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Topological quantum computation based on Majorana objects is subject to a significant challenge because
at least some of the two-qubit quantum gates rely on the fermion (either charge or spin) parity of the qubits.
This dependency renders the quantum operations involving these gates probabilistic when attempting to advance
quantum processes within the quantum circuit model. Such an approach leads to significant information loss
whenever measurements yield the undesired fermion parity. To resolve the problem of wasting information, we
devise topological operations that allow for the nondissipative correction of information from undesired fermion
parity to the desired one. We will use the sparse-dense mixed encoding process for the controlled-NOT gate as
an example to explain how corrections can be implemented without affecting the quantum information carried
by the computational qubits. This correction process can be applied to either the undesired input qubits or the
fermion parity-dependent quantum gates, and it works for both Majorana-zero-mode-based and Majorana-edge-
mode-based topological quantum computation.
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I. INTRODUCTIONS

The discovery of the topological state of matter has shed
new light on designing the next generation of low-energy-
consuming quantum electronic and spintronic devices [1–8].
Among these devices, the potential applications of topolog-
ical quantum computation based on Majorana objects have
attracted a lot of research interest. The study of Majo-
rana physics in condensed matter physics stems from the
Moore-Read wave function for the ν = 5/2 even denomi-
nator fractional quantum Hall effect [9], or generally the
p-wave superfluid/superconductor [10]. These Majorana ob-
jects obey non-Abelian statistics, which can be equivalently
described by Majorana zero modes (MZMs) [11,12]. Follow-
ing Kitaev’s anyon-based fault-tolerant quantum computation
proposal [13], the topological quantum gates, based on the
MZMs and Majorana edge modes (MEMs) in the fractional
quantum Hall effects, were designed [14–18].

Kitaev showed that MZMs can exist at the two ends
of a topologically superconducting quantum chain [19].
These MZMs are exact realizations of those defined in
[11,12,20]. Using the proximity effect of the s-wave
superconductor/topological insulator interface, Fu and Kane
also presented an effective model to realize the MZMs [21].
There are other proposals for MZMs, e.g., in semicon-
ductor heterostructures [22], semiconductor-superconductor
heterostructures [23], and so on [24–27]. Experimentally,
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there have been many reports on MZMs emerging exactly in
pairs [28–35]. Recently, evidence of MZMs has been reported
on the surface of iron-based superconductors, where the pairs
of MZMs are located on different surfaces that are separated
by the topological bulk [36–41]. Braiding these MZMs is the
central focus of the Majorana qubit manipulation, and there
are mainly two ways to braid the MZMs: the real space or ef-
fective moving scheme [20,42–48] and the measurement-only
scheme [49–56]. The initial step in the former approach in-
volves the experimental confirmation of the MZMs’ existence,
a task that continues to pose significant challenges. The latter
method, even for all Clifford gates, is not comprehensively un-
derstood. Recently, significant progress has been made in the
designation of measurement-only Majorana qubits [57]. For
example, a measurement-based realization of the Pauli gates
and the controlled-Z (CZ) gate without ancillary qubits has
been achieved. A new quantum computation process, based
on fermion parity, is proposed as an alternative to the quantum
circuit model [58].

The MEMs are characteristic of chiral topological superflu-
idity and superconductivity. Aside from that, in the ν = 5/2
even denominator fractional quantum Hall state, the chiral
edge states of Kitaev’s spin liquid [59], the long-expected
topological superconductor [4,5], and intrinsic time-reversal
breaking chiral superconducting states in a topologically in-
sulating thin film [60] are also regarded in the MEMs. In the
s-wave superconductor/quantum anomalous Hall heterostruc-
ture, the proximity effect may induce a chiral topological
superconducting phase [61,62]. Unfortunately, the experimen-
tal evidence of this scenario does not seem likely nowadays
[63,64]. Thanks to the propagating property of the MEMs,
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we can understand the Majorana-based quantum gates well
with the MEMs. Despite the experimental ambiguity, the the-
oretical studies for topological quantum computation with the
MEMs are convenient [14–18,61,62]. In our recent work [65],
we used MEMs in multilayers of the chiral superconductor
thin film [66] to demonstrate that these MEMs can function as
qubits for universal topological gates through their braidings.
We also design quantum circuits and quantum devices for
quantum computing processes, such as Shor’s integer factor-
ization algorithm [65].

There are two distinct encoding methods for Majorana-
based topological quantum computation. In sparse encoding,
n logical qubits are realized using 2n physical qubits. This
method aligns closely with the quantum circuit model and
offers significant reusability for quantum gates. However,
its primary limitation is the inability to generate entangled
states through braiding alone, necessitating the use of numer-
ous auxiliary bits combined with measurements to achieve
such states. On the other hand, dense encoding constructs
an n-logical qubit system with 2n + 2 physical qubits, inher-
ently facilitating entanglement but encountering compatibility
challenges with the tensor product structure inherent to the
quantum circuit model. As the number of logical bits in-
creases, a comprehensive redesign of all quantum gates
becomes essential, negatively affecting the system’s reusabil-
ity and scalability. Considering reusability and scalability,
our recent work proposed a sparse-dense mixed encoding.
Unlike solely relying on sparse encoding, this mixed en-
coding strategy eliminates the need for additional auxiliary
qubits.

However, it was recognized that the braiding structures
of some Majorana-based quantum gates are independent of
the fermion parity (spin or charge) of the Majorana qubits;
for example, most of the one-qubit gates and some direct
product two-qubit gates. On the other hand, some of them
are dependent on the fermion parity [51–56], such as the
controlled-NOT (CNOT) gate, which is a key component in
constructing the quantum circuit. The common way to deal
with the fermion parity dependence of the quantum gates is to
make a measurement with an ancillary qubit for the computa-
tional state. When the measured state has the desired fermion
parity, the computational process continues, but when it does
not have the desired parity, this input is abandoned. Although
it was estimated that such abandonment is of acceptable ef-
ficiency in a real quantum computation process [65], it still
wastes many resources.

Instead of such a probabilistic process, one may convert
the undesired fermion spin-parity qubits to the desired one
with some additional costs [55,56]. However, due to the use
of sparse encoding [67], implementing the fermion spin-parity
correction depends on two measurements. This causes the
complexity of the computational process, as we will describe
later. Furthermore, this correction operation cannot be ap-
plied to the sparse-dense mixed encoding in which we encode
the qubits in [65]. The authors of Ref. [57] present a sim-
pler operation that is relevant to converting the undesired
outcome into the desired one for measurement-only topo-
logical quantum computation. It is argued that no ancillary
qubit is required in the correction operation. These authors
consider a hybrid of superconductor/two-dimensional topo-

logical insulator/ferromagnetic insulator where MZMs lie,
and propose the deterministic Clifford gates.

In this work, we will study a correction operation for the
fermion charge parity in the sparse-dense mixed encoding
quantum computing process. We aim to improve our proba-
bilistic quantum process in [65] to a deterministic one through
an efficient fermion charge parity correction operation. In the
sparse encoding sense, we also show that no additional ancil-
lary qubit is required. Another way to resolve the problem of
mismatched parity between the input qubits and the quantum
gates is to correct the quantum gates, as briefly described in
our previous work [65]. Here, we provide the specific process.
By incorporating the correction process, we can achieve a
dissipationless universal topological quantum computer. We
discuss the efficiency of our process. Comparing with the
correction process in [55,56], our process is more efficient.

This work is organized as follows: In Sec. II, we briefly
summarize the main results of our previous work based on
the sparse-dense encoding process [65]. We also review the
fermion parity correction procedures provided in Ref. [56,57]
for the sparse encoding. In Sec. III, we discuss the fermion
charge parity correction for the sparse-dense mixed encod-
ing in terms of our proposed quantum gates. The example
for the dissipationless CNOT gate with the MEMs is explic-
itly implemented, in terms of the multilayers of the chiral
superconductor thin film [65,66]. The efficiency of our com-
putational process is estimated and compared with that of
other processes.

II. MAJORANA QUBITS, FERMION PARITY,
AND TOPOLOGICAL QUANTUM GATES

A. The basis

The quantum state space of the multi-Majorana ob-
jects is identical to the quantum states of the quantum
Ising model [11,12]. According to Ivanov [12], Majorana
fermions appear in pairs (γ1, γ2) with a phase difference π/4,
namely, when they fuse, γ 2

1 = γ 2
2 = 1 but up to an over-

all phase (γ1, γ2) → �A ∝ (γA1 + iγA2)/2 or �
†
A ∝ (γA1 −

iγA2)/2, i.e., annihilating or creating a conventional fermion
labeled as A with {�A, �

†
A} = 1, {�A, �A} = {�†

A, �
†
A} =

0. The Pauli gates are XA,YA, ZA acting on the one-qubit
for the basis (|0A〉, �†

A|0A〉)T ≡ (|0A〉, |1A〉)T , called the Ma-
jorana one-qubit. The Majorana two-qubit gates are then
defined in the basis of (|00〉, �†

A|00〉, �†
B|00〉, �†

A�
†
B|0〉)T ≡

(|0A0B〉, |1A0B〉, |0A1B〉, |1A1B〉)T . The fermion charge parity
of a quantum state is defined by (−1)F , where F is the fermion
number of the state. The fermion charge parity of the state |0〉
or |1〉 is ±1, while the states (|0A0B〉, |1A0B〉, |0A1B〉, |1A1B〉)T

have (−1)F to be (+,−,−,+). Notice that such a notion can
also be applied to the spin system if identifying | ↓〉 ≡ |0〉 and
| ↑〉 ≡ |1〉. In this case, the charge parity is replaced by the
spin-parity [56].

For a particle number conserved system, the quantum state
is characterized by F but not (−1)F . But when fermions are
created and annihilated in pairs, such as in superconductors,
the conserved quantity is (−1)F . In these systems, the Ma-
jorana one-qubit under the basis (|0A〉, |1A〉) and Majorana
two-qubits in the basis (|0A0B〉, |1A0B〉, |0A1B〉, |1A1B〉)T are
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meaningless because of the fermion parity conservation. The
minimal basis for a one-qubit is then |±AB〉1, where |+〉1 =
(|0A0B〉, |1A1B〉)T and |−〉1 = (|0A1B〉, |1A0B〉)T with ± refer-
ring to the fermion parity of the states. We have seen that most
one-qubit gates are independent of the fermion parity of the
basis (e.g., see [65]).

For the two-qubit gates, the dense encoding process takes
the minimal basis with three pairs of Majorana objects
[14,17,18],

|+ABC〉2 = (|0A0B0C〉, |0A1B1C〉, |1A0B1C〉, |1A1B0C〉)T ,

|−ABC〉2 = (|0A0B1C〉, |0A1B0C〉, |1A0B0C〉, |1A1B1C〉)T .

The two-qubits with the dense encoding are abbreviated as
two-Dqubits.

B. One-qubit gates

There are two important kinds of elementary mutual braid-
ings in the construction of the one-qubit gates in the fermion
parity basis of Majorana objects. One is the braiding of
Majorana fermions within a given fermion, say, R12 (γA1 ↔
γA2), and the other one is the braiding of Majorana fermions
between two different fermions, say B23 (γA2 ↔ γB3). For
MZMs, Ivanov [12] showed that in both parity even basis |+〉1

and parity odd basis |−〉1

R12 =
(

e−iπ/4 0
0 eiπ/4

)
, B23 = 1√

2

(
1 −i
−i 1

)
, (1)

whereas the manipulation of moving the MZMs remains an
experimental task.

In the following, we recall our one-qubit gates with the
MEMs [61,62,65]. We describe the exchanging, braiding, and
entangling of the MEMs in the parity basis |±AB〉1. Cor-
respondingly, they are the exchanging, braiding, and fusion
matrices in the unitary modular tensor category. In our sce-
nario, the exchange operations act on γ1A, γ2A which are two
MEMs from the same fermion �A and similarly for γB3, γB4.
It was found that, in a seven- layered effective chiral super-
conductor, the MEMs γ1,2 can be decomposed into a pair of
Fibonacci anyons τ with conformal dimensions of 2/5 and
a pair of ε anyons with conformal dimensions of 1/10 [66].
By denoting G(θ ) = ei2θ , then, through exchanging ε1, ε2 (or
τ1, τ2) twice in γ1 and γ2, both of γ1 and γ2 obtain a phase
factor G( π

10 ) = ei π
5 [or G( 2π

5 ) = ei 4π
5 ], while, exchanging each

pair ε1,2 and τ1,2 once, they obtain a phase factor G(−π
4 )

[65]. According to these phase factors, we can have the one-
qubit phase gates R12(θ/2) = diag(1, G(−θ )). Physically, this
phase gate means that if the fermion number nA = 0, nothing
happens, and if nA = 1, the fermion gains a phase G(−θ ). It
is easy to see that these phase gates are independent of the
fermion parity of the basis. However, we find that R(−)

34 (−π
4 )

is not the same as R(+)
34 (−π

4 ) because R(+)
34 (−π

4 ) = diag(1, i)
while R(−)

34 (−π
4 ) = diag(i, 1). These parity-dependent results

are consistent with those in Ivanov [12], and they only differ
by an overall constant phase. This parity dependency and its
influence on designing the Majorana-based quantum device
is not well considered in the literature, which is in fact the
reason why multiqubit gates are dependent on the parity of
the basis, and a parity correction process is needed. Later, we

will use the parity dependence of CNOT gate as an example
and discuss the corresponding correction process.

The braiding gate B23 for γ2A and γ3B under the basis
|±AB〉1 for the MEMs, proposed in [61,62], is not dependent
on the fermion parity and is given by

B23 = 1√
2

(
i 1
1 i

)
. (2)

This braiding process can be realized by the scattering of
MEMs between a metal and a chiral topological superconduc-
tor, which is also topological [61,62,65] and easier than that
of MZMs. And the Hadamard gate is given by

R12

(
−π

4

)
B23R12

(
−π

4

)
= i√

2

(
1 1
1 −1

)
= iH. (3)

With H−1 = H , one has

B23 = e−i π
4 HR12

(
−π

4

)
H−1.

This is the duality relation between fusion, exchange, and
braiding in the unitary modular tensor category, B = F−1RF ,
where F = H−1 = H and R = e− π

4 R12 [68]. Furthermore, we
have Z = [R12(−π

4 )]2, Y = (HZ )2, and

X = −iB2
23 = −H

[
R12

(
−π

4

)]2
H. (4)

The NOT gate X is given by braiding the MEM from �A and
the MEM from �B twice. It is easy to check that H , R12(−π

4 ),
and B23 obey the pentagon and hexagon equations in the
unitary modular tensor category [68].

Notice that R12(− π
10 ) and R12(− 2π

5 ) do not belong
to the Clifford gates [65]. Then, the quantum gates
{H, R12(−π

4 ), R12(− π
10 ), CNOT} form a universal set, and any

elements of SU (2) can be realized with desired precision
[65,69]. We have also designed the corresponding devices for
these gates with the multilayers of the chiral superconductor
thin film [65]. For example, we recall the device designa-
tions for the Pauli gates X,Y, Z in Appendix A because they
will play important roles in the fermion parity correction
process.

C. Qubits and parity corrections in sparse encoding

In the sparse encoding process [67], four pairs of Majorana
objects are considered for a two-qubit gate. Since there are
eight basis states in a given fermion parity subspace, one has
to choose four of them to span the computational space. We
abbreviate such two-qubits as two-Squbits. In the computa-
tional process, because the mixing between the computational
states and the noncomputational states cannot be avoided, the
process either becomes probabilistic or needs to be corrected.
As the cost of the fermion parity correction, an additional an-
cillary qubit, i.e., four Majorana objects, is introduced [55,56].
The advantage of the correction process in [56] is that, in-
stead of the long-range braiding operation [55], only the local
braidings are needed. On the other hand, besides introducing
ancillary qubits, for the control-target two-qubit gates, both
control and target qubits need to be corrected according to
two measurements.

In the measurement-only process, Zhang et al. [57] pro-
posed a scheme to correct the undesired outcome that arose
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from the computational operation recently. In this model, the
operations of fusion and braiding are effectively conducted
through measurements rather than physically relocating Ma-
jorana fermions. However, these measurement processes can
lead to the emergence of undesired quantum states. For exam-
ple, they take the computational Squbit spanned by the basis

(|0A0B0C0D〉, |0A0B1C1D〉, |1A1B0C0D〉, |1A1B1C1D〉)T . (5)

The noncomputational basis, but with the same fermion parity,
may be mixed with the computational basis due to the compu-
tational operations, and is

(|0A1B0C1D〉, |0A1B1C0D〉, |1A0B0C1D〉, |1A0B1C0D〉)T . (6)

Zhang et al. found that if one uses the parity correction oper-
ation to the Majorana one-qubit (|0B,C〉, |1B,C〉), i.e., |0B,C〉 ↔
|1B,C〉, the noncomputational basis could be turned back to
the computational one. Therefore, the required branding oper-
ation can be completed correctly and deterministically. They
further showed that, without adding an ancillary one-qubit,
the correction operation could be realized by turning on the
effective XB,C gates when the undesired parity is measured for
the states at B,C according to the duality relation between the
fusion, exchange, and braiding, that is, XB,C = F−1

B,CR2
B,CFB,C ,

similar to Eq. (4).

D. Two-qubit gates in dense encoding

We recall the CNOT gate in the dense encoding [16,65].
We define �A = (γA1 + iγA2)/2, �B = (γB3 + iγB4)/2, and
�C = (γC5 + iγC6)/2. Under the basis |+ABC〉2, the CNOT is
given by

CNOT(+) = B(2)
45 R(2)

34

(
−π

4

)
R(2)

56

(
−π

4

)
B(2)

45

× R(2)
56

(
−π

4

)
R(2)

34

(
−π

4

)
R(2)−1

12

(
−π

4

)

=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠, (7)

where the two-Dqubit gates R(2)
12 (−π

4 ) = diag(1, 1, i, i),
R(2)

34 (−π
4 ) = diag(1, i, 1, i), and R(2)

56 (−π
4 ) = diag(1, i, i, 1).

B(2)
45 , as the counterpart of B23, is given by

B(2)
45 = 1√

2

⎛
⎜⎜⎝

i 1 0 0
1 i 0 0
0 0 i 1
0 0 1 i

⎞
⎟⎟⎠.

However, it is easy to see that the CNOT gate is dependent on
the fermion parity. If we design the device according to the
two-Dqubit gate sequence given by (7) in the parity odd basis
|−ABC〉2, the result is not the right side of (7) [65]. The correct
two-Dqubit gate sequence, which acts on |−ABC〉2 and gives
the CNOT(−), is as follows:

CNOT(−) = B(2)
45 R(2)−1

34

(
−π

4

)
R(2)

56

(
−π

4

)
B(2)

45

× R(2)−1
56

(
−π

4

)
R(2)

34

(
−π

4

)
R(2)

12

(
−π

4

)
. (8)

FIG. 1. The CNOT is in sparse encoding with even parity. The
blue shaded area is the CNOT(+) in the dense encoding.

E. Qubits and universal topological quantum gates in the
sparse-dense mixed encoding process

With three gates {H, Z
1
4 , CNOT}, the quantum circuit mod-

els for quantum computation can be built [69,70]. To prove
universality, the key essence is to create two orthogonal axes
and a phase with an irrational number times π from the uni-
versal set, namely, any element in SU (2) can be approximated
with the desired precision. As mentioned before, the set of
gates {H,

√
Z, R(− π

10 ), CNOT} is universal [65]. Therefore,
in principle, we can design the universal topological quantum
computer. However, the dense encoding process is not directly
relevant to a quantum circuit model. Therefore, we use the
sparse-dense encoding process, i.e., taking the sparse encod-
ing process to fit the quantum circuit model while processing
the quantum computing by the dense encoding.

In our previous work [65], we started from the sparse
encoding basis. To form a quantum circuit, we require
each one-qubit to have the same fermion parity, say, +.
Then two-Squbits are of the even fermion parity with
the basis given by (5) and (6), denoted as |+ABCD〉4.
The two-qubits are formed by four pairs of MEMs:
(γA1, γA2), (γB3, γB4), (γC5, γC6), (γD7, γD8), and the initial in-
put is enforced by γA1γA2γB3γB4 = −1 and γC5γC6γD7γD8 =
−1. To reduce to dense encoding, we take (γ4B, γ5C ) as the an-
cillary Majorana one-qubit. Before making the measurement
M1, we entangle the first qubit and the second qubit with a
series of exchanges and braiding, as shown in Fig. 1. If the
measurement M1 gives a positive fermion parity, then the rest
of the MEMs propagate through the blue shaded area, which is
a CNOT(+) in the dense encoding. The final step is measuring
the output state. If M2 gives γC5γC6γD7γD8 = −1, this output
state is the desired state ready for the next computational pro-
cess. This is our quantum process for sparse-dense encoding.

The controlled-Y (CY) and CZ gates are obtained in terms
of CNOT:

CY = R12

(
−π

4

)
CNOT R−1

12

(
−π

4

)
,

C(iZ) = CNOT · CY. (9)

This means that these two-Dqubit gates are also dependent on
the fermion parity.

III. THE FERMION PARITY CORRECTION FOR THE
SPARSE-DENSE ENCODING PROCESS

As we have seen in the sparse-dense mixed encoding
process, the input information will be abandoned when the
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FIG. 2. Correcting the undesired fermion parity measured. M1

and M2 for the CNOT gate in the sparse-mixed encoding process.

undesired fermion parity is detected either in M1 or M2. This
makes the topological quantum computing process proba-
bilistic. Although it has been estimated that this probabilistic
process is still of good efficiency [65], vast quantum infor-
mation resources are wasted. Similarly to the sparse encoding
process [56,57], it is better to introduce the correction when
the undesired fermion parity is detected. Two ways of the cor-
rection processes will be presented below, and they work for
both MZM-based and MEM-based quantum computations.

A. Process I: Correcting the input qubits

As we have said, at a given A, the operation XA switches
the basis |0A〉 ↔ |1A〉 and then exchanges the fermion parity
of the basis. However, in the basis we take, there is no XA

operation. In our basis, the one-qubit space is spanned by
(|+〉1) = (|0A0B〉, |1A1B〉)T and (|−〉1) = (|0A1B〉, |1A0B〉)T .
The X = −iB2

23 gate does not change the fermion parity
of the basis because X (|0A0B〉, |1A1B〉)T = (|1A1B〉, |0A0B〉)T

and X (|0A1B〉, |1A0B〉)T = (|1A0B〉, |0A1B〉)T . However, for a
given A and B, we see that |1A〉 ↔ |0A〉 and |1B〉 ↔ |0B〉, i.e.,
X = XA ⊗ XB.

We now show the details of the correction process
for the CNOT gate. We have labeled four pairs of
(γ1, γ2), (γ3, γ4), (γ5, γ6), (γ7, γ8) as A, B,C, D. We take γ4,5

as an ancillary qubit and measure its fermion parity, i.e., iγ4γ5.
We label this measurement as M1 in Fig. 2. If the measurement
M1 results in a positive fermion parity, we do nothing. For a
negative fermion parity, i.e., an electron �

†
C = (γC4 − iγC5)/2

being detected, the fermion parity correction can be operated
as follows:

Since the total fermion parity is conserved, this means that
the left two-Dqubits constituted by γ1, γ2, γ3, γ6, γ7, γ8 are
also of the negative fermion parity. To correct this undesired
fermion parity, let this electric signal switch on the gate X
acting on the one-qubit constituted by γC4, γC5, γD7, γD8. This
corresponds to braiding γC8 and γD4 twice (see )]. Since X =
XC ⊗ XD, the fermion parity iγC4γC5 changes from − to +
while iγD7γD8 also changes sign, and so γ1γ2γ3γ6γ7γ8 changes
from − to +. Therefore, the undesired fermion parity of the
computational state in the dense encoding is corrected to the
desired one.

We now describe how to make the measurement M1.
If we choose the even fermion parity input state given by
γ1γ2γ3γ4 = γ5γ6γ7γ8 = −1 [67], the corresponding compu-
tational two-Squbit basis is given by

(|0A0B0C0D〉, |0A0B1C1D〉, |1A1B0C0D〉, |1A1B1C1D〉)T . (10)

At this stage, measuring iγ4γ5 does not make sense because
γ4 and γ5 do not form a fermion associated with the above
basis. To get the fermion associated with that in the basis, let
γ6 exchange with γ4,5 and form a new pair with γ3, and let
(γ4, γ5) form another new pair (see Fig. 2). This is equivalent
to applying B45B56 to the qubit {(γ3, γ4), (γ5, γ6)} and results
in a superposition of the computational and noncomputational
two-Sqbasis ⎛

⎜⎜⎜⎝
i|0A0B0C0D〉 + |0A1B1C0D〉

−|0A0B1C1D〉 + i|0A1B0C1D〉
|1A0B1C0D〉 + i|1A1B0C0D〉
i|1A0B0C1D〉 − |1A1B1C1D〉

⎞
⎟⎟⎟⎠, (11)

where A, B,C, D label the Majorana fermion pairs
(γ1, γ2), (γ3, γ6), (γ4, γ5), (γ7, γ8).

We then measure iγ4γ5, i.e., performing M1 in Fig. 2. When
it is +1, the fermion number of the pair C is 0, and the basis
(11) collapses to a two-Dqubit basis

(|0A0B0D〉, |0A1B1D〉, |1A1B0D〉, |1A0B1D)T , (12)

which is the basis of the two-qubits for the dense encoding in
the even fermion parity.

When iγ4γ5 = −1, the fermion number of the pair C is 1,
and the collapsed two-Dqubit basis is given by

(|0A1B1C0D〉,−|0A0B1C1D〉, |1A0B1C0D〉,−|1A1B1C1D〉)T .

(13)
Here we introduce a quantum gate called the SWAP, which

has the ability to exchange fermionic numbers between sites
C and D, and is represented as follows:

SWAP = 1√
2

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠.

The braiding diagram for the SWAP operation is shown in
Appendix C. Applying the SWAP to CD of (13),

(|0A1B1C0D〉, |0A0B1C1D〉, |1A0B1C0D〉, |1A1B1C1D〉)T . (14)

Notice that the overall phase of −1 has been omitted. Enacting
XC ⊗ XD on this remaining basis, it becomes

(|0A1B0C1D〉, |0A0B0C0D〉, |1A0B0C1D〉, |1A1B0C0D〉)T . (15)

As we have said, this correction can be realized by braid-
ing γ5 and γ7 twice, i.e., B2

57 ∝ X = XC ⊗ XD, up to a total
phase factor (see Fig. 2). This operation also switches the
pair (γ4, γ5) from iγ4γ5 = −1 to 1. In the case of even parity,
we also exchange the positions of C and D by employing the
SWAP gate, and no additional phase is introduced.

The corrective approach is not unique. The basis (15) and
that in (12) only differ by a linear transformation, which can
be realized using a two-qubits gate. Another realization pro-
cess and the definitions, and implementations of the SWAP,
SWAP′, and X gates are provided in the Appendices for refer-
ence.

Continuing the process and applying the CNOT(+) gate, on
the desired basis state (12), the output basis is given by

(|0A0B0D〉, |0A1B1D〉, |1A0B1D〉, |1A1B0D〉)T
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Putting the pair (γ4, γ5) with iγ4γ5 = 1 back, we have

(|0A0B0C0D〉, |0A1B0C1D〉, |1A0B0C1D〉, |1A1B0C0D〉)T .

To complete this sparse-dense encoding process, we want to
restore the input basis, i.e., perform the operations before the
measurement M2. This means that we need to braid γ6 with γ4

and γ5 again, and we then obtain the superposition state with
γ1γ2γ3γ4 (and γ5γ6γ7γ8) either = +1 or = −1, i.e.,⎛

⎜⎜⎜⎝
|0A0B0C0D〉 + |0A1B1C0D〉
|0A0B1C1D〉 + |0A1B0C1D〉
|1A0B0C1D〉 + |1A1B1C1D〉
|1A0B1C0D〉 + |1A1B0C0D〉

⎞
⎟⎟⎟⎠. (16)

We then measure γ5γ6γ7γ8, i.e., the measurement M2 in
Fig. 2(a). If it is −1, we have the fermion parity even output
basis in the sparse encoding,

(|0A0B0C0D〉, |0A0B1C1D〉, |1A1B1C1D〉, |1A1B0C0D〉)T .

If the measurement M2 is odd, we have the fermion parity odd
output basis in the sparse encoding,

(|0A1B1C0D〉, |0A1B0C1D〉, |1A0B0C1D〉, |1A0B1C0D〉)T .

We then enact X = XB ⊗ XC on the above output (see Fig. 2).
The basis goes back to the computational basis (10).

This approach adjusts the fermion parity from an odd out-
put basis to an even output basis, subsequently facilitating
the implementation of a CNOT gate within sparse encod-
ing. Without performing correction operations and discarding
undesired states, the probability of achieving the correct
outcome after N measurements is 1

2N . However, through
corrections with a polynomial time complexity of O(N ),
undesired states are transformed into desired states. This mod-
ification ensures that each result is deterministic, avoiding the
exponentially decreased probability associated with uncor-
rected processes. It is noteworthy that, in contrast to the sparse
encoding process described in [56], our method eliminates the
need for additional ancillary qubits, a realization also achieved
by [57] through a measurement-only scheme.

Furthermore, according to the above sparse-dense encod-
ing process, any parity dependent two-Dqubit gate can be
generalized to the two-Squbit gate in the same way because
our process in fact does not specify the two-Dqubit gate. For
a parity independent two-Dquibt gate, the fermion parity cor-
rection can be omitted after the measurement M1 (see Fig. 4
in the Appendix).

Therefore, with the universal set of gates
{H,

√
Z, R(− π

10 ), CNOT}, we can perform dissipationless
universal topological quantum computation. In terms of
sparse encoding, no additional ancillary qubit is needed for
redundant measurements.

B. Process II: Correcting the gates in the dense encoding

As we mentioned in the previous work [65], we can also
try to correct the parity-dependent gate if the measurement is
undesired, instead of correcting the input data. For example,
we start from the input as described in the last subsection.
The braiding data of the CNOT gate in the sparse encoding
is shown in Fig. 3(a), where the blue shade is the data of the

FIG. 3. Correcting the fermion-dependent gates. The blue trans-
parent shade corresponds to the CNOT gate. (a) Before correction;
(b) after correction.

CNOT(+) for the dense encoding. We first do the measurement
M1. If the result is positive fermion parity, we do nothing, as
before. If the negative parity is detected, three signals are sent
to three phase gates [see Fig. 3(a)]. These signals give orders
so that the phase gates R(2)−1

12 (−π
4 ), R(2)

34 (−π
4 ), R(2)

56 (−π
4 ) turn

to R(2)
12 (−π

4 ), R(2)−1
34 (−π

4 ), R(2)−1
56 (−π

4 ) and the CNOT(+) →
CNOT(−) [see Fig. 3(b)]. According to (7) and (8), this
corrects the CNOT(+) to the CNOT(−). In practice, since
G(∓π

4 ) = G(±π
4 )G(±π

4 )G(±π
4 ), we do not reconstruct the

exchange element when the undesired parity sign is received;
instead, we turn on the other two same elements.

After applying the CNOT(−) gate and restoring the pair
(γ4, γ5), we obtain

(|0A1B1C0D〉,−|0A0B1C1D〉, |1A1B1C1D〉,−|1A0B1C0D〉)T .

Similarly to before, we revert to the input basis before mea-
surement M2 and obtain the superposition state

−i

⎛
⎜⎜⎝

|0A0B0C0D〉 − |0A1B1C0D〉
|0A0B1C1D〉 − |0A1B0C1D〉
|1A0B0C1D〉 − |1A1B1C1D〉
|1A0B1C0D〉 − |1A1B0C0D〉

⎞
⎟⎟⎠. (17)

Finally, we perform M2 and restore the output fermion
parity to that of the input’s parity [see Fig. 3(b)].

FIG. 4. Correcting the undesired fermion parity measured. L(2) is
a possible linear transformation, and P is a Pauli gate to correct the
undesired fermion parity.
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C. Efficiency of the correction

Since our quantum process is dissipationless and topologi-
cal in an ideal scenario, it is fault tolerant and very efficient
when the temperature is low enough. We are not going to
repeat the discussions on the possible error and efficiency
of the general topological quantum computation processes
[17,18,55,67]. Efficiency here means the number and com-
plexity of the measurements, the signal sending, and the
corrected gates.

As mentioned before, the manipulation of moving MZMs
remains a difficult task. Therefore, we focus on the case of
MEMs. In general, the time complexity (the number of quan-
tum gates required) of the correction operation of the two
processes we proposed, is O(N ), where N refers to the number
of CNOT gates in the circuit. However, from the perspective
of implementation, Process I is easier than Process II because
the structure of the phase element G( π

4 ) in Process II is much
more complicated than that of the X gate in Process I [65].
The former involves seven channels of chiral MEMs, and the
interaction between the MEMs is specially manipulated, while
the latter involves the exchange of two channels of free chiral
MEMs, which can be easily done by the propagation of MEMs
along the interface between chiral superconductor and normal
metal [65].

Then we can evaluate the efficiency of implementing
the CNOT gate. The study referenced in [56] presents a
measurement-based approach for realizing the CNOT gate.
According to this method, the execution of the CNOT gate in-
volves three measurement operations alongside two quantum
gates. In contrast, our proposed scheme necessitates only two
measurements in addition to two quantum gate operations,
with a time complexity that is comparable. However, the ap-
proach outlined in [56] necessitates the use of auxiliary qubits,
which must be reinitialized following each measurement. This
requirement results in a space complexity (pertaining to the
computational resources consumed) of O(N ), where N rep-
resents the quantity of CNOT gates. Our methodology, on
the other hand, does not demand extra auxiliary bits, thereby
maintaining a space complexity of O(1).

Subsequently, the efficiency of this scheme in realizing
universal quantum computing can be analyzed. To achieve
universal topological quantum computing, Ref. [55] chose to
generate a magic state, which is simulated by adding noise and
then purifying the quantum state. Their analysis reveals that,
beyond the topological logic gates present in the quantum cir-
cuit, supplementary nontopological computational operations
are essential for emulating a quantum circuit. The non-
topological computational operations necessary to simulate
a quantum circuit comprising L gates escalate to O(L ln L3).
In our case, the nontopological operation is a measurement,
meaning the total number of nontopological computational
operations present in our quantum circuit amounts to O(N ),
where N < L specifically refers to the count of CNOT gates
rather than the total number of logic gates in [55].

Besides the above discussions on the efficiency and the
common error shared with any topological quantum com-
puting process [71], we discuss the efficiency of the charge
detection in the measurements. In the measurements M1 and
M2, we need a charge-detecting meter to determine even or

odd fermion parity. In the literature, there are many proposals
to design this kind of meter [51–53,72]. For example, Haack,
Förster, and Büttiker designed a Mach-Zehnder interferometer
coupled capacitively to two double quantum dots to detect the
spin-parity of the two-qubit system [72]. The efficiency of the
parity meter is given by the rate between the inverse of the
time needed by the detector to distinguish the signal from the
output noise [73,74] and the inverse of the coherence time of
the measured quantum system.

Such a Mach-Zehnder interferometer is widely used in the
two-dimensional electron gas in the quantum Hall regime with
electron motion along edge states [75–80]. We consider the
MEMs in the chiral superconductor which are similar to the
chiral edge modes in quantum Hall effects. Thus, a similar
efficiency study using the Mach-Zehnder interferometer may
also be done to detect the fermion parity with M1 and M2. We
will leave the detailed designation of our parity meter and the
calculation of the efficiency to further work.

IV. CONCLUSIONS

In conclusion, we have designed a set of dissipationless
universal topological quantum gates with the MEMs in the
chiral superconductor according to our fermion parity cor-
rection process and the probabilistic universal topological
quantum gates designed in our previous work [65]. Our pro-
cess may also be applied to the systems by directly moving
the MZMs. Our process is more efficient than the existing
parity correction process by saving the quantum information
resource and reducing the number and complexity of measure-
ments. There is also a correspondence between our process
and the measurement-only scheme, and our study may inspire
the universal gates, devices, and element designations for the
measurement-only topological quantum computer.
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FIG. 5. Braiding diagrams for H , Z , Y , X , and SWAP gates.
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APPENDIX A: GENERAL CORRECTIVE APPROACH

The corrective approach discussed above is not unique.
For example, without using the SWAP gate in Fig. 2,
after the measurement M1 and the XC ⊗ XD operation,
the basis becomes (|0A1B0C1D〉, −|0A0B0C0D〉, |1A0B0C1D〉,
−|1A1B0C0D〉)T . This basis and the one in (12) only differ by a
linear transformation, which can be realized using a two-qubit
gate such as the Y gate Y (2) = Y ⊕ Y T , where Y = HZHZ
and Y T = ZHZH (see below). Another realization is to first
apply X = XA ⊗ XB, then apply Z = ZB ⊗ ZC .

More generally, for any other two-qubit quantum gate that
generates entangled states (two-Dqubits gate), one can always
correct the undesired fermion parity using the general process

depicted in Fig. 4. Here, L(2) represents a linear transforma-
tion used to rectify the first measurement, while P denotes a
Pauli gate employed to correct the undesired fermion parity
observed in the second measurement.

APPENDIX B: BRAIDING DIAGRAMS
OF QUANTUM GATES

In this Appendix, we show the braiding diagrams of the
Pauli gates X,Y, Z and the SWAP gate in Fig. 5. The compu-
tational basis for two SWAP gate is (|0A0B〉, |0A1B〉, |1A0B〉,
|1A1B〉)T , and

SWAP = B32B21B43B32 = 1√
2

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠, SWAP′ = B23B12B34B23 = 1√

2

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠.

From the braiding diagrams, the corresponding designation of quantum gates can be realized by MEMs [65].

APPENDIX C: BRAIDING MATRIX

In the main text, we use braiding operations to obtain superposition states. Here, we present the complete matrices of the
braiding operations under even parity. The computational basis used here is (|0A0B0C0D〉, |0A0B1C1D〉, |0A1B0C1D〉, |0A1B1C0D〉,
|1A0B0C1D〉, |1A0B1C0D〉, 1A1B0C0D〉, |1A1B1C1D〉)T ; then the braiding operations are

(B45B56)+ = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i 0 0 1 0 0 0 0
0 −1 i 0 0 0 0 0
0 1 i 0 0 0 0 0
i 0 0 −1 0 0 0 0
0 0 0 0 i 0 0 1
0 0 0 0 0 −1 i 0
0 0 0 0 0 1 i 0
0 0 0 0 i 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B65B54)+ = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 −1 0 0 0 0
0 i −i 0 0 0 0 0
0 −1 −1 0 0 0 0 0
−i 0 0 i 0 0 0 0
0 0 0 0 −1 0 0 −1
0 0 0 0 0 i −i 0
0 0 0 0 0 −1 −1 0
0 0 0 0 −i 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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