FOR CNZ GATE

Here we consider the Chow decomposition of the follow-
ing polynomial:

V a
n,kx⊗k =

∑
S⊂{1,...,n},|S|=k

aS

∏
j∈S

x j . (E1)

We first consider the case where aS = 1 for all S,

Vn,kx⊗k =
∑

S⊂{1,...,n},|S|=k

∏
j∈S

x j . (E2)

For n, k ∈ N, let

P(n, k) =
⎧⎨
⎩(pj ) ∈ Nk|p j � 1,

k∑
j=1

p j = n

⎫⎬
⎭ (E3)

be a set of all partitions of n into k pieces. For (pj ) ∈ P(n, k),
we define a polynomial r[(pj )] as

r[(p j )](x) =
k∏

j=1

∑
m∈Rj

xm, (E4)

where

R1 = [1, p1], (E5)

Rj =
⎛
⎝ j−1∑

l=1

pl ,

j∑
l=1

pl

⎤
⎦ (1 < j � k). (E6)

We define Q(n, l ) ⊂ P(n, 2l + 1) as

Q(n, l ) = {(pj ) ∈ P(n, 2l + 1)|p2m = 1, m = 1, . . . , l}.
(E7)

For example,

r[(2, 1, 3)] = (x1 + x2)x3(x4 + x5 + x6) (E8)

and

Q(7, 2) = {(3, 1, 1, 1, 1), (1, 1, 3, 1, 1), (1, 1, 1, 1, 3),

(2, 1, 2, 1, 1), (2, 1, 1, 1, 2), (1, 1, 2, 1, 2)}.
(E9)

Then we have the following theorem:
Theorem 9. The expressions∑

(p j )∈Q(n,l )

r[(p j )] (k = 2l + 1), (E10)

n∑
m=k

∑
(p j )∈Q(m−1,l−1)

r[(p j )]xm (k = 2l ) (E11)

give a Chow decomposition of Vn,k .
Proof. We first prove the case of k = 2l + 1. It suffices

to show that for any S ⊂ {1, . . . , n} such that |S| = k, there
exists a unique (pj ) ∈ Q(n, l ) such that expansion of r[(pj )]
includes

∏
j∈S x j . In fact, such (p j ) is given by

p1 = s2 − 1,

p2l+1 = s2l+2 − s2l − 1,

p2l = 1, (E12)

where (s j ) is a sequence of all elements of S in an ascending
order, s1 � · · · � sk .

For the case of k = 2l , we have

∏
j∈S

xJ =
⎛
⎝ ∏

j∈S\{sk}
x j

⎞
⎠xsk , (E13)

where sk is the maximal element of S. By performing the
Chow decomposition to the first part, we get Eq. (E11). �
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Below we show some examples of the obtained Chow decompositions:

V6,3 = x1x2(x3 + x4 + x5 + x6) + (x1 + x2)x3(x4 + x5 + x6) + (x1 + x2 + x3)x4(x5 + x6) + (x1 + x2 + x3 + x4)x5x6, (E14)

V6,4 = x1x2x3x4 + (x1 + x2)x3x4x5 + x1x2(x3 + x4)x5 + (x1 + x2 + x3)x4x5x6

+ (x1 + x2)x3(x4 + x5)x6 + x1x2(x3 + x4 + x5)x6, (E15)

V7,5 = (x1 + x2 + x3)x4x5x6x7 + x1x2(x3 + x4 + x5)x6x7 + x1x2x3x4(x5 + x6 + x7)

+ (x1 + x2)x3(x4 + x5)x6x7 + (x1 + x2)x3x4x5(x6 + x7) + x1x2(x3 + x4)x5(x6 + x7). (E16)

By using binomial coefficients, we can write

|Q(n, l )| =
(

n − l − 1
l

)
. (E17)

Thus, Eq. (E10) has
(n − l − 1

l

)
terms. For Eq. (E11), the num-

ber of terms is
n∑

m=k

(
m − l − 1

l − 1

)
=
(

n − l
l

)
. (E18)

Thus, we have the following corollary:
Corollary 2.

crank(Vn,2l ), crank(Vn+1,2l+1) �
(

n − l
l

)
, (E19)

brank(Vn,2l ) � 2l

(
n − l

l

)
, (E20)

brank(Vn+1,2l+1) � (2l + 1)

(
n − l

l

)
. (E21)

We conjecture that this gives the minimal Chow
decomposition.

Conjecture 1.

crank(Vn,2l ), crank(Vn+1,2l+1) =
(

n − l
l

)
, (E22)

brank(Vn,2l ) = 2l

(
n − l

l

)
, (E23)

brank(Vn+1,2l+1) = (2l + 1)

(
n − l

l

)
. (E24)

In the case where aS �= 1 in Eq. (E1), we can modify the
Chow decomposition in Theorem 9 by expanding the terms
so that each term only has one nonmonomial factor. We define
expression ri[(p j )] as a partial expansion of r[(p j )], except for
the factor corresponding to pi, with additional coefficients aS

to each term,

ri[(p j )] =
∑

(mj )∈
∏

j �=i R j

⎛
⎝∑

m∈Ri

a{mj | j �=i}∪{m}xm

⎞
⎠∏

j �=i

xmj . (E25)

Then V a
n,k has a Chow decomposition in the following

form:
Corollary 3. The expressions∑

(p j )∈Q(n,l )

rargmaxi pi [(p j )] (k = 2l + 1),

n∑
m=k

∑
(p j )∈Q(m−1,l−1)

rargmaxi pi [(p j )]xm (k = 2l ), (E26)

give a Chow decomposition of V a
n,k .

For example,

r3[(2, 1, 3)] = x1x3(a134x4 + a135x5 + a136x6) + x2x3(a234x4 + a235x5 + a236x6) (E27)

and

V a
6,3 = x1x2(a123x3 + a124x4 + a125x5 + a126x6) + x1x3(a134x4 + a135x5 + a136x6) + x2x3(a234x4 + a235x5 + a236x6)

+ (a145x1 + a245x2 + a345x3)x4x5 + (a146x1 + a246x2 + a346x3)x4x6 + (a156x1 + a256x2 + a356x3 + a456x4)x5x6. (E28)

This may then also be compared with Eq. (E14).
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