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Quantum Fisher information (QFI) may exhibit the irregular behavior at the critical point of phase transitions
of a physical system and be very sensitive to slight variations of some controlling parameters. This parameter
sensitivity may be used for quantum parameter estimation or quantum sensing. In this study, taking the quantum
Rabi model as an example, we investigate the critical properties of the QFI for the parameter estimation at the
critical point of the SU(1,1) dynamic systems. We show that the QFI goes divergently in the sixth power law
(T 6) of the parameter coding time around the critical point. After taking into the consumption of energy during
the dynamic evolution, we find that the variation of the QFI around the critical point is scaled by the Heisenberg
scaling T 2. It is noticed that for nonclassical initial probe states the scaling of QFI can beat the standard quantum
limit (n0) as a function of the initial mean phonon number n0. The homodyne and phonon-number measurement
schemes are compared. We find that the quantum Cramér-Rao bound can be reached by use of the phonon-
number detection scheme. However, it is more sensitive to the noise than the homodyne detection scheme. We
extend the investigation to a two-mode non-Hermitian system and show that the QFI exhibits the same irregular
properties at the exceptional point, revealing that for the SU(1,1) dynamic systems the QFI universally diverges
as T 6 at the critical point.
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I. INTRODUCTION

Quantum sensing refers to the utilization of quantum re-
sources for estimating parameters [1]. In past years, many
methods have been proposed to enhance the precision of
quantum sensing, from seeking optimal initial states (opti-
mal measurement operators), to operating quantum control
[2–5], to exploiting quantum uncertainty causality orders
[6,7]. Recently, it has been discovered that critical properties
of physical systems also constitute a metrological resource,
since a slight variation in the parameter can manifest a sig-
nificant change in the observable quantity, thereby enhancing
the precision of sensing [8–11]. So far, there are several
approaches to achieve quantum critical sensing, including
constructing non-Hermitian systems [12–14], as well as lever-
aging topological and dynamical phase transitions [15–18].

Quantum phase transitions (QPTs) are characterized by
significant variation in the observables of a system sub-
jected to infinitesimal variations of a control parameter. These
differences manifest as substantial structural alterations in
the state of the system (i.e., the change of ground state)
[19]. Many physical models can be used for quantum phase
transition critical sensing, such as the Dicke model, the
Lipkin-Meshkov-Glick (LMG) model, and the quantum Rabi
model (QRM). The QRM plays an important role in quantum
optics, comprising a two-level system coupled with a bosonic
field mode, which undergoes a superradiant QPT at the critical
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point [20]. Recent studies have revealed that it can lead to en-
hanced sensing capabilities near the critical point by preparing
the initial state in the ground state and employing adiabatic
evolution [21]. However, it is proved that it cannot reach
the Heisenberg limit (HL) with the requirement of adiabatic
condition [22]. To address this problem, a dynamic method
without the adiabatic ground state preparation was proposed
[23], and it has been demonstrated to be efficient in numerous
physical systems [24,25].

There are still some problems about modulating a QRM
system to its critical point for the instability originating from
QPT. The ion trap can serve as an excellent platform due to
its stability and ease of manipulation [26]. The system play a
crucial role in various physical applications, such as quantum
simulation [27–29], quantum state preparation [30,31], and
quantum metrology [32]. In recent years, researchers have dis-
covered the potential of utilizing ion trap systems for quantum
sensing, achieving precision beyond the standard quantum
limit [33,34].

In this work we consider the ion trap system while the
sideband resonance Hamiltonian is transformed into the QRM
in the Lamb-Dicke regime, and is then represented as an
canonical form in term of the time-independent SU(1,1) alge-
bra. For this SU(1,1) coding dynamics system, the QPT occurs
when g̃ = 1 is satisfied (see Sec. II). We find that after the
total evolution time T , the QFI of g̃ exhibits a significantly
growth with the scaling law of T 6 at the critical point. The
estimation precision of g̃ with probe states such as coherent
state, Fock number state, and a linear superposition of number
states can reach the Heisenberg scaling ∼〈N̂2〉T 2, where 〈N̂〉
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represents the average phonon number. However, only the
nonclassical states such as Fock number state and a linear
superposition of number states can surpass the standard quan-
tum limit (SQL) with the same initial phonon number n0. Two
measurement schemes are also investigated, homodyne de-
tection (HD) and average phonon number detection (APND),
and APND is proved to be better for its attainabilities of the
quantum Cramér-Rao bound (QCRB). We also demonstrate
that with finite noise the critical enhanced sensing can still be
maintained. Furthermore, the two-mode non-Hermitian model
following the SU(1,1) symmetry is also discussed, which
gives the same scaling law of T 6 in the QFI.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Hamiltonian of ion trap system in the
rotation frame. With the help of SU(1,1) algebra, we compute
the QFI of parameter in Sec. III. Then we discuss the limits
of the estimation in Sec. IV based on different initial states.
In Sec. V we investigate the precision of measurements by
HD and APND in the scenario of absence of dissipation and
presence of dissipation, separately. In Sec. VI the extension
of a two-mode non-Hermitian model is explored. Finally, we
give a conclusion in Sec. VII.

II. MODEL

The quantum dynamics of a single two-level ion trapped
in the Paul trap and driven by a light field is described by
[26,29,35,36]

Ĥ = h̄ωr â†â + 1
2 h̄ωqσ̂z + h̄�0(σ̂+ + σ̂−) cos(kx̂ − ωl t + φ),

(1)

where â(â†) is the annihilation (creation) operator of phonon
for the center-mass motion of the ion, and ωr is the frequency
of phonon. The internal structure of the ion can be approx-
imated by a two-level system with ωq the energy difference
between two internal states, and σ̂x,y,z represent the Pauli ma-
trices. The third term of (1) represents the interaction between
the trapped ion and the applied light field, and σ̂± = 1/2(σ̂x ±
iσ̂y). �0 is the Rabi frequency with the applied light field of
frequency ωl , k the wave vector, and x̂ = 1/

√
2mωr (â + â†)

the position operator of the center mass of the ion.
For simplification, φ = 0 and h̄ = 1 are set in the following

discussion. When the extension of wave function of the ion
is much smaller than 1/k, known as the Lamb-Dicke regime
η
√

〈(â + â†)2〉 � 1 [26], the Hamiltonian (1) can be approx-
imated in the interaction picture to

ĤLD = h̄

2
�0σ̂+[1 + iη(âe−iωr t + â†eiωr t )]e−iδt + H.c., (2)

with the Lamb-Dicke parameter

η = kx0, (3)

where x0 = 1/
√

2mωr is a spatial extension of the ground
state wave function of a harmonic oscillator, m is the ion mass,
and δ = ωl − ωq.

When two laser beams of frequencies ωl,r/l,b = ωq − / +
ωr with the same Rabi frequency �0 drive the red and blue
sidebands of the ion, respectively, the Hamiltonian (1) can be

changed in the rotating wave approximation to [35–38]

ĤQRM = ωr â†â + ωq

2
σ̂z + g(σ̂+ + σ̂−)(â + â†), (4)

with

g = η�0/2 (5)

being the coupling strength between the external motion and
the internal state transition of the trapped ion. When ωq � ωr ,
the excitation of the internal state is very weak and the ion
is almost kept in the spin-down state. Therefore, the internal
state can adiabatically be removed by the Schrieffer-Wolff
(SW) transformation (see Appendix A) and the Hamiltonian
(4) is approximated to

Ĥnp,g̃�1 = ωr â†â − ωq

2
− ωr g̃2

4
(â† + â)2, (6)

with the modified coupling strength

g̃ = 2g/
√

ωrωq, (7)

where the subscript “np” refers to the normal phase, and
Eq. (6) works only for g̃ � 1. This system undergoes a
normal-to-superradiant phase transition when g̃ approaches
the critical point g̃c = 1. The ground state changes abruptly,
accompanying the huge increase of phonons [39]. The coun-
terpart of (6) for g̃ > 1 reads

Ĥsp,g̃>1 = ωr â†â − ωq

4
(g̃2 + g̃−2) − ωr

4g̃4
(â† + â)2, (8)

where the subscript “sp” represents the superdiant phase.
By virtue of SU(1,1) algebra [40], Eq. (6) can be rewritten

as

Ĥnp,g̃�1 = (−ωr g̃2 + 2ωr )K̂0 − ωr g̃2

2
(K̂+ + K̂−)

− ωq + ωr

2
, (9)

where K̂0 = (â†â + 1/2)/2, K̂+ = (â†)2/2, K̂− = â2/2,
and they satisfy the commutation relations [K̂0, K̂±] =
±K̂±, [K̂+, K̂−] = −2K̂0. In the same way, Eq. (8) has the
form

Ĥsp,g̃>1 =
(

2ωr − ωr

g̃4

)
K̂0 − ωr

2g̃4
(K̂+ + K̂−)

− ωq(g̃2 + g̃−2) + 2ωr

4
. (10)

By use of Bogoliubov-Valatin transformation, the above
Hamiltonians can be diagonalized (see Appendix B). The di-
agonalized form of Ĥnp,g̃�1 is ωr

√
1 − g̃2(b̂†b̂ + 1/2) − (ωr +

ωq)/2 with the transformed bosonic modes {b̂, b̂†}. The diago-
nalized form of Ĥsp,g̃>1 is ωr

√
1 − 1/g̃4(b̃†b̃ + 1/2) − [2ωr +

(g̃2 + g̃−2)ωq]/4 with the transformed bosonic modes {b̃†, b̃}.
The system undergoes the QPT when g̃ → g̃c = 1. The ex-
citation spectra of Ĥnp,g̃�1 and Ĥsp,g̃>1 are ωr

√
1 − g̃2/2 and

ωr

√
1 − 1/g̃4/2, respectively, and they both become zero at

the critical point. In Fig. 1 the excitation energies of Ĥnp,g̃�1

and Ĥsp,g̃>1 are plotted.
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FIG. 1. Excitation energies of Hamiltonians Ĥnp,g̃�1 and Ĥsp,g̃>1

are ωr

√
1 − g̃2/2 and ωr

√
1 − 1/g̃4/2, respectively. The QPT occurs

at the critical point g̃c = 1, where the excitation energies are both
close to zero. Here ωr = 1 is set.

III. THE TIME SCALING OF THE QFI AROUND THE
CRITICAL POINT

Quantum sensing aims at ultraprecise achievements of un-
known parameters by exploiting unique quantum features,
which can be assessed by the theory of quantum parame-
ter estimation [41,42]. The estimating precision of a single
unknown parameter is limited by the QCRB, which is

determined by the QFI [42]. The QFI is dependent on the
initial probe state, quantum dynamics, and evolution time. In
this and next sections, we will investigate the time behavior of
QFI of g̃ at the critical point and its dependence on the initial
probe state.

For the parameter g̃ defined in Eq. (7), the upper bound of
its estimation precision is given by the QCRB

δg̃2 � 1

νIg̃(T )
, (11)

where ν is the number of trials and Ig̃(T ) is the QFI of g̃ with
the total evolution time T . When the initial state is a pure state,
Ig̃(T ) can be given by [4,41]

Ig̃(T ) = 4Var[hg̃(T )]|ψ0〉, (12)

where Var[•]|ψ0〉 represents the variance in the initial probe
state |ψ0〉. In Eq. (12), hg̃(T ) is the generator of infinitesimal
variations of g̃ [43],

hg̃(T ) = i(∂g̃e−iĤ (g̃)T )eiĤ (g̃)T

= i
∞∑

n=0

(−iT )n+1

(n + 1)!
Ĥ (g̃)×n[∂g̃Ĥ (g̃)], (13)

where Â×n(•) :=
n times︷ ︸︸ ︷

[Â, [Â, · · · [Â, •] represents the nested
commutators. In the above derivations, the derivative
of an exponential operator ∂�eÂ = ∫ 1

0 ds esÂ(∂�Â)e(1−s)Â

and the well-known expansion eÂB̂e−Â = B̂ + [Â, B̂] +
(1/2!)[Â, [Â, B̂]] + · · · have been employed [44].

Inserting Eqs. (9) into (13), we obtain the generator for g̃ � 1 (see Appendix C)

hg̃�1(T ) = fxK̂0 + fy(K̂+ + K̂−) + i fz(K̂+ − K̂−), (14)

where

fx = −2g̃T ωr + g̃3

2(1 − g̃2)3/2
[sin(2T ωr

√
1 − g̃2) − 2T ωr

√
1 − g̃2],

fy = −g̃T ωr + −2g̃ + g̃3

4(1 − g̃2)3/2
[sin(2T ωr

√
1 − g̃2) − 2T ωr

√
1 − g̃2],

fz = g̃

2(g̃2 − 1)
[cos(2T ωr

√
1 − g̃2) − 1]. (15)

Upon substituting Eqs. (10) into (13), we also have the generator for g̃ > 1,

hg̃>1(T ) = f̃xK̂0 + f̃y(K̂+ + K̂−) + i f̃z(K̂+ − K̂−) + f̃h, (16)

where

f̃x = 4T ωr

g̃5
− 1

g̃9(1 − 1/g̃4)3/2
[sin(2T ωr

√
1 − 1/g̃4) − 2T ωr

√
1 − 1/g̃4],

f̃y = 2T ωr

g̃5
+ 2g̃4 − 1

2g̃9(1 − 1/g̃4)3/2
[sin(2T ωr

√
1 − 1/g̃4) − 2T ωr

√
1 − 1/g̃4],

f̃z = −1

g̃ − g̃5
[cos(2T ωr

√
1 − 1/g̃4) − 1],

f̃h = −T ωq(g̃4 − 1)

2g̃3
. (17)
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From Eqs. (14) and Eq. (12), one can obtain the QFI for g̃ � 1

Ig̃�1(T ) = 4
[

f 2
x

(〈
K̂2

0

〉
0 − 〈K̂0〉2

0

)+ f 2
y

(〈(K̂+ + K̂−)2〉0 − 〈K̂+ + K̂−〉2
0

)− f 2
z

(〈(K̂+ − K̂−)2〉0 − 〈K̂+ − K̂−〉2
0

)
+ fx fy(〈K̂0(K̂+ + K̂−) + (K̂+ + K̂−)K̂0〉0 − 2〈K̂0〉0〈K̂+ + K̂−〉0)

+ i fx fz(〈K̂0(K̂+ − K̂−) + (K̂+ − K̂−)K̂0〉0 − 2〈K̂0〉0〈K̂+ − K̂−〉0)

+ i fy fz(〈(K̂+ + K̂−)(K̂+ − K̂−)〉0 + 〈(K̂+ − K̂−)(K̂+ + K̂−)〉0 − 2〈K̂+ + K̂−〉0〈K̂+ − K̂−〉0)
]
, (18)

where 〈•〉0 denotes the expectation in the parameter-independent probe state |ψ0〉. The QFI (Ig̃>1(T )) for g̃ > 1 has the same
form as Eq. (18) except that fx, fy, fz are replaced by f̃x, f̃y, f̃z, which are defined in Eq. (17).

Since all the expectations in Eq. (18) are independent of
time, the time behavior of the QFI at the critical point is
completely determined by the functions fx, fy, and fz. Ex-
panding those functions around the critical point (g̃c = 1),
fx ∼ − 2

3ω3
r T 3, fy ∼ 1

3ω3
r T 3 and fz ∼ ω2

r T 2, we have

Ig̃�1(T ) ∼ Aω6
r T 6, (19)

where A is a front factor dependent on the specific probe state.
The time behavior of Ig̃>1(T ) for g̃ > 1 is the same as Eq. (19),
only with the different front factor. In addition, from Sec. II
we can see that the parameters of an ion trap system, such
as the coupling strength �0, the frequency of spin transition
ωq, and the ion mass m, are all encoded in the parameter g̃.
Thus, the QFIs of those parameters can be directly deduced
from the QFI of g̃, i.e., Iξ (T ) = (∂ξ g̃)2Ig̃(T ) for the parameter
ξ ∈ {�0, ωq, m}. In general, one can directly obtain the QFIs
of a parameter ξ from the QFI of g̃ if the condition ∂ξ Ĥ (g̃) =
∂g̃Ĥ (g̃)(∂ξ g̃) + C0(ξ ) is satisfied, where C0(ξ ) is a function of
ξ (see Appendix C).

From above, we see that the scaling T 6 of the QFI at
the critical point with respect to the evolution time of the
coding parameter dynamics is independent of the initial probe
state and the estimating parameter. It is the critical behavior
of the system under consideration and universal. Based on
this time scaling, one may expect that the ultraprecision of
parameter measurements could be achieved better than the
Heisenberg limit T 2. In the following, however, we will show
that the measurement precision here is not possible beyond the
Heisenberg limit because of the restriction of the input energy
during the measurement.

IV. THE ENERGY SCALING OF THE QFI AROUND THE
CRITICAL POINT

As is well known, a physics measurement process must
be involved with input-output energy. It may be meaning-
less when assessing the precision of measurement without
considering the consuming energy in the implemented mea-
surement. In this section we will use the average phonon
number 〈ψ0|eiĤ (g̃)T â†âe−iĤ (g̃)T |ψ0〉 to measure the energy in-
volved in the measurement. To this end, we will consider
different probe initial states |ψ0〉.

A. Coherent state

When the initial probe state is a coherent state |α〉 with
â|α〉 = α|α〉 (α = Re[α] + iIm[α] is a complex number),

from Eq. (18), the QFI can be obtained:

Ig̃�1(T ) = f 2
x (Re2[α] + Im2[α])

+ (
f 2
y + f 2

z

)
(2 + 4Re2[α] + 4Im2[α])

+ 4 fx fy
(
Re2[α]−Im2[α]

)+8 fx fzRe[α]Im[α].
(20)

At the critical point, one has

Ig̃�1(T ) ∼ 2
9 (1 + 8Im2[α])ω6

r T 6. (21)

In Eq. (21), one may notice that only the imaginary part of
the state is in the QFI at the critical point. It means that a
strong local oscillator is required as a phase reference. At
the time T , the average phonon number around the critical
point is 〈N〉 ≈ (1 + 4Im[α]2)ω2

r T 2 (see Appendix D). Thus,
Ig̃�1(T ) ∼ 〈N̂〉2T 2. It is just the Heisenberg limit (HL). For
the case g̃ > 1, we have the same result.

B. Fock state

When the initial probe state is a Fock state |n〉, from
Eq. (18), we have

Ig̃�1(T ) = 2
(

f 2
y + f 2

z

)
(n2 + n + 1). (22)

Around the critical point, the QFI can be approximated to

Ig̃�1(T ) ∼ 2

9
(n2 + n + 1)ω6

r T 6. (23)

Since the average phonon number around the critical point is
〈N〉 ≈ (1 + 2n)ω2

r T 2/4, the QFI can be written as Ig̃�1(T ) ∼
〈N̂〉2T 2 at the critical point, just being the HL. For the case
g̃ > 1, we have the same result.

C. Superposition state

Here we consider the superposition state (|0〉 + i|n〉)/
√

2
as the initial probe state. From Eq. (18), we have the QFI

Ig̃�1(T ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f 2
x + 8 f 2

y + 6 f 2
z n = 2

4 f 2
x + 22

(
f 2
x + f 2

z

)+ 4
√

6 fy fz n = 4

n2

4 f 2
x + (n2 + n + 2)

(
f 2
x + f 2

z

)
n �= {2, 4}

.

(24)

Equation (24) implies that the QFI can be improved with
increasing n, as shown in Fig. 2(a). At the critical point,
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FIG. 2. QFI of g̃ with the initial state (|0〉 + i|n〉)/
√

2. (a) The
QFI is plotted as a function of the total evolution time T for n =
{1, 3, 5, 12}, respectively. Here ωr = 1, g̃ = 0.99 are set; (b) the QFI
vs the parameter g̃ with the initial state (|0〉 + i|1〉)/

√
2. Here ωr =

1, T = 10, n = 1 are set.

Eq. (24) is approximated to

Ig̃�1(T ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
3ω6

r T 6 n = 2

104
9 ω6

r T 6 n = 4

1
9 (5n2 + 4n + 8)ω6

r T 6 n �= {2, 4}

. (25)

In this case, the average phonon number around the crit-
ical point is 〈N〉 ≈ (1 + n)ω2

r T 2/4. As a result, we have
Ig̃�1(T ) ∼ 〈N̂〉2T 2. Therefore, the HL can also be achieved.
For the case g̃ > 1, we have the same result.

In Fig. 2(b) the QFI is plotted as a function of g̃. The peak
feature of the QFI around the critical point implies that the
ultraprecision of estimation of g̃ may be attained around the
critical point.

The average phonon numbers during the evolution may
be different for different initial probe states. In order to
compare the QFIs with the equal average phonon number,
we rescale the QFI by 〈N̂〉2

max which is the maximum of
the average phonon number during the evolution for each
of the initial probe states with respect to the evolution time T

FIG. 3. (a) The QFI Ig̃�1(T ) scaled by 〈N̂〉2
max is as a function

of the total evolution time T for the different initial probe states.
The black dashed line stands for the Heisenberg scaling T 2. The
yellow, blue, and green lines are for the coherent state |α〉, Fock
state |n〉, and superposition state(|0〉 + i|n〉)/

√
2, respectively. Here

g̃ = 0.9, α = √
10i, n = 10 are set. (b) The QFI Ig̃�1(T ) vs the initial

phonon number n0 for the different probe states. The black dashed
lines stand for the Heisenberg scaling n2

0 and the SQL scaling n0.
The yellow, blue, green, and cyan lines are for the coherent state
|α〉, Fock state |n〉, superposition state (|0〉 + i|n〉)/

√
2, and SPACS

|α, 1〉, respectively. Here g̃ = 0.9, T = 10 are set. The inset shows
the scaling of the QFI for the coherent state and SPACS when n0 is
large.

(see Appendix D). In Fig. 3(a) the rescaled QFI is plotted as
a function of the total evolution time T . It is clearly observed
that all the states such as the coherent state, Fock state, and
superposition state can reach the same Heisenberg scaling T 2.

The different probe states have the different initial average
phonon numbers. In the following discussion, we set that
all the probe states have the same initial phonon number
〈ψ0|N̂ |ψ0〉0 = n0. In Fig. 3(b) the QFI is plotted as a function
of n0.

One can see that the Fock and superposition states can
reach the Heisenberg scaling 〈N̂〉2, but the coherent state
remains the standard quantum limit (SQL) scaling. It reminds
us that the Heisenberg scaling 〈N̂〉2 may result from the
nonclassical properties of the probe state. In order to check
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this point, we consider the single-photon (phonon) -added
coherent state (SPACS): |α, 1〉 = â†|α〉/

√
1 + |α|2, which is

an intermediate state between the Fock state and the coherent
state, and exhibits the nonclassical behavior when the coher-
ent amplitude is small [45]. As noted, when n0 is small, the
SPACS surpasses the SQL. As n0 increases, the scaling of
the SPACS returns to SQL. This change is attributed to the
fact that the SPACS gradually becomes the coherent state and
loses the nonclassical behavior as α increases [45]. The result
indicates that nonclassical propoerties of the probe states may
also be a quantum resource for quantum sensing to break the
SQL.

V. EFFECT OF DIFFERENT MEASUREMENT SCHEMES
ON THE ESTIMATION PRECISION

In order to extract the true value of the parameter g̃ from
the coded state |ψ (T, g̃)〉 = e−iĤ (g̃)T |ψ0〉, one needs to choose
an appropriate operator Ô and perform the corresponding
measurement on the coded state. According to the error prop-
agation formula, the inverted variance for the estimation of g̃
is determined by [9,46]

Fg̃(T ) =
(

∂g̃〈Ô〉T

〈�Ô〉T

)2

. (26)

Then we obtain the variance δg̃2 = 1/(νFg̃(T )), where ν is
the number of measurements.

On the other hand, the estimation variance is lower
bounded by the quantum Fisher information as shown in
Eq. (11):

δg̃2 � 1

νIg̃(T )
. (27)

The left side of Eq. (27) does depend on the chosen measure-
ment scheme. One may make the equality hold by optimizing
the measurement scheme and attain the highest precision. In
the following, we will consider two measurement schemes:
the homodyne detection and the average phonon number de-
tection, respectively.

A. Homodyne detection

Let us suppose that the initial probe state is (|0〉 +
i|1〉)/

√
2 ⊗ | ↓〉, where | ↓〉 and (|0〉 + i|1〉)/

√
2 are the elec-

tronic state of the ion and the phonon state of the center-mass
motion, respectively. In order to extract the value of g̃, we
choose the quadrature operator X̂ or P̂ as the measurement
operator, which are defined as

X̂ = (â + â†)/
√

2, P̂ = i(â† − â)/
√

2. (28)

In terms of the quadrature operators, the Hamiltonian (6)
can be rewritten as

Ĥnp,g̃�1 = ωr

2
[P̂2 + (1 − g̃2)X̂ 2]. (29)

In the Heisenberg picture, we have the equations of motion for
the quadrature operators with Hamiltonian (29):

dX̂

dT
= −i[X̂ , Ĥnp,g̃�1] = ωr P̂, (30)

dP̂

dT
= −i[P̂, Ĥnp,g̃�1] = −(1 − g̃2)ωr X̂ . (31)

Solving Eq. (29) with the initial conditions 〈X̂ 〉0 =
0, 〈P̂〉0 = 1/

√
2, we obtain the expectation value of X̂ at the

evolution time T ,

〈X̂ 〉T = sin(
√

1 − g̃2ωrT )√
2(1 − g̃2)

, (32)

then

∂g̃〈X̂ 〉T = 2g̃

[
− 1+cos(2

√
1 − g̃2T ωr )

+ g̃2T ωr sin(2
√

1 − g̃2T ωr )√
1 − g̃2

]
. (33)

For the variance of X̂ , we solve the following equations:

dX̂ 2

dT
= ωr (X̂ P̂ + P̂X̂ ), (34)

dP̂2

dT
= −(1 − g̃2)ωr (X̂ P̂ + P̂X̂ ), (35)

d (X̂ P̂ + P̂X̂ )

dT
= 2ωr[P̂2 − (1 − g̃2)X̂ 2], (36)

and attain

〈(�X̂ )2〉 = (2g̃2 − 1) cos(2
√

1 − g̃2ωrT ) + 2g̃2 − 3

4(g̃2 − 1)
. (37)

Inserting Eqs. (33) and (37) into (26), we obtain the in-
verted variance of the estimating value of g̃, which is plotted
as a function of the rescaled time t in Fig. 4(a). The ratio
of Ig̃�1(t ) to Fg̃(t ) is plotted in Fig. 4(b). We notice that
in Fig. 4(a) and Fig. 4(b) the peaks appear at the moment
T = nπ/(

√
1 − g̃2ωr ) (n = 1, 2, . . . ). It means that the high-

est precision with the homodyne detection scheme is achieved
at those points. As shown in Fig. 4(b), the ratio is less than
one. Thus, employing the homodyne detection scheme, one
cannot attain the highest possible precision which is allowed
by quantum principle.

In Fig. 4(c) the ratio of Ig̃�1(t ) to Fg̃(t ) is plotted as a func-
tion of g̃ from the normal phase to the superradiant phase. It is
observed that the inverted variance approximately reaches the
same scaling as the QFI of g̃ (25) [i.e., Fg̃(t )/Ig̃(t ) � 0.4] near
the critical point g̃ = 1. The homodyne detection is feasible
in experiment and has been performed in many platforms,
including ion traps [34].

B. Average phonon number detection

Now we consider the average phonon number detection
scheme [47]. In this case the initial probe state is taken as
|1〉 ⊗ | ↓〉 and the phonon number operator is chosen as the
measurement operator, which is defined as

N̂ = â†â = 2K̂0 − 1
2 . (38)
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FIG. 4. (a, b) The inverted variance Fg̃(t ) vs the QFI Ig̃�1(t ) with the quadrature X̂ detection scheme is displayed as a function of the
evolution time t that is scaled by

√
1 − g̃2ωrT/π . The initial probe state is (|0〉 + i|1〉)/

√
2 ⊗ | ↓〉. (d,e) The inverted variance Fg̃(t ) vs the QFI

Ig̃�1(t ) with the average phonon number detection scheme is displayed as a function of the evolution time t that is scaled by
√

1 − g̃2ωrT/π .
The initial probe state is |1〉 ⊗ | ↓〉. In (a) and (d), the solid lines are for Fg̃(t ) in the unit on the left side of the y axis, and the dashed lines are
for the QFI Ig̃�1(t ) in the unit on the right side of the y axis. In (b) and (e), the ratio of Fg̃(t ) to Ig̃�1(t ) as a function of the evolution time t with
g̃ = 0.96, and the peak value in (b) is about 0.43. In (c) and (f), the ratio of Fg̃(T ) to Ig̃(T ) as a function of the parameter g̃ from the normal
phase to the superradiant phase with the evolution time t = 1 standing for a period. The value of the ratio is about 0.4 when g̃ approaches
g̃c = 1 in (c). T = π/(

√
1 − g̃2ωr ) in the normal phase and T = π/(

√
1 − 1/g̃4ωr ) in the superradiant phase are set.

In the Heisenberg picture, we solve the equations of motion with the Hamiltonian (9):

dK̂0

dT
= −i[K̂0, Ĥnp,g̃�1] = 1

2
iωr g̃2(K̂+ − K̂−), (39)

d (K̂+ − K̂−)

dT
= −i[K̂+ − K̂−, Ĥnp,g̃�1] = iωr ((2 − g̃2)(K̂+ + K̂−) − 2g̃2K̂0), (40)

d (K̂+ + K̂−)

dT
= −i[K̂+ + K̂−, Ĥnp,g̃�1] = iωr (2 − g̃2)(K̂+ − K̂−), (41)

with the initial conditions 〈K̂0〉0 = 3
4 , 〈K̂+ − K̂−〉0 = 0, 〈K̂+ + K̂−〉0 = 0. The average phonon number at the time T is given by

〈N̂〉T = 1 + 3g̃4(8 − 8g̃2)−1[1 − cos(
√

4(1 − g̃2)ωrT )]. (42)

Similarly, we also obtain

∂g̃〈N̂〉T = 3g̃3 sin(
√

1 − g̃2T ωr )

[
− g̃2T ωr cos(

√
1 − g̃2T ωr )

(1 − g̃2)3/2
− (g̃2 − 2) sin(

√
1 − g̃T ωr )

(g̃2 − 1)2

]
, (43)

〈(�N̂ )2〉T = 3g̃4 sin2(
√

1 − g̃2ωrT )

16(g̃2 − 1)2
[−g̃4 + 8g̃2 − 8 + g̃4 cos(2

√
1 − g̃2ωrT )]. (44)

Inserting Eqs. (43) and (44) into (26), one can obtain
the inverted variance of the estimated value of g̃, which is
plotted in Fig. 4(d). For comparison, the QFI is also plotted
in Fig. 4(d). It is observed that the measurement precision
attained by the average phonon number detection scheme can

reach the QCRB at the time points T = nπ/(
√

1 − g̃2ωr ) (n =
1, 2, . . . ). The ratio of Fg̃(t ) to Ig̃�1(t ) is plotted in Fig. 4(e)
and Fig. 4(f). We can see that the highest estimation precision
allowed by quantum mechanics is obtained only in the normal
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FIG. 5. The inverted variance Fg̃(T ) of the quadrature X̂ and the phonon number N̂ in the dissipative case. T = π/(
√

1 − g̃2ωr ) is set.
(a) The inverted variance Fg̃(T ) of X̂ for various values of κ1 and κ2. (b) The inverted variance Fg̃(T ) of X̂ as a function of the decay rate κ1

(heating rate κ2) and κ2 = 0 (κ1 = 0), g̃ = 0.96 are set. (c) The inverted variance Fg̃(T ) of N̂ for various values of the decay and heating rates
κ1, κ2. (d) The inverted variance Fg̃(T ) of N̂ as a function of the decay rate κ1 (heating rate κ2) and κ2 = 0(κ1 = 0), g̃ = 0.96 are set.

phase. The average phonon detection is also experimentally
feasible for ion trap systems [35].

C. Dissipative case

In practical ion trap systems, the influence of noise is
unavoidable and must be taken into account. Here we consider
the interaction between the phonon and the environment. The
time evolution of the density matrix of the system with the
Hamiltonian (4) is governed by the master equation

∂ρ

∂t
= −i[ĤQRM, ρ] + κ1D[â]ρ + κ2D[â†]ρ, (45)

where κ1, κ2 are the decay and heating rates of phonon, re-
spectively, and the Lindblad terms read D[Â]ρ = 2ÂρÂ† −
{Â†Â, ρ}.

Applying the SW transformation Unp = exp[−(g/ωq)(â +
â†)(σ̂+ − σ̂−)] to Eq.(45) (see Appendix A), one can project
it in the spin-down subspace, and obtain the effective master
equation [48]

∂ρa

∂t
= −i[Ĥnp,g̃�1, ρa] + κ1D[â]ρa + κ2D[â†]ρa, (46)

with ρa ≡ 〈↓ |U †
npρUnp| ↓〉.

Solving Eq. (46) numerically, we obtain the density matrix
of the system and then work out the average values of the de-
tection operators X̂ and N̂ , and their variances. In Fig. 5(a) the
inverted variance with the quadrature X̂ is plotted for various
values of the decay rates. It is noted that the enhanced sensing
can be maintained under the finite noise level although the
noise obviously affects the estimation precision. In Fig. 5(c)
the inverted variance with the measurement operator N̂ is
plotted for various values of the decay rates. In Figs. 5(b) and
5(d) the effects of κ1 and κ2 on the estimation precision are
shown respectively. One may notice that the average phonon
detection is more sensitive to the noise.

VI. TWO-MODE NON-HERMITIAN SU(1,1) MODEL

In this section we extend the previous investigation to
a two-mode SU(1,1) Hamiltonian and show that across the
exceptional point (EP) the QFI exhibits the same behavior as
in the QRM.

The two-mode bosonic model is described by the Hamilto-
nian

H = δ(â†
1â1 + â†

2â2) + α0(â†
1â†

2 + â1â2), (47)

where â j and â†
j are the bosonic annihilation and creation

operators for the jth mode, δ is frequency of the two modes,
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and α0 is the coupling strength between the modes. In the
Heisenberg picture, we have

i∂t (â1, â†
2)T = HAPT(â1, â†

2)T , (48)

with the non-Hermitian Hamiltonian matrix

HAPT = δσ̂z − iα0σ̂y =
(

δ α0

−α0 −δ

)
. (49)

Note that HAPT is non-Hermitian and satisfies the anticom-
mutation relation {HAPT,PT } = 0, where the parity operator
P = σ̂x and the time-reversal operator T = K the complex

conjugate. Thus, HAPT has the anti-parity-time (APT ) sym-
metry.

In the APT -symmetric region with |δ| < |α0|, the eigen-

values of HAPT are λ± = ±iλ0 with λ0 =
√

|α2
0 − δ2|. While

in the APT -broken region with |δ| > |α0|, the eigenvalues
of HAPT are λ± = ±λ0. The spontaneous symmetry breaking
occurs at the EP |α0| = |δ| [12].

We find that the Hamiltonian (47) also has the SU(1,1)
dynamic symmetry, which can be rewritten as

H = 2δK̃0 + α0(K̃+ + K̃−) − δ, (50)

where K̃0 = (â†
1â1 + â†

2â2 + 1)/2, K̃+ = â†
1â†

2, K̃− =
â1â2, satisfying the commutation relations [K̃0, K̃±] =
±K̃±, [K̃+, K̃−] = −2K̃0.

As done in the previous sections, we introduce the QFI for the estimation of the parameter α0,

Iα0 (T ) = 4Var
[
hα0 (T )

]
|ψ0〉, (51)

where hα0 (T ) is the generator of infinitesimal variations of α0 (see Appendix C),

hα0 (T ) = f1K̃0 + f2(K̃+ + K̃−) + i f3(K̃+ − K̃−), (52)

with

f1 = δα0(
δ2 − α2

0

)3/2

[
sin
(
2T
√

δ2 − α2
0

)− 2T
√

δ2 − α2
0

]
,

f2 = T + δα0(
δ2 − α2

0

)3/2

[
sin
(
2T
√

δ2 − α2
0

)− 2T
√

δ2 − α2
0

]
,

f3 = δα0

2
(
δ2 − α2

0

) [ cos
(
2T
√

δ2 − α2
0

)− 1
]
. (53)

By substituting Eqs. (52) into Eq. (51), we find the QFI for the parameter α0

Iα0 (T ) = 4
[

f 2
1

(〈
K̃2

0

〉
0 − 〈K̃0〉2

0

)+ f 2
2

(〈(K̃+ + K̃−)2〉0 − 〈K̃+ + K̃−〉2
0

)− f 2
3

(〈(K̃+ − K̃−)2〉0 − 〈K̃+ − K̃−〉2
0

)
+ f1 f2(〈K̃0(K̃+ + K̃−) + (K̃+ + K̃−)K̃0〉0 − 2〈K̃0〉0〈K̃+ + K̃−〉0)

+ i f1 f3(〈K̃0(K̃+ − K̃−) + (K̃+ − K̃−)K̃0〉0 − 2〈K̃0〉0〈K̃+ − K̃−〉0)

+ i f2 f3(〈(K̃+ + K̃−)(K̃+ − K̃−)〉0 + 〈(K̃+ − K̃−)(K̃+ + K̃−)〉0 − 2〈K̃+ + K̃−〉0〈K̃+ − K̃−〉0)
]
, (54)

where 〈•〉0 represents the expectation in the initial probe state |ψ0〉. Expanding the functions (53) at the EP α0 = δ, one can
find that the QFI follows the same scaling law of AT 6 at the EP as Eq. (19). Here A is a front factor which is determined by the
specific probe state.

VII. SUMMARY

The quantum Rabi model describes the interaction between
the two inner states and quantum center-mass motion of a
trapped ion. When the transition frequency between the two
inner states is much larger than that of the external motion,
the inner motion of the ion always remains in the inner lower
state, and the Hamiltonian of the external motion can be writ-
ten as a linear function of operators of the SU(1,1) algebra.
This Hamiltonian exhibits a quantum phase transition as the
coupling strength approaches the critical value. We investigate
the critical properties of the QFI for the estimation of param-
eter at the critical point of the SU(1,1) dynamic system. We
show that the QFI goes divergently in the sixth power law (T 6)
of the parameter coding time around the critical point. A phys-
ical measurement must be involved with energy consumption.

It is the best way that the consumption energy is as little
as possible while attaining the possible highest measurement
precision. In the present situation, it represents the phonon
number of excitation during the parameter coding process. Af-
ter taking into the consuming energy, we find that the variation
of the QFI around the critical point is scaled by the Heisen-
berg limit T 2. It is noticed that for nonclassical initial probe
states such as phonon number states, its linear superposition
and the the single-photon(phonon)-added coherent state, the
variation of the QFI surpasses the SQL n0 as a function of the
initial mean phonon number n0. It implies that the nonclassical
properties such as the negativity of Wigner function is also
a resource for quantum sensing besides quantum coherent
and entanglement, as proved in [49,50]. In order to attain the
possible highest precision, the measurement scheme must be
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optimized. In this study, we compare the homodyne detection
and the average phonon number detection schemes. We find
that the quantum Cramér-Rao bound can be reached by use
of the average phonon number detection scheme. However, it
is more sensitive to the decay and heating of phonons than
the homodyne detection scheme. In addition, we extend the
study to a two-mode non-Hermitian system and show that the
QFI exhibits the same anomalous feature at the exceptional
point, revealing that the QFI universally diverges as T 6 at the
critical point of the SU(1,1) dynamic systems. We believe that
the critical properties of the QFI can be useful for quantum
sensing and quantum parameter estimation.
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APPENDIX A: THE SW TRANSFORMATION TO THE
ORIGINAL HAMILTONIAN

In this Appendix, we perform Schrieffer-Wolff (SW) trans-
formation to the Hamiltonian (4) [20]. For this purpose,
we consider a unitary transformation U = eS to the original
Hamiltonian (4). The transformed Hamiltonian can be written
as

Ĥ ′ = e−SĤQRMeS =
∞∑

k=0

1

k!
[ĤQRM, S]

(k)
, (A1)

where [ĤQRM, S](k) ≡ [[ĤQRM, S](k−1), S], [ĤQRM, S](0) ≡ H .
For simplification, we need the nondiagonal elements of Ĥ ′
to be zero, which leads to

S = g

ωq
(â† + â)(σ̂+ − σ̂−) + O

(
ωr

ω2
q

)
. (A2)

Considering the limit ωq/ωr → ∞, higher-order terms can be
neglected. Then the transformed Hamiltonian becomes

Ĥ ′ = ωr â†â + ωq

2
σ̂z + ωr g̃2

4
(â† + â)2σ̂z, (A3)

with g̃ = 2g/
√

ωrωq, and it can be projected to the spin sub-
space,

Ĥnp,g̃�1 = ωr â†â − ωq

2
− ωr g̃2

4
(â† + â)2. (A4)

For g̃ > 1, the eigenvalue of the above Hamiltonian will be
non-Hermitian. Therefore, we apply a unitary transformation
D(α) = eα(â†−â) to Eq. (4),

H̃QRM = D†(α)ĤQRMD(α)

= ωr (â† + α)(â + α) + ωq

2
σ̂z − λ(â + â† + 2α)σ̂x.

(A5)

After a similar process as before, it can be projected to the
transformed spin-down subspace,

Ĥsp,g̃>1 = ωr â†â − ωr

4g̃4
(â† + â)2 − ωq

4
(g̃2 + g̃−2). (A6)

APPENDIX B: DIAGONALIZATION OF THE GENERAL
SU(1,1) HAMILTONIAN

Equations (9) and (10) can be concluded into the general
SU(1,1)-form Hamiltonian,

Ĥ = c1K̂0 + c2(K̂+ + K̂−) + ic3(K̂+ − K̂−) + c4, (B1)

where the coefficients c1, c2, c3, c4 are decided by the specific
physical system. K̂0 = (â†â + 1/2)/2, K̂+ = (â†)2/2, K̂− =
â2/2, and satisfy the commutation relations [K̂0, K̂±] =
±K̂±, [K̂+, K̂−] = −2K̂0. â, â† are the bosonic modes. The
matrix form of Eq. (B1) reads

Ĥ = α†Aα + c4, (B2)

where

α =
(

â

â†

)
A =

(
c1
4

c2+ic3
2

c2−ic3
2

c1
4

)
. (B3)

Equation (B2) can be diagonalized by the Bogoliubov-Valatin
transformation with new bosonic modes

β = Uα, (B4)

where

β =
(

b̂

b̂†

)
U =

(
u v

v∗ u∗

)
, (B5)

with complex numbers u and v and |u|2 − |v|2 = 1. Accord-
ingly, Eq. (B2) is written as

Ĥ = α†U †(U †)−1AU −1Uα

= β†(U †)−1AU −1β

= β†

(
λ1 0

0 λ2

)
β, (B6)

where the constant term c4 is omitted. We then use the fol-
lowing hint to deduce the values of λ1 and λ2. Based on
|u|2 − |v|2 = 1 one has U σ̂zU † = σ̂z and U = σ̂z(U †)−1σ̂z.
Accordingly, we get

σ̂z(U †)−1AU −1 = σ̂z(U †)−1σ̂zσ̂zAU −1

= U σ̂zAU −1 =
(

λ1 0
0 −λ2

)
. (B7)

Inserting Eqs. (B3) and (B5) into (B7), we have

λ1 = λ2 =
√

c2
1 − 4c2

2 − 4c2
3

4
. (B8)

For the Hamiltonian Ĥnp,g̃�1 (9), its diagonized form is

Ĥnp,g̃�1 = ωr

√
1 − g̃2

(
b̂†b̂ + 1

2

)
− ωq + ωr

2
, (B9)
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where c1 = −ωr g̃2 + 2ωr, c2 = −ωr g̃2/2, c4 = ωq + ωr/2. For the Hamiltonian Ĥsp,g̃>1 (10), its diagonized form reads

Ĥsp,g̃>1 = ωr

√
1 − 1/g̃4

(
b̃†b̃ + 1

2

)
− ωq(g̃2 + g̃−2) + 2ωr

4
, (B10)

where c1 = 2ωr − ωr/g̃4, c2 = −ωr/(2g̃4), c4 = [−ωq(g̃2 + g̃−2) − 2ωr]/4.

APPENDIX C: THE GENERATOR OF INFINITESIMAL VARIATIONS OF PARAMETER

The infinitesimal variations of g̃ with the general SU(1,1)-form Hamiltonian Ĥ (g̃), are governed by its generator

hg̃(T ) = i(∂g̃e−iĤ (g̃)T )eiĤ (g̃)T

= i
∫ 1

0
dse−iĤ (g̃)T s(−iT )∂g̃Ĥ (g̃)e−iĤ (g̃)T (1−s)eiĤ (g̃)T

= T
∫ 1

0
dse−iĤ (g̃)T s∂g̃Ĥ (g̃)eiĤ (g̃)T s

= T
∫ 1

0
ds

{
∂g̃Ĥ (g̃) + [−iĤ (g̃)T s, ∂g̃Ĥ (g̃)] + 1

2!
[−iĤ (g̃)T s, [−iĤ (g̃)T s, ∂g̃Ĥ (g̃)]] + · · ·

}

= i
∞∑

n=0

(−iT )n+1

(n + 1)!
Ĥ (g̃)×n[∂g̃Ĥ (g̃)], (C1)

where the notation Â×n(•) :=
n times︷ ︸︸ ︷

[Â, [Â, · · · [Â, •] is introduced to express the nested commutators. In the above calculations,
the derivative of an exponential operator ∂�eÂ = ∫ 1

0 ds esÂ(∂�Â)e(1−s)Â and the well-known expansion eÂB̂e−Â = B̂ + [Â, B̂] +
(1/2!)[Â, [Â, B̂]] + · · · are employed [44].

From Eq. (B1) we get

∂g̃Ĥ = ∂g̃c1K̂0 + ∂g̃c2(K̂+ + K̂−) + ∂g̃c4,

Ĥ×1(∂g̃Ĥ ) = (c1∂g̃c2 − c2∂g̃c1)(K̂+ − K̂−),

Ĥ×3(∂g̃Ĥ ) = (
c2

1 − 4c2
2

)
(c1∂g̃c2 − c2∂g̃c1)(K̂+ − K̂−),

Ĥ×5(∂g̃Ĥ ) = (
c2

1 − 4c2
2

)2
(c1∂g̃c2 − c2∂g̃c1)(K̂+ − K̂−),

· · ·
Ĥ×2(∂g̃Ĥ ) = (c1∂g̃c2 − c2∂g̃c1)[c1(K̂+ + K̂−) + 4c2K̂0],

Ĥ×4(∂g̃Ĥ ) = (
c2

1 − 4c2
2

)
(c1∂g̃c2 − c2∂g̃c1)[c1(K̂+ + K̂−) + 4c2K̂0],

Ĥ×6(∂g̃Ĥ ) = (
c2

1 − 4c2
2

)2
(c1∂g̃c2 − c2∂g̃c1)[c1(K̂+ + K̂−) + 4c2K̂0],

· · · (C2)

where c3 = 0 is set for simplification. Inserting Eq. (C2) into Eq. (C1), we get

hg̃(T ) = T ∂g̃Ĥ − i
T 2

2!
Ĥ×1(∂g̃Ĥ ) − T 3

3!
Ĥ×2(∂g̃Ĥ ) + i

T 4

4!
Ĥ×3(∂g̃Ĥ )

+ T 5

5!
Ĥ×4(∂g̃Ĥ ) − i

T 6

6!
Ĥ×5(∂g̃Ĥ ) − T 7

7!
Ĥ×6(∂g̃Ĥ ) + · · ·

= T ∂g̃Ĥ −
[

T 3

3!
Ĥ×2(∂g̃Ĥ ) − T 5

5!
Ĥ×4(∂g̃Ĥ ) + T 7

7!
Ĥ×6(∂g̃Ĥ ) + · · ·

]

− i

[
T 2

2!
Ĥ×1(∂g̃Ĥ ) − T 4

4!
Ĥ×3(∂g̃Ĥ ) + T 6

6!
Ĥ×5(∂g̃Ĥ ) + · · ·

]
= T [∂g̃c1K̂0 + ∂g̃c2(K̂+ + K̂−) + ∂g̃c4]

− (c1∂g̃c2 − c2∂g̃c1)[c1(K̂+ + K̂−) + 4c2K0]

[
T 3

3!
− T 5

5!

(
c2

1 − 4c2
2

)+ T 7

7!

(
c2

1 − 4c2
2

)2 + · · ·
]
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− i(c1∂g̃c2 − c2∂g̃c1)(K̂+ − K̂−)

[
T 2

2!
− T 4

4!

(
c2

1 − 4c2
2

)+ T 6

6!
(c2

1 − 4c2)2 + · · ·
]

= T [∂g̃c1K̂0 + ∂g̃c2(K̂+ + K̂−) + ∂g̃c4]

− (c1∂g̃c2 − c2∂g̃c1)(
c2

1 − 4c2
2

)3/2 [c1(K̂+ + K̂−) + 4c2K̂0]

[
T 3

3!

(
c2

1 − 4c2
2

)3/2 − T 5

5!

(
c2

1 − 4c2
2

)5/2 + T 7

7!

(
c2

1 − 4c2
2

)7/2 + · · ·
]

− i
(c1∂g̃c2 − c2∂g̃c1)

c2
1 − 4c2

2

(K̂+ − K̂−)

[
T 2

2!

(
c2

1 − 4c2
2

)2/2 − T 4

4!

(
c2

1 − 4c2
2

)4/2 + T 6

6!

(
c2

1 − 4c2
2

)6/2 + · · ·
]

= T [∂g̃c1K̂0 + ∂g̃c2(K̂+ + K̂−) + ∂g̃c4]

+ (c1∂g̃c2 − c2∂g̃c1)(
c2

1 − 4c2
2

)3/2 [c1(K̂+ + K̂−) + 4c2K̂0]
[

sin
(
T
√

c2
1 − 4c2

2

)− T
√

c2
1 − 4c2

2

]

+ i
(c1∂g̃c2 − c2∂g̃c1)

c2
1 − 4c2

2

(K̂+ − K̂−)
[

cos
(
T
√

c2
1 − 4c2

2

)− 1
]

=
{

T ∂g̃c1 + 4c2(c1∂g̃c2 − c2∂g̃c1)(
c2

1 − 4c2
2

)3/2

[
sin
(
T
√

c2
1 − 4c2

2

)− T
√

c2
1 − 4c2

2

]}
K̂0

+
{

T ∂g̃c2 + c1(c1∂g̃c2 − c2∂g̃c1)(
c2

1 − 4c2
2

)3/2

[
sin
(
T
√

c2
1 − 4c2

2

)− T
√

c2
1 − 4c2

2

]}
(K̂+ + K̂−)

+ i
(c1∂g̃c2 − c2∂g̃c1)

c2
1 − 4c2

2

[
cos

(
T
√

c2
1 − 4c2

2

)− 1
]
(K̂+ − K̂−) + T ∂g̃c4. (C3)

For the Ĥnp,g̃�1 (9), c1 = −ωr g̃2 + 2ωr, c2 = −ωr g̃2

2 , c4 = −ωq+ωr

2 , from Eq. (C3) we get

hg̃�1(T ) = fxK̂0 + fy(K̂+ + K̂−) + i fz(K̂+ − K̂−), (C4)

with

fx = −2g̃T ωr + g̃3

2(1 − g̃2)3/2
[sin(2T ωr

√
1 − g̃2) − 2T ωr

√
1 − g̃2],

fy = −g̃T ωr + −2g̃ + g̃3

4(1 − g̃2)3/2
[sin(2T ωr

√
1 − g̃2) − 2T ωr

√
1 − g̃2],

fz = g̃

2(g̃2 − 1)
[cos(2T ωr

√
1 − g̃2) − 1]. (C5)

For the Ĥsp,g̃>1 (10), c1 = 2ωr − ωr
g̃4 , c2 = − ωr

2g̃4 , c4 = −ωq (g̃2+g̃−2 )+2ωr

4 , from Eq. (C3) we get

hg̃>1(T ) = f̃xK̂0 + f̃y(K̂+ + K̂−) + i f̃z(K̂+ − K̂−) + f̃h, (C6)

with

f̃x = 4T ωr

g̃5
− 1

g̃9(1 − 1/g̃4)3/2

[
sin

(
T

g̃2

√
2ωr + ω2

r (2g̃2 − 1/g̃2)2

)
− T

g̃2

√
2ωr + ω2

r (2g̃2 − 1/g̃2)2

]
,

f̃y = 2T ωr

g̃5
+ 2g̃4 − 1

2g̃9(1 − 1/g̃4)3/2

[
sin

(
T

g̃2

√
2ωr + ω2

r (2g̃2 − 1/g̃2)2

)
− T

g̃2

√
2ωr + ω2

r (2g̃2 − 1/g̃2)2

]
,

f̃z = −1

g̃ − g̃5

[
cos

(
T

g̃2

√
2ωr + ω2

r (2g̃2 − 1/g̃2)2

)
− 1

]
, f̃h = −T ωq(g̃4 − 1)

2g̃3
. (C7)

The QFI of parameter ξ ∈ {�0, ωq, m} encoded in g̃ can be expressed as

Iξ (T ) = 4Var[hξ (T )]|ψ0〉, (C8)
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where hξ (T ) is the generator of infinitesimal variations of ξ ,

hξ (T ) = i(∂ξ e−iĤ (g̃)T )eiĤ (g̃)T

= i
∞∑

n=0

(−iT )n+1

(n + 1)!
Ĥ (g̃)×n[∂ξ Ĥ (g̃)]

= i
∞∑

n=0

(−iT )n+1

(n + 1)!
Ĥ (g̃)×n[∂g̃Ĥ (g̃)(∂ξ g̃) + C0(ξ )]

= (∂ξ g̃)hg̃(T ) + C0(ξ )T . (C9)

In the third line of the above equation, we have assumed
that the condition ∂ξ Ĥ (g̃) = ∂g̃Ĥ (g̃)(∂ξ g̃) + C0(ξ ) is satisfied,
where C0(ξ ) is a function of ξ . Note that the term of C0 van-
ishes in the higher commutation terms and can be eliminated
in the variance of hξ (T ).

Then Iξ (T ) can be rewritten as

Iξ (T ) = 4[〈hξ (T )2〉 − 〈hξ (T )〉2]

= 4(∂ξ g̃)2[〈hg̃(T )2〉 − 〈hg̃(T )〉2]

= (∂ξ g̃)2Ig̃(T ). (C10)

APPENDIX D: THE AVERAGE PHONON NUMBER

The average phonon number during the dynamic evolution,
denoted by 〈N̂〉 in Eq. (38) can be computed using the Heisen-
berg equations of motion, as shown in Eqs. (39)–(41). For the
initial superposition state (|0〉 + i|n〉)/

√
2,

〈N̂〉 = (n + 1)[(g̃2 − 2)2 − g̃4 cos(2
√

1 − g̃2ωrT )]

8(1 − g̃2)
− 1

2
,

(D1)

with the limitation of average phonon number 〈N̂〉g̃c = [2n +
(1 + n)ω2

r T 2]/4 at the critical point g̃ = g̃c = 1, and the
maximum of average phonon number during the evolution
〈N̂〉max = n/2 + (n + 1)g̃4/(4 − 4g̃2).

For the Fock state |n〉,

〈N̂〉 = (2n + 1)[(g̃2 − 2)2 − g̃4 cos(2
√

1 − g̃2ωrT )]

8(1 − g̃2)
− 1

2
,

(D2)

with the limitation of average phonon number 〈N̂〉g̃c =
[4n + (1 + 2n)ω2

r T 2]/4 at the critical point g̃ = g̃c = 1, the
maximum of average phonon number during the evolution
〈N̂〉max = n + (2n + 1)g̃4/(4 − 4g̃2).

For the coherent initial state a|α〉 = α|α〉 with α =
Re[α] + iIm[α],

〈N̂〉 = 1

8(1 − g̃2)
{8(Re[α]2 + Im[α]2) + (4Re[α]2 + 1)g̃4

− 4g̃2(3Re[α]2 + Im[α]2)

+ g̃2[(4Re[α]2 − 4Im[α]2 − 4Re[α]2g̃2 − g̃2)

× cos(2
√

1 − g̃2ωrT )

− 8Re[α]Im[α]
√

1 − g̃2 sin(2
√

1 − g̃2ωrT )]}, (D3)

with the limitation of average phonon number 〈N̂〉g̃c =
Re[α]2 + Im[α]2 − 2Re[α]Im[α]ωrT + (1 + 4Im[α]2)ω2

r T 2

at the critical point g̃ = g̃c = 1. One should examine
various scenarios regarding the maximum average phonon
number during the evolution with different α values.
〈N̂〉max = (g̃4 + 4Im[α]2)/(4 − 4g̃2) for Re[α] = 0. When
Im[α] = 0 and Re[α] < g̃/(2

√
1 − g̃2), 〈N̂〉max = Re[α]2.

When Im[α] = 0 and Re[α] > g̃/(2
√

1 − g̃2), 〈N̂〉max =
Re[α]2(1 − g̃2) + g̃4/(4 − 4g̃2).
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estimation perspective on non-Hermitian singularity-enhanced
sensing, Phys. Rev. Lett. 131, 220801 (2023).

022611-13

https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/PhysRevLett.115.110401
https://doi.org/10.1103/PhysRevLett.117.160801
https://doi.org/10.1038/ncomms14695
https://doi.org/10.1126/sciadv.abd2986
https://doi.org/10.1103/PhysRevLett.124.190503
https://doi.org/10.1038/s41567-023-02046-y
https://doi.org/10.1103/PhysRevA.96.013817
https://doi.org/10.1038/s41534-023-00690-z
https://doi.org/10.1103/PhysRevLett.130.240803
https://doi.org/10.1103/PhysRevLett.132.060801
https://doi.org/10.1103/PhysRevLett.128.173602
https://doi.org/10.1103/PhysRevLett.131.160801
https://doi.org/10.1103/PhysRevLett.131.220801


YUYANG TANG et al. PHYSICAL REVIEW A 110, 022611 (2024)

[15] M. Yu, X. Li, Y. Chu, B. Mera, F. N. Ünal, P. Yang, Y. Liu, N.
Goldman, and J. Cai, Experimental demonstration of topologi-
cal bounds in quantum metrology, Natl. Sci. Rev. 11, nwae065
(2024).

[16] Y. Yang, H. Yuan, and F. Li, Quantum multiparameter estima-
tion enhanced by a topological phase transition, Phys. Rev. A
109, 022604 (2024).

[17] S. Gammelmark and K. Mølmer, Phase transitions and Heisen-
berg limited metrology in an Ising chain interacting with a
single-mode cavity field, New J. Phys. 13, 053035 (2011).

[18] D.-S. Ding, Z.-K. Liu, B.-S. Shi, G.-C. Guo, K. Mølmer,
and C. S. Adams, Enhanced metrology at the critical point
of a many-body Rydberg atomic system, Nat. Phys. 18, 1447
(2022).

[19] A. Carollo, D. Valenti, and B. Spagnolo, Geometry of quantum
phase transitions, Phys. Rep. 838, 1 (2020).

[20] M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase
transition and universal dynamics in the Rabi model, Phys. Rev.
Lett. 115, 180404 (2015).

[21] L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti,
Critical quantum metrology with a finite-component quantum
phase transition, Phys. Rev. Lett. 124, 120504 (2020).

[22] K. Gietka, F. Metz, T. Keller, and J. Li, Adiabatic critical quan-
tum metrology cannot reach the Heisenberg limit even when
shortcuts to adiabaticity are applied, Quantum 5, 489 (2021).

[23] Y. Chu, S. Zhang, B. Yu, and J. Cai, Dynamic framework
for criticality-enhanced quantum sensing, Phys. Rev. Lett. 126,
010502 (2021).

[24] J.-H. Lü, W. Ning, X. Zhu, F. Wu, L.-T. Shen, Z.-B. Yang, and
S.-B. Zheng, Critical quantum sensing based on the Jaynes-
Cummings model with a squeezing drive, Phys. Rev. A 106,
062616 (2022).

[25] S.-B. Tang, H. Qin, B.-B. Liu, D.-Y. Wang, K. Cui, S.-L. Su,
L.-L. Yan, and G. Chen, Enhancement of quantum sensing in
a cavity-optomechanical system around the quantum critical
point, Phys. Rev. A 108, 053514 (2023).

[26] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum
dynamics of single trapped ions, Rev. Mod. Phys. 75, 281
(2003).

[27] R. Blatt and C. F. Roos, Quantum simulations with trapped ions,
Nat. Phys. 8, 277 (2012).

[28] A. C. Wilson, Y. Colombe, K. R. Brown, E. Knill, D. Leibfried,
and D. J. Wineland, Tunable spin–spin interactions and entan-
glement of ions in separate potential wells, Nature (London)
512, 57 (2014).

[29] R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J.
Wineland, D. Leibfried, D. T. C. Allcock, and D. H. Slichter,
Trapped-ion spin-motion coupling with microwaves and a near-
motional oscillating magnetic field gradient, Phys. Rev. Lett.
122, 163201 (2019).

[30] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and
D. J. Wineland, Generation of nonclassical motional states of
a trapped atom, Phys. Rev. Lett. 76, 1796 (1996).

[31] C.-w. Chou, C. Kurz, D. B. Hume, P. N. Plessow, D. R.
Leibrandt, and D. Leibfried, Preparation and coherent manip-
ulation of pure quantum states of a single molecular ion, Nature
(London) 545, 203 (2017).

[32] S. Colombo, E. Pedrozo-Peñafiel, A. F. Adiyatullin, Z. Li, E.
Mendez, C. Shu, and V. Vuletić, Time-reversal-based quantum
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