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Two-mode squeezing and SU(1,1) interferometry with trapped ions
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We experimentally implement circuits of one- and two-mode operations on two motional modes of a single
trapped ion. This is achieved by implementing the required displacement, squeezing, two-mode squeezing, and
beam-splitter operations using oscillating electric potentials applied to the trap electrodes. The resulting electric
fields drive the modes resonantly or parametrically without the need for optical forces. As a demonstration, we
implement SU(2) and SU(1,1) interferometers with phase sensitivities near the Cramér-Rao bound. We report a
maximum sensitivity of a SU(2) interferometer within 0.67(5) dB of the standard quantum limit (SQL) as well
as a single- and two-mode SU(1,1) sensitivity of 5.9(2) dB and 4.5(2) dB below the SQL, respectively.
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I. INTRODUCTION

Quantum-mechanical harmonic oscillators, described by
infinite dimensional, noncommuting observables, are cur-
rently being utilized for quantum sensing [1,2] and studies
of continuous variable quantum computing (CVQC) [3].
The quantum-mechanical harmonic oscillator is realized in
trapped-ion, nanomechanical systems [4] and has an ana-
log with microwave photons in superconducting circuits [5]
and optical photons in photonic systems [6]. Recent work
using motional states of trapped ions has shown the abil-
ity to detect small displacements [7,8] and encode logical
qubits [9,10] using a single mode and to measure phase
shifts in entangled two-mode states [11]. The use of two-
mode squeezed states could provide a quantum advantage [12]
(larger quantum signal-to-noise ratio with the same number of
resources) for sensing, and significant work has been done to
generate these states in other platforms [13–16], with some
work theoretically exploring how to generate these states in
trapped ions [17–19]. Two-mode squeezed states have already
proven useful for quantum sensing using SU(1,1) interferom-
eters [20–23] in photonics, but can be difficult to generate
efficiently and suffer from photon loss.

In the following, we demonstrate different classes of in-
terferometers using the motional modes of a single trapped
atomic ion. With a demonstration of these interferometers,
we show the ability to concatenate several operations on the
oscillator states of two modes in a phase-coherent manner.
Performing these operations with digitally programmable fre-
quency sources for relative phase control simplifies significant
calibration challenges when developing more complicated
circuits.

Trapped ions are well suited for such demonstrations due
to the harmonic nature of the trap and the potential to achieve
relatively long mechanical oscillator coherence times [24].
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Reconstructing the motional states of these oscillators is
achieved by coupling them to the ion’s internal states via
motional sideband transitions and measuring the internal state
populations [25]. In the limit of a small number of motional
quanta these transitions can approximate a phonon-counting-
type measurement. This enables a homodyne-type detection
scheme which is used to quantify the sensitivity we achieve
with the different classes of interferometers demonstrated
below.

Yurke et al. [26] proposed schemes to reach the Heisenberg
limit [27] using different classes of interferometers. Here, we
work within the framework of the Cramér-Rao bound [28,29]
which sets the ultimate limit for the resolution of a sensing
scheme. This bound is described by a parameter variance,
instead of the Heisenberg limit, which is set by the num-
ber of resources used, i.e., photon or phonon number [29],
making it more suitable to the limits of the experiments re-
ported here. The required interactions for the interferometers
(described below) are colloquially called displacing, beam
splitting, single-mode squeezing, and two-mode squeezing.
For trapped ions, these interactions can be implemented with
laser beams [30] or in a laser-free method using additional
potentials applied to the trap electrodes [31,32]. Performance
of these interferometers can, in practice, be limited only by the
motional heating of the ion resulting from fluctuating patch
potentials on the trap electrodes [33,34]. Here, we demon-
strate an SU(2) interferometer (Mach-Zender), which has
previously been demonstrated in Refs. [30,35,36] (coherent
input states are used here in contrast to these works), as well
as single-mode and two-mode SU(1,1)1 interferometers. Each
of the interferometers described here is sensitive to different
phase shifts, which are single-mode phase φa [single-mode
SU(1,1)], difference phase φa − φb [SU(2)], or sum phase
φa + φb [two-mode SU(1,1)], where the a, b labels refer to

1The Lie-group labeling is used to refer to the groups that contain
the operators that generate these states.
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different modes. We show performance close to the Cramér-
Rao bounds for these interferometers.

II. EXPERIMENTAL IMPLEMENTATION

To demonstrate these different interferometers we use a
single trapped 40Ca+ ion as the mechanical oscillator. The ion
is confined in a macroscopic, room-temperature, linear Paul
trap with an ion-electrode spacing of � 0.75 mm. Experiments
are performed using the two “radial” modes of the ion (nor-
mal to the trap axis) with frequencies ωa ≈ 2π × 1.80 MHz
and ωb ≈ 2π × 1.83 MHz, and oscillator energy eigenstates
denoted by |na, nb〉. The mode splitting can be adjusted by
changing a dc potential on the rf electrodes (see Appendix A
for details), which also rotates the mode angle and can be
used to vary the achievable coupling rate of the interactions
described below. We use qubit states | ↑〉 ≡ |mL = +5/2〉
and | ↓〉 ≡ |mL = +3/2〉 within the metastable D5/2 mani-
fold, which has a lifetime of � 1.1 s [37], where mL is the
total angular momentum projection along the direction of the
quantization magnetic field of 1.565 G. The qubit transition
frequency is ω0 ≈ 2π × 2.63 MHz. This is a magnetic field
sensitive qubit with a coherence time of � 1 ms, while stable
trapping potentials provide motional coherence times over
20 ms. The qubit is manipulated using an orthogonal pair
of laser beams red detuned from the transition frequency be-
tween P3/2 and D5/2 manifolds by 44 THz to induce coherent
stimulated-Raman transitions between the two qubit states. In
each experiment the qubit is first prepared in the | ↑〉 state with
high fidelity, using a sequence of pulses involving 393-nm,
397-nm, 854-nm and 866-nm lasers. The motion is prepared in
|0, 0〉 using electromagnetically induced transparency (EIT)
cooling [38] implemented with a pair of 397-nm beams on
the S1/2 → P1/2 transition and resolved-sideband laser cooling
using the qubit, which gives the combined initial state of the
qubit and motion as approximately | ↑, na = 0, nb = 0〉. True
motional mode temperatures correspond to n̄a,b < 0.1. Qubit
readout is performed by “deshelving” population in the | ↓〉
state using a 854-nm laser to drive the D5/2 → P3/2 transi-
tion, followed by applying a laser beam resonant with the
S1/2 ↔ P1/2 cycling transition and detecting state-dependent
ion fluorescence [39]. Motional state analysis is performed by
setting the Raman beams difference frequency to ω0 ± ωm,
where m denotes the desired mode for readout. Applying
these sideband interactions maps the motion onto the qubit
states and produces Rabi oscillations with multiple frequency
components having amplitudes that depend on the Fock state
populations [25]. This interaction is generated by applying
the same pair of Raman beams that drive the qubit, but de-
tuned above (red sideband) or below (blue sideband) the qubit
frequency. In the Lamb-Dicke limit [25], the red sideband
interaction drives transitions between | ↑〉|n〉 and | ↓〉|n − 1〉
with Rabi frequencies proportional to

√
n and can be used to

verify preparation or return to the motional ground state. The
blue sideband interaction drives transitions between | ↑〉|n〉
and | ↓〉|n + 1〉 with Rabi frequencies proportional to

√
n + 1

and is used to fully characterize the generated state popula-
tions [25].

Generation of the motional states is accomplished by ap-
plying time-varying potentials to the trap electrodes (see
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FIG. 1. (a) View of trap along the trap axis showing the electrical
connections. pink (gray): rf quadrupole electrodes, trap and paramet-
ric drive; purple (dark gray): displacement drive and dc electrode;
yellow (light gray): other dc electrodes and relevant control elec-
trodes. The green box (gray oval) represents the circuitry necessary
to combine the drives (Appendix A). Mode a and mode b label the
two different radial mode vectors of a single ion with the angles
from the horizontal shown. (b) A three-dimensional rendering of the
trap showing direction of the 976-nm laser used for motional state
preparation and state characterization; the cyan ball represents the
40Ca+ ion.

Fig. 1) producing a unitary operation. The displacement op-
eration is produced by applying an oscillating potential, at the
mode frequency, to a single trap electrode (purple electrode
Fig. 1). Single-mode squeezing, two-mode squeezing, and
the beam splitter are accomplished by applying an oscillating
potential at twice the mode frequency (2ωa), at the sum of the
mode frequencies (ωa + ωb), or at the difference frequency
(ωa − ωb), respectively (pink electrodes Fig. 1). These mod-
ulated potentials yield a generalized squeezing interaction
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Hamiltonian,

Ĥ = ih̄
g

2
[âiâ j exp(iδt ) exp(−iθ ) − â†

i â†
j exp(−iδt ) exp(iθ )],

(1)
where g is the parametric coupling strength, which has a
different value for each operation, δ is the detuning from the
interaction resonance [either single-mode squeezing (mode
a or b) or two-mode squeezing], and θ is the phase of
the parametric modulation. With the proper choice of de-
tuning this implements the unitary squeezing operator with
squeezing parameter magnitude given by rSMS = gt and the
two-mode squeezing operator with rTMS = 2gt . Here, we used
a single-mode displacement coupling of g = 2π × 1.37 kHz
which gives a displacement parameter α = gt . The maximum
single-mode squeezing coupling is g = 2π × 3.99 kHz and
the maximum two-mode squeezing coupling is g = 2π ×
1.15 kHz. Maximum coupling refers to a coupling rate cal-
culated from fits to the states with the maximum voltage
we used and the relevant pulse time for each operation. The
beam-splitter coupling is g = 2π × 0.64 kHz, calculated us-
ing calibration data shown in Appendix C.

III. QUANTUM STATE ANALYSIS

The beam-splitter calibration confirms coherent exchange
of phonons between modes even when only reading out on
one mode per shot of the experiment. Verification of
the two-mode squeezed state is more complicated using
the single-mode readout. Using the blue sideband readout
method, described above, is equivalent to tracing over a single
mode, and a thermal state is measured [40]. This is analo-
gous to measuring a single qubit from a Bell state which
produces a random qubit state. Additionally, we can use a
beam-splitter operation after the two-mode squeezer to dis-
entangle the modes and produce single-mode squeezed states
(Fig. 2). The two modes have a different laser coupling, given
by their relative orientation, shown in Fig. 1(a), which gives
qualitatively different results for the blue sideband analysis
when the motional states are the same. Performing both of
these measurements verifies we have produced the target two-
mode squeezed state and enables the use of these states for
interferometric measurements.

a. Time reversal protocol

Implementing time-reversal protocols is a method for gen-
erating these types of interferometers and is a powerful tool
for sensing applications [41]. These protocols also enable
us to verify that we are coherently generating the desired
states by time reversing back to the initial state. Starting
with a single mode, the SU(1,1) interferometer [Fig. 3(a)] is
implemented by using a parametric drive tuned to twice the
frequency of mode a. Adding in the second mode, the SU(2)
interferometer [Fig. 3(c)] is implemented by first displacing
mode a in our experiment, which generates the desired initial
coherent state. The beam splitter is then used to generate a
superposition of coherent and vacuum states. The two-mode
[Fig. 3(b)] SU(1,1) interferometer uses the same parametric
drive as with the single-mode experiment, but now tuned to
the sum frequency of mode a and b.

T M S    B S

B S B B S B

(a)

(c)(b)

FIG. 2. (a) General quantum circuit diagram for characterizing
the two-mode squeezed state with blue sideband readout performed
at one of two instances, to verify we are producing the expected
output. (b) Measurement after the two-mode squeezed state and
before beam splitter produces a thermal state where the squeezing
parameter rTMS is a fit parameter in the model and corresponds to
mean occupation n̄a = 3.04(3) and n̄b = 3.02(3) for the two measure-
ments. (c) Applying the beam-splitter operation after the two-mode
squeezer and then characterizing the state produces two single-mode
squeezed states with squeezing parameter rSMS equal to that of
the two-mode squeezed state. The corresponding number distribu-
tions for these fits can be found in Fig. 8 in Appendix D.

The phase for the single- and two-mode SU(1,1) interfer-
ometer is varied by programming the relative phase of the
second squeezing pulse set by the driving electronics. To
avoid increased decoherence, from long pulse durations, these
pulses are run at a fixed duration with the drive voltage being
varied to control the size of the state. We are limited in the
amount of two-mode squeezing we can generate due to our
increased sensitivity to common-mode phase fluctuations. For
the SU(2) interferometer the phase of the final beam splitter
is controlled using a variable delay, such that the accumu-
lated phase is (ωa − ωb)tdelay. The final beam splitter will
completely transfer the phonons to mode b with the correct
choice of relative phase, and the red sideband readout will
verify we have returned to the ground state [Fig. 3(c)]. We
use a maximum displacement of α � |6| to maintain a similar
maximum n̄ in the single- and two-mode squeezed states.

IV. EXPERIMENTAL FISHER INFORMATION

In order to determine the sensitivities to small phase shifts
that are achievable with these different experiments, we cal-
culate the quantum Fisher information for a pure state [28]

F (φ) = 4(�Ĝ)2, (2)

where (�Ĝ)2 is the variance in the initial state of the probe
(coherent state, squeezed state, two-mode squeezed state) and
Ĝ = i[dÛ †/dφ]Û . For phase sensing Û = eiφa†a, and there-
fore, Ĝ = a†a, and the Fisher information is proportional to
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FIG. 3. (a) Single-mode SU(1,1) interferometer output for dif-
ferent amounts of squeezing is shown by varying the relative phase
of the second squeezing pulse shown in the circuit diagram (inset).
(b) Repeat of (a) with two-mode squeezing and two-mode SU(1,1)
shown in the interferometer circuit inset. (c) SU(2) interferometer
output shown for various sizes of initial displacement where relative
phase is controlled with a variable delay shown in the SU(2) circuit
inset. All fits are performed using the different analytical expression
shown in Appendix B, where the state parameter (α, r, rTMS), verti-
cal, and horizontal offsets are fit parameters.

variance in the phonon number of the probe states. The phase
sensitivity is limited by the Cramér-Rao (CR) bound [28]
given by

�φ � 1√
F (φ)

. (3)

This means for the SU(2) interferometer we are limited at

�φ = 1

α
= 1√〈N〉d

, (4)

where 〈N〉d is the expected mean phonon number for the
displacement generated, and this limit corresponds to the ex-
pected standard quantum limit. The limit for the single-mode
SU(1,1) interferometer is given by [42]

�φ = 1√
8〈N〉SMS(〈N〉SMS + 1)

, (5)

where 〈N〉SMS is the expected mean phonon number for the
input squeezed state. The two-mode SU(1,1) limit is given
by [28]

�φ = 1√〈N〉TMS(2 + 〈N〉TMS)
, (6)

where 〈N〉TMS is the expected mean phonon number for the
input two-mode squeeze state.

The sensitivities achieved are calculated from the experi-
mental data using the Fisher information [28]

F (φ) =
∑

j

1

Pj (φ)

[
dPj (φ)

dφ

]2

, (7)

where Pj (φ) is the probability of getting the experimental
results j if the value of the parameter is φ. In our experiment
with only two possible outcomes, spin-up or spin-down, this
simplifies to

F (φ) = 1

P↓(1 − P↓)

[
∂P↓
∂φ

]2

. (8)

The variance and slope of the signal are expressed analyti-
cally and are fit to the phase signals that we generate (Fig. 3).
Each interferometer has a unique expression to produce the
different fringes shown in Fig. 3. Knowing the slope and
variance of each fitted fringe provides the Fisher information
as a function of the phase, where the maximum value of the
Fisher information is taken to be the sensitivity, shown as
the data points in Fig 4. These expressions are derived in
Appendix B, without any adverse effects, and represent the
ideal experimental output (Fig. 4 dashed lines). Calibration
of the input state ensures the values of n̄ are known without
relying on the phase fringe fits.

Systematic offsets in the phase fringes, seen in the single-
mode squeezing phase scans, from π are due to an additional
pseudopotential [43] when the parametric drive is applied.
This additional potential accounts for a maximum shift of
10 kHz of the mode frequencies. In the single-mode SU(1,1)
experiment the interaction frequency is calibrated at the max-
imum coupling, meaning as the coupling is turned down, the
mode frequencies decrease and larger phase offsets are pro-
duced. This phase offset is calibrated away in the two-mode
phase scans by calibrating the mode frequencies at every
parametric drive voltage. The maximum phase sensitivity is
extracted and plotted against the prediction from the quantum
Fisher information (Fig. 4). The results we achieve deviate
from the ideal limit due to motional and qubit decoherence as
well as motional heating. Initial mode temperatures also affect
these results and contribute to vertical offsets of the fringes in
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(a)

(b)

FIG. 4. (a) Ideal experimental phase sensitivities (δφ) for the
SU(2) [dashed green (dark gray) line], single-mode SU(1,1) [dashed
orange (light gray) line], and two-mode SU(1,1) [dashed red (gray)
line] are shown and can be compared to experimental results, shown
as dots with error bars, and CR bounds, solid lines. The solid green
(dark gray) line is the SQL. (b) Sensitivity results for each of the
interferometers in terms of decibels from the SQL. The 0-dB green
(dark gray) line represents the SQL.

Fig. 3. The ideal experimental output deviates from the CR
bound due to the choice of red sideband readout times, where
optimal pulse time varies with n̄. Red sideband pulse times
were not optimized across all n̄ due to the constraints on pulse
times due to off-resonant driving of other modes and increased
pulse length, causing further decoherence.

V. CONCLUSIONS

We have demonstrated a wide class of trapped-ion mo-
tional state interferometers using a laser-free parametric drive
achieving single- and two-mode SU(1,1) interferometer sen-
sitivities of 5.9(2) dB and 4.5(2) dB below the standard
quantum limit (SQL), respectively, and a SU(2) interferometer
sensitivity within 0.67(5) dB of the SQL. These results illus-
trate the measurement of phase shifts near the Cramér-Rao
bound for common-mode, relative, and single-mode phase
fluctuations. Enhanced sensitivity for measuring these mo-
tional phase fluctuations could enable characterization and

mitigation of motional frequency noise which can benefit
experiments involving motional states. Beside providing a
framework for implementing quantum-enhanced sensing pro-
tocols, our methods provide the flexibility to concatenate
multiple motional operations into circuits for potential appli-
cations in CVQC.

Note added. During preparation of this manuscript we be-
came aware of related work using reservoir engineering to
prepare two-mode squeezed states of trapped ions [44].
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APPENDIX A: PARAMETRIC DRIVE ELECTRONICS

We apply the voltages required to generate the quadrupole
potential for squeezing and beam-splitter operations directly
to the rf trapping electrodes. This conveniently ensures the
quadrupole is automatically well centered on ions located
on the axis of our linear trap. The trapping rf is delivered
to the trap electrodes by stepping up the 50-
 rf source to
high voltage via a helical resonator acting as a transformer, as
shown in Fig. 5. This rf drive is amplitude stabilized by the
“Squareatron” [45] to improve the motional coherence of the
ion’s radial modes. The trapping rf and beam-splitter rf are

1.8 MHz

5 MHz

1.9 MHz

dc bias

beam-splitter rf squeezing rf

trapping rf

squareatron

amp

helical resonator

trap

squeeze box
220 nH100 nH

8.3 nF99 nF

99 nF

dc block

FIG. 5. Electrical circuit diagram of the trapping rf, dc bias,
and parametric driving rf signals. The beam-splitter rf is filtered
by a Mini-Circuits SLP-1.9+ MHz low-pass filter and a dc block
BLK-18W-S+; the squeezing rf is filtered by a Mini-Circuits SLP-
5+ MHz low-pass filter and a custom-made fifth-order elliptic
1.8-MHz high-pass filter.
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FIG. 6. (a) Voltage measured at the ion trap vacuum feedthrough
with beam-splitter and squeezing rf sources outputting 0 dBm of
power. Vertical dashed green and dash-dot red lines indicate the
beam-splitter and squeezing frequencies, 33 kHz and 3.6 MHz, re-
spectively. (b) Return loss for the squeezing drive input showing
good impedance matching.

produced by a Rigol DG1022Z arbitrary waveform generator
(AWG) and the squeezing rf is produced by an Urukul DDS
card [46], part of our ARTIQ Sinara experimental control
system [47]. The parametric drive tones are applied directly
to the back of the helical resonator’s coil via bandpass filters
that ensure the two sources are isolated from each other.
As these tones are at frequencies well below the helical’s
resonance, they pass through to the trap electrodes relatively
unimpeded. Also connected to the back of the resonator coil
is the “squeeze box” containing a pair of LC circuits, which
provides three functions. Firstly, it provides a dc bias path to
allow control of the mode rotation and splitting. Secondly,
it provides a low impedance path to ground at the rf trap-
ping frequency, ensuring the helical resonator works correctly.
Compared to a direct ground connection, the squeeze box
decreases the quality factor (Q = f0/FWHM) of the helical
modestly, from 310 to 295, and shifts its resonant frequency
of 14.5 MHz by approximately 6 kHz. Thirdly, it provides
an impedance match for the two parametric drive tones by
having the LC circuits in the box tuned to match the beam-
splitter and squeeze drive frequencies of 33 kHz and 3.6 MHz
respectively. Electrical testing shows we get voltages on the rf
electrodes close to what we expect, as well as low return loss
at the squeezing drive frequency Fig. 6.

The potential applied at the trap electrodes determines the
parametric coupling strength g for the operations, as shown
in Eq. (1). For measured voltages on the trap rf electrode
of 0.26 Vpp for the beam splitter and 0.58 Vpp for both
single- and two-mode squeezing, we get couplings of gBS =

2π × 0.66 kHz, gSMS = 2π × 3.68 kHz, and gTMS = 2π ×
1.09 kHz, respectively. These coupling values are calculated
from theory using the above voltages and agree reasonably
with the values calculated from experiment shown in the
main text.

APPENDIX B: EXPERIMENTAL OUTPUT
AND FISHER INFORMATION

To obtain an analytical expression for the output of these
interferometers we must determine the action of the red side-
band on the final state and determine the expectation values
for the final qubit projection operator. We calculate this below
for the two-mode SU(1,1) case. The single-mode case can
be treated in a similar manner. We start by representing the
two-mode squeezed state in the Fock basis [48]

|TMS〉 = 1

cosh r

∞∑
n=0

tanhn r|n, n〉

=
√

1

1 + λ

∞∑
n=0

(√
λ

1 + λ

)n

|n, n〉, (B1)

where λ = sinh r. We need to determine |out〉 =
TMS(φ)TMS|0, 0〉. For a phase other than φ = π the
output is still a two-mode squeezed state with a different
two-mode squeeze parameter r, which we can express as a
function of the phase,

r(φ) = sinh−1(sinh r0 cos φ/2), (B2)

where r0 is the input two-mode squeeze state magnitude. The
red sideband Hamiltonian is written as [25]

HRSB = h̄η



2
(σ+a + σ−a†). (B3)


 is the qubit carrier Rabi frequency, η is the Lamb-Dicke
parameter [25] for the given mode, and σ+ and σ− are the
single-qubit raising and lowering operators. The unitary oper-
ator for the Hamiltonian can be written as

U = e

iβHRSBt

h̄ , (B4)

where β = η
t/2. Expanding this unitary into an infinite
series gives

|n, n〉 →
∞∑
j=0

(iβ ) j

j!
(σ+a + σ−a†) j | ↓, n, n〉. (B5)

Only terms having equal numbers of raising and lower
operators for spin and motion will have a final contribution
to the projection, so we can rewrite this state

URSB| ↓, n, n〉 =
∞∑
j=0

(iβ ) j

j!
(σ+aσ−a†) j | ↓, n, n〉, (B6)

where { j} is only even integers. This leaves the final spin
state unaffected and only the number operator a†a remains,
leaving us

URSB| ↓, n, n〉 =
∞∑
j=0

(iβ )2 j

(2 j)!
n j | ↓, n, n〉
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FIG. 7. Starting with a coherent state in the low-frequency mode,
the SU(2) interferometer is performed with a variable delay between
beam-splitter pulses, allowing coherent transfer of the coherent state
between modes. The amplitude of the 50/50 beam-splitter pulses
used can be calibrated by maximizing contrast on mode a fringes.
Delay time is time passed between beam-splitter pulses.

=
∞∑
j=0

(iβ )2 j

(2 j)!

√
n

2 j | ↓, n, n〉 (B7)

= cos (β
√

n)| ↓, n, n〉.
The expectation value of the spin projector is therefore

〈U †
RSB| ↓ ⊗1l〉〈↓ ⊗1l|URSB〉↓, TMS

= 1

1 + λ

∞∑
n=0

cos

(√
nη


t

2

)(
λ

1 + λ

)n

. (B8)

For the sake of simplicity we will call this expectation value
〈X̂ 〉 and we define the variance

�X̂ 2 = 〈X̂ 2〉 − 〈X̂ 〉2. (B9)

For spin projection 〈X̂ 2〉 = 〈X̂ 〉. We also need an expression
for the derivative of the expectation value as a function of the
phase,

d〈X̂ 〉
dφ

= dλ

dφ

1

1 + λ

[
〈X̂ 〉 + 1

1 + λ

×
∞∑

n=0

cos2

(√
nη


t

2

)
n

(
λ

1 + λ

)n−1

(B10)

×
(

1 − λ

1 + λ

)]
,

where dλ
dφ

= −2 cosh 2r sin φ sinh 2r. The same process is car-
ried out and shown for the coherent state in the SU(2)
interferometer, as these results differ significantly from the
two-mode SU(1,1). A coherent state is expressed in the Fock
basis as

|α〉 = e−|α|2/2
∞∑

n=0

α2n

n!
|n〉. (B11)

FIG. 8. (a) Fits to the output of two-mode squeezing under inter-
action described above. Blue (dark gray) bars indicate mode a and
red (light gray) bars are mode b with associated error bars. The black
line is a thermal state model fit to the Fock state fits. (b) Fock state fits
to output of the beam splitter after two-mode squeezing. Blue (dark
gray) data is mode a and red (light gray) is mode b with associated
error bars. The black line is a squeezed state model fit to the Fock
state fits.

The red sideband produces a similar output,

〈U †
RSB|↓ ⊗ 1l〉〈↓ ⊗ 1l|URSB〉↓, α = 〈X̂ 〉

= e−|α|2
∞∑

n=0

α2n

n!
cos2 (

√
nη
t/2), (B12)

with α a function of the phase, α = α0 sin φ/2. The variance
can again be expressed in terms of this expectation value as in
(17), and the derivative of 〈X̂ 〉 is given as

d〈X̂ 〉
dφ

= e|α|2
∞∑

n=0

α2n

n!
cos2 (

√
nη
t/2)(−α2n+1 + nα2n−1).

(B13)

APPENDIX C: BEAM-SPLITTER CALIBRATION

To produce the beam-splitter operation described by the
Hamiltonian [30]

Ĥ = ih̄
g

2
[âb̂† exp(−iθ ) − â†b̂ exp(iθ )], (C1)

we digitally trigger the drive AWG to output a pulse con-
sisting of an integer number of cycles (30 cycles in the
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runs in Fig. 7) at a fixed amplitude, starting at a phase
of zero. We cannot continuously adjust the length of these
pulses and therefore must calibrate the pulse amplitude to
produce a 50/50 beam-splitter pulse. Specifically, we select
an amplitude that maximizes the fringe contrast of our SU(2)
interferometer (i.e., that allows a pair of 50/50 beam-splitter
pulses to fully transfer a displacement from one mode to an-
other). The starting phase of each pulse is fixed, which means
to adjust the relative phase between beam-splitter pulses in
our SU(2) experiments we adjust the delay time tdelay between
pulses, giving a phase offset of (ωa − ωb)tdelay, as shown in
Fig. 7.

APPENDIX D: SQUEEZED-STATE FITTING

For performing motional state analysis we tune our Raman
beams resonantly to a blue motional sideband (BSB). This
interaction ideally realizes the anti Jaynes-Cummings (JC)
Hamiltonian

ĤJC = h̄
/2(σ̂+â† + σ̂−â), (D1)

where the qubit state transition operators σ̂± ≡ 1

2
(σ̂x ∓ iσ̂y)

are constructed from the Pauli operators σ̂x and σ̂y, and â(â†)
are the motional state annihilation (creation) operators. This
allows for an analytical solution for the qubit state probabili-
ties to be written [25],

P↓(t ) = 1

2

[
1 +

∞∑
n=0

P(n) cos (
SB

√
n + 1t )

]
, (D2)

where n is the oscillator Fock state, t is the duration of the
sideband integration, and 
SB = η
carrier is the sideband Rabi

frequency. This enables a general fit of the Fock state proba-
bilities which assumes no ideal model state. Due to the narrow
frequency splitting of our motional modes, the sideband in-
teraction results in off-resonant driving of our second mode,
which is separated in frequency from the first mode by only
33 kHz. The resulting interaction Hamiltonian is now more
accurately written as

Ĥ = h̄
/2(σ̂+â†eiδ1t + σ̂−âe−iδ1t + σ̂+b̂†eiδ2t + σ̂−b̂e−iδ2t ),

(D3)

where δ1 − δ2 ≈ 2π × 33 kHz. There is no known analytical
solution for the qubit probabilities under evolution of this
Hamiltonian, therefore (D2) cannot be used. In order to get
a model free fit, master equation simulations were performed
using QUTIP [49] where each Fock state probability in the
initial state is a fit parameter while preserving the trace. Es-
timates of fit uncertainties with this method proved to be a
challenge due to weak dependence on the off-resonant mode.
Fitting was performed starting with an ideal state and holding
all Fock states except one constant. The single Fock state
was iterated through all Fock states for both modes a and
b which may produce an underestimate of the uncertainty.
Data where either mode a or b was driven resonantly was fit
independently. Figure 8 shows the results of the fit Fock states
to the data shown in Fig. 2, with the model state fit to the
probabilities for both modes independently and overlaid. The
results of this fitting procedure return approximately the same
state as the fit in Fig. 2, which provides further confirmation
of the state that is being generated.
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