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Deep-learning-based quantum algorithms for solving nonlinear partial differential equations
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Partial differential equations frequently appear in the natural sciences and related disciplines. In this work,
we explore the potential for enhancing a classical deep-learning-based method for solving high-dimensional
nonlinear partial differential equations with suitable quantum subroutines. In a first approach, we construct
a deep-learning architecture based on variational quantum circuits without provable guarantees. In a second
approach, tailored towards fault-tolerant quantum computers, find that quantum-accelerated Monte Carlo meth-
ods offer the potential to speed up the estimation of the loss function. In addition, we identify and analyze
the trade-offs when using quantum-accelerated Monte Carlo methods to estimate the gradients with different
methods, including a recently developed backpropagation-free forward gradient method. Finally, we discuss the
usage of a suitable quantum algorithm for accelerating the training of feed-forward neural networks. Hence, this
work provides different avenues with the potential for polynomial speedups for deep-learning-based methods for
nonlinear partial differential equations.
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I. INTRODUCTION

Differential equations naturally appear in many disciplines
and play a fundamental role in the sciences and engineering
[1,2] by mathematically modeling processes in fields such
as physics and biology, as well as finance and sociology. In
particular, nonlinear parabolic partial differential equations
(PDEs) can model, e.g., the pricing of financial derivatives [3],
intelligent decision making in game theory [4], and reaction-
diffusion processes in physics [5]. Solving high-dimensional
PDEs is particularly challenging, as numerical methods typi-
cally rely on high-dimensional discretizations of continuous
functions. This procedure leads to what is known as the
“curse of dimensionality,” i.e., the computational cost scaling
exponentially with the dimension [6]. If the PDE is nonlin-
ear, approximating nonlinear terms in high-dimensional PDEs
with polynomials or other basis functions further contributes
to this problem.

Quantum computers have the potential to provide speedups
for problems that may otherwise be intractable for classi-
cal computers, e.g., in machine learning [7], linear algebra
[8], optimization [9], or chemistry [10]. Feynman famously
envisioned the possibility of simulating quantum physics by
using a quantum mechanical device [11]. Subsequent early
breakthrough algorithms were Shor’s algorithm [12] for fac-
toring integers and Grover’s algorithm [13] for searching an
unstructured database. These algorithms motivated the devel-
opment of increasingly better hardware, as well as a broader
set of quantum algorithms and software [14–18]. The seminal
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algorithm by Harrow, Hassidim, and Lloyd (HHL) shows
the potential for exponential quantum speedup for solving
linear systems of equations [19]. It has subsequently been ap-
plied to solving ordinary differential equations (ODEs) [20].
Many of these algorithms require fault-tolerance, meaning
that a certain amount of inaccuracy on the hardware level
is tolerable thanks to error-correction codes [21,22]. These
quantum algorithms are commonly referred to as fault-tolerant
quantum algorithms. In addition to the work on fault-tolerant
quantum algorithms, there is also active research on quantum
algorithms which aim to make use of the currently available
noisy intermediate-scale quantum (NISQ) computers to solve
problems of practical relevance [23,24].

Recently, an effective classical algorithm has been pro-
posed for solving high-dimensional semilinear parabolic
PDEs (see Sec. I B and Ref. [25]). This algorithm reformu-
lates the nonlinear PDE in terms of a stochastic differential
equation (SDE), exploiting a link that has been extensively
investigated [26–29]. The authors of Ref. [25] then use deep-
learning methods to approximate the spatial gradient of the
sought after function. It is well known that neural networks
(NNs) can approximate a wide range of functions [30]. By em-
ploying NNs instead of polynomial or other basis functions,
the authors of Ref. [25] avoid the curse of dimensionality.
The gradient is then used in a numerical scheme to solve the
nonlinear PDE over a given time interval. While the nature of
the algorithm from Ref. [25], namely, being based on deep-
learning techniques, does not allow for provable guarantees
of finding a solution, it has several benefits in practice. The
algorithm from Ref. [25] is able to solve nonlinear parabolic
PDEs, which, as outlined above, are relevant in a variety of
fields, but are often hard to solve, particularly in high di-
mensions. Furthermore, the kinds of PDEs that can be solved
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are very general, more so than the kinds of PDEs for which
quantum algorithms have already been proposed, see Sec. I C.
The introduction of NNs improves upon using polynomials
or other basis functions to approximate nonlinear unknowns.
However, some computational bottlenecks remain in this al-
gorithm. By reformulating the PDE in terms of SDEs, the
authors introduce stochasticity into the architecture. There-
fore, one requires a certain number of samples to reliable
estimate sought after quantities (such as the loss function
or the gradient of the NNs) with a certain error tolerance.
Furthermore, the runtime of evaluating and training the NNs
scales approximately as the input dimension squared, where
the input dimension is the spatial dimension. Investigating
[25] in the quantum computing context, we thus hope to
exhibit advantages when solving a relatively wide range of
nonlinear PDEs, as well as introduce a new paradigm for solv-
ing differential equations to the field of quantum algorithms,
since, to the best of our knowledge, other quantum algorithms
for solving differential equations have not attempted to make
use of such a deep-learning approach.

In this work, we investigate quantum algorithms for the
solving of PDEs by exploring ways in which the deep-learning
architecture from Ref. [25] can be sped up with quantum
subroutines. We follow three main threads in this paper:
(i) a hybridized classical-quantum variational architecture,
(ii) quantum estimation of the loss function and gradients for
efficiently computable neural networks, and (iii) quantum ad-
vantages in evaluation of large-dimensional neural networks.

First (i), as the deep-learning architecture considers a se-
quence of NNs, we develop a hybridised classical-quantum
architecture for solving PDEs by employing variational cir-
cuits as feature maps in the NNs. We make use of an existing
scheme to avoid the barren plateau issue and carry out simula-
tions to assess the effectiveness of this hybrid approach. While
this approach it may exhibit the benefits and issues arising
from the use of quantum neural networks, it is by its nature
without provable guarantees and relies on further large-scale
experimentation.

Stepping away from the variational method, we investi-
gate fault-tolerant approaches. (ii) To overcome the limitation
imposed by Chebyshev’s inequality on Monte Carlo (MC)
sampling, we employ the quantum-accelerated MC (QAMC)
method. To this end, we combine QAMC with NNs in order to
speed up the estimation of the loss function and of the gradient
of the NN. We show how the recently introduced forward
gradient method can be used in the quantum subroutine. We
carry out error and query complexity analyses to quantify the
possible speedup. Moreover (iii), to address the bottleneck
of training the NNs, we incorporate a quantum algorithm for
accelerating the training and evaluation of classical NNs in a
separate approach. We outline the advantages and limitations
of this approach, in particular its lack of suitability for being
combined with the previous QAMC approach.

The paper is structured as follows: In Sec. II we give an
introduction to variational quantum algorithms as well as the
challenges associated with them, and discuss the combination
of variational quantum algorithms and Ref. [25]. Section III
outlines the idea of using QAMC (more details on which
can be found in Appendix B 4 a) in combination with NNs.
We highlight hurdles that arise when combining these two

methods and examine different avenues to address these,
among which is the recently introduced forward gradient
method. We then use this tool in the following section. In
Sec. IV we return to our goal of accelerating the algorithm
from Ref. [25] and make use of the discussion in Sec. III.
Using our results from the preceding section, we incorporate
QAMC into the algorithm from Ref. [25]. Finally, we carry
out error analyses and calculate query complexities to quan-
tify the performance. In Sec. V we summarize a fault-tolerant
quantum algorithm that accelerates the evaluation and training
of classical feedforward NNs. We proceed to outline how
one can introduce this algorithm into the architecture from
Ref. [25], and what advantages and drawbacks this entails.
Finally, in Sec. VI we review our work and results, draw
conclusions and outline possible future research directions.

In Appendix A, we present the computational model we
will work in. In Appendix B we give an introduction to NNs
and automatic differentiation (AD) and provide a detailed
overview over the algorithm from Ref. [25]. This classical
algorithm for solving nonlinear PDEs will be the starting point
of our work, i.e., the algorithm which we want to speed up
using quantum subroutines. Furthermore, we introduce MC
methods and their quantum-accelerated version as well as
other quantum algorithms and subroutines.

A. Notation

As in Ref. [31] in Definition 8.1, we define big O notation
as follows. Let f and g be two functions f , g : X → X . We
say that f = O(g) if there is a constant C ∈ R+ such that
for all x ∈ X | f (x)| � C|g(x)|. We also use Õ, which hides
polylogarithmic factors.

We define Lipschitz continuity as in Ref. [32] (Definition
9.4.1). Suppose (X, dX ) and (Y, dY ) are metric spaces (where
dX and dY denote metrics on X and Y , respectively) and
f : X → Y . If there exists L ∈ R+ such that dY ( f (a), f (b)) �
LdX (a, b) for all a, b ∈ X , then f is called Lipschitz contin-
uous on X with Lipschitz constant L. In this work we will
use the squared l2 norm, denoted by ‖ · ‖2

2, when dealing with
Lipschitz continuity.

In the relevant literature, one often encounters the additive
and the mean-squared error. When estimating a quantity a
with an estimator ã, the additive error is given by |a − ã|
and the mean-squared error by E[(a − ã)2]. In Appendix A of
Ref. [33] the authors point out that these two definitions are
almost equivalent. Concretely, up to a logarithmic overhead,
the mean-squared error being ε2 indicates that the additive
error is ε with probability at least 0.99 and vice versa, using
Chebyshev’s inequality. Unless stated otherwise we shall, as
is common in the literature, use the mean-squared error when
analyzing classical algorithms and use the additive error when
analyzing quantum algorithms.

In the following section, we provide a detailed description
of the algorithm from Ref. [25] in Sec. I B.

B. Solving partial differential equations with deep learning

In this section we outline the deep-learning-based algo-
rithm for solving partial differential equations (PDEs) from
Ref. [25], which will serve as a starting point for much of
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our work. In Ref. [25], the authors put forward a method
to solve semilinear parabolic PDEs. Semilinear refers to a
sum of linear terms (in the variable of the PDE) and one
nonlinear one. To obtain an approximation of the solution
of the PDE, the authors reformulate the PDE as a backward
stochastic differential equation (SDE). They then discretize
the SDE temporally and approximate the spatial gradient
of the unknown solution using NNs at each time step in
the approximation. Let x ∈ Rd be the spatial variable, t ∈
R the temporal variable, and u(t, x) ∈ R the unknown so-
lution. Furthermore, let σ (t, x) ∈ Rd×d , μ(t, x) ∈ Rd , and
f (t, x, u(t, x)σ�∇u(t, x)) ∈ R be known functions, where f
is the nonlinearity. The main task is to solve PDEs of the
following form [25]:

∂u

∂t
(t, x) + 1

2
Tr[σσ�(t, x)(Hessxu)(t, x)] + ∇u(t, x) · μ(t, x)

+ f (t, x, u(t, x), σ�(t, x)∇u(t, x)) = 0, (1)

on some interval [t0, T ]. We assume to have a known terminal
condition u(T, x) = g(x) ∈ R. The quantities ∇u and Hessxu
refer to the gradient and Hessian, respectively, of u with re-
spect to the spatial variable x.

Let Wt be a Brownian motion, meaning that W0 = 0, Wt is
continuous in t , and for the increments Wt+t1 − Wt it holds
that Wt+t1 − Wt is distributed according to N (0, t1) and in-
dependent of past values Ws for s < t [34]. In the case of
a multivariate Brownian motion, the above holds for each
entry, which are independently and identically distributed (iid)
according to N (0, t1). For a d-dimensional Brownian motion
{Wt }t∈[0,T ] and a d-dimensional stochastic process {Xt }t∈[0,T ]

satisfying

Xt = ξ +
∫ T

0
μ(s, Xs) ds +

∫ T

0
σ (s, Xs) dWs, (2)

the solution of Eq. (1) satisfies the following backward SDE
in integral form [26,27],

u(t, Xt ) = u(t, Xt0 ) −
∫ t

0
f (s, Xs, u(s, Xs), σ�(s, Xs)

× ∇u(s, Xs)) ds +
∫ t

0
[∇u(s, Xs)]�σ (s, Xs) dWs.

(3)

One can approximate Eqs. (2) and (3) by temporally dis-
cretizing them, using, e.g., Euler’s method, with t ∈ {t0 =
0, t1, . . . , tN = T }. We then arrive at

Xtn+1 − Xtn ≈ μ
(
tn, Xtn

)
�tn + σ

(
tn, Xtn

)
�Wtn , (4)

and

u
(
tn+1, Xtn+1

)− u
(
tn, Xtn

)
≈ − f

(
tn, Xtn , u

(
tn, Xtn

)
, σ�(tn, Xtn

)∇u
(
tn, Xtn

))
�tn

+ [∇u
(
tn, Xtn

)]�
σ
(
tn, Xtn

)
�Wtn , (5)

where

�tn = tn+1 − tn, �Wtn = Wtn+1 − Wtn , (6)

where the entries of �Wtn are iid according to N (0, �tn). The
discretization in Eq. (4) allows us to sample paths {X̂tn}n∈[0,N],

where we use the hat (i.e., X̂t ) to indicate the discretized
estimation of Xt . In a next step, the authors of Ref. [25] ap-
proximate the function x → σ�(t, Xt )∇u(t, Xt ) at each time
step t = tn using a feedforward NN,

σ�(t, Xt )∇u(t, Xt ) = (σ�∇u)(t, Xt ) ≈ (σ�∇u)(X̂t |θn), (7)

where θn denotes the parameters of the nth NN. The reason
for assuming this would work is that feedforward NNs may
serve as universal function approximators [30]. The authors
in Ref. [25] stack together the NNs together with Eqs. (2) and
(3) to step by step calculate û. Figure 1 illustrates this process.
As seen in Fig. 1, no discretization of the whole spatial do-
main takes place in this deep-learning-based algorithm. The
discretization of the spatial domain is what typically leads to
the curse of dimensionality when solving PDEs, as the cost
of solving the problem then grows exponentially in its size
(the spatial dimension, in this case). In order to train the NNs,
the authors use the expected difference between the terminal
condition g(X̂tN ), and the computed ûtN after the final step, as
a loss function,

l (θ ) = E
[∣∣g(X̂tN

)− ûtN

({
X̂tn

}
0�n�N ,

{
�Wtn

}
1�n�N

)∣∣2]. (8)

We refer to the function inside the expectation value as the
payoff function fp,

fp
({

X̂tn

}
0�n�N ,

{
�Wtn

}
1�n�N

)
= ∣∣g(X̂tN

)− ûtN

({
X̂tn

}
0�n�N ,

{
�Wtn

}
1�n�N

)∣∣2. (9)

The total set of trainable parameters consists of the initial con-
ditions u(0, Xt0 ) and ∇u(0, Xt0 ) as well as the parameters for
each of the NNs, {θn}0�n�N−1. The total number of trainable
parameters we call nθ . The focus of this work is to investigate
methods for accelerating the deep-learning method introduced
in this section.

C. Related work: Quantum algorithms for differential equations

There exist several proposed quantum algorithms for
solving differential equations (ODEs as well as PDEs). In
Ref. [20] the author puts forward a fault-tolerant quantum
algorithm which solves sparse systems of linear ODEs by
discretizing the system of ODEs and subsequently employing
the HHL algorithm [19] to solve the resulting system of linear
equations. In Ref. [35], the authors also propose a quantum
algorithm for solving linear ODEs, which, however, relies on
spectral methods. Spectral methods use linear combinations
of basis functions (e.g., a Fourier basis) to approximate the
solution. This approach also ends with solving a linear system
of equations on a quantum computer. A quantum algorithm to
solve quadratically nonlinear ODEs under certain conditions
is described in Ref. [36]. The authors make use the Carle-
man linearization [37–39] to approximate the nonlinear part.
The Carleman linearization represents a finite-dimensional
polynomially nonlinear system by an infinite-dimensional lin-
ear system. To make use of the Carleman linearization, the
infinite-dimensional linear system is truncated at a certain
point. Subsequently, the authors from Ref. [36] again dis-
cretize the resulting system and solve the linear system with
HHL [19]. The algorithm presented in Ref. [36] may also
be applied to solving certain PDEs (with a restricted kind of
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FIG. 1. Architecture used for solving semilinear parabolic partial differential equations via a stochastic differential equation approach
and the usage of neural networks for approximating spatial gradient information. The approach is a temporally discretized N-step procedure
(i ∈ [N]) which is driven by stochastic Brownian increments �Wti determining the randomness of the state variables Xti . The neural networks
represent the computation of the spatial gradient information from the state variables, which is then used to propagate the solution u. The
arrows indicate which quantities are used to approximate which other quantities. Figure adapted from Ref. [25].

nonlinearity), as the discretization of a PDE in all but one
dimension generally results in a system of ODEs. In Ref. [40],
the author improves on the algorithm from Ref. [36] and
in Ref. [41] it is modified to address problems in machine
learning. The authors in Ref. [42] present an algorithm for
solving (nonlinear) reaction-diffusion equations. Using Eu-
ler’s method, as well as the Carleman linearization for the
nonlinearity, they discretize the PDE and solve the resulting
system with HHL. The authors of Ref. [43] present quantum
algorithms for solving linear PDEs by making use of the
finite difference method (FDM) and spectral methods sepa-
rately. In the FDM approach, they discretize the PDE on a
grid. Both cases result in a linear system of equations which
needs to be solved. The authors of Ref. [44] also present
a quantum algorithm for solving linear PDEs, which relies
on Hamiltonian simulation of a cleverly chosen Hamiltonian,
which encodes certain properties of the PDE. In Ref. [45] a
quantum algorithm to solve nonlinear ODEs by mapping the
ODE to the nonlinear Schrödinger equation, which is then
solved using Trotterization, is outlined. Another numerical
scheme, the finite element method (FEM, which approximates
the solution by using interpolating functions within each dis-
cretized element) and HHL are used to solve elliptic PDEs in
Ref. [46]. In Refs. [47,48], the authors derive quantum algo-
rithms for solving nonlinear ODEs as well as the nonlinear
Hamilton-Jacobi (HJ) equation (which is a special case of
the nonlinear Hamilton-Jacobi-Bellman PDE). They do so, by
mapping the nonlinear ODEs and the nonlinear HJ equation
to linear ODEs and HJ equations using linear representation
methods, such as the level set method, and then use HHL to
solve the linear system. For a detailed discussion on HHL-
based quantum algorithms for solving differential equations,
we refer to Ref. [49].

A comment on the form of the solution of HHL is in order.
In a classical setting, the vector describing the solution to
a linear system of equations can be copied and its entries
can be accessed at will. In the quantum setting, however,
the solution is encoded in the amplitudes of a quantum su-
perposition (amplitude encoding). The no-cloning theorem
[50] states that quantum states cannot be cloned (duplicated),
and a measurement would collapse the quantum state to the
eigenstate corresponding to the measurement outcome. One
therefore resorts to multiple computations and subsequent
measurements in order to generate reliable statistics to infer
the sought results. The procedure of producing a quantum
state proportional to the solution (of a system of linear equa-
tions, or differential equations) may in some applications
not be enough, as a full quantum state cannot be read out
efficiently [36]. In some scenarios it may suffice to extract
relevant information from sampling an observable. However,
in other cases, more intricate post-processing may be needed
to gain the desired insights.

An example of a variational quantum algorithm for solving
differential equations can be found in Ref. [51]. The authors
define a loss function which measures how well a certain
candidate function solves the differential equation. The dif-
ferential equation is then encoded via its key properties such
that it is mapped to a high-dimensional feature space, which
is explored by a classical solver in order to find a solution.
The variational quantum algorithm put forth in Ref. [52]
aims to solve nonlinear differential equations by using a so-
called quantum nonlinear processing unit. The latter computes
polynomially nonlinear terms appearing in the differential
equations.

In addition, there exist multiple proposed quantum algo-
rithms to solve specific differential equations, such as the
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Poisson equation [53], the wave equation [54], the Vlasov
equation [55], and the heat equation [56].

II. VARIATIONAL APPROACH FOR DEEP-LEARNING
METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS

In this section we outline our first approach for enhancing
the deep-learning architecture from Ref. [25] using quantum
computation. We consider employing variational quantum
methods in order to enhance the algorithm from Ref. [25]
by introducing parametrized quantum circuits (PQCs) into the
neural networks (NNs).

In the context of machine learning, a motivation for making
use of variational quantum circuits is the exploitation of the
exponentially large Hilbert space via controllable entangle-
ment and interference [57–61]. In this sense, the quantum
circuit is employed as a trainable feature map. As the circuit
depth may be kept relatively short compared to fault-tolerant
quantum algorithms, this approach is more suitable for the
noisy intermediate-scale quantum (NISQ) era. If the classical
starting point is a classical NN (as in the architecture from
Ref. [25]), a straightforward place to introduce PQCs is within
the NNs, as described in Ref. [62]. The resulting network is
termed a hybrid quantum neural network (hybrid QNN).

In a hybrid QNN, a PQC is inserted into the classical NN
such that the outputs (post-activation) of a given layer are
fed as arguments (e.g, as the rotation angles of gates in the
PQC) into the PQC. The measurement outcomes of the PQC,
measured in the computational basis, are then again passed
forward as inputs to the succeeding classical layer. In order to
update the weights of a hybrid QNN, one generally makes use
of backpropagation, see Appendix B 1. In order to evaluate
the gradients of the parameters in the PQC, we make use of
the parameter shift rule, see Lemma 2.

A commonly used PQC ansatz circuit is the so-called
hardware efficient ansatz (HEA), because it makes use of
the native gates of a given quantum hardware platform, thus
avoiding the transpilation overhead [63]. By doing so, it
can keep the circuit depth very low while still allowing for
entanglement among all qubits and introducing trainable pa-
rameters for each qubit. The HEA is of the form

U (θ ) =
∏

k

Uk (θk )Wk, (10)

where Uk (θk ) consists of single-qubit rotations on each qubit,
the angles of which are the variational parameters to be op-
timized. Furthermore, Wk are (entangling) two-qubit gates.
Note that the form of the HEA is similar to the form out-
lined in Eq. (B21). The HEA is known to suffer from barren
plateaus, especially for larger circuit depths [64]. Reference
[65] outlined a technique for preventing the barren plateau
issue from occurring in the HEA for short circuit depths. Their
finding suggests that using short PQCs of the form of the HEA
may still be a viable option. However, we note that recent
work has also considered the efficient classical simulatability
of barren-plateau-free circuits [66–68]. The authors propose
an initial state which satisfies certain entanglement criteria,

|ψt 〉 = e−iHt |ψ0〉, (11)

where |ψ0〉 is a product state, i.e., not entangled. For t above
a certain threshold, the qubits are suitably entangled. The
Hamiltonian H is of the form

H =
n∑

i=1

XiXi+1 + YiYi+1 + 2ZiZi+1 + Xi, (12)

where n is the number of qubits in the circuit and XiXi+1,
YiYi+1, and ZiZi+1 refer to the two-qubit Pauli gates acting on
the ith and i + 1st qubit. The index n + 1 refers back to 1.
Next, we discuss how the methods introduced above may be
applied to the deep-learning architecture.

A. Applying variational algorithms
to the deep-learning approach

We proceed to discuss the application of variational quan-
tum methods in the deep-learning architecture from Ref. [25]
and its consequences. We replace the NNs in the architecture
from Ref. [25] with (generic) PQCs and calculate the gradient
of the loss function l (θ ) from Eq. (8) with respect to a param-
eter θk in the nth variational circuit Vn (i.e., at the nth step of
the temporal discretization). This calculation gives

∂θk l (θ ) = ∂θkE
[∣∣g − ûtN

∣∣2] = 2E
[(

g − ûtN

)
∂θk ûtN

]
= 2E

[(
g − ûtN

)( n+1∏
i=N−1

∂ûi f (ui, σ�∇ui )�ti

)

× {[∂σ�∇un
f (un, σ�∇un)�tn + �Wtn

]
∂θkVn

}]
, (13)

where we omitted the arguments of functions that are not of
importance for this calculation. The key observation is that
the term ∂θkVn appears as a factor in the derivative. Therefore,
we expect the barren plateau issue to show up in our context
as well, provided that the PQCs we employ to replace the
classical NNs exhibit barren plateaus in the first place.

B. Simulations

We now simulate the variational architecture with the con-
siderations from Ref. [65] to address the barren plateau issue.
We compare the classical case to the case with PQCs. We
carry out simulations with small-sized quantum circuits, such
that we can simulate them within reasonable time. We inves-
tigate whether including a PQC in the NNs in the architecture
from Ref. [25] can improve the performance, measured by the
loss function. The PQC we employ, for a variable number of
qubits, is displayed in Fig. 2. The circuit in Fig. 2 is initialized
in the state displayed in Eq. (11) (to avoid the barren plateau
from occurring), the inputs are loaded via angle embedding
(using RX rotations), followed by a HEA with RX rotations
and circular entanglement via CNOT gates. In order to com-
pare the classical base case to hybrid scenarios, we solve the
Hamilton-Jacobi-Bellman (HJB) equation, which is a special
case of the PDE from Eq. (1) with σ (t, X ) = 2I, μ(t, X ) =
0 and f (t, X, u(t, X ), σ�(t, X )∇u(t, X )) = ‖∇u(t, X )‖2

2. To
evaluate the loss function, we have g(X ) = ln[(1 + ‖X‖2

2)/2]
for the HJB partial differential equation (PDE). We choose
to simulate the classical and the quantum case for the HJB
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|ψt〉

RX(z(1)) RX(θ1)

RX(z(2)) RX(θ2)

RX(z(3)) RX(θ3)

RX(z(4)) RX(θ4)

RX(z(5)) RX(θ5)

Repeat r times

FIG. 2. Example PQC with 5 qubits with |ψt 〉 from Eq. (11). The
z values are inputs to the circuit (which are given by the outputs of
the preceding classical layer, in a hybrid QNN) and the θ values are
trainable parameters. The part in the box is repeated r times, with
different parameters θ for each repetition.

PDE, because the output of the NNs plays a more important
role compared to the other PDEs, and the performance of
the NNs (or hybrid QNNs) is under investigation. For our
implementations we use PyTorch [69] and PennyLane [70].

In our first experiment we compare the baseline classical
architectures with hybrid QNNs with the same total number
of trainable parameters in order to investigate whether one can
observe improvements of the hybrid case over the classical
case by using the PQC as a feature map. The classical NNs
have an input layer, two hidden layers, and an output layer
(as in Ref. [25]), which are all fully connected. In the hybrid
QNN, we replace nodes in the second hidden layer with a PQC
of the form from Fig. 2, as seen in Fig. 3(a).

We introduce the PQC in a way such that the total number
of trainable parameters does not change, by tuning the number
of classical neurons in the hidden layers. In the hybrid case,
as opposed to the setting illustrated in Fig. 3(b), some of the
trainable parameters are parameters in the PQC (the values of
θ in Fig. 2), as opposed to trainable weights in the classical
part. We compare three cases, each having a different number
of trainable parameters. We compare the performance for
the classical base case and the hybrid case, allowing us to
estimate if a greater percentage of the trainable parameters
in the PQC offers any advantage. Note that while we can
easily increase the number of classical parameters, increasing
the number of variational quantum parameters is computa-
tionally expensive to simulate. Consequently, in the hybrid
scenarios of the different cases, a different percentage of the
total number of trainable parameters are variational quantum
parameters. The cases 1, 2, and 3 we compare in Fig. 4 solve
the HJB PDE using the architecture from Ref. [25] in 5, 10,
and 20 dimensions with 225, 565, and 1260 total trainable
parameters, respectively. In the hybrid cases, we employ an
eight-dimensional PQC of the form from Fig. 2 with r = 2 in
the second hidden layer, introducing 16 trainable variational
quantum parameters. Thus, the hybrid model in case 1 has the
greatest percentage of variational quantum parameters, and
the hybrid model in case 3 the smallest.

As one can see in Fig. 4, the classical models and the
hybrid models in each of the three cases perform comparably

FIG. 3. (a) Hybrid QNN used for the first experiment, where the
circles represent classical neurons, the grey box a PQC, and the input
and output are labeled according to Fig. 1 (b) PQC employed in
the deep-learning architecture as in Fig. 1 without the assistance of
classical neurons, as used in the second experiment.

well after a sufficient number of training iterations, with the
models with a greater number of trainable parameters taking
longer to converge. Figure 4 suggest that introducing the PQC
does not provide an improvement over the classical base case.
Furthermore, we cannot observe a difference in performance

FIG. 4. Loss from Eq. (8) for the HJB PDE against the number
of training iterations with 20 samples per iteration for three dif-
ferent scenarios (225, 565, and 1260 total trainable parameters in
the classical and hybrid case where the spatial dimension is 5, 10,
and 20, respectively). The learning rate in all cases is 0.05. In each
of the hybrid cases, 16 of the trainable parameters are variational
parameters in a PQC in a hybrid QNN, as shown in Fig. 3(a), where
the PQC is of the form of Fig. 2 with r = 2.
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FIG. 5. Loss from Eq. (8) for the HJB PDE against the number of training iterations with 20 samples per iteration for three different
scenarios (20, 30, and 42 trainable parameters, respectively) for classical NNs and PQCs with the same number of trainable parameters. The
learning rate in all cases is 0.05. In each of the quantum cases, all of the trainable parameters are variational parameters in a PQC, as shown in
Fig. 3(b), where the PQC is of the form of Fig. 2.

for a different percentage of variational quantum parameters
in the hybrid models. Possible reasons for this include that
the percentage of variational quantum parameters is too small
to make a difference, or that the classical models are just as
suited (if not more so) for the problem at hand. To understand
which of these possibilities is more plausible, we carry out a
second experiment.

In the next experiment, we directly compare PCQs (as
opposed to hybrid QNNs) against simple NNs with the same
number of trainable parameters, as shown in Fig. 3(b). Again,
an argument for introducing the PQC is the hope that it
may find solutions in the Hilbert space serving as a feature
space. We want to see whether the hybrid case still performs
similarly well as the classical case. Based on the outcome,
we want to learn whether in the first experiment, introducing
the PQC did not improve the performance because the PQCs
and classical NNs perform similarly well, or because the NNs
were “carrying” the hybrid models. We again compare three
cases where we solve the HJB PDE using the deep-learning
architecture for the four-, five-, and six-dimensional case. The
classical models are NNs with just one one input layer and one
output layer and the PQCs are again of the form from Fig. 2
with the number of qubits corresponding to the dimension d
of the input, and the number of repetitions r = d + 1 such
that the total number of trainable parameters is the same in
the classical and the hybrid case. The loss for each of these
cases is shown in Fig. 5. We separate the classical and the
hybrid models for better visibility. In Fig. 5 it is clearly visible
that the classical models outperform the hybrid models, which
appears to refute the hypothesis that the classical models and
PQCs are similarly suited in this context. This observation
suggests that in the first experiment, the classical parts of the
hybrid QNNs were to some extent adapting to or providing
good input features to the PQC, allowing the hybrid model to
perform as well as the classical base model.

To conclude, our evidence suggests that, in the deep-
learning architecture from Ref. [25], hybrid models perform
similarly well as classical models, but completely replacing
the NNs with PQCs worsens the performance. However, we
cannot rule out the possibility that, in scenarios beyond the
scope of our simulations (in particular, very-high-dimensional
cases beyond the reach of classical simulations) hybrid ar-
chitectures may provide better performance (in the sense of
absence of evidence not being evidence of absence). Since
the problem of learning the quantity σ�(t, X )∇u(t, X ) from
samples of Xt is of classical nature, the motivation for in-
cluding PQCs into the NNs was to use the PQCs as feature
map, as done elsewhere. A hypothetical scenario in which the
introduction of PQCs into the architecture would be further
motivated by the nature of the problem at hand being quantum
mechanical, might be if the dependence of the spatial gradient
on the stochastic process Xt was given according to some
unitary evolution. The investigation of this problem we leave
to future work.

III. TRAINING NEURAL NETWORKS WITH
QUANTUM-ACCELERATED MONTE CARLO METHODS

The PDE solver combines classical neural networks (NNs)
and training on data that are sampled from known dis-
tributions, such as the Gaussian distribution. Training and
evaluating NNs with data obtained with MC sampling is,
however, also used elsewhere, e.g., in quantitative finance
[71,72], physics and chemistry simulations [73,74], image and
video processing [75,76], drug discovery [77], and robotics
[78]. In this section, we explore how the quantum-accelerated
Monte Carlo (QAMC, see Appendix B 4 a) method offers a
speedup in the number of samples to achieve the same error
in evaluating the loss function and the gradients of a neural
network. We analyze different methods for training classical
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NNs based on quantum circuits and compare them to each
other. We will apply the methods discussed in this section to
the algorithm from Ref. [25] in Sec. IV.

In Sec. III A we apply QAMC to estimating loss functions
of NNs given fixed values for the trainable parameters. More-
over, the NNs may not be pretrained, their parameters thus
requiring fine-tuning in order to be useful, hence we investi-
gate the use of QAMC for training as well. In the classical
machine learning literature, a novel method for training the
weights of NNs, termed the forward gradient [79], has been
proposed, and we will introduce it in Sec. III B. We then
compare different approaches to incorporating the forward
gradient with other methods for training NNs in the classical
and quantum scenario in Sec. III C.

In the classical scenario, backpropagation (see Ap-
pendix B 1) is a widely used algorithm to train the weights in
NNs, in spite of its excessive memory usage [80,81], which
is difficult to predict in advance [82]. Due to memory in
quantum circuits (i.e., qubits) being especially expensive for
the foreseeable future, this concern is further amplified in the
quantum case. The forward gradient method is a generally
usable method for evaluating gradients, with the advantage
of having lower memory requirements than backpropagation,
but with the drawback of introducing additional stochasticity.
The forward gradient method relies on forward mode auto-
matic differentiation (AD) as opposed to reverse mode AD,
on which backpropagation is based (see Appendix B 2). This
difference results in the forward gradient requiring less mem-
ory, at the cost of introducing stochasticity into the gradient.
Furthermore, being based on AD, it does not suffer from
numerical issues as numerical differentiation does. We show
that this method also finds application in the deep-learning
architecture from Ref. [25]. Since MC methods (classical or
quantum) also leverage stochasticity, we investigate how the
forward gradient method interacts with MC methods.

The memory advantage of the forward gradient method
is particularly beneficial in a quantum setting. We consider
the NNs to be classical circuits which are implemented via a
unitary (see Definition 4) performing the equivalent quantum
circuit. A classical feed-forward NN may be implemented in a
quantum circuit as follows: As mentioned in Appendix A, any
classical circuit can be implemented on a quantum circuit with
only a minimal overhead. Reference [83] discusses further
how classical feedforward NNs may be implemented in a
quantum circuit. In this reference the authors only outline
how to implement a certain activation function which is not
Lipschitz continuous. Common activation functions such as
the sigmoid function or the rectified linear unit (ReLU) are,
however, Lipschitz continuous. When backpropagation is ap-
plied to a classical NN implemented in a quantum circuit,
where the inputs may be in superposition, the forward and the
backward pass occur in the same circuit, and measurement
only takes place after both passes have been carried out.

A. Estimating the output of a neural network

We first quantify the potential speedup obtained when us-
ing QAMC to estimate the loss function of a NN, where the
stochasticity comes from the input of the neural network.
Note Definition 5 on preparing probability distributions in

|X〉
UNN

|X〉

|0〉 |fNN(X)〉

FIG. 6. Unitary evaluating NN.

superposition. We proceed to outline the setting with a quan-
tum circuit. In this section, a sample or a query refers to
a query to the unitary we introduce below (or its modified
forms, which we introduce later in Sec. III C). Note that the
number of wires is not representative of how many qubits are
used to represent a certain state.

Consider a classical NN including a scalar loss function
represented by the function fNN : Rd 	→ R and a random
variable (RV) X , distributed according to pX , i.e., Xi occurs
with probability pXi . Let the NN be implemented in a unitary
in a quantum circuit, as displayed in Fig. 6. As we outline
in Appendix A, any classical circuit can be implemented on
a quantum circuit with only a minimal overhead. This is due
to the fact that the NAND gate is a universal gate for classical
computation, and that the NAND gate can be represented using
a Toffoli gate in a quantum circuit. Thus, the classical circuit
computing the function fNN can also be implemented in a
quantum circuit. We do not make the trainable parameters
explicit in this definition.

For an input state as seen in Definition 5, UNN obtains∑
i

√
pX,i|Xi〉|0〉 →

∑
i

√
pX,i|Xi〉| fNN(Xi )〉. (14)

Applying QAMC to estimate the mean of fNN(X ), weighted
by the distribution pX , as described in Appendix B 4 a, we
need to bound the variance of fNN(X ) in order to determine
the required sample complexity and quantify the potential
quantum speedup.

At this point, we comment on a property of NNs, namely
that NNs are in practice Lipschitz continuous. As shown in
Ref. [84], the Lipschitz constant of a (feedforward) NN can
be upper bounded by the product of the Lipschitz constants
of its constituent layers. The Lipschitz constant of a particular
layer can, in turn, be upper bounded by the largest singular
value of the matrix describing the weights of that particular
layer, σmax(Wl ), multiplied by the Lipschitz constant L fnl,l of
the activation function of the same layer, fnl,l ,

L fNN �
L∏

l=1

σmax(Wl )L fnl,l , (15)

where there are L layers in the NN. The individual layers are
Lipschitz continuous if the nonlinear activation functions fnl,l

are so, and common activation functions, such as ReLU or
the sigmoid function, are Lipschitz continuous. Furthermore,
we assume the loss function is Lipschitz continuous, at least
on the bounded domain of interest. Thus, in practice, NNs
are typically Lipschitz continuous. There exist regularization
techniques, termed spectral normalization, that control the
Lipschitz constant of a NN by normalizing the singular val-
ues of the weight matrices for each layer to a desired value
[85,86].
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Given the Lipschitz constant for a NN, L fNN , we can also
derive the following growth bound: By the Lipschitz continu-
ity of fNN we have

| fNN(X ) − fNN(0)|2 � L fNN‖X − 0‖2
2 = L fNN‖X‖2

2. (16)

Therefore, we have that

| fNN(X )|2 = | fNN(X ) − fNN(0) + fNN(0)|2

� | fNN(X ) − fNN(0)|2 + | fNN(0)|2

� L fNN‖X‖2
2 + | fNN(0)|2

�
[
L fNN + | fNN(0)|2](1 + ‖X‖2

2

)
. (17)

We now proceed to find an upper bound on the variance of
fNN(X ). We have

V [ fNN(X )] = E[ fNN(X )2] − E[ fNN(X )]2

� E[ fNN(X )2]

� E
[(

L fNN + | fNN(0)|2)(1 + ‖X‖2
2

)]
= (L fNN + | fNN(0)|2)(1 + E

[‖X‖2
2

])
, (18)

which allows us the formulate the following result, by apply-
ing Lemma 6.

Result 1. Quantum-accelerated estimation of neural net-
work loss function. Consider a classical NN including its
scalar loss function, fNN : Rd 	→ R, with Lipschitz constant
L fNN . Let the NN be implemented in a quantum circuit in the
form of a unitary UNN. Let the input to UNN be given by a
random variable X , governed by a distribution pX , for which
we have quantum sample access. Then we can estimate the
mean output of fNN using QAMC with a sample complexity,
with respect to UNN, of

Õ
[(

L fNN + | fNN(0)|2)(1 + E
[‖X‖2

2

])/
ε
]
, (19)

up to additive error ε with probability 0.99, thus offering a
quadratic speedup over the classical case.

We proceed to discuss the nature of the speedup, given
the upper bound on V [ fNN(X )]. The first factor, (L fNN +
| fNN(0)|2), is hard to upper bound in practice, as hinted at
in Eq. (15). As mentioned above, there exist regularization
techniques to normalize the Lipschitz constant of a NN. The
quantity | fNN(0)|2 is also hard to estimate in a general setting,
and we offer no general bound on it. The quantity E[‖X‖2

2]
depends naturally on the distribution pX , but we can expect it
to grow with the dimension d of X . A key variable in which
we get a speedup is the error ε, allowing us to achieve the
same error tolerance with quadratically fewer samples.

B. Forward gradient and other training methods

Now we discuss the training part. We discuss methods for
training the NNs when the input is distributed according to
a known distribution. We first discuss numerical differentia-
tion, then proceed to methods based on AD. In particular, we
introduce the forward gradient method from Ref. [79].

We first recall basic properties of NNs. Let {θk}k denote the
set of trainable parameters in the NN, where k ∈ {1, . . . , nθ },
nθ being the number of trainable parameters. The number of

trainable parameters in a feedforward NN is given by [87]

nθ :=
L−1∑
l=1

nl (nl+1 + 1), (20)

where L is the number of layers, nl is the number of neurons
in the lth layer and the additional nl parameters per layer are
the biases. We can state the following simple fact:

Fact 1. If in a classical feedforward NN of interest, the
number of layers is constant in the input dimension d , and
the number of neurons per layer grows at most linearly in d ,
we have that for the number of trainable parameters nθ ,

nθ = O(d2). (21)

For one training step updating the weights of the NNs of
the architecture from Ref. [25] via gradient descent,

θ ( j+1) = θ ( j) − η∇l (θ ( j) ), (22)

where η is the learning rate. Due to the nonconvex training
landscape of the NNs, provable guarantees on how many
training steps are needed to train the NNs to a satisfactory
precision are in general not possible. Under various assump-
tions, provable guarantees can be derived for gradient descent
and stochastic gradient descent [88].

When updating the weights in NNs, a straightforward
method is to resort to numerical differentiation. Numerical
differentiation then approximates the derivative with respect
to an individual weight in the NN, θk , as

∂

∂θk
fNN(X ; θk ) ≈ fNN(X ; θk + h) − fNN(X ; θk − h)

2h
, (23)

for a suitably chosen h. Compared to AD-based methods such
as the backpropagation, numerical differentiation may suf-
fer from numerical issues, i.e., the truncation error resulting
from the finite difference approximations used to approximate
derivatives. For one training step, when using numerical dif-
ferentiation, we require O(nθ ) evaluations of the loss function
from Eq. (8) to get an estimate of the gradient.

In contrast to numerical differentiation, with backpropa-
gation the cost for a single training step is O(1) times the
runtime for the evaluation of the NN [89]. As a consequence,
backpropagation is widely used to train NNs. However,
backpropagation comes with the downside of memory re-
quirements that are greater and harder to predict compared
to methods based on forward mode AD, where the memory
requirements are simply twice that of the function evaluation
[82].

A possible alternative to backpropagation and numerical
differentiation is the forward gradient method presented in
Ref. [79], which estimates the so-called forward gradient,

(∇ fNN · v)v, (24)

which, for a suitably chosen vector v, constitutes an unbi-
ased estimate of the gradient ∇ fNN. A key ingredient for the
forward gradient method in real world applications is, as for
backpropagation, AD. However, using the forward gradient
method does not necessitate holding on to intermediate acti-
vations, unlike in the case of backpropagation, as it relies on
forward-mode AD, as opposed to reverse-mode AD. Being
based on AD, the forward gradient method does not suffer
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from numerical issues in the way numerical differentiation
may do. In terms of the runtime, there is only a constant
overhead compared to the evaluation of the function (i.e.,
the NN) [89]. The forward gradient method, by using AD
and with a runtime with only a constant overhead over the
evaluation of the NN (represented by the function fNN), re-
turns not only the output of the NN but also ∇ fNN · v in a
single forward run, without computing ∇ fNN itself. Here the
gradient is taken with respect to the trainable parameters of
the NN and v is a vector along which the gradient is projected.
The computation of ∇ fNN with the forward gradient method
would, as the authors of Ref. [79] point out, require O(nθ )
evaluations, by choosing v as each basis vector once. In order
to be competitive with backpropagation, they need to work
with O(1) evaluations, not O(nθ ). They have to thus choose
v such that the overall sensitivity is attributed back to each
individual weight parameter in the NN. This feat is achiev-
able by choosing the entries of v to be independently and
identically distributed (iid) according to N (0, 1). In Ref. [79],
the authors show that the forward gradient (∇ fNN · v)v is an
unbiased estimator of the gradient ∇ fNN. Furthermore, they
provide numerical results indicating that the forward gradient
method is competitive with backpropagation with regard to
the runtime as well as to number of update iterations to bring
the value of the loss function to a certain threshold, for differ-
ent network architectures. What is more, the forward gradient
method requires significantly less memory than backpropa-
gation, as it does not require the storage of all intermediate
steps, as pointed out in Ref. [79]. It is worth highlighting, that
the forward gradient is by no means the only noisy estimate
of a gradient used in machine learning. In stochastic gradient
descent (SGD), one estimates the gradient with only a small
subset of the available data [90,91]. While the convergence
speed is limited by the noisy approximation of the true gra-
dient, SGD is nevertheless widely used in practice. There
exist several techniques for dealing with noisy estimates of
gradients in the field of machine learning. Examples of these
techniques are gradient clipping [92], whereby each entry of
the gradient exceeding a certain threshold in absolute value is
set back to that threshold, or gradient norm scaling [93], where
the norm of the gradient is scaled down to prevent so-called
“gradient explosions,” which may occur otherwise.

Note that there also exist quantum algorithms which can
compute gradients of functions, where the runtime is linear
in the runtime of the function itself [94,95]. However, these
methods require phase oracles or probability oracles, which
is less practical in our case of interest, see Sec. IV. Going
forward, we discuss how we may apply the methods discussed
above, in particular the forward gradient method in the quan-
tum case.

C. Training neural networks with quantum-accelerated
Monte Carlo

We describe and compare different ways of applying the
forward gradient method in the classical and quantum setting
and also compare it to other methods for training a NN.

When combining the forward gradient method with
QAMC and AD, there are a priori two options regarding how
to estimate the forward gradient. In the first option, v is loaded

|X〉

U ′
NN,q

|X〉

|v〉 |v〉

|0〉 |(∇fNN(X) · v)v〉

FIG. 7. Unitary evaluating the forward gradient, with v encoded
in a quantum state.

in the form of a (quantum mechanical) superposition state,
as in Definition 5, according to its distribution pv . In this
option, we hope to get the speedup from using QAMC, but
expect to get a slowdown from having to resort to estimating
each of the nθ entries of the forward gradient separately, as
QAMC only allows for the estimation of scalar quantities
(see the argument in Appendix B 4 b). In the second option
we sample v classically, which will prevent us from getting
the speedup from QAMC for v (but still for X ). This is
motivated by only estimating the scalar ∇ fNN · v (as opposed
to a nθ -dimensional vector), such that we hope to avoid the
slowdown in nθ . Furthermore, it would allow us to use classi-
cal Multivariate Monte Carlo (MVMC) (see Appendix B 4 b).
It is worth pointing out that since the application of forward
mode AD (as well as reverse mode AD) results in a runtime
with only a constant overhead compared to just evaluating the
NN, it is meaningful to compare the query complexities to
the unitaries implementing the evaluation of the NN, with or
without some form of AD [89].

We proceed to discuss the first option, where we prepare v

(as well as X ) as a quantum state according to their respective
distribution, as in Definition 5 and estimate each entry of the
forward gradient using QAMC. In this case, the gradient we
estimate with QAMC is the weighted average of the gradients,
weighed by the probabilities of the inputs X of the NNs, as
well as those in v. We name the unitary implementing the
computation of the forward gradient for the first option U ′

NN,q,
as shown in Fig. 7. Recall that, as we outline in Appendix A,
any classical circuit can be implemented on a quantum circuit
with only a small overhead. Thus, the classical circuit comput-
ing the forward gradient can be adapted to also be represented
in a quantum circuit.

In this case, the quantum state for a single NN before the
unitary is ∑

i, j

√
pX,i

√
pv, j |Xi〉|v j〉|0〉, (25)

where v is distributed according to pv . As the output of the
unitary U ′

NN,q we get∑
i, j

√
pX,i

√
pv, j |Xi〉|v j〉|[∇ fNN(Xj ) · v j]v j〉. (26)

When estimating the mean of [∇ fNN(X ) · v]v using QAMC,
we now have to consider the randomness from X , quantified
by pX , as well as that of v, quantified by pv . One issue
pops up with this method. In order to estimate the forward
gradient, we need to apply QAMC to estimate each entry of
the forward gradient, leading to a slowdown of O(nθ ). Recall
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that nθ is the number of trainable parameters in the NN, which
corresponds to the dimension of [∇ fNN(X ) · v]v. Therefore,
while we might get a speedup in the error ε, we still expect a
slowdown in nθ compared to classical backpropagation. In or-
der to derive the query complexity for estimating the forward
gradient in the case where X and v are encoded in quantum
states according to their distributions pX and pv , respectively,

we proceed to upper bound the variance of each entry of the
forward gradient with respect to both sources of randomness.
Next, we derive an upper bound on the variance with respect
to pX and pv of the jth component of [∇ fNN(X ) · v]v, i.e.,
V [[(∇ fNN(X ) · v)v]( j)], which we will need to quantify the
query complexity. To make our notation more compact, we
will refer to ∇ fNN(X ) as ∇ fNN. We have that

V [[(∇ fNN · v)v]( j)] = V [(∇ fNN · v)v( j)] = V

[
d∑

k=1

(∇ fNN)(k)v(k)v( j)

]
=

d∑
k=1

V [(∇ fNN)(k)v(k)v( j)]

+
∑
k �=i

E[{(∇ fNN)(k)v(k)v( j) − E[(∇ fNN)(k)v(k)v( j)]}{(∇ fNN)(i)v(i)v( j) − E[(∇ fNN)(i)v(i)v( j)]}], (27)

where we used the formula for the variance of a sum in the last step. The second summand contains the covariance terms, which
we have rewritten in the form of the definition in terms of expectation values to allow for further analysis. The covariance terms
are ∑

k �=i

E[{(∇ fNN)(k)v(k)v( j) − E[(∇ fNN)(k)v(k)v( j)]}{(∇ fNN)(i)v(i)v( j) − E[(∇ fNN)(i)v(i)v( j)]}]

=
∑
k �=i

E[(∇ fNN)(k)v(k)v( j)(∇ fNN)(i)v(i)v( j)] + E[(∇ fNN)(k)v(k)v( j)E[(∇ fNN)(i)v(i)v( j)]]

+ E[E[(∇ fNN)(k)v(k)v( j)](∇ fNN)(i)v(i)v( j)] + E[E[(∇ fNN)(k)v(k)v( j)]E[(∇ fNN)(i)v(i)v( j)]]. (28)

Note that in each of the four terms in the sum in Eq. (28),
there is at least one entry of v that appears only once inside
an expectation value because in each term k �= i (it is possible
that j = k or j = i). Since the individual components of v are
iid with mean 0 each of the four terms in the sum in Eq. (28)
will vanish in every summand. We continue with our analysis
of the variance of the output of the NN we aim to estimate
using QAMC, namely,

V [[(∇ fNN · v)v]( j)] =
d∑

k=1

V [(∇ fNN)(k)v(k)v( j)]. (29)

For the summands from Eq. (29) we make a case distinction
to separate the cases where k �= j from the case where k = j.
Introducing

gmax =: ‖∇ fNN‖2
∞, (30)

we have for k �= j

V [(∇ fNN)(k)v(k)v( j)]

= E[[(∇ fNN)(k)v(k)v( j)]2] − E[(∇ fNN)(k)v(k)v( j)]2

= E[[(∇ fNN)(k)v(k)v( j)]2]

= E[[(∇ fNN)(k)]2]E[(v(k) )2]E[(v( j) )2]

= E[[(∇ fNN)(k)]2]

� E
[‖∇ fNN‖2

∞
]
� gmax, (31)

where the second equality is due to the fact that k �= j and
thus the three terms (∇ fNN)(k), v(k) and v( j) are independent,
with E[v(k)] = E[v( j)] = 0. The third equality again follows
from the independence of (∇ fNN)(k), v(k), and v( j). The first
equality rests on V [v(k)] = V [v( j)] = 1 being true. In the case

where k = j we have

V [(∇ fNN)(k)(v( j) )2]

= E[[(∇ fNN)(k)]2(v( j) )4] − E[(∇ fNN)(k)v( j)]2

= E[[(∇ fNN)(k)]2]E[(v( j) )4] − E[(∇ fNN)(k)]2E[v( j)]2

= 3E[[(∇ fNN)(k)]2] − E[(∇ fNN)(k)]2 � 3gmax, (32)

where we used that E[(v( j) )4] = 3. Combining these results,
we have that

V [[(∇ fNN · v)v]( j)]

=
d∑

k=1

V [(∇ fNN)(k)v(k)v( j)] � (d + 2)gmax. (33)

This result, which also holds in the classical case, we may use
for an upper bound of the variance of the forward gradient,
which we want to estimate using QAMC.

Result 2. Forward gradient for NN training with QAMC,
first option. Consider a classical NN including its scalar loss
function, fNN : Rd 	→ R, with nθ trainable parameters. Let
the function computing the quantity [∇ fNN(X ) · v]v using
forward mode AD be implemented in a quantum circuit in
the form of a unitary U ′

NN,q as seen above, where the gradi-
ent is taken with respect to the trainable parameters in the
NN. Let the input to the NN be given by a d-dimensional
random variable X , governed by a distribution pX , as well
as a nθ -dimensional random variable v, whose components
are distributed iid according to N (0, 1). Then we can es-
timate the mean output of [∇ fNN(X ) · v]v with respect to
the distributions of X and v using QAMC with a sample
complexity, with respect to the unitary U ′

NN,q computing
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|X〉
U ′

NN,c

|X〉

|0〉 |∇fNN(X) · v〉

FIG. 8. Unitary evaluating the directional derivative, with v

classical.

[∇ fNN(X ) · v]v of

O(nθ

√
dgmax/ε), (34)

up to error ε in the l∞ norm with success probability 0.99.
As we expected, we get a slowdown of nθ in the query

complexity, but a speedup in the error tolerance ε compared to
classically using backpropagation. We proceed to discuss the
second option of applying the forward gradient method to the
setting at hand.

In the second option, we classically sample the vector v.
We use QAMC to estimate the inner product ∇ fNN · v with re-
spect to the distribution of the input X , pX , for a fixed classical
sample of v. To compute the forward gradient, we classically
postprocess ∇ fNN · v to arrive at (∇ fNN · v)v. Since ∇ fNN · v

is a scalar, we hope to avoid a slowdown in nθ . We proceed
to provide some equations and circuits to better illustrate this
option. Figure 8 displays a unitary also returning the forward
gradient. We name this unitary U ′

NN,c.
Similarly to the case in Eq. (14), acting with U ′

NN,c obtains∑
i

√
pX,i|Xi〉|0〉 →

∑
i

√
pX,i|Xi〉|∇ fNN(Xi ) · v〉. (35)

The unitary U ′
NN,c has access to the fixed sample of v clas-

sically and returns the directional derivative using forward
mode AD. In this option, the quantity we estimate with
QAMC is ∇ fNN(X ) · v, which is a scalar. Once we have
estimated ∇ fNN(X ) · v we multiply it with the same classical
sample of v to get the forward gradient. Carrying out the mul-
tiplication of ∇ fNN(X ) · v and v we obtain an overhead in run-
time of O(nθ ). However, we do not need to query the unitary
implementing the NN O(nθ ) times to compute the directional
derivative. As outlined in Appendixes B 1 and B 2, the runtime
of evaluating the NN (as well as running AD in forward or re-
verse mode) is O(nθ ). However, we only query the NN a con-
stant number of times to obtain a sample of the forward gra-
dient. In the case of, e.g., numerical differentiation or the first
option for using the forward gradient with QAMC outlined
above, we have to query the unitary O(nθ ) times, in the case
of the second option (as in the classical case with backpropa-
gation) only once, to obtain one sample. For now, we proceed
to further discuss the second option (where v is classical).

In order to incorporate the second option of evaluating the
forward gradient method into our framework of using NNs
together with QAMC and quantify a potential speedup, we
need to bound the variance of the quantity ∇ fNN(X ) · v with
respect to pX , if we are to estimate it using AD alongside the
evaluation of the NN itself. We have

V [∇ fNN(X ) · v] = E[|∇ fNN(X ) · v|2] − E[∇ fNN(X ) · v]2

� E[|∇ fNN(X ) · v|2]

� E
[‖∇ fNN(X )‖2

∞‖v‖2
1

]
� E

[‖∇ fNN(X )‖2
∞nθ‖v‖2

2

]
� gmaxnθ‖v‖2

2, (36)

where we used Hölder’s inequality in the second inequality
and the norm inequalities in the third inequality. We point out
that due to the norm inequalities, the term nθ shows up. We
proceed to formulate the following result.

Result 3. Directional derivative for NN training with
QAMC, second option. Consider a classical NN including its
scalar loss function, fNN : Rd 	→ R, with nθ trainable param-
eters. Let the function computing the quantity ∇ fNN(X ) · v

using forward mode AD be implemented in a quantum circuit
in the form of a unitary U ′

NN,c, where the gradient is taken
with respect to the trainable parameters in the NN. Let the
input to the NN be given by a d-dimensional random vari-
able X , governed by a distribution pX . Furthermore, let the
components of v be fixed as classical iid samples from the
distribution N (0, 1). Then we can estimate the mean output
of ∇ fNN(X ) · v with respect to the input distribution pX using
QAMC with a query complexity, with respect to U ′

NN,c, of

Õ(
√

gmaxnθ‖v‖2/ε) (37)

up to additive error ε with probability 0.99.
As mentioned above, the entries of v are iid according to

N (0, 1). Therefore, ‖v‖2
2 follows a χ2 distribution with mean

nθ and variance 2nθ . Using Chebyshev’s inequality, we can
upper bound the probability that ‖v‖2

2 deviates from its mean
by more than k standard deviations,

P
[|‖v‖2

2 − nθ | � k
√

2nθ

]
� 1

k2
. (38)

Thus, ‖v‖2 grows as
√

nθ , since, due to Jensen’s inequality,

E
[√‖v‖2

2

]
�
√
E
[‖v‖2

2

] = √
nθ . (39)

We see that with the second option nθ shows up in the query
complexity, despite estimating only a scalar.

So far in the second option we have treated v as a fixed
sample. However, in practice one would also have to sample
v multiple times. To upper bound the error when considering
the stochasticity originating from X as well as v, we proceed
as follows. Let w denote our estimate of ∇ fNN · v as in Result
3, taking into account the stochasticity of X for a fixed sample
of v. Let (∇ fNN · v)v denote the forward gradient where the
only source of error stems from the stochasticity of v, and let
∇ fNN be the true gradient. Then we have

‖wv − ∇ fNN‖∞
= ‖w − (∇ fNN · v)v + (∇ fNN · v)v − ∇ fNN‖∞
� ‖wv − (∇ fNN · v)v‖∞ + ‖(∇ fNN · v)v − ∇ fNN‖∞
= ‖[w − (∇ fNN · v)]v‖∞ + ‖(∇ fNN · v)v − ∇ fNN‖∞
� 3|w − (∇ fNN · v)| + ‖(∇ fNN · v)v − ∇ fNN‖∞, (40)

where we made use of the following observation in the last
inequality. Since each entry of v is distributed according to
N (0, 1), we may truncate each entry of v at ±3, as the
error contributions from the tails of the Gaussian outside of
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this range occur with a probability of roughly 0.003. This
argument may also be extended to greater constants, e.g, if
the Gaussians are truncated at ±7, which is still a constant,
the probability of the Gaussian being outside of this range
is around 2.56 × 10−12. In Result 3 we outlined the query
complexity for estimating w such that the first summand from
the last line of Eq. (40) is below a certain error ε. In order to do
the same for the second summand, i.e., the query complexity
considering samples of v to estimate the gradient up to a
certain error tolerance, we can make use of Lemma 7, as v is
sampled classically. To estimate the gradient ∇ fNN up to error
ε in the l∞ norm using the forward gradient (∇ fNN · v)v, i.e.,

‖(∇ fNN · v)v − ∇ fNN‖∞ < ε, (41)

we upper bound ‖(∇ fNN · v)v‖∞ as follows: Making use of
the same arguments as in Eq. (36), we have

‖(∇ fNN · v)v‖∞ � 3|∇ fNN(X ) · v|
� 3‖∇ fNN(X )‖∞

√
nθ‖v‖2

= O(
√

gmaxnθ‖v‖2)

= O(
√

gmaxnθ ), (42)

in expectation, where we use the same argument as in Eq. (40)
for upper bounding the greatest entry of v. Consequently, with
success probability δ, we need

O

(
gmaxn2

θ

ε2
log

nθ

δ

)
, (43)

many samples in expectation. Since for each sample of v,
we require the sample complexity outlined in Result 3, we
formulate the following corollary:

Corollary 1 (Forward gradient for NN training with
QAMC, second option). Consider a classical NN including its
scalar loss function, fNN : Rd 	→ R, with nθ trainable param-
eters. Let the function computing the quantity ∇ fNN(X ) · v

using forward mode AD be implemented in a quantum circuit
in the form of a unitary U ′

NN,c, where the gradient is taken with
respect to the trainable parameters in the NN. Let the input to
the NN be given by a d-dimensional random variable X , gov-
erned by a distribution pX . Furthermore, let the components
of v be sampled as classical iid samples from the distribution
N (0, 1). Then we can estimate the mean of [∇ fNN(X ) · v]v
with respect to the input distribution pX and the distribution
pv of v using QAMC to estimate the directional derivative
∇ fNN(X ) · v for a fixed sample of v, followed by classical
MVMC estimation in v as in Lemma 7 with a query complex-
ity, with respect to U ′

NN,c, of

Õ

(
n2.5

θ g1.5
max

ε3

)
. (44)

up to error ε in the l∞ norm with probability 0.99.
We proceed to summarize the query complexities for esti-

mating the gradient of a NN in different settings and using
different methods. We also include the purely classical re-
sults. The query complexities are for estimating the gradient
∇ fNN up to error ε in the l∞ norm with success probabil-
ity 0.99. Some further comments on are in order. Compared
with the classical case of using the forward gradient method

to train the NN, we get a speedup in gmax and ε by using
QAMC to estimate (∇ fNN · v)v in the fully quantum case.
However, in the classical case one would presumably resort
to backpropagation to compute the gradient of the NN with
respect to the trainable parameters instead of using the for-
ward gradient method (provided memory constraints are not a
concern), as no additional stochasticity is introduced. When
using backpropagation, the randomness with respect to the
input X would remain, but there is no need for sampling v.
Without the stochasticity introduced by v, the sample com-
plexity is proportional to ε−2, as per Lemma 7. It is also worth
pointing out that in all the scenarios where X is quantum,
we have a slowdown of at least d2 compared to classical
backpropagation. This stems from the fact that QAMC, as
seen in Lemma 6, only allows for the estimation of a scalar
at a time, unlike in the classical case (see the discussion in
Appendix B 4 b). Nevertheless, we have shown that with the
purely quantum cases, we can achieve a speedup in ε, as we
had hoped for. The case where X is quantum and v is classical
did not turn out to give us the best of both worlds, as we had
envisaged. This is due to the fact that, while we can get a
speedup in estimating the directional derivative (in an inner
loop), we have an outer loop where we sample v classically,
resulting in the slowdown in ε. This consideration is shown
mathematically in Eq. (40).

To conclude, as seen in Result 1, when using QAMC to es-
timate the loss function of the NN where the input is sampled
from a known distribution, we achieve a quadratic speedup for
the query complexity in the error tolerance ε compared to the
classical case, as was our goal when applying QAMC. When
training classical NNs implemented in quantum circuits where
the input is given by samples from a known distribution, we
compared several classical as well as quantum alternatives. As
seen in Table I, by using QAMC to estimate the gradient of the
NN, we get a slowdown in d compared to classical backprop-
agation, but a speedup in ε. This holds when applying QAMC
to backpropagation, the forward gradient method (in the fully
quantum scenario) as well as numerical differentiation. How-
ever, compared to when QAMC is applied to backpropagation,
an application of QAMC to the forward gradient method
and numerical differentiation incurs a slowdown of

√
d . The

forward gradient method, however, being based on AD, is
less prone to numerical issues as numerical differentiation,
and has the potential for being less memory intensive than
backpropagation, which is vital in quantum circuits.

IV. QUANTUM-ACCELERATED MONTE CARLO
METHODS AND PARTIAL DIFFERENTIAL EQUATIONS

In this section we proceed with the algorithm from
Ref. [25] to explore the possible application of quantum-
accelerated Monte Carlo (QAMC). Our goal is to show that
using QAMC, the deep-learning architecture from Ref. [25]
requires fewer samples and thus fewer evaluations of the
neural networks (NNs) to estimate the loss function and the
gradients for the NNs up to a certain error tolerance. As out-
lined in Sec. I B, the deep-learning algorithm from Ref. [25]
uses NNs to solve nonlinear partial differential equations
(PDEs) by reformulating the nonlinear PDE as a stochas-
tic differential equation (SDE). In order to approximate the
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TABLE I. Query complexities (to the NN) to estimate the gradient of a NN with respect to its trainable parameters for different methods
when the input X is sampled from a distribution pX and v (for the forward gradient) from pv , either classically (C) or quantumly (Q). We make
use of Fact 1, replacing nθ by d2 in the complexities and taking the expectation value for the terms containing norms of v, as in Eqs. (38) and
(39).

X v Method Query complexity

C Backpropagation Õ(gmax/ε
2) [Lemma 7 and Eq. (30)]

C C Forward gradient Õ(d4gmax/ε
2) [Lemma 7 and Eq. (42)]

C Numerical differentiation Õ(d2gmax/ε
2 ) [Equations (23), (30), and (B23)]

Q Backpropagation Õ(d2√gmax/ε) [Lemma 6 and Eq. (30)]

Q C Forward gradient Õ(d5g1.5
max/ε

3) (Corrolary 1)

Q Q Forward gradient Õ(d2.5√gmax/ε) (Result 2)

Q Numerical differentiation Õ(d2.5√gmax/ε) [Lemma 6 and Eq. (33)]

gradient in each temporal discretization step of the function
described by the nonlinear PDE, a NN is employed to learn
the spatial gradient based on samples from the SDE governing
the spatial variable. In order to achieve a quantum speedup in
the algorithm presented in Ref. [25], one possibility consists
of using quantum subroutines for estimating the loss function
and the solution to the PDE, which depend on the stochastic
process governing the spatial variable. A method which may
allow us to do so is QAMC, presented in Appendix B 4 a, by
addressing the bottleneck imposed by Chebyshev’s inequality.

A. Applying quantum-accelerated Monte Carlo
to loss function estimation

Setting. We now proceed to apply QAMC to the architec-
ture from Ref. [25] with the hope of achieving a quantum
speedup. We briefly outline how we aim to do so, and then
proceed to elaborate on the individual steps. Our goal is to
estimate the payoff function fp from Eq. (9), |g(X̂tN ) − ûtN |2,
as well as the gradients of the parameters of the NNs, with
QAMC.

In order to apply QAMC to the setting from Ref. [25],
we begin by representing the stochastic process governing the
stochastic process Xt [see Eq. (2)] in its differential form as
follows:

dXt = μ(t, Xt ) + σ (t, Xt )dWt , (45)

where μ and σ are real functions and Wt is a standard Brow-
nian motion (as defined in Sec. I B). Furthermore, we also
represent ut [see Eq. (3)] in its differential form as follows:

dut = − f (t, Xt , u(t, Xt ), σ
�(t, Xt )∇u(t, Xt ))

+ ∇u(t, Xt )
�σ (t, Xt )dWt , (46)

where f is a real function and in our setting, as seen in Eq. (7),
∇u(t, Xt )�σ (t, Xt ) = (σ�∇u)(t, Xt ) is a function represented
by the NNs. Next, we need to make a set of assumptions, the
use of which we will lay out shortly.

Assumption 1. We assume that μ, σ , f , and σ�∇u are
Lipschitz continuous, as introduced in Sec. I A, on the domain
of interest in the squared l2 norm.

By making Assumption 1, we derive the following growth
bound on the functions mentioned in Assumption 1. For μ we

have

‖μ(t, X )‖2
2 = ‖μ(t, X ) − μ(0, 0) + μ(0, 0)‖2

2

� ‖μ(t, X ) − μ(0, 0)‖2
2 + ‖μ(0, 0)‖2

2

� Lμ

(
t2 + ‖X‖2

2

)+ ‖μ(0, 0)‖2
2

�
(
Lμ + ‖μ(0, 0)‖2

2

)(
1 + t2 + ‖X‖2

2

)
. (47)

Similar bounds may be derived analogously for the other
functions mentioned in Assumption 1. We continue with our
next assumptions.

Assumption 2. We assume that E(‖Xt0‖m
2 ) < ∞ for m � 0.

Assumptions 1 and 2 guarantee the existence and unique-
ness of a strong solution of the SDEs, meaning that for every
Brownian path that Wt may take, the SDEs are guaranteed
to have a unique solution [96]. The next assumption we will
make use of as this section progresses.

Assumption 3. We assume that the function inside the ex-
pectation value in Eq. (8), which we call the payoff function fp

[see Eq. (9)], is Lipschitz continuous on the domain of interest
in the sense that∣∣ fp

({
X̂tn

}
0�n�N

,
{
�Wtn

}
0�n�N

)
− fp

({
X̃tn

}
0�n�N ,

{
�W̃tn

}
0�n�N

)∣∣2
� L fp sup

0�n�N

∥∥X̂tn − X̃tn

∥∥2
2. (48)

Analogously to Eq. (47), we furthermore derive the follow-
ing growth bound for fp:

fp
({

X̂tn

}
0�n�N

,
{
�Wtn

}
0�n�N

)
�
(
L fp + ∣∣ fp

({
Ŷtn

}
0�n�N

)∣∣2)(1 + sup
0�n�N

∥∥X̂tn

∥∥2
2

)

:= Kfp

(
1 + sup

0�n�N

∥∥X̂tn

∥∥2
2

)
, (49)

where Ytn signifies the path such that sup0�n�N ‖X̂tn − Ytn‖2
2 =

sup0�n�N ‖X̂tn‖2
2 for all other paths X̂tn .

Note that the payoff function presented in Eq. (9),
|g(X̂tN ) − ûtN |2, is not globally Lipschitz continuous in gen-
eral, and also involves outputs of the nonlinear function f . To
avoid violating the Lipschitz condition, we argue that in any
practical setting, one would only deal with a bounded interval
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of interest. Assuming that the loss function does not contain
any singularities on the interval of interest, it is Lipschitz
continuous on the same interval, with the Lipschitz constant
being the maximum of its derivative on the interval. The
same argument can be applied to justify the growth bound
assumption.

As mentioned above, we make Assumptions 1 and 2 so
that Eqs. (45) and (46) are guaranteed to have a unique strong
solution [96]. For the solution of the SDE it then holds that

sup
t0�t�T

E
[‖Xt‖2

2

]
< ∞, (50)

as well as

E

[
sup

0�n�N
‖Xtn‖2

2

]
� E

[
C
(
1 + ∥∥Xt0

∥∥2

2

)]
, (51)

where C may depend on the time interval T − t0 and on the
Lipschitz constants of μ and σ [96]. If there is a solution to an
SDE of the form in Eqs. (45) and (46) for each given path the
Brownian process Wt takes, we say that the SDE has a strong
solution [96]. Assumptions 1 and 2 are satisfied (at least on a
bounded domain) for several important special cases surveyed
in Ref. [25], such as the nonlinear Black-Scholes equation, the
Hamilton-Jacobi-Bellman equation as well as the Allen-Cahn
equation. In the same three example cases, Assumption 3 is
satisfied for bounded domains.

In order to present the cost of using QAMC to solve PDEs
with the architecture from Ref. [25] we assume that access to
t0, u0, σ�∇u0, Xt0 , μ, σ , and f is given via unitaries, which we
denote by Ut0 , Uu0 , Uσ�∇u0

, UXt0
, Uμ, Uσ , and Uf , respectively.

In addition, we assume that we have access to a unitary UGauss

which can prepare a state of the form presented in Definition 5
with a Gaussian distribution. We also assume that evaluating
the NNs (i.e., carrying out a single feedforward pass) is done
by querying a unitary UNN. Since the architecture of all the
NNs in Ref. [25] is the same, we also treat the unitaries for
the different NNs in the architecture from Ref. [25] as having
the same cost from a query complexity point of view.

Variance bound. In order to apply Lemma 6 to the archi-
tecture outlined in Ref. [25] and quantify a potential quantum
speedup, we proceed to find an upper bound on the variance
λ2 of the quantity whose expectation value we aim to estimate,
namely the payoff function from Eq. (9). We have for λ2:

λ2 = V
[

fp
({

X̂tn

}
0�n�N ,

{
�Wtn

}
0�n�N

)]
� E

[∣∣ fp
({

X̂tn

}
0�n�N ,

{
�Wtn

}
0�n�N

)∣∣2]
� E

[
Kfp

(
1 + sup

0�n�N

∥∥X̂tn

∥∥2

2

)]

= E

[
Kfp

(
1 + sup

0�n�N

∥∥X̂tn − Xtn + Xtn

∥∥2

2

)]

� E

[
Kfp

(
1 + sup

0�n�N

∥∥X̂tn − Xtn

∥∥2

2 + sup
0�n�N

∥∥Xtn

∥∥2

2

)]

� Kfp

(
1 + E

[
sup

0�n�N

∥∥X̂tn − Xtn

∥∥2

2

]
+ E

[
sup

0�n�N

∥∥Xtn

∥∥2

2

])

� Kfp

[
1 + K2(�t )2r + C

(
1 + ‖Xt0‖2

2

)] =: λ2
max, (52)

where the first inequality follows from the definition of the
variance, the second inequality stems from the growth bound
of the payoff function (see Assumption 3), and the last
inequality stems from the definition the strong order r in
Eq. (B42) and from Eq. (51), thanks to Assumptions 1 to 3.
Note that the bound in Eq. (52) also holds in the classical case,
as we have not yet employed any quantum subroutines.

Error analysis. Before going through the application of
QAMC to the architecture from Ref. [25], we comment on
the error sources when estimating the payoff function fp, in
order to understand what effects different errors have and how
they differ in the classical and quantum scenario. Note that the
inaccuracy of the NNs when representing the spatial gradient
as well as the error stemming from the temporal discretization
of the SDEs are not error sources hindering us at accurately
estimating the payoff function, rather they have an effect on
the (true) value of the solution. When estimating the payoff
function, we consider two kinds of errors:

(1) The discretization error of the Gaussian increments
�Wt . The estimate of the payoff function considering only
the discretization error of the Gaussian increments �Wt we
denote as I2.

(2) The estimation error, when using QAMC. The estimate
which contains both kinds of errors we denote by I3.

In order to bound the error between the ideal estimation
of the payoff function (with no error whatsoever), which we
denote by I1, and our actual estimate containing both errors,
I3, we proceed as follows:

|I1 − I3| = |I1 − I2 + I2 − I3| � |I1 − I2| + |I2 − I3|. (53)

In order to upper bound the total error |I1 − I3| by ε we
proceed to bound the terms on the right hand side of Eq. (53).

We begin by bounding the first error term, |I1 − I2|, which
results from discretizing the Gaussian increments �Wtn . The
number NGauss = 2nGauss represent how finely we discretize the
Gaussian distribution, where nGauss is the number of qubits
we use to represent a single univariate Gaussian distribution.
The error resulting from this discretization of the Gaussian
increments may be bounded by a Riemann sum. In general,
the following holds for a left- or right-rule Riemann sum
approximating an integral of a function fr [97],

∣∣∣∣∣
∫ b

a
fr (x) dx −

n−1∑
k=0

�x fr (a + k�x)

∣∣∣∣∣ � L fr (b − a)2

2n
, (54)

where �x = |a − b|/N , L fr is the Lipschitz constant of fr (on
the relevant interval) and n represents how finely we discretize
the integral. In the case of two integrals being approximated
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by a left- or right-rule Riemann sum, we have∣∣∣∣∣
∫ b

a

∫ d

c
fr (x, y) dydx −

n−1∑
k=0

m−1∑
l=0

�x�y fr (a + k�x, c + l�y)

∣∣∣∣∣
�
∣∣∣∣∣
∫ b

a

∫ d

c
fr (x, y) dydx −

∫ b

a

m−1∑
l=0

�y fr (x, c + l�y) dx

∣∣∣∣∣
+
∣∣∣∣∣
∫ b

a

m−1∑
l=0

�y fr (x, c + l�y) dx −
n−1∑
k=0

m−1∑
l=0

�x�y fr (a + k�x, c + l�y)

∣∣∣∣∣
�
∫ b

a

∣∣∣∣∣
∫ d

c
fr (x, y) dy −

m−1∑
l=0

�y fr (x, c + l�y)

∣∣∣∣∣ dx

+
m−1∑
l=0

�y

∣∣∣∣∣
∫ b

a
fr (x, c + l�y) dx −

n−1∑
k=0

�x fr (a + k�x, c + l�y)

∣∣∣∣∣
� L fr (d − c)2

2m
|b − a| + L fr (b − a)2

2n
|d − c|. (55)

If, as in our case of interest, a = c, b = d , and n = m we end
up with an error bound of

2L fr |b − a|3
2n

. (56)

We generalize the above error to the case of M integrals and
we get an error bound of

ML fr |b − a|M+1

2n
. (57)

We return to our setting where we are analyzing the dis-
cretization error for the Gaussian increments. If we set the
bounds to be at ±3

√
�t (recall that �t is the variance of

our Gaussian increments) away from the mean, respectively,
we can consider the error contributions from the tails of the
Gaussian which lie outside of our discretized range to be
negligible, at roughly 0.003. We then upper bound the error
resulting from the discretization of the Gaussian increments
by using Eq. (57) as follows:

|I1 − I2| �
NdL fp |6�t |Nd+1

2NGauss
, (58)

where N , t0, and T are as seen in Fig. 1, and L fp is the
Lipschitz constant of the payoff function, see Assumption 3.
Note that this result also holds for the classical case (i.e., using
classical MC methods) and is in line with a similar result in
Ref. [98]. In order to upper bound the error from discretizing
the Gaussian increments by ε/3, we choose,

NGauss �
3NdL fp |6�t |Nd+1

2ε
= O

(
ε−1−1/rdL fp |6�t |ε−1/r d+1

)
,

(59)

where we inserted the relation between N and ε from Eq. (71).
Since NGauss = 2nGauss , where nGauss is the number of qubits we
require for a discretization of a one-dimensional univariate
Gaussian distribution, we thus have to deploy,

nGauss = Õ(ε−1/rd ), (60)

qubits for the discretization of the Gaussian increments in
the whole architecture from Ref. [25] to achieve the desired
precision. In the above calculation we did not make use of
any quantum subroutines, and thus the analysis of the error
stemming from the discretization of the Gaussian increments
holds in the classical case (for bits) as well as in the quantum
case (for qubits).

The second error source when estimating the payoff func-
tion stems from estimating I2 with I3. According to Lemmas 4
and 6 there exists a quantum algorithm that estimates I2 up to
error

|I2 − I3| � ε/3, (61)

with probability at least 0.99 with Õ(ε−1) estimations of I2.
Using classical Monte Carlo (MC) methods, we would re-
quire Õ(ε−2) estimations. This is where the quantum speedup
comes into play.

Quantum circuit. We now proceed to describe the quantum
circuit for the proposed algorithm step by step, by writing
out the state after each operation, and simultaneously keeping
count of the number of unitary calls and arithmetic operations
we make. We assume that we have a sufficient number of
qubits available to us. We indicate the spare qubits, which we
may use in the future, by |0 · · · 0〉. We start off by calling the
unitaries UXt0

, Ut0 , Uσ�∇u0
, and Uu0 to load the initial values

t0, u0, σ�∇u0, and Xt0 , respectively. Each of these unitaries
we call only once for each estimation of the mean in Eq. (8).
After calling each of these unitaries, our quantum state is∣∣Xt0

〉|t0〉|σ�∇u0〉|u0〉|0 · · · 0〉. (62)

Note that since the values are classical parameters and will
not be in superposition or entangled later on, storing the initial
values in qubits is not necessary, they could be introduced into
the circuit classically. However, in view of later operations on
the quantum circuit, we think it nevertheless makes sense for
illustrative reasons. Next, we use N additions to increase t ,∣∣Xt0

〉|t0〉|σ�∇u0〉|u0〉|t1〉 · · · |tN 〉|0 · · · 0〉. (63)
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For the Gaussian increments we need Nd univariate Gaussian random variables (RVs) to represent the N d-dimensional
Gaussian RVs, whose entries are identically and independently distributed (iid), loaded in the sense of Definition 5 by a unitary
UGauss. Therefore, we need to call UGauss Nd times. After calling UGauss Nd times, we have

∣∣Xt0

〉|t0〉|σ�∇u0〉|u0〉
NGauss∑

kt0 ,1=1

· · ·
NGauss∑

ktN−1 ,d =1

√
pkt0 ,1 · · ·√pktN−1 ,d

∣∣kt0,1
〉∣∣�Wt0,1

(
kt0,1
)〉

· · · ∣∣ktN−1,d
〉∣∣�WtN−1,1

(
ktN−1,d

)〉|t1〉 · · · |tN 〉|0 · · · 0〉. (64)

After that, to prepare X̂t with t ∈ [1, . . . , N], we make N calls to Uμ and Uσ each, which act as Uμ|t, X 〉|0〉 = |t, X 〉|μ(t, X )〉
and Uσ |t, X 〉|0〉 = |t, X 〉|σ (t, X )〉, respectively. We also require dN multiplications (multiplying the μ vectors with the scalars
�t at each time step) and d2N multiplications as well as (d − 1)dN additions for the multiplications of the σ matrices with the
respective �Wtn vectors. Finally, we require 2N additions to carry out the update steps, as seen in Eq. (4). We then arrive at the
following state:

∣∣Xt0

〉|t0〉|σ�∇u0〉|u0〉
NGauss∑

kt0 ,1=1

· · ·
NGauss∑

ktN−1 ,d =1

√
pkt0 ,1 · · ·√pktN−1 ,d

∣∣kt0,1
〉∣∣�Wt0,1

(
kt0,1
)〉× · · · × ∣∣ktN−1,d

〉∣∣�WtN−1,1
(
ktN−1,d

)〉

× ∣∣X̂t1

(
kt0,1, . . . , kt0,d

)〉 · · · ∣∣X̂tN

(
kt0,1, . . . , ktN−1,d

)〉|t1〉 · · · |tN 〉|0 · · · 0〉. (65)

Next, we make N − 1 calls to the neural network unitaries UNN to compute the quantities σ�∇ut , in the sense that
UNN|X̂tn〉|0〉 = |X̂tn〉|σ�∇ut (X̂tn )〉. The state thus becomes the following, where |σ�∇ut 〉 is only present for t ∈ [1, N − 1],

|u0〉|σ�∇u0〉|t0〉
∣∣Xt0

〉 NGauss∑
kt0 ,1=1

· · ·
NGauss∑

ktN−1 ,d =1

√
pkt0 ,1 · · ·√pktN−1 ,d

∣∣kt0,1
〉∣∣�Wt0,1

(
kt0,1
)〉× · · · × ∣∣ktN−1,d

〉∣∣�WtN−1,1
(
ktN−1,d

)〉

× ∣∣X̂t1

(
kt0,1, . . . , k1,d

)〉 · · · ∣∣X̂tN

(
kt0,1, . . . , ktN−1,d

)〉|t1〉 · · · |tN 〉∣∣σ�∇ut
(
X̂t1

)〉 · · · ∣∣σ�∇ut
(
X̂tN−1

)〉|0 · · · 0〉. (66)

It is worth pointing out that, in the above equation, we omitted the pointer arguments k for the states of the form |σ�∇ut (X̂tn )〉
to allow for a more compact notation.

Next, we proceed to compute ût for t ∈ [1, . . . , N]. This computation requires N calls to Uf , N additions and multiplications
each for multiplying the outcome of Uf with �t and adding it to the previous value of ût , and dN multiplications as well as dN
additions for multiplying the vectors σ�∇ut (X̂tn ) and adding the result to the previous value of ût . We then have the following
quantum state:

|u0〉|σ�∇u0〉|t0〉
∣∣Xt0

〉 NGauss∑
kt0 ,1=1

· · ·
NGauss∑

ktN−1 ,d =1

√
pkt0 ,1 · · ·√pktN−1 ,d

∣∣kt0,1
〉∣∣�Wt0,1

(
kt0,1
)〉× · · · × ∣∣ktN−1,d

〉∣∣�WtN−1,1
(
ktN−1,d

)〉

× ∣∣X̂t1

(
kt0,1, . . . , k1,d

)〉 · · · ∣∣X̂tN

(
kt0,1, . . . , ktN−1,d

)〉|t1〉 · · · |tN 〉∣∣σ�∇ut
(
X̂t1

)〉 · · · ∣∣σ�∇ut
(
X̂tN−1

)〉∣∣ût1

〉 · · · ∣∣ûtN

〉|0 · · · 0〉. (67)

Again, we omitted the pointer arguments k for the states |ûtn〉 to simplify the notation. The pointer arguments for |ûtn〉 would be
the same as for |X̂tn〉, i.e., (kt0,1, . . . , ktn−1,d ).

Finally, we require one call to the unitary Uloss to compute the loss function. The quantum state then becomes

|u0〉|σ�∇u0〉|t0〉
∣∣Xt0

〉 NGauss∑
kt0 ,1=1

· · ·
NGauss∑

ktN−1 ,d =1

√
pkt0 ,1 · · ·√pktN−1 ,d

∣∣kt0,1
〉∣∣�Wt0,1

(
kt0,1
)〉× · · · × ∣∣ktN−1,d

〉∣∣�WtN−1,1
(
ktN−1,d

)〉

× ∣∣X̂t1

(
kt0,1, . . . , k1,d

)〉 · · · ∣∣X̂tN

(
kt0,1, . . . , ktN−1,d

)〉|t1〉 · · · |tN 〉
× ∣∣σ�∇ut

(
X̂t1

)〉 · · · ∣∣σ�∇ut
(
X̂tN−1

)〉∣∣ût1

〉 · · · ∣∣ûtN

〉∣∣ fp
({

X̂tn

}
0�n�N ,

{
�Wtn

}
0�n�N

)〉|0 · · · 0〉. (68)

Now that we have | fp(X̂tN , ûtN )〉 in the superposition,
weighted by the distribution of the Gaussian increments,
we can apply QAMC from Appendix B 4 a to estimate
the mean of fp(X̂tN , ûtN ) with respect to the distribu-
tions given by the Gaussian increments �Wtn . We proceed
to summarize the query complexities for the individual
unitaries.

Query complexities. Based on the above, estimating the
payoff function from Eq. (9) using QAMC, thus requires the
asymptotic number of queries to the following unitaries and
arithmetic operations:

(1) Õ(λmax/ε) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , and Uloss

each;
(2) Õ(Nλmax/ε) queries to Uμ, Uσ , Uf , and UNN each;
(3) Õ(dNλmax/ε) queries to UGauss;
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(4) Õ(d2Nλmax/ε) arithmetic operations.
How does this compare to the classical case? We do not get

the speedup from QAMC in the classical case. Therefore, we
have

(1) O(λ2
max/ε

2) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , and Uloss

each,
(2) O(Nλ2

max/ε
2) queries to Uμ, Uσ , Uf , and UNN each,

(3) O(dNλ2
max/ε

2) queries to UGauss,
(4) O(d2Nλ2

max/ε
2) arithmetic operations,

from which we can see the slowdown in λmax and ε compared
to the quantum enhanced version. We conclude the analysis
with the following result:

Result 4. Quantum-accelerated Monte Carlo evaluation.
Using the QAMC method from Ref. [99] and described in
Appendix B 4 a, there is the potential for achieving a quantum
speedup from a query complexity point of view for estimating
the loss function in the algorithm for solving nonlinear PDEs
described in Ref. [25] with the number of calls to unitaries as
well as arithmetic operations as outlined above.

Subsequently, we discuss the problem of training the NNs,
referencing the findings from Sec. III.

B. Training the neural networks

As described in Sec. III, using the forward gradient method
allows us to estimate the gradients of the parameters in the
NNs using QAMC. Since the payoff function fp [see Eq. (9)]
is assumed to be Lipschitz continuous (see Assumption 3)
and has a scalar output we may apply the methods surveyed
in Table I, where the gradient is taken with respect to the
trainable parameters in the architecture from Ref. [25], i.e.,
the weights in the NNs and the initial values of u and σ�∇u.
To numerically verify that the forward gradient method as
well as numerical differentiation work in the deep-learning
architecture from Ref. [25], we implement these methods in
the purely classical setting to update the weights when solving
the Hamilton-Jacobi-Bellman (HJB) PDE. The HJB PDE is
a special case of Eq. (1) where σ (t, X ) = 2I, μ(t, X ) = 0,
and f (t, X, u(t, X ), σ�(t, X )∇u(t, X )) = ‖∇u(t, X )‖2

2, and,
to evaluate the loss function, g(X ) = ln[(1 + ‖X‖2

2)/2]. We
take N = 20 temporal discretization steps, where we approx-
imate the spatial gradient at each step with a NN with 225
trainable parameters, and the terminal time is T = 1. We
present the values of the loss function at each training iteration
in Fig. 9. As we can see in Fig. 9, and as experimentally
shown for other problems in Ref. [79], the forward gradient
method is indeed competitive with backpropagation, although
the loss function in the latter case appears to converge slightly
below the value in the forward gradient case, possibly due to
the additional stochasticity introduced by the forward gradi-
ent, as mentioned in Ref. [79]. The same observation holds
for numerical differentiation, where the slightly higher loss at
convergence may stem from the truncation error.

C. Multilevel Monte Carlo methods and partial
differential equations

We have so far discussed estimating the loss function in
the deep-learning architecture from Ref. [25]. We now discuss
the estimation of the solution to the PDE itself, once the loss

FIG. 9. Loss from Eq. (8) for the HJB PDE against the number
of training iterations when the forward gradient method, numeri-
cal differentiation and backpropagation are employed to update the
weights. In each case, we have N = 20 temporal discretization steps,
each of the 20 neural networks has 225 trainable parameters, and the
terminal time is T = 1. We take 20 training samples per iteration
and the learning rate is 0.01. In the case when the forward gradient
method is employed, we take 100 samples of v per iteration. For
numerical differentiation, h from Eq. (23) is 0.001.

function has been reduced to a satisfactory level. Once the
loss function is below a certain threshold or has ceased to
improve, the circuits outlined above may simply be truncated
after the nth time step and used to estimate utn . Since the
NNs as well as μ and σ are Lipschitz continuous, one may
estimate utn with the given assumptions (Assumptions 1 to
3). As utn are scalars, one may again make use of QAMC
to estimate utn with a speedup in ε compared to the classical
case.

When considering the precision with which we estimate
the solution at final time, utN , we now also have to consider the
error resulting from the discretization of the SDEs. It is worth
mentioning that the error stemming from the inaccuracies of
the NNs when representing the spatial gradients are also an
error source contributing to the total error when estimating the
solution. However, the highly nonconvex training landscapes
of the NNs prevent us from bounding this contribution to
the error. We proceed to analyze the contribution from the
discretization of the SDEs, neglecting the contribution from
the inaccuracies of the NNs.

As in the case where we estimate the loss function, the
error originating from the discretization of the Gaussian in-
crements, as well as the estimation error when using MC
methods, are relevant. Let the ideal estimation of the solution
be I0 and the estimate of the solution considering only the
discretization error of the SDE be I1. Furthermore, analo-
gously to the discussion in Sec. IV A, let I2 be the estimate
of the solution utN when also considering the error from the
discretization of the Gaussian increments and let I3 be the
estimate where all three kinds of errors are taken into account.
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Then we have

|I0 − I3| = |I0 − I1 + I1 − I2 + I2 − I3|
� |I0 − I1| + |I1 − I2| + |I2 − I3|. (69)

In order to estimate the solution utN up to error ε we need to
upper bound the term on the left hand side in Eq. (69), which
we can achieve by upper bounding the right hand side of the
same equation. In Sec. IV A we showed that upper bounding
the term |I1 − I2| gives us a requirement on how many bits
or qubits are needed to represent the Gaussian increments.
Furthermore, upper bounding |I2 − I3| gave us a requirement
on how many samples we need to take with classical MC
or QAMC. We thus still need to upper bound the first term,
|I0 − I1|:

|I0 − I1| = ∣∣E[utN

({
Xtn

}
0�n�N

)]− E
[
utN

({
X̂tn

}
0�n�N

)]∣∣
� E

[∣∣utN

({
Xtn

}
0�n�N

)− utN

({
X̂tn

}
0�n�N

)∣∣]
� LutN

E

[
sup

0�n�N

∥∥Xtn − X̂tn

∥∥
2

]
= O((�t )r ), (70)

where the first equality is the definition of I0 and I1 (we
dropped the Gaussian increments in the arguments to sim-
plify the notation), the first inequality follows from applying
Jensen’s inequality (recall that the absolute value is a convex
function). The second inequality follows from Assumption 3,
since the local Lipschitz continuity of fp implies local Lips-
chitz continuity of utN (we name its Lipschitz constant LutN

).
The last equation follows from the definition of the strong
order r, see Eq. (B42). In order to bound |I0 − I1| by ε/3, we
need to choose �t = O(ε1/r ) and, consequently,

N = O(ε−1/r ). (71)

It is worth pointing out that this relation between N and ε

holds as much for the quantum case as for the classical case.
By inserting the dependency of N on ε from Eq. (71)

into the query complexities from Sec. IV A, we arrive at the
following complexities:

(1) Õ(λmax/ε) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , and Uloss

each;
(2) Õ(λmax/ε

1+1/r ) queries to Uμ, Uσ , Uf , and UNN each;
(3) Õ(dλmax/ε

1+1/r ) queries to UGauss;
(4) Õ(d2λmax/ε

1+1/r ) arithmetic operations,
and by inserting r = 1/2 for the Euler-Maruyama scheme
which the architecture from Ref. [25] uses, we arrive at

(1) Õ(λmax/ε) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , and Uloss

each;
(2) Õ(λmax/ε

3) queries to Uμ, Uσ , Uf , and UNN each;
(3) Õ(dλmax/ε

3) queries to UGauss;
(4) Õ(d2λmax/ε

3) arithmetic operations.
How does this compare to the classical case? The relation
between N and ε from Eq. (71) holds in the classical case
as well. However, we do not get the speedup from QAMC in
the classical case. Therefore, we have

(1) O(λ2
max/ε

2) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , and Uloss

each;
(2) O(Nλ2

max/ε
2) queries to Uμ, Uσ , Uf , and UNN each;

(3) O(dNλ2
max/ε

2) queries to UGauss;
(4) O(d2Nλ2

max/ε
2) arithmetic operations,

which, after inserting the expressions for N and r leaves us
with

(1) O(λ2
max/ε

2) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , and Uloss

each;
(2) O(λ2

max/ε
4) queries to Uμ, Uσ , Uf , and UNN each;

(3) O(dλ2
max/ε

4) queries to UGauss;
(4) O(d2λ2

max/ε
4) arithmetic operations.

As in the case of estimating the loss function (see
Sec. IV A), QAMC thus offers the potential for a quan-
tum speedup in ε when estimating the solution utN of the
PDE.

As described in Appendix B 4 c, multilevel MC (MLMC)
methods offer the potential to improve the sample complexity
when estimating the mean value of functions depending on
the discretized solutions of SDEs. We thus discuss the ap-
plication of MLMC as well as quantum-accelerated MLMC
(QAMLMC) to the problem of estimating the solution utN in
the deep-learning architecture from Ref. [25].

We begin by checking that Assumptions 4 to 6 are satisfied
in the setting of this section so far. Assumption 4 is satisfied
since we make Assumption 1. The numerical scheme em-
ployed in Ref. [25] is the Euler-Maruyama scheme which is of
the form Eq. (B47) and satisfies Assumption 5 [96]. Finally,
Assumption 6 is satisfied since we make Assumption 3, the
latter being a stronger assumption. Thus, the assumptions
made in Ref. [33] are satisfied and we can in principle apply
Lemmas 8 and 9.

We continue with considerations on how one might use
QAMLMC (or classical MLMC) in combination with the
architecture from Ref. [25]. It is worth pointing out that
estimating each of the terms Yk from Eq. (B44) which
approximate the solution at final time utN with increasing
precision, having Nk discretization steps in the architecture
from Ref. [25], will also have Nk NNs to train. In total, with
K estimators Yk with 2k NNs each, where K = O(log(2ε−1)),
we would have O(2log(2ε−1 ) ) = O(ε−1) NNs to train. Since in
each estimator there are different NNs (i.e., we do not assume
that any weight sharing across different estimators takes place,
although that might be possible), MLMC or QAMLMC may
only offer a speedup to the estimation of the solution utN and
would not be of help in estimating the gradients for each esti-
mator. The gradients would need to be computed as discussed
in Sec. III C.

When using classical or quantum-accelerated MLMC
methods, observe that the cutoff strong order for which the
1/r term vanishes in the exponent of ε is not the same for
the classical and the quantum case, as seen in Lemmas 8
and 9. In the classical case, it is r = 1/2 and in the quantum
case it is r = 1. This difference stems from the different base
case MC sample complexities, O(λ2/ε2) in the classical case
and Õ(λ/ε) in the quantum case, where λ2 is the variance
of the term in question [33]. Recall that in the architecture
from Ref. [25] we have r = 1/2 as the Euler-Maruyama
scheme is used. We continue to analyze potential speedups
when using classical and quantum-accelerated MLMC meth-
ods to estimate the solution utN from the deep-learning
architecture.

Employing MLMC methods in the deep-learning architec-
ture in the classical case to estimate the solution utN , with
r = 1/2 we have as per Lemma 8,
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(1) Õ(ε−2) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , Uloss, Uμ, Uσ ,
Uf , and UNN each;

(2) Õ(dε−2) queries to UGauss;
(3) Õ(d2ε−2) arithmetic operations,

where d is the dimension of the stochastic process Xt and
where we treated the individual NNs as equivalent from a
query complexity point of view. In the case of QAMLMC we
have in the same setting:

(1) Õ(ε−2) queries to UXt0
, Uu0 , Uσ�∇u0

, Ut0 , Uloss, Uμ, Uσ ,
Uf , and UNN each;

(2) Õ(dε−2) queries to UGauss;
(3) Õ(d2ε−2) arithmetic operations,

which is the same as for the classical case (the lower threshold
in the strong order r for the classical case compensates for the
speedup in ε in the quantum case). However, both methods
improve on the complexities outlined above in this section. It
is worth highlighting again, that MLMC methods would only
speed up the estimation of the solution but not the estimation
of the gradients with respect to the parameters of the NNs.
Thus, the results of Sec. III in Table I are still relevant for
training the NNs in the sense that they offer the potential
for speedups in ε when estimating the gradient, even in the
scenario where MLMC methods are applied to estimating the
solution.

Improvements in the query complexities for QAMLMC
(which would allow for QAMLMC to outperform classical
MLMC) may be brought about by implementing a numerical
scheme with r > 1/2, e.g., the Milstein scheme [100] with
r = 1. However, this step comes with its own difficulties, par-
ticularly for the architecture from Ref. [25]. For implementing
higher order schemes such as the Milstein scheme, derivatives
of σ and σ�∇u come into play. A possibility to compute what
amounts to the Hessian of u might be to add a second NN
per discretization step. However, we leave this investigation
to future research.

Summarizing our findings from this section, we saw that
by applying QAMC to the deep-learning architecture for solv-
ing nonlinear PDEs from Ref. [25] there exists the potential
for a speedup in the error tolerance ε when estimating the
loss function. In Sec. IV C we found that applying classi-
cal MLMC methods offers the potential for an even greater
speedup in ε compared to applying QAMC when estimat-
ing the solution of the PDE at final time. Interestingly, with
the numerical scheme employed in the deep-learning archi-
tecture, QAMLMC does not offer a speedup (nor suffers
from a slowdown) compared to (classical) MLMC. Future
research may, however, be able to find the possibility for
a quantum speedup by increasing the strong order r of the
numerical scheme for approximating the SDE. This might
allow QAMLMC to provide a speedup over classical MLMC
again. As mentioned in Sec. IV C, increasing the strong order
r in the deep-learning architecture comes with its own set of
challenges, which we leave for future research to address. It is
worth pointing out that applying MLMC methods only offers
the potential of speeding up the estimation of the loss function,
but not the estimation of the gradient, thus our findings from
Sec. III on estimating the gradient with QAMC methods is still
relevant.

V. QUANTUM ALGORITHM FOR ACCELERATING
NEURAL NETWORK TRAINING

In this section we discuss the application of a quantum
algorithm from the literature (see [101]) which offers the
potential for accelerating the training and evaluating of clas-
sical NNs. This algorithm constitutes a fault-tolerant quantum
algorithm that we aim to incorporate into the architecture from
Ref. [25] for solving nonlinear partial differential equations
(PDEs). After having reviewed the algorithm, we discuss how
it can be applied in the setting from Ref. [25], and what
advantages and disadvantages are associated with doing so.

It is worth pointing out that while in previous sections we
mainly discussed the query complexity to the unitaries imple-
menting the NNs, this section (and the algorithm we introduce
therein) are not about the query complexity to the unitaries,
but rather the runtime of the NN, i.e., the runtime of the
unitaries. A key component of this algorithm is the robust
inner product estimation (RIPE) quantum subroutine, intro-
duced in Appendix B 5. At the heart of many machine learning
architectures lie NNs that are trained in a supervised setting,
meaning that the NN is trained with labeled examples. Appli-
cations of supervised NNs are found in manufacturing [102],
drug discovery [103], and solving differential equations, as in
the algorithm from Ref. [25], which we outlined in Sec. I B.

When classically training feedforward NNs, the total run-
time of the training algorithm is O(TiterME ), where Titer is
the number of training steps, M is the number of data points
trained on per training step, and E is the number of edges
in the network. This linear dependence on the number of
edges renders the training of large fully connected feedfor-
ward NNs expensive. To alleviate this issue, the authors in
Ref. [101] present a quantum-enhanced algorithm for training
and evaluating feedforward NNs, where the linear depen-
dence on the number of edges E may be exchanged for a
linear dependence in the number of neurons nnodes, at the
cost of the dependence on TiterM becoming (TiterM )3/2, i.e.,
O((TiterM )3/2nnodes). Recall the NN training via backpropa-
gation outlined in Appendix B 1. In particular notice that we
can reconsider Eqs. (B1) and (B2) by emphasizing the inner
product in each of the two equations,

z( j)
l = (W ( j)

l al−1
)+ b( j)

l , (72)

and

δ
( j)
l = f ′

nl

(
z( j)

l

)[(
W �

l+1

)( j)
δl+1

]
. (73)

The authors in Ref. [101] point out that when training and
evaluating NNs using Eqs. (B1) and (B2) in the classical
setting, the runtime is O(TiterME ). This complexity with its
linear dependence on E arises for each training iteration and
for each data point for the following reason: One has to, in
each layer, evaluate one activation function per neuron, as well
as compute the inner product from Eq. (72), which depends
on the previous layer. Thus, we have a time complexity of
O(
∑L

l=2 nlnl−1 = E ) per data point per training iteration.
The authors then propose to use the RIPE algorithm (see

Lemma 11) to estimate the inner products in Eqs. (72) and
(73). In addition to achieving potential speedups, the authors
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argue that introducing noise into the inner product estimation
may help regularise NNs, i.e., prevent them from overfitting.
Overfitting refers to the phenomenon whereby NNs fail to
identify patterns underlying the data and instead memorise
the data on which they are trained and consequently fail to
generalize well to new data. Next, the authors point out that
merely initializing and storing the weight matrices Wl takes
time at least O(E ). To circumvent this issue, the authors in
Ref. [101] come up with two solutions. Firstly, they use low-
rank initialization for the weight matrices. Observe that, due
to Eq. (B3) and setting η0,1 = −1, we can write the weights
as

W ( j,k)
t,l =

t−1∑
τ=0

M∑
m=1

−ητ,l

M
δ

( j)
τ,m,l a

(k)
τ,m,l−1. (74)

With low-rank initialization, only a fraction of the M sum-
mands a(k)

0,m,lδ
( j)
0,m,l are set to be initially nonzero. They justify

this by pointing out that other (classical) algorithms for train-
ing NNs have made use of this approach as well to speed
up the training of NNs [104–106]. Thus, the authors avoid
writing out O(E ) weight values for the initial weights. Sec-
ondly, they make use of an implicit weight storage scheme
using quantum random-access memory (QRAM), see Defini-
tion 6. Recall that QRAM is a quantum mechanical analog
of classical RAM, allowing for classical data to be queried
in superposition. By storing matrices Xt,l, j ∈ Rt×M with el-
ements X (τ,m)

t,l, j = −ητ,l

M δ
( j)
τ,m,l‖aτ,m,l−1‖2 in an l2 binary search

tree in QRAM, the states |W ( j)
t,l 〉 can be computed efficiently

on the fly. An l2 binary search tree is a tree (data structure)
where the nodes have two children, unless they are leaves, and
where the root stores ‖x‖2

2 and the leaves store the components
(x(k) )2 along with the sign of x(k). The authors of Ref. [107]
showed that storing a classical vector x ∈ RK in an l2 binary
search tree in QRAM takes time Õ(K ) and retrieving it poly-
logarithmic time in K . For a given training iteration t , there are
nnodes − n1 such matrices stored in QRAM. The key takeaway
is that in order to avoid the cost of O(E ), the authors in
Ref. [101] store the matrices Xt,l, j implicitly in QRAM, from
which they can compute the weights W ( j)

l efficiently on the fly.
For more details on the implicit storage of the weight matrices,
we refer to Ref. [101]. The cost of performing the forward
propagation in an NN then becomes O(nnodesTRIPE), where
TRIPE is the mean time to carry out the RIPE algorithm from
Lemma 11, which is applied to estimate the inner products in
Eqs. (72) and (73). Using the expression from Eq. (B59), the
overall running time for the forward propagation is

O

(√
TiterMnnodes

log 1/γ

ε
Rt,m,a

)
, (75)

where γ and ε are as in Lemma 11, Rt,m,a depends on the ma-
trices Xt,l, j and W ( j)

t,l as well as the terms at,m,l−1. The authors
provide experimental evidence, that Rt,m,a does, however, in
practice not impact the running time significantly. Similarly,
by again using low-rank initialization and the implicit weight
storage scheme, the authors show that one backpropagation
pass can be carried out in time:

O

(√
TiterMN

log 1/γ

ε
Rt,m,δ

)
, (76)

where Rt,m,δ depends on the matrices Xt,l, j and W ( j)
t,l and on the

terms δt,m,l−1. Again, the authors provide evidence indicating
that in practical settings Rt,m,δ does not significantly impact
the runtime. When training the NN for Titer iterations with M
data points each, the runtime gets multiplied by a factor of
TiterM.

It is worth pointing out again, that the authors of Ref. [101]
managed to overcome the dependence on E in the runtime
of training and evaluating NNs, which comes at the cost of√

Mnnodes showing up in the runtime. Replacing E by nnodes

in the runtime approximately amounts to a quadratic speedup
(in the case of a fully connected feedforward NN), since each
neuron, in that scenario, is connected with every neuron in the
preceding and succeeding layer, see Fact 1. Furthermore, in
practice, for large NNs, nnodes � √

TiterM [101]. We summa-
rize the key findings from Ref. [101] (Algorithm 3 therein) in
Lemma 1.

Lemma 1. RIPE-accelerated NN training and evaluation
[101]. There exist quantum algorithms for training and eval-
uating a feedforward NN using the RIPE algorithm (see
Lemma 11). The time complexity for the training procedure
is O((TiterM )3/2nnodes

log 1/γ

ε
Rb) and O(

√
TiterMnnodes

log 1/γ

ε
R f )

for the evaluation of the NN. Here, Titer is the number of
training iterations, M is the number of data points trained
on per iteration, nnodes is the number of neurons in the NN,
γ and ε are from the RIPE algorithm (see Lemma 11), and
R f and Rb are factors depending on the NN and the training
samples. In practice, the last two parameters are expected to
not significantly impact the runtime.

Application to deep-learning approach

We proceed to discuss how the results from Ref. [101]
that we introduced above may be applied to the architecture
from Ref. [25], and discuss the implications. To begin with,
it is worth pointing out that the NNs in the deep-learning
architecture are in fact trained in a supervised manner. For the
sampled Brownian paths {Xtn}n, which constitute the training
data, the labels are given by g(XtN ), as outlined in Sec. I B.
Thus, when starting from the classical algorithm outlined in
Ref. [25], one may train and evaluate the NNs using the results
from Ref. [101], with the caveat that QRAM is required,
unlike in the algorithms discussed so far. As outlined above,
this approximately results in a quadratic speedup in d for the
training and evaluation of the NNs, where d is the dimension
of the stochastic process Xt from Ref. [25], (see Fact 1),
whereas the number of neurons per NN is of the order of d .

A question that naturally emerges at this point, is whether
the RIPE-accelerated training and evaluation may be com-
bined with other methods, with which we have aimed to
enhance the deep-learning architecture. In Sec. IV C we
outlined how the estimation of the loss function in the
deep-learning may be accelerated using classical multilevel
Monte Carlo (MLMC) methods. Since employing the clas-
sical MLMC method does not change the nature of any
of the NNs involved in the deep-learning architecture from
Ref. [25], the application of the RIPE-accelerated methods
appears straightforward. However, the combination of the
RIPE-accelerated method and quantum-accelerated Monte
Carlo (QAMC) methods does not. In the RIPE-accelerated
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FIG. 10. Flowchart representing the classical algorithm from Ref. [25] as shown in Fig. 1. The parts of the algorithm that we targeted for
quantum speedups are inside dashed boxes. We target the neural networks (red dashed box) by making use of variational quantum circuits
(with a near-term setting in mind) as well as the robust inner product estimation algorithm (with a far-term setting in mind). We target the
sampling process (dark blue dashed box) by making use of quantum-accelerated Monte Carlo for evaluating the loss function and its gradient.

methods, the quantum subroutine that is employed is the
RIPE subroutine (Lemma 11). The other operations, such
as applying the activation functions, are not carried out on
a quantum processor, as described in Ref. [25]. If we were
to combine the RIPE-accelerated methods with QAMC, the
whole deep-learning architecture, from preparing the stochas-
tic process Xt to computing the payoff function fp that we
aim to estimate, has to be carried out in a quantum circuit,
lest the superpositions get collapsed, on which QAMC and
the underlying amplitude estimation subroutine crucially rely.
Therefore, the implicit weight storage scheme, which is an
essential part of the RIPE-accelerated methods, would have to
be adapted. Recall that QRAM merely allows for the loading
of classical data in superposition, but does not allow for the
storage of states in superposition. Thus, the terms that are
stored in QRAM in Ref. [101] would instead be stored in
qubits in the quantum circuit, in superposition. This procedure
would require some kind of random access memory in a quan-
tum circuit, as outlined in, e.g., [108]. We point out that this
procedure would most likely be very expensive regarding the
number of qubits required. We leave the further exploration
of combining RIPE-accelerated NN methods with QAMC to
future research.

VI. DISCUSSION

In Fig. 10, the sections of the classical algorithm from
Ref. [25] for which we investigated the potential for quantum
speedups are highlighted in dashed boxes. The training and
evaluation of the neural networks (NNs) inside the red dashed
box we aimed to speed up by using parametrized quantum cir-
cuits (PQCs) and training them as in variational quantum al-
gorithms, as described in Sec. II. While the variational method
could allow for quantum advantages in special scenarios,

in our simulations we found no evidence supporting the po-
tential for a quantum speedup using this method. We also
investigated the potential for a quantum speedup in the train-
ing and evaluation of the NNs by considering an algorithm for
fault-tolerant quantum computers, see Sec. V. This algorithm
(introduced in Ref. [101]) offers the potential for a quadratic
speedup in the dimension d of the spatial variable of the
partial differential equation (PDE) by making use of a robust
inner product estimation (RIPE) subroutine. We targeted the
sampling process (the section inside the dark blue dashed box
in Fig. 10) by considering quantum-accelerated Monte Carlo
(QAMC) [99] in Secs. III and IV. We showed that for the
number of samples required to achieve a certain error toler-
ance in the loss function and its gradient (with respect to their
trainable parameters), there is the potential for a quadratic
speedup in the error tolerance, when using this subroutine on
a fault-tolerant quantum computer, compared to the classical
case. Furthermore, the forward gradient method offers the
potential for saving memory, i.e., qubits. When targeting the
sampling process, we also identified a classical algorithm,
multilevel Monte Carlo (MLMC) for which we could show
the potential for an even greater speedup in the error tolerance.
The combination of MLMC with QAMC in the context of the
deep-learning architecture may be investigated in the future.

For now, since QAMC and MLMC methods offer the po-
tential for a speedup in the error tolerance ε when estimating
the loss function and the gradient, and RIPE-accelerated meth-
ods for evaluating and training classical NNs offers a possible
speedup in the input dimension d , we can outline two regimes.
In the case where d � 1/ε, the speedup in d when training
the NNs with the RIPE-accelerated method would be more
valuable, as may be the case in high-dimensional instances of
the Black-Scholes or Hamilton-Jacobi-Bellman PDE. On the
contrary, when d � 1/ε, QAMC and MLMC offer a more
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significant advantage, as in the Allen-Cahn equation. The
task of combining RIPE-accelerated methods for NNs with
QAMC we leave to future research.
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APPENDIX A: QUANTUM COMPUTATIONAL MODEL

Before we look at specific quantum algorithms, we review
our computational model and other assumptions and defini-
tions. The computational model of quantum computing we
work in is the standard quantum circuit model [109]. In a
quantum circuit with n qubits, operations on quantum states
are represented as unitary matrices (termed quantum gates)
acting on at least one qubit. Since the operations are unitary,
they are reversible. We illustrate a quantum circuit by a set
of horizontal lines (wires) [109]. The unitary operations are
represented as boxes on these wires, being executed from
left to right. The quantum circuit model is useful for show-
ing how a complicated operation can be constructed from
relatively simple operations. At the end of the circuit a mea-
surement, typically in the computational basis, takes place.
As mentioned in Ref. [109], an arbitrary classical circuit can
be simulated by an equivalent (reversible) quantum circuit.
Indeed, the class of problems that can be solved in polynomial
time with a probabilistic classical computer is a subset of the
class of problems that can be solved in polynomial time with
a quantum computer [110]. For a probabilistic classical circuit
with runtime T , there exists a corresponding quantum circuit
with runtime O(T log2(3) ) [111] (formulation from Ref. [112]).

In our work, we carry out arithmetic computations by
employing a fixed point representation of real numbers. We
make the assumption that there are enough qubits available
to us, such that we can store numbers with enough precision,
such that numerical errors become negligible. We use the fixed
point encoding for real numbers as in Ref. [113] with the
formulation from Ref. [114].

Definition 1. Fixed-point encoding of real numbers. Let c1

and c2 be positive integers and a ∈ {0, 1}c1 , b ∈ {0, 1}c2 as
well as s ∈ {0, 1}, then we define a rational number as

Q(a, b, s) = (−1)s(2c1−1a(c1−1) + · · · + 2a(1) + a(0)

+ 2−1b(0) + · · · + 2−c2 b(c2−1)) ∈ [−R, R],
(A1)

where R = 2c1 − 2−c2 .
Using the fixed-point encoding of real numbers as in Defi-

nition 1, we define our arithmetic model.
Definition 2. Quantum arithmetic model. Given c1, c2 ∈

N, we say that we use a quantum arithmetic computing model

if the four arithmetic operations can be performed in constant
time on a quantum computer.

More elaborate discussions on how one can perform arith-
metic operations on a quantum computer using the fixed-point
representation of real numbers can be found in Appendix C of
Ref. [98], as well as in Ref. [113].

Controlled rotation operations are central to quantum com-
putation and the cost of carrying out controlled rotations is
dependent the number of bits needed to specify the rotation
angle [115]. In our computational model we associate a con-
trolled rotation with constant cost, with the formulation from
Ref. [116].

Definition 3. Controlled rotation. We say we carry out a
controlled rotation with an operation R if, with constant time
and for all rational numbers x ∈ [0, 1] defined by a (1 + c2)-
bit string as defined above in the fixed point arithmetic,

R|x〉|0〉 = |x〉(√1 − x|0〉 + √
x|1〉). (A2)

In order to access (classical) functions in a quantum circuit
we make use of oracles and unitaries. If we know how to
implement the function f under consideration, we speak of
a unitary Uf . Typically, the term oracle is used for functions
where we do not know how to implement the circuit, e.g., in
Grover’s search algorithm [13]. The unitary Uf for a classical
function f is defined as follows [109]:

Definition 4. Access to function. We say that we have
quantum access to a classical function f : {0, 1}n → {0, 1}m,
which can be represented via a classical circuit, via a unitary
Uf , if we can perform the quantum operation,

Uf |x〉|y〉 = |x〉|y ⊕ f (x)〉, for x ∈ {0, 1}n, y ∈ {0, 1}m.

(A3)

in constant time, where ⊕ represents the bitwise exclusive OR

(XOR) operation.
The oracle O f acts in the same way, for the case when we

do not know how to implement the function f . Importantly,
Uf allows for access to function evaluations in superposition,
i.e., in a linear combination of states. For complex normalized
coefficients {ci}N

i=1 and {xi}N
i=1 a set of points, we have

Uf

N∑
i=1

ci|xi〉|0〉 =
N∑

i=1

ci|xi〉| f (xi )〉. (A4)

Quantum distribution loading refers to the preparation of
quantum states corresponding to probability distributions, i.e.,

|ψ〉 =
∑

i

√
pi|i〉, (A5)

where {pi}i constitutes a probability distribution. Grover and
Rudolph have presented a method to load a discrete ap-
proximation of a log-concave probability distribution (e.g., a
univariate Gaussian distribution) [117]. The inductive Grover-
Rudolph method starts from a state of the form

|ψm〉 =
2m−1∑
i=0

√
pi,m|i〉 (A6)
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and then proceeds to further divide the 2m regions into 2m+1.
To do so, the following function is computed:

fGR(i) =
∫ (xR,i−xL,i )/2

xL,i
p(x) dx∫ xR,i

xL,i
p(x) dx

, (A7)

where xL,i and xR,i are the left and right boundaries of the
region i. Next, θi = arccos[

√
fGR(i)] is loaded into a quan-

tum circuit such that the following controlled rotation can be
carried out:

√
pi,m|i〉|θi〉|0〉 	→ √

pi,m|i〉|θi〉[cos(θi)|0〉 + sin(θi )|1〉],
(A8)

which, after uncomputing |θi〉, leaves us in |ψm+1〉.
There are, however, issues with the Grover-Rudolph

method, as pointed out in Refs. [98,118]. Having to compute
the integrals in Eq. (A7) may undo any quantum speedup
brought about by other quantum subroutines. Nevertheless,
in Ref. [116], the authors point out that this argument only
applies when one needs to sample from the distribution p(x)
in order to compute fGR, which is not always the case. An-
other way to avoid the slowdown, in the case where the same
distribution is to be loaded multiple times, is to compute the
quantities θi up to the desired m once and store them in a quan-
tum random access memory (see Definition 6), from which
they can be loaded multiple times. In Ref. [119], the authors
present a different method for distribution loading, namely
the quantum generative adversarial networks (QGANs). The
QGAN can first learn a distribution (from samples) and later,
once trained, repeatedly load the distribution into the quan-
tum circuit efficiently. We conclude this discussion with the
following definition for quantum distribution loading.

Definition 5. Quantum distribution loading. We say we
have access to distribution loading for the distribution {pi}i

if we have access to a unitary Up, such that

Up|0 · · · 0〉 =
Np∑
i=0

√
pi|i〉. (A9)

Apart from potentially alleviating the issue around quan-
tum distribution loading, quantum random access memory
(QRAM) is a key component of quantum algorithms for,
e.g., machine learning [120], evaluating general NAND trees
[121], and enforcing privacy in database searches [122]. We
conclude this section with the introduction of QRAM.

Definition 6. Quantum random access memory [123]. We
refer to a data structure that allows for the loading of classical
data in superposition into a quantum circuit, as in∑

i

ci|i〉|0 · · · 0〉 	→
∑

i

ci|i〉|Di〉, (A10)

where |i〉 represent the pointer states (in superposition) and
|Di〉 the data stored at index i, and ci are normalized complex
coefficients, as quantum random access memory.

APPENDIX B: CLASSICAL AND QUANTUM METHODS

In this Appendix we introduce a range of algorithms and
subroutines, classical and quantum, which will be relevant

later on in this work. We give an introduction to neural net-
works (NNs) in Appendix B 1 and automatic differentiation
(AD) in Appendix B 2. We introduce variational quantum
methods in Appendix B 3, which are proposed to be well
suited for the noisy intermediate-scale quantum (NISQ) era,
where circuit depths are kept short to mitigate the effects of
noise. Thereafter, we introduce classical Monte Carlo (MC)
methods and their quantum-accelerated counterparts in Ap-
pendix B 4. Among the fault-tolerant quantum algorithms we
introduce, are quantum-accelerated MC (QAMC) methods
in Appendix B 4 a and the robust inner product estimation
(RIPE) algorithm in Appendix B 5.

1. Neural networks

Deep learning is a subfield of machine learning which
involves leveraging large NNs and has a wide range of ap-
plications, such as web search [124,125], computer vision
[126], and natural language processing [127]. The algorithm
from Ref. [25], which serves as the starting point of our
work, applies deep learning to the problem of solving non-
linear partial differential equations (PDEs). We here give a
brief overview of feedforward NNs and their training and
evaluation algorithms, following [101]. References for further
reading include Refs. [87,128].

A feedforward NN consists of a collection of units, or-
ganized into L layers, each layer l having nl neurons. The
connections between the neurons of two adjacent layers, e.g.,
between layers l − 1 and l , can be described by a weight
matrix Wl ∈ Rnl ×nl−1 . Furthermore, each layer has its own
bias vector bl ∈ Rnl . Given a nonlinear function fnl (termed
the activation function), data are propagated through the NN,
in what is called forward propagation, by computing a( j)

l =
fnl,l (z

( j)
l ) and

z( j)
l =

nl∑
k=1

W ( j,k)
l a(k)

l−1 + b( j)
l . (B1)

The goal of a feedforward NN is generally to make correct
predictions from data that it has not been trained on. Note
that the nonlinearity of fnl is crucial, otherwise the whole NN
would just amount to one linear transformation. Consider a
data set of the form {(x1, y1), . . . , (xm, ym)} where xi ∈ Rn1

are data vectors and yi ∈ RnL are the corresponding labels. We
make use of such a data set to train the NN, meaning that its
weights Wl and biases bl are tuned such that the NN minimizes
a cost function C : RnL 	→ R. Ideally, the NN is trained long
enough such that it makes correct predictions on unseen data
points with high accuracy. The weights and biases of the NN
are typically trained using a method called backpropagation,
which works as follows. Given zL and aL at the end of the
network, after having applied forward propagation to a data
point from the training set, we introduce a vector δL with
entries δ

( j)
L = f ′

nl(z
( j)
L )∂C/∂a( j)

L and proceed to compute the
derivatives of the weights and biases backward through the
network using the chain rule, at each step calculating and
storing the vectors δl with entries

δ
( j)
l = f ′

nl

(
z( j)

l

) nl+1∑
k=1

(
W �

l+1

)( j,k)
δ

(k)
l+1. (B2)
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FIG. 11. Toy example of an NN, where the values in the neurons
represent the pre-activation values, in the cases where an activation
is applied, and the w values represent the weights associated with the
respective edges. For simplicity, we omit biases.

The weights and biases are then typically updated via gradient
descent,

W ( j,k)
t+1,l = W ( j,k)

t,l − ηt,l
1

M

M∑
m=1

a(k)
t,m,l−1 δ

( j)
t,m,l , (B3)

b( j)
t+1,l = b( j)

t,l − ηt,l
1

M

M∑
m=1

δ
( j)
t,m,l , (B4)

where the index t indicates the update step, and η is the
learning rate and M is the size of the training data (or a batch
thereof). We refer to one step of the form of Eqs. (B3) and
(B4) as an iteration step. In the next section, we describe
the methods used to efficiently evaluate the derivatives that
appear in backpropagation, which may also be applied in other
scenarios.

2. Automatic differentiation

We next introduce automatic differentiation (AD), which
was first introduced in Ref. [129] and is widely used to numer-
ically evaluate derivatives. AD computes numerical values of
derivatives of functions, without developing algebraic expres-
sions for the derivatives, by decomposing the function into
a sequence of elementary functional steps. Using predevel-
oped subroutines (e.g., for the derivatives of certain known
functions, as well as for the product rule and the chain rule),
the derivative is computed alongside the actual function. The
number of arithmetic operations when using AD is increased
only by a constant factor compared to the number of arith-
metic operations needed to evaluate a given function [89].
There exist two modes of AD, forward and reverse mode
[130]. For a function with n inputs and m outputs, forward
mode AD computes a column of the Jacobian, and reverse
mode computes a row of the Jacobian. We illustrate each
mode using the toy example of a NN in Fig. 11, where we
omit the biases bl for simplicity. In the context of NNs, reverse
mode AD corresponds to the backpropagation algorithm.

We begin by applying reverse mode AD to the toy example
from Fig. 11. Reverse mode AD in the context of NNs, i.e.,
backpropagation, consists of a forward and backward pass.
In the forward pass, the input values are propagated forwards
through the NN and the intermediate values are stored. In the
backward pass, the derivatives are computed. For our toy NN
from Fig. 11, the forward pass looks as follows, where we
represent the values we compute at each step in the forward
pass in a vector. We begin by loading the initial values, i.e.,

the input data, (
a(1)

0

a(2)
0

)
=
(

x(1)

x(2)

)
, (B5)

propagating the data through the first linear transformation,(
a(1)

1

a(2)
1

)
=
(

x(1)w
(1,1)
1 + x(2)w

(1,2)
1

x(1)w
(2,1)
1 + x(2)w

(2,2)
1

)
, (B6)

applying the nonlinear activation function,(
z(1)

1

z(2)
1

)
=
(

fnl
(
a(1)

1

)
fnl
(
a(2)

1

)
)

, (B7)

followed by the second linear transformation,(
a(1)

2

) = (z(1)
1 w

(1,1)
2 + z(2)

1 w
(1,2)
2

)
, (B8)

which leaves us with the final output of the toy NN, to which
one typically applies a loss function, floss,

C = floss
(
a(1)

2

)
. (B9)

Next, we go through the backward pass of reverse mode AD.
At each step in the backward pass, we display the newly
computed values, which correspond to the derivatives of the
final output of the NN with respect to the weights of a given
layer. Note that in practice one only computes the vectors on
the right hand side, and not the symbolic derivatives, as doing
so may be computationally expensive. We start with the cost
of the NN, C, and compute the derivatives with respect to the
weights in the final linear transformation,⎛

⎝ ∂C
∂w

(1,1)
2

∂C
∂w

(1,2)
2

⎞
⎠ =

⎛
⎜⎝

∂C
∂a(1)

2

∂a(1)
2

∂w
(1,1)
2

∂C
∂a(1)

2

∂a(1)
2

∂w
(1,2)
2

⎞
⎟⎠ =

⎛
⎝z(1)

1

z(2)
1

⎞
⎠, (B10)

and proceed backwards, where the nonlinear activation func-
tion comes into play,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂C
∂w

(1,1)
1

∂C
∂w

(2,1)
1

∂C
∂w

(1,2)
1

∂C
∂w

(2,2)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂C
∂a(1)

2

∂a(1)
2

∂z(1)
1

∂z(1)
1

∂a(1)
1

∂a(1)
1

∂w
(1,1)
1

∂C
∂a(1)

2

∂a(1)
2

∂z(1)
1

∂z(1)
1

∂a(1)
1

∂a(1)
1

∂w
(2,1)
1

∂C
∂a(1)

2

∂a(1)
2

∂z(2)
1

∂z(2)
1

∂a(2)
1

∂a(2)
1

∂w
(1,2)
1

∂C
∂a(1)

2

∂a(1)
2

∂z(2)
1

∂z(2)
1

∂a(2)
1

∂a(2)
1

∂w
(2,2)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w
(1,1)
2 f ′

nl

(
a(1)

1

)
a(1)

0

w
(1,1)
2 f ′

nl

(
a(2)

1

)
a(1)

0

w
(1,2)
2 f ′

nl

(
a(1)

1

)
a(2)

0

w
(1,2)
2 f ′

nl

(
a(2)

1

)
a(2)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(B11)

It is worth pointing out, that we have now computed the
entries of the gradient of the output of the NN with respect to
the trainable parameters. Since we know the structure of the
NN, we do not need to symbolically compute the derivatives
(in the sense that we would obtain an algebraic representation
of the derivative), but we can merely use the right hand side
of the equations in the last two vectors to calculate the nu-
merical values of the derivatives. This allows us to compute
the gradient of the NN with respect to the weights with only
a constant overhead compared to the evaluation of the NN
(i.e., the forward pass) [89], as for the forward as well as
the backward pass we need O(E ) arithmetic operations and
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O(nnodes) evaluations of the activation function and its deriva-
tive, where E is the number of trainable parameters and nnodes

is the number of nodes in the NN. A key point allowing us to
do so is the reusability of terms that we computed and stored
in the forward pass for the backward pass.

Next, we outline the process of applying forward mode AD
to the toy NN. In forward mode, we evaluate the NN along-
side computing the derivatives. Again, with AD we do not
compute the symbolic expressions for the derivatives (these
are only shown for illustration purposes), but only numerical
values. In contrast to the forward pass in reverse mode AD,
no intermediate values get stored for later retrieval during
forward mode AD. We will represent the evaluations and the
derivatives as a pair of vectors for each stage. The entries of
the derivative vector (termed the tangents, with ∂) contain the
derivatives of the corresponding entries in the vector contain-
ing the function evaluation values (the primals). The reader
may ask “the derivative with respect to what?” The answer to
this question lies in the initialization of the derivative values,
as will become clearer by the end of our computation. We
initialize the derivatives of the weight parameters w to be
given by the parameters v with the labels and indices. We
again begin by loading the input values, and in the case of
forward mode AD we have(

a(1)
0

a(2)
0

)
=
(

x(1)

x(2)

)
,

(
∂a(1)

0

∂a(2)
0

)
=
(

0

0

)
, (B12)

and after the linear transformation we have(
a(1)

1

a(2)
1

)
=
(

x(1)w
(1,1)
1 + x(2)w

(1,2)
1

x(1)w
(2,1)
1 + x(2)w

(2,2)
1

)
,

(
∂a(1)

1

∂a(2)
1

)
=
(

x(1)v
(1,1)
1 + x(2)v

(1,2)
1

x(1)v
(2,1)
1 + x(2)v

(2,2)
1

)
, (B13)

and following the nonlinear activation function we have(
z(1)

1

z(2)
1

)
=
(

fnl
(
a(1)

1

)
fnl
(
a(2)

1

)
)

,

(
∂z(1)

1

∂z(2)
1

)
=
(

f ′
nl

(
a(1)

1

)
∂a(1)

1

f ′
nl

(
a(2)

1

)
∂a(2)

1

)
,

(B14)

and after the final linear transformation we get(
a(1)

2

) = ( fnl
(
a(1)

1

)
w

(1,1)
2 + fnl

(
a(2)

1

)
w

(1,2)
2

)
,(

∂a(1)
2

) = ( f ′
nl

(
a(1)

1

)
∂a(1)

1 w
(1,1)
2 + fnl

(
a(1)

1

)
v

(1,1)
2

+ f ′
nl

(
a(2)

1

)
∂a(2)

1 w
(1,2)
2 + fnl

(
a(2)

1

)
v

(1,2)
2

)
, (B15)

where we applied the product rule. Finally, we compute the
loss,

C = floss
(
a(1)

2

)
, ∂C = f ′

loss

(
a(1)

2

)
∂a(1)

2 . (B16)

The quantity ∂C, which forward mode AD gives us, corre-
sponds to ∇C · v, whereby ∇C is the gradient of C with
respect to the trainable parameters, and v is the vector con-
taining the initializations of the tangents in the same order as
they appear in the gradient [130]. To see this in our example,

let us expand ∂C,

∂C = f ′
loss

(
a(1)

2

)(
f ′
nl

(
a(1)

1

)(
x(1)v

(1,1)
1 + x(2)v

(1,2)
1

)
w

(1,1)
2

+ fnl
(
a(1)

1

)
v

(1,1)
2 + f ′

nl

(
a(2)

1

)(
x(1)v

(2,1)
1

+ x(2)v
(2,2)
1

)
w

(1,2)
2 + fnl

(
a(2)

1

)
v

(1,2)
2

)
, (B17)

where this claim is more clearly visible. By choosing the
initialization values for the derivatives, we can thus choose
with respect to which weights we want to differentiate, by
computing the directional derivative with respect to the initial
values of the tangents. If we, e.g., set v to only have one
nonzero entry, forward mode AD computes the derivative of
C with respect to the corresponding parameter. Similarly to
reverse mode AD, forward mode AD allows us to compute the
directional derivative of the NN with only a constant overhead
in runtime compared to the evaluation of the NN [89], with
O(E ) arithmetic operations and O(nnodes) evaluations of the
activation function and its derivative.

To conclude, we can numerically compute the gradient of
the NN with respect to the trainable parameters with reverse
mode AD (backpropagation, in the context of NNs) and we
can compute the inner product of the gradient with respect
to the initial tangent values with forward mode AD. Both
modes allow for the computation of the respective quantity
(the gradient and the directional derivative) with a runtime
with only a constant overhead (in practice, a factor of two to
three [130]), compared to just the evaluation of the NN.

After having reviewed a range of relevant classical al-
gorithms and subroutines, we proceed in the following
sections to give an overview over a range of quantum algo-
rithms and subroutines that we will reference later on in this
work.

3. Variational quantum algorithms

We begin by introducing variational quantum algorithms
(VQAs) together with their strengths and weaknesses. VQAs
have been designed with the aim of being particularly well
suited for the noisy intermediate-scale quantum (NISQ) era,
by keeping the circuit depths short. Nevertheless, VQAs form
a class of quantum algorithms that have been proposed for
a variety of problems, such as machine learning [57], opti-
mization [131] and chemistry [132]. In the context of VQAs,
one defines a cost function C, which encodes the solution to
the problem, as well as a quantum circuit (or ansatz) |ψ (θ )〉
parametrized by a set of parameters θ [132]. The quantum
processor then evaluates the cost function (or its gradients),
and a classical optimizer tries to find the optimal parameters
θ� for the ansatz,

θ� = arg min
θ

C(|ψ (θ )〉). (B18)

The parameter shift rule allows for the evaluation of the gra-
dient of a parametrized quantum circuit (PQC) with respect to
a single parameter [133,134].

Lemma 2. Parameter shift rule [133]. Let B be an observ-
able and let

〈B〉 = 〈0|⊗n U†(θ )B U (θ ) |0〉⊗n (B19)
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be the expectation value of B with respect to a parametrized
n-qubit quantum circuit U (θ )|0〉⊗n where θ denotes the set of
parameters. If a given parameter θ j appears in U (θ ) only once
in the form of a gate G(θ j ) = e−iθ j G we can write U (θ )|0〉⊗n =
U1G(θ j )U2|0〉⊗n. Furthermore, if G is a Hermitian operator
with two distinct eigenvalues (such as for any single qubit
gate), which we can shift without loss of generality to ±r,
it holds that

∂θ j 〈B〉/r = 〈0|⊗n U†
2 G†(θ j + s)U†

1 B U1 G(θ j + s)U2 |0〉⊗n

− 〈0|⊗n U†
2 G†(θ j − s)U†

1 B U1 G(θ j − s)U2|0〉⊗n,

(B20)

where s = π/4r.
In Ref. [135] the author extends the parameter shift rule to

general two-qubit gates, with a constant overhead in runtime.
What makes VQAs uniquely suitable for NISQ devices is

their typically short circuit depth, which prevents too many
errors from accumulating throughout the computation on the
quantum processor. Furthermore, the optimization is out-
sourced to a classical processor. At the same time, VQAs
make use of the Hilbert space whose size increases expo-
nentially in the number of qubits to encode features and find
solutions.

A downside of VQAs is, however, the widespread presence
of barren plateaus [64]. This phenomenon refers to the van-
ishing of the gradient, which happens exponentially fast in the
number of qubits. The gradient is needed to minimize the cost
function. When computing an expectation of an observable C
of a parametrized n-qubit quantum circuit we have

U (θ ) =
∏

k

Uk (θk )Wk, (B21)

where Uk (θk ) = e−iθkVk and where Vk are Hermitian and Wk

are not parametrized unitaries. When tuning the parameters θ ,
we do so by using a classical optimizer which typically relies
on calculating the derivative with respect to a parameter θ j of
an expectation value we want to minimize, i.e.,

∂θ j 〈C〉 = i〈0|⊗n U†
− [V j, U†

+C U+]U−|0〉⊗n, (B22)

where U− and U+ refer to the products of the factors from
Eq. (B21) with k < j and k > j, respectively, and the square
brackets denote the commutator. Whenever the training ansatz
U (θ ) is sufficiently random, U− or U+ or both match the
Haar random distribution for unitary matrices up to the second
moment [136]. In Ref. [64], the authors show that if a circuit is
sufficiently deep such that U− or U+ or both form a two-design
(matching the Haar random distribution up to the second
moment), then with high probability the ansatz state will be
on a barren plateau, i.e., the size of the gradient vanishes
exponentially fast in the number of qubits and the optimizer
will not be able to find a direction along which the parameters
can be optimized. Randomly parametrized quantum circuits
(PQC) are often used as initial guesses in variational quan-
tum algorithms as a starting point for exploring the space of
quantum states [64].

Several potential remedies to combat the emergence of
barren plateaus have been put forward, often proposing
to reduce the entanglement between qubits, or groups of
qubits [137–140]. In Refs. [141,142], the authors show that

over-parametrizing variational quantum circuits also improves
the trainability. Furthermore, quantum convolutional neural
networks [143] have been shown to not exhibit barren plateaus
[144].

As touched upon in Sec. I, we refer to quantum algorithms
as fault-tolerant, when their design is not concerned about
limitations of the underlying hardware. The next sections will
feature fault-tolerant quantum algorithms (as well as some
classical methods they improve upon) that will be relevant
later on in this work.

4. Classical and quantum-accelerated Monte Carlo methods

Monte Carlo (MC) methods use randomness to estimate
numerical properties of systems which would prove in-
tractable for an analytical analysis and are often employed in,
e.g., physics [145], finance [146], and machine learning [147].
Next, we outline classical and quantum MC methods, starting
with the univariate case in Appendix B 4 a and proceeding to
the multivariate case in Appendix B 4 b and multilevel MC
methods in Appendix B 4 c. We will apply these methods
to the deep-learning architecture from Ref. [25] later in this
work.

a. Univariate Monte Carlo methods

MC methods are often used to estimate the expected output
of a randomised algorithm, we begin by focusing on the case
where the quantity we want to estimate is a scalar, with the
formulation from Ref. [99] for the general setting. Let v(A)
denote the scalar (hence univariate) random variable which
returns the outcome of the randomised algorithm A processed
by the function v. MC methods then aim to estimate the
expectation value of w of v(A) in the following way: They
produce k samples by independently running A k times and
taking the average of the samples to produce w̃ which is used
as an estimator of the true value w. Assuming the variance of
v(A) is bounded by σ 2, it holds, by Chebyshev’s inequality,
that

P[|w − w̃| � ε] � σ 2

kε2
, (B23)

for ε > 0. We can thus conclude, that by taking k samples
where

k = O(σ 2/ε2), (B24)

we can estimate w up to error ε with a success probability of,
e.g., 0.99.

By employing a quantum algorithm, it is possible to
achieve a quadratic speedup in σ/ε for the MC method, as
first shown in Ref. [99]. We start by formulating the setting in
terms of a quantum circuit, as done in Ref. [148]. Assume we
have an algorithm A on n qubits, which, upon measurement,
produces the n-bit result x with probability |ax|2. Furthermore,
let v(x) : {0, 1}n 	→ [0, 1]. The goal is then to estimate the
expectation value,

E[v(A)] =
2n−1∑
x=0

|ax|2v(x). (B25)
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We may obtain this expectation value by combining A,

A|0〉⊗n =
2n−1∑
x=0

ax|x〉, (B26)

and the rotation operation seen in Eq. (A2) to arrive at

R(A ⊗ I2)|0〉⊗n+1 =
2n−1∑
x=0

ax|x〉(
√

1 − v(x)|0〉 +
√

v(x)|1〉)

=: |χ〉, (B27)

where Id denotes the d-dimensional identity operation. Mea-
suring the ancilla qubit in the state |1〉 has as its success
probability the sought expectation value,

v̄ := 〈χ |(I2n ⊗ |1〉〈1|)|χ〉 = E[v(A)]. (B28)

However, since the variance of this (Bernoulli) distribution is
V [v(A)] = v̄(1 − v̄)/k, where k is the number of samples, we
still have to sample k times, where

k = O

(
v̄(1 − v̄)

ε2

)
, (B29)

to obtain a given accuracy ε, as in the classical case. The
quadratic speedup in Ref. [99] comes from employing ampli-
tude estimation [149]. The speedup with amplitude estimation
is attained by encoding the desired expectation value to an
eigenfrequency of an oscillating quantum system, and using
additional qubits to extract the eigenfrequency. Consider the
following unitary:

V = I2n+1 − 2I2n ⊗ |1〉〈1|, (B30)

such that 〈χ |V|χ〉 = 1 − 2v̄. Because we can write any quan-
tum state in the (n + 1)-qubit Hilbert space as

V|χ〉 = cos(θ/2)|χ〉 + eiφ sin(θ/2)|χ⊥〉, (B31)

where |χ⊥〉 is a specific orthogonal complement of |χ〉. Now,

1 − 2v̄ = cos(θ/2), (B32)

so the goal is to estimate θ . Next, we define the unitaries,

U = I2n+1 − 2|χ〉〈χ |, (B33)

and

Q = UVUV, (B34)

where Q performs a rotation by an angle of 2θ in the two-
dimensional Hilbert space spanned by |χ〉 and V|χ〉. The
unitary U can be implemented via

U = R(A ⊗ I2)[I2n+1 − 2(|0〉〈0|)⊗n+1][R(A ⊗ I2)]†.

(B35)

The task now becomes to estimate θ by estimating the eigen-
values e±iθ of Q (recall that Q is unitary). This computation
can be achieved by using the quantum phase estimation al-
gorithm [109]. We present the amplitude estimation and the
quantum-accelerated MC (QAMC) method in the following
lemmas.

Lemma 3. Amplitude estimation [149]. The quantum al-
gorithm termed amplitude estimation takes as input a sin-
gle copy of a quantum state |χ〉, unitary transformations

U = I − 2|ψ〉〈ψ | and V = I − 2P where P is a projector,
and an integer k. Amplitude estimation outputs ã, an estimate
of a = 〈χ |P|χ〉 such that

|a − ã| � 2π

√
a(1 − a)

k
+ π2

k2
, (B36)

with probability at least 8/π2, using U and V t times each.
Lemma 4. Powering Lemma [150]. Let A be a classical or

quantum algorithm which aims to estimate some quantity μ

and whose output μ̃ satisfies |μ − μ̃| � ε except with fixed
probability γ < 1/2. Then, for any δ > 0, it suffices to repeat
A O(log 1/δ) times and take the median to obtain an estimate
which is accurate within ε with probability at least 1 − δ.

Amplitude estimation, together with the powering lemma,
are used in Ref. [99] to achieve a quantum speedup for
Monte Carlo mean estimation. We start with the result for
0 � v(A) � 1, which is a direct application of Lemmas 3 and
4 to the setting outlined so far.

Lemma 5. Mean estimation for [0, 1] bounded functions
[99]. Let A be a quantum circuit on n qubits and let v(A) be
the random variable that takes on the value v(x) ∈ [0, 1] when
A outputs x. Let R be defined such that

R|x〉|0〉 = |x〉[
√

1 − v(x)|0〉 +
√

v(x)|1〉]. (B37)

Furthermore, let |χ〉 = R(A ⊗ I2)|0〉⊗n+1 and let U =
I2n+1 − 2|χ〉〈χ |. Then there exists a quantum algorithm that
uses O(log 1/δ) copies of |χ〉 and uses U O(t log 1/δ) times
to output an estimate ˆ̄v such that

| ˆ̄v − E[v(A)]| � C

(√
E[v(A)]

t
+ 1

t2

)
, (B38)

with probability at least 1 − δ, where C is a universal constant.
In particular, for any fixed δ > 0 and and ε such that 0 <

ε � 1, to produce an estimate ˆ̄v such that | ˆ̄v − E[v(A)]| �
εE[v(A)] it suffices to take t = O(1/(ε

√
E[v(A)])). To

achieve | ˆ̄v − E[v(A)]| � ε with probability at least 1 − δ it
suffices to take t = O(1/ε).

The result in Lemma 5 is improved from v(A) ∈ [0, 1] to
v(A) having a bounded variance.

Lemma 6. Mean estimation for functions with bounded
variance [99]. Let A be a quantum circuit on n qubits
and let v(A) be the random variable that takes on the
value v(x) when A outputs x such that V [v(A)] < λ2.
Let the accuracy be ε < 4λ. Let U and |χ〉 be as in
Lemma 5. Then there exists a quantum algorithm that uses
O(log λ/ε (log log λ/ε)) copies of |χ〉 and uses U for a num-
ber of times O[λ/ε (log λ/ε)3/2(log log λ/ε)] and estimates
E[v(A)] up to additive error ε with success probability at least
2/3.

In Ref. [99], Lemma 6 is derived from Lemma 5 by de-
composing v(A) into a set of random variables whose outputs
lie in [0, 1] and by estimating the mean of each of these
random variables. The success probability can be improved
to 1 − δ for δ > 0 at a multiplicative cost of O(log 1/δ) us-
ing Lemma 4. Therefore, we can, e.g., improve the success
probability to 0.99, without an extra cost being reflected if we
formulate it using the Õ notation, as Õ hides polylogarithmic
factors. It is worth pointing out that QAMC (see Lemma 6)
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offers a (nearly) quadratic speedup in terms of ε compared to
the classical method [see Eq. (B24)].

We next outline the generalization of MC methods from
the univariate case to the multivariate case.

b. Multivariate Monte Carlo methods

In multivariate MC estimation, the goal is to estimate the
mean in the case where v(A) ∈ Rd . In the classical scenario,
estimating all entries E[v1(A)], . . . ,E[vd (A)] can be done
simultaneously with the same executions of A with an over-
head of log(d ) in the sample complexity due to Hoeffding’s
inequality, as shown in Appendix A of Ref. [151]. We restate
the result in Lemma 7 below.

Lemma 7. Classical multivariate Monte Carlo estimation
(Appendix A in Ref. [151]). Let an algorithm A generate a
d-dimensional random variable v(A), bounded in l∞ norm
‖v(A)‖∞ � B, then we can estimate E[v(A)] up to error ε

in the l∞ norm with success probability 1 − δ with a sample
complexity of,

O

(
B2

ε2
log

d

δ

)
. (B39)

In the quantum case, however, this simultaneous estimation
is impeded as one relies on amplitude estimation to estimate
the mean, which is encoded in the relative phase. Due to the
periodicity and boundedness of the relative phase, one cannot
use the same executions of A to simultaneously estimate all
entries of v(A). This inconvenience generally results in a
linear overhead of d in the sample complexity in the quantum
case over the univariate (quantum) scenario. As shown in
Ref. [151], there are special cases where this linear depen-
dence can be slightly improved, however, not down to the
logarithmic dependence of the classical case.

c. Multilevel Monte Carlo methods

MC methods are often used to estimate an expectation
value of a random variable determined by the solution of
an SDE [33], as is the case in Ref. [25], see Eq. (8). Here,
we outline multilevel MC (MLMC) methods, which have the
potential to improve the sample complexity of MC methods
for estimating the mean value of a function depending on the
(discretized) solution of an SDE, in the classical and quantum
case. We follow [33] and begin with the setting and then
outline the classical and quantum methods.

Let Xt ∈ Rd be a stochastic process defined by the SDE,

dXt = μ(t, Xt ) + σ (t, Xt )dWt , (B40)

where σ (t, X ) ∈ Rd×d , μ(t, X ) ∈ Rd and Wt is a standard
Brownian motion (as introduced in Sec. I B). Consider the
problem of estimating an expectation value at time T of the
form (Problem 1 in Ref. [33])

E
(
P (XT )|Xt0

) ∈ R, (B41)

where P : Rd 	→ R is some payoff function and Xt0 is the
value of Xt at the initial time. In the case of a general SDE
without an explicit solution, one first has to discretize the
SDE on an interval [t0, T ] with step size �t to produce an
approximate solution using a numerical scheme.

A numerical scheme for approximating the solution of an
SDE X̂tn with time step size �t = T/N is of strong order r if
there exists a constant Km > 0, for any m ∈ N, such that

E

[
sup

0�n�N

∥∥X̂tn − Xtn

∥∥m

2

]
� Km(�t )rm. (B42)

When using a numerical scheme of strong order r, the error for
estimating Eq. (B41) scales as ε = O((�t )r ) [96], resulting in
an ε dependence of O(1/ε2+1/r ) in the sample complexity for
the classical case [33]. A way to improve the error dependence
in the sample complexity is to make use of the MLMC method
[152–154]. We follow the introduction of the MLMC method
from Ref. [33].

The MLMC method aims to estimate the expectation value
of some random variable P, E[P], by means of a sequence
of random variables P0, P1, . . . , PK where each element of
the sequence approximates P with greater accuracy and K =
O(log(2ε−1)). In the setting of a discretized SDE, we can
think of P as the payoff function P evaluated at the terminal
time P (XT ) which we want to estimate, and the index of the
Pk relating to how many approximation steps N we take via
Nk = T/(�tk ) = 2kT . MLMC methods then estimate E[P] by
observing that the following telescoping sum holds, due to the
linearity of the expectation value,

E[PK ] = E[P0] +
K∑

k=0

E[Pk − Pk−1], (B43)

where P−1 = 0. The MLMC method estimates each of the
summands in a way that minimizes the cost. To estimate E[P]
we introduce the estimator Y ,

Y =
K∑

k=0

Yk, (B44)

where we have for Yk the following expression:

Yk = 1

Nk

Nk∑
i=0

(
P(i)

k − P(i)
k−1

)
, (B45)

where i indicates the sample. Each Yk is then approximated via
MC methods, where P(i)

k − P(i)
k−1 comes from one Brownian

path, but with a different number of discretization steps for Pk

and Pk−1. Further following [33], we bound the error,

E[Y − E[P]]2 � V [Y ] + E[PK − P]2 � ε2, (B46)

where we need to consider the cost Ck and the variance Vk

of Pk − Pk−1. The total cost and variance of Y are given
by
∑K

k=0 NkCk and
∑K

k=0 Vk/Nk , respectively. Assuming that
Ck = O(2γ k ) and Vk = O(2−βk ) where β � γ , it can be shown
that the number of samples needed in the classical case to
estimate E[P] within error ε is Õ(ε−2), removing the 1/r
dependence.

When applying MLMC to the problem of estimating
E(P (XT )|Xt0 ) from Eq. (B41) with Xt governed by the SDE
from Eq. (B40), the authors in Ref. [33] make a set of assump-
tions, beginning with assumptions on quantities appearing in
the SDE.

Assumption 4. (Assumption 11 in Ref. [33]). The func-
tions μ and σ are globally Lipschitz continuous. Furthermore,
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they assume that for the initial value Xt0 it holds that E[X m
t0 ] �

Cm for constants Cm � 0.
Next, the authors make an assumption on the numerical

scheme employed [recall the definition o the strong order r
in Eq. (B42)]. The so-called Tayler-Itô schemes constitute a
general class of high order schemes (for solving SDEs) of the
following form [96]

Xk+1 =
∑

α

fα (kh, Xk )Iα, (B47)

where the fα are coefficient functions and the Iα are integrals
over the time interval [kh, (k + 1)h].

Assumption 5. (Assumption 2 in Ref. [33]). The coefficient
functions fα as in Eq. (B47) are globally Lipschitz continuous
with respect to X .

Finally, the authors in Ref. [33] make an assumption on the
payoff function.

Assumption 6. (Assumption 3 in Ref. [33]. The payoff
function P from Eq. (B41) is globally Lipschitz continuous.

We summarize the classical result for the application of
MLMC to SDEs as follows:

Lemma 8. (Classical MLMC for SDE Payoff Estimation;
Proposition 3 in Ref. [33]). Consider the problem of estimat-
ing a payoff function as in Eq. (B41) of a discretized SDE of
the form of Eq. (B40) under Assumptions 4 to 6. Then MLMC
with a scheme of strong order r estimates E[P (XT )|Xt0 ] up to
mean-squared error ε2 with probability at least 0.99 with a
sample complexity of

O(ε−2) r > 1/2

O(ε−2(log1/ε)2) r = 1/2

O(ε−1/r ) r < 1/2.

(B48)

In Ref. [33], the authors present a quantum-accelerated ver-
sion of MLMC and QAMLMC. The speedup is derived from
making use of QAMC from Ref. [99] (see Appendix B 4 a).
In QAMLMC, QAMC is used to estimate the expectation
values E[Pk − Pk−1]. The result for applying QAMLMC to
the problem of estimating quantities of the form Eq. (B41) is
summarized below.

Lemma 9. (QAMLMC; Theorem 3 in Ref. [33]). Consider
the problem of estimating a payoff function as in Eq. (B41)
of a discretized SDE of the form of Eq. (B40) under Assump-
tions 4 to 6. Then QAMLMC with a scheme of strong order r
estimates E[P (XT )|Xt0 ] up to additive error ε with probability
at least 0.99 with a sample complexity of

O(ε−1(log1/ε)3/2(log log1/ε)2) r > 1

O(ε−1(log1/ε)7/2(log log1/ε)2) r = 1

O(ε−1/r (log1/ε)3/2(log log1/ε)2) r < 1.

(B49)

5. Robust inner product estimation

Next, we outline a fault-tolerant quantum algorithm for
estimating inner products. It is a vital component of the al-
gorithm (presented in the same paper, [101]) for addressing
the bottleneck of training the NNs in the deep-learning ar-
chitecture which we will discuss in Sec. V. The authors of
Ref. [101] introduce a quantum algorithm termed robust inner
product estimation (RIPE) which is a generalization of the

inner product estimation algorithm from Ref. [155]. It allows
for estimating the inner product between two states v and c by
using their (amplitude encoded) quantum states, i.e.,

|v〉 = 1

‖v‖2

∑
j

v( j)| j〉, (B50)

and analogously for |c〉. The inner product estimation algo-
rithm (Lemma 4.2 from Ref. [155]) allows for the estimation
of the inner product between two vectors v and c, with known
norms, up to error ε with probability at least 1 − γ and in
time Õ(‖v‖2‖c‖2T log(2/γ )/ε) where T is the time needed
to prepare |v〉 and |c〉. We here sketch the proof.

We begin in the following state:

1√
2

(|0〉 + |1〉)|0〉. (B51)

Next, we load the vectors |v〉 and |c〉 with the operations
|0〉|0〉 	→ |0〉|v〉 and similarly |1〉|0〉 	→ |1〉|c〉. This takes us
in the state

1√
2

(|0〉|v〉 + |1〉|c〉). (B52)

After applying a Hadamard gate on the first qubit, we obtain

1
2 (|0〉(|v〉 + |c〉) + |1〉(|v〉 − |c〉)). (B53)

Given the state in Eq. (B53), the probability of measuring one
in the first qubit p1 is

p1 = 1

4
[2 − 2〈v|c〉] = 1 − 〈v|c〉

2
, (B54)

from which one can calculate 〈v|c〉, given ‖v‖2 and ‖c‖2. By
rewriting |1〉(|v〉 − |c〉) as |y, 1〉 (swapping the qubits), we
now have

√
p1|y, 1〉 +

√
1 − p1|G, 0〉, (B55)

where G signifies a garbage state. Next, using amplitude esti-
mation (see Lemma 3), we arrive at the state

√
α| p̂1, G′, 1〉 + √

1 − α|G′′, 1〉, (B56)

where α > 8/π2, | p̂1 − p1| � ε and G′ as well as G′′ are fur-
ther garbage states. To extract p̂1 the authors from Ref. [155]
make use of a result from Ref. [156].

Lemma 10. (Quantum median estimation; Lemma 8 in
Ref. [156]). Let Y be a unitary that maps

Y : |0〉⊗n 	→ √
a|x, 1〉 + √

1 − a|G, 0〉, (B57)

for some 1/2 < a � 1 in time T . Then there exists a quantum
algorithm which, for any γ > 0 and 1/2 < a0 � a, prepares a
state |ψ〉 such that ‖|ψ〉 − |0〉⊗nL|x〉‖2 � √

γ for some integer
L in time

2T

⌈
ln 2/γ

2(|a0| − 1/2)2

⌉
. (B58)

Lemma 10 allows us to extract a quantum state |ψ〉 such
that ‖|ψ〉 − |0〉⊗L| p̂1, G′〉‖2 � √

γ . From p̂1 we can then
compute 〈v|c〉 via the relation from Eq. (B54). In Ref. [155],
the authors generalize the inner product estimation algorithm.
We present their result in form of Lemma 11.
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Lemma 11. (Robust inner product estimation (RIPE)
[101]). If quantum states |v〉 and |c〉 can each be prepared in
time T , and if the norms ‖v‖2 and ‖c‖2 are known within mul-
tiplicative error ε/3, then the mapping |v〉|c〉|0〉 	→ |v〉|c〉|s〉

where, with probability at least 1 − γ ,

|s − v · c| �
{

ε|v · c| in time Õ
( T (log 1/γ )‖v‖2‖c‖2

ε|v·c|
)

ε in time Õ
( T (log 1/γ )‖v‖2‖c‖2

ε

)
.

(B59)
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