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One-step implementation of a nonadiabatic geometric fSim gate in superconducting circuits
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Due to their significant application in reducing algorithm depth, fSim gates have attracted a lot of attention.
However, during the implementation of quantum gates, fluctuations in control parameters and decoherence
caused by the environment may lead to a decrease in the fidelity of the gate. Implementing an fSim gate
that is robust to these factors in one step remains an unresolved issue. In this paper, we propose a one-step
implementation of a nonadiabatic geometric fSim gate composed of a nonadiabatic holonomic controlled-phase
(CP) gate and a nonadiabatic noncyclic geometric ISWAP gate with parallel paths in a tunable superconducting
circuit. Compared to the composite nonadiabatic geometric fSim gate composed of a nonadiabatic holonomic CP

gate and a nonadiabatic geometric ISWAP gate, our scheme takes only half the time and demonstrates robustness
to parameter fluctuations, as well as to environmental impacts. Moreover, the scheme does not require complex
controls, making it very easy to implement in experiments, and can be achieved in various circuit structures. Our
scheme may provide a promising path toward quantum computation and simulation.
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I. INTRODUCTION

In the noisy intermediate-scale quantum (NISQ) era, the
implementation of fast and high-fidelity quantum gates has
great significance. Although a universal gate set can be con-
structed through arbitrary single-qubit gates and a nontrivial
two-qubit gate [1], many algorithms demand a variety of
two-qubit gates [2]. Replacing an arbitrary two-qubit gate
in algorithms requires six to eight single-qubit gates and
three controlled-phase (CP) gates [3]. Implementing algo-
rithmic circuits through a series of two-qubit gates directly
is of great significance for reducing circuit depth, espe-
cially using composite two-qubit quantum gates. Among the
most widely used quantum gates, the fSim gate has demon-
strated its superiority in many NISQ algorithms, including the
quantum approximate-optimization algorithm [4], the linear-
depth-circuits algorithm for simulating molecular electronic
structure [5], and error-mitigation techniques [6]. Therefore,
constructing fSim gates has attracted a lot of attention. A
combination of an ISWAP gate and a CP gate is used to generate
an fSim gate in the standard approach [7]. This leads to a
waste of time and decoherence, which results in information
loss or even collapse and resource waste. To ensure complete
algorithms within the quantum coherence lifetime of quantum
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systems, one-step construction of high-fidelity fSim gates is
highly anticipated.

Superconducting quantum circuits, due to their scalability,
flexibility, and anharmonicity [8–11], provide a promising im-
plementation platform for achieving high-fidelity fSim gates.
Quantum information in superconducting qubits is lithograph-
ically defined. Properties of superconducting qubits such as
energy levels, transition frequencies, and anharmonicity are
determined by the device parameters in the circuit and can
be adjusted according to demand [12]. In addition, states
of superconducting qubits can be easily read through non-
destructive measurement technology [13]. Superconducting
qubits can be divided into different categories based on the
coupling object, and they all have different circuit structures.
In recent years, the transmon qubit [14] has been one of the
most widely studied; it can effectively suppress charge noise
and is easy to prepare, integrate, and expand [15]. However,
the second excited state of transmons has a short coherence
time. A cross-shaped transmon called an Xmon [16] which
has the four legs of the cross is easy to couple while main-
taining a high level of coherence and has attracted a lot of
attention [17–21]. Recent experiments with superconducting
quantum circuits have demonstrated its superiority [22–24].
In view of this, the construction of an fSim gate using super-
conducting Xmons is worth investigating.

During the execution of quantum operations, fluctuations
of control parameters can seriously affect the fidelity of
quantum gates. Since the geometric phase depends only on
the global characteristics of the evolution and is immune to
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fluctuations of evolution paths, constructing quantum logic
gates using geometric phases is seen as one of the effective
means to cope with fluctuations of control parameters. In
view of the above points, nonadiabatic geometric quantum
computation (NGQC) [25–27] and nonadiabatic holonomic
quantum computation (NHQC) [28,29] based on Abelian and
non-Abelian geometric phases in two-level and three-level
systems, respectively, have been proposed and have attracted
a lot of attention [30–40]. However, due to the cyclic evo-
lution conditions of geometric quantum gates, the time of
geometric evolution is usually longer than that of dynam-
ical evolution [41–44]. Recently, to shorten the evolution
time, nonadiabatic noncyclic geometric quantum computation
(NNGQC) was proposed and developed [45–49]; it goes be-
yond the limitation of the cyclic condition, making it more
robust against decoherence, and it has been demonstrated in
experiment [50].

Inspired by these studies, we propose a parallel geomet-
ric scheme to implement an fSim gate using the method
of NNGQC in the {|01〉, |10〉} basis and NHQC in the
{|11〉, |02〉, |20〉} basis, ensuring robustness against control-
parameter fluctuations. In contrast to the existing theoretical
and experimental schemes, the present one has the following
characteristics: (1) The gate time required for our scheme with
NNGQC+NHQC is half that of the composite nonadiabatic
geometric quantum scheme with NGQC+NHQC and signifi-
cantly less than the standard two-step fSim gate (details are
given in Appendix A). This reduction in gate time implies
that our scheme is more robust against decoherence caused
by the environment. (2) Our scheme is robust to control error
and frequency error because of its geometric features. (3)
The scheme we designed does not require complex controls,
making it very easy to implement in experiments, and it can
be achieved in various circuit structures. Therefore, our pro-
tocol provides a promising strategy for fault-tolerant quantum
computation and simulation.

This paper is organized as follows. In Sec. II, we intro-
duce the physical model that is used to construct the fSim
gate. In Sec. III, we provide a detailed parallel geometric
scheme for implementing the fSim gate in one step. In Sec. IV,
we represent the feasibility and superiority of our scheme
through numerical simulation. In Sec. V, we show a circuit
that implements the parallel geometric fSim gate with higher
adjustability by adding a coupler. Finally, we provide an ex-
perimental feasibility analysis of our scheme in Sec. VI and
conclude in Sec. VII.

II. PHYSICAL MODEL TO CONSTRUCT AN fSim GATE

A. fSim gate

The fSim gate, as a combination of an ISWAP gate and
a CP gate [9], holds great significance for reducing circuit
depth [5] and enhancing the quantum approximate optimiza-
tion algorithm [4]. If we adjust the parameters, the fSim gate
can perform various quantum operations, thereby simplifying
quantum circuit design and making it easier to implement in
practical physical systems. This versatility and ease of imple-
mentation make it a key component in the field of quantum
computing. The matrix representation of an fSim gate in the

FIG. 1. (a) Circuit diagram. For direct coupling, two Xmon
qubits QA and QB (blue and red) are capacitively connected via a
capacitor. For indirect coupling, a coupler Qc (green) is added. QA′

and QB′ are connected by nearest-neighbor coupling with Qc and
next-nearest-neighbor coupling with the capacitor. Single-qubit oper-
ations can be implemented by local XY control, and the frequencies
of QB(′) and Qc can be modulated by the magnetic flux with the
local Z control line. Each qubit can be measured using a single
readout resonator. The capacitance in the superconducting quantum
interference device loop is not shown. (b) Energy structure of each
qubit.

{|00〉, |01〉, |10〉, |11〉} basis is given by [7]

fSim(ϑ,�) =

⎡⎢⎢⎣
1 0 0 0
0 cos ϑ −i sin ϑ 0
0 −i sin ϑ cos ϑ 0
0 0 0 ei�

⎤⎥⎥⎦. (1)

Due to the different frequency requirements of the ISWAP gate
and CP gate, the fSim gate is generally implemented in two
steps, which hinders the implementation of high-fidelity cir-
cuits. Moreover, the fluctuation of control parameters can also
lead to a decrease in the fidelity of quantum gates. One-step
implementation of robust fSim gates is of great significance
for both quantum computation and quantum simulations.

B. Physical model

We now proceed to present our scheme based on supercon-
ducting circuits. The domain energy of the system is reflected
in the EJ/EC ratio. To reduce the impact of charge noise,
which is more difficult to handle than flux noise, and improve
the coherence of the system, EJ � EC should be satisfied. In
addition, for the convenience of coupling, Xmon qubits are
used in our scheme.

We consider two adjacent Xmons QA and QB that are ca-
pacitively connected, and the frequency of QB can be adjusted
by the magnetic flux with the local Z control line, as shown in
Fig 1(a). The Hamiltonian of this system can be described as

Ĥs = ĤA + ĤB + Ĥint,

ĤA = 4ECAn̂2
A − EJA cos φ̂A,

ĤB = 4ECBn̂2
B − EJB,

Ĥint = 4e2 Cg

CACB
n̂An̂B, (2)

where ĤA (ĤB) denotes the Hamiltonian of the individual
Xmon A (B), Ĥint is the interaction Hamiltonian of two
Xmons, EJB = EJBL cos φ̂BL + EJBR cos φ̂BR, EJBL(R) is the en-
ergy of the left (right) Josephson junction of QB, ECA(CB) =
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e2/2CA(B) is the charging energy of the corresponding capac-
itance, n̂A(B) = QA,(B)/2e is the operator of the Cooper-pair
number, φ̂A(B) is the reduced node flux, EJA(JB) = Ic�0/2π

is the energy of the corresponding Josephson junction with
�0 = h/2e, and Ic is the critical current of the Josephson
junction.

The two quantities n̂ and φ̂ obey the canonical commu-
tation relation [51], i.e., [φ̂, n̂] = i. With this, in the Xmon
regime EJ � EC , the Hamiltonian of Eq. (2) can be written as
(h̄ = 1)

ĤA = ωAâ†
AâA − αA

2
â†

Aâ†
AâAâA,

ĤB = ωBâ†
BâB − αB

2
â†

Bâ†
BâBâB, (3)

Ĥint = g(â†
AâB + âAâ†

B − â†
Aâ†

B − âAâB),

where

â†
A(B) = 1√

2ωA(B)

(√
8ECA(B)in̂A(B) + ωA(B)φ̂A(B)√

8ECA(B)

)
,

âA(B) = 1√
2ωA(B)

(
− √

8ECA(B)in̂A(B) + ωA(B)φ̂A(B)√
8ECA(B)

)
,

ωA(B) = √
8EJA(B)ECA(B) − ECA(B),

αA(B) = ECA(B), g = 1

2

CAB√
CACB

√
ωAωB. (4)

The energy structure of each qubit is shown in Fig. 1(b).
The Hamiltonian under the rotating-wave approximation
(RWA) including levels with two excitations for the system
in Fig. 1 can be written as

Ĥ1 =

⎡⎢⎢⎢⎢⎢⎢⎣

ω00 0 0 0 0 0
0 ω01 0 g 0 0
0 0 ω02 0

√
2g 0

0 g 0 ω10 0 0
0 0

√
2g 0 ω11

√
2g

0 0 0 0
√

2g ω20

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

in the {|00〉, |01〉, |02〉, |10〉, |11〉, |20〉} basis, where the
bare state of Xmons A and B is denoted as |nAnB〉 = |nA〉 ⊗
|nB〉 (ni ∈ 0, 1, 2). We can observe that there is coupling be-
tween |01〉 and |10〉 as well as between |11〉 |02〉 and |20〉
simultaneously, so it is possible to achieve both ISWAP and CP

gates simultaneously.

III. PARALLEL IMPLEMENTATION OF THE fSim GATE
WITH NNGQC+NHQC

The fSim gate is a combination of an ISWAP gate and a
CP gate. Generally speaking, implementing ISWAP gates and
implementing CP gates in superconducting circuits require
different conditions. When implementing the ISWAP gate, it
is usually necessary to have two frequencies of two logical
qubits equal to each other to achieve resonance between |01〉
and |10〉. However, when implementing the CP gate, the fre-
quency of |11〉 needs to be equal to |02〉 or |20〉; i.e., the
frequency difference between |01〉 and |10〉 needs to be α.
Therefore, the fSim gates are generally completed in two

| ⟩ | ⟩

| ⟩ | ⟩

| ⟩

| ⟩ | ⟩

| ⟩ | ⟩

| ⟩

(a)
| ⟩

| ⟩

(c)

| ⟩

| ⟩

(b)

FIG. 2. (a) Energy-level diagrams of the double-excitation mani-
fold and the single-excitation manifold in the case of direct coupling
when performing the fSim gate. Bloch-sphere representation of the
relevant energy in (b) the single-excitation manifold and (c) the
two-excitation manifold.

steps. In this section, we will introduce how to simultaneously
implement these two two-qubit gates in one step.

To implement the fSim gate in one step, three energy
levels of each transmon are considered, and the parame-
ters of transmons can be set as ωA = ωB and αA = αB; the
energy-level structure and coupling are shown in Fig. 2(a). To
achieve simultaneous evolution of single-excitation subspace
and two-excitation subspace and accelerate gate speed, the
coupling strength does not need to be much smaller than the
anharmonicity. Additionally, during the preparation process,
the level anharmonicity of each qubit is solely related to the
energy of the capacitor, making it easy to achieve equality.
However, it is very challenging to make the frequencies of two
qubits completely equal. Therefore, Xmon B is designed with
a tunable frequency. The |0〉B → |1〉B transition frequency of
QB as a function of flux bias is shown in Appendix. C.

A. NHQC implementation of the CP part

First, we will demonstrate how to obtain a nonadiabatic
holonomic phase on |11〉 [30,32]. When ω20 = ω02, the inter-
action between |11〉, |02〉, and |20〉 can be regarded as a three-
level structure with the same detuning. Under these parameter
conditions, after the rotating frame with transform operator
V (t ) = exp[−i(ω11|11〉〈11|+ ω02|02〉〈02|+ ω20|20〉〈20|)t] is
applied, ignoring rapidly oscillating terms in the RWA, the
Hamiltonian (5) can be written as

Ĥ2 = 	|11〉〈11| + 2g(|11〉〈B| + H.c.), (6)

with 	 = αA = αB and |B〉 = 1√
2
(|02〉 + |20〉). There is

a dark state |D〉 = 1√
2
(|02〉 − |20〉) of Eq. (6) which is

decoupled from the system completely. We set

	 = 2
 sin γ , g = 1
2
 cos γ . (7)

Then,

Ĥ2 = 
 sin γ (|11〉〈11| + |B〉〈B|) + 
[cos γ |B〉〈11| + H.c.]

+
 sin γ (|11〉〈11| − |B〉〈B|). (8)

Only states |11〉 and |B〉 are coupled; in the basis of |11〉
and |B〉, we can map |11〉〈11| + |B〉〈B| → I, |11〉〈B| +
|B〉〈11| → σx, |11〉〈11| − |B〉〈B| → σz, where I is the iden-
tity matrix and σx and σz are the Pauli matrices. Based on this,

Ĥ2 = 
 sin γ I + 
(cos γ σx + sin γ σz ). (9)
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When the evolution time τ = π/
, the evolution operator of
the three-level system can be represented as

U2(τ, 0) = e−iφ |B〉〈B| + eiφ |11〉〈11| + |D〉〈D|, (10)

where φ = π sin γ . After undergoing a cycle of evolution with
τ2 = 2π/(16g2 + 	2), |11〉 in the computational subspace
will obtain a geometric phase.

Next, we will examine whether this evolution is holo-
nomic; the holonomy transformation should satisfy two
conditions: (1) the evolution of the subspace is cyclic, and
(2) there is no dynamical phase in this cyclic evolution. For
condition 1, in the subspace spanned by {|B〉, |11〉}, from the
evolution operator in Eq. (10), we can see condition 1 is satis-
fied. For condition 2, 〈m|Ĥ2|r〉, where m, r ∈ {11, B}, is easy
to verify. That is to say, the gate in subspace {|11〉, |02〉, |20〉}
is a holonomic gate.

B. NNGQC implementation of the ISWAP part

At the same time, under this parameter set, |01〉 and |10〉
can achieve resonance interaction; the energy-level struc-
ture and coupling are shown in Fig. 2(a). To obtain tunable
coupling between |01〉 ↔ |10〉, the flux bias can be set as
magnetic flux [52], and the frequency of Xmon B in Ap-
pendix C can be rewritten in the form

ωB(t ) = ωB + ε sin(νt + ϕ), (11)

where ν and ϕ indicate the frequency and phase of the
modulated field, respectively. Then, using the Jacobi-Anger
identity,

exp[iβ cos(νt + ϕ)] =
+∞∑

m=−∞
imJm(β ) exp[im(νt + ϕ)], (12)

with Jm(β ) being Bessel functions of the first kind with β =
ε/ν.

When 	 = ωA − ωB = ν, the Hamiltonian in the bases
|01〉 and |10〉 with RWA in the interaction picture can be
written as

Ĥr =
(

0 G e−i(ϕ−π/2)

G ei(ϕ−π/2) 0

)
, (13)

where G = J1(β )g.
To shorten the evolution time, we will now use the method

of NNGQC to implement the ISWAP part. We choose a set of
auxiliary states

|φ1(t )〉 = cos
α(t )

2
e−i η

2 |01〉 + sin
α(t )

2
ei η

2 |10〉,

|φ2(t )〉 = sin
α(t )

2
ei η

2 |01〉 − cos
α(t )

2
ei η

2 |10〉. (14)

Then, we insert them into the von Neumann equation [53],

�̇m(t ) = −i[H (t ),�m(t )], (15)

where �m(t ) = |φm(t )〉〈φm(t )|. Then, we can get restriction
equations for two Hamiltonian parameters,

G = α̇

2 sin[ϕ(t ) − π/2 − η(t )]
,

ϕ(t ) = η(t ) − arctan

[
α̇(t ) cot[χ (t )]

η̇(t )

]
+ π

2
. (16)

The evolution operator is

Ur (T, 0) = eiϒ |φ1(T )〉〈φ1(0)| + e−iϒ |φ2(T )〉〈φ2(0)|

=
(

ei η−
2 (cos γ cos α−

2 + i cos α+
2 sin γ ) e−i η+

2 (− cos γ sin α−
2 + i sin α+

2 sin γ )

ei η+
2 (cos γ sin α−

2 + i sin α+
2 sin γ ) ei η−

2 (cos γ cos α−
2 − i cos α+

2 sin γ )

)
, (17)

where α± = α(T ) ± α(0), η± = η(T ) ± η(0), and
ϒ = γd + γg is the total phase, which including a geometric
phase, γg = i

∫ T
0 〈φ1|φ̇1〉dt = ∫ T

0
1
2 η̇ cos χdt, and a dynamical

one, γd = − ∫ T
0 〈φ1|Ĥr |φ1〉dt = − ∫ T

0 G cos α(t) cos[ϕ(t) −
π/2 − η(t)]dt. To obtain a pure geometric phase, we
set ϕ(t ) − η(t ) = 0. Therefore, the total phase ϒ = γg =∫ η(T )
η(0)

∫ α(T )
α(0)

1
2 sin αdαdη is half of the solid angle enclosed by

the trajectory and the geodesic connecting the initial and final
points [45]. When η+ = −π , η− = 0, α+ = 0, α− = −π , and
γ = π , ISWAP operation can be obtained, and the evolution
time of such a nonadiabatic noncyclic process is τ1 = π/2G.

C. Implementation of the fSim gate with parallel paths

In order to obtain both evolutions simultaneously, it is only
necessary to satisfy the evolution time n1 × τ1 = n2 × τ2,

with n1, n2 ∈ N+ (N+ represents the set of positive integer
natural numbers). To minimize the impact of decoherence
by minimizing the evolution time as much as possible, we
have selected n1 = 1 and n2 = 2; that is to say, αA = αB =
4
√

3G, i.e., T = τ1 = 2τ2. More specifically, |11〉 undergoes
two cycles to obtain nonadiabatic holonomic phase 2φ, and
at the same time, |01〉 and |10〉 complete nonadiabatic non-
cyclic geometric ISWAP interaction. These evolutions can be
described on the Bloch sphere as Figs. 2(b) and 2(c). It
is worth noting that these two paths evolve simultaneously.
And if one sets different values of detuning 	 and coupling
strength G, |11〉 can obtain different phases ϕ. To better
represent two parallel evolutions, we plot the populations
of |10〉, |01〉, and |11〉 of the initial state at 1√

2
(|10〉 +

|11〉) in Fig. 3. The population colors for each state cor-
respond to the colors in the Bloch spheres in Figs. 2(b)
and 2(c).
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FIG. 3. Numerical simulation of the fSim gate population corre-
sponding to the NNGQC+NHQC scheme. The blue solid line and
red dotted line represent the population of |11〉 for the first and
second cycles, and the red solid line and black dashed line show
the populations of |01〉 and |10〉 (the decoherence caused by the
environment is not considered in this simulation).

IV. GATE PERFORMANCE

To fully analyze the feasibility of our scheme, we define
the average fidelity as

F = 1

4π2

∫ 2π

0

∫ 2π

0
〈ψ f |ρ|ψ f 〉dθ1dθ2, (18)

where the initial state |ψ (0)〉 = (cos θ1|0〉1 + sin θ1|1〉1) ⊗
(cos θ2|0〉2 + sin θ2|1〉2) (the initial state is normalized), |ψ f 〉
is the ideal final state, and the density matrix of this system
can be solved by the Lindblad master equation

ρ̇(t ) = i [ρ(t ), Ĥs] +
2∑

j=1

[
κ

j
−
2
L(σ j ) + κ

j
z

2
L(χ j )

]
, (19)

where L(A) = 2AρA† − A†Aρ − ρA†A is the Lindblad op-
erator for operator A, κ

j
− and κ

j
z are the relaxation and

dephasing rates of the jth Xmon, and σ j = | j′ − 1〉〈 j′| and
χ j′ = | j′〉〈 j′|, with j ∈ {1, 2} and j′ ∈ {0, 1, 2}, for the j′th
level of the jth Xmon. From Fig. 4, we can see the average
fidelities of the NNGQC+NHQC method and conventional
NGQC+NHQC (detailed in Appendix D) can reach 0.9998
and 0.9997, respectively. Next, we will demonstrate the ro-
bustness of our scheme based on the NGQC+NHQC and

FIG. 4. Numerical simulation of the average fidelity F of the
fSim gate with (a) NNGQC+NHQC and (b) NGQC+NHQC. The
gray lines represent the fidelity of 500 different initial states, and
the red dotted line expresses the average fidelity of these 500 ini-
tial states. The parameter settings are as follows: g = 1, α = 4

√
3,

ωA = ωB = 100, and κ
j
− = κ j

z = 10−4.

0.95

0.98
1

-0.2 0 0.2

0.95

0.98
1

NNGQC+NHQC
NGQC+NHQC

2 4 6 8 10

0.998

1

(a)

(b)

(c)

FIG. 5. The performance of the fSim gate under parameter fluc-
tuation. Numerical simulation of the average fidelity F of the fSim
gate under (a) the coupling-strength error ζ , (b) the frequency fluctu-
ation of Xmon B ξ , and (c) the decay (dephasing) rate δ.

NNGQC+NHQC methods to coupling-strength errors and the
frequency fluctuation of Xmon B. We assume the coupling
strength between Xmons A and B varies in the range of G →
(1 + ζ )G, with ζ ∈ [−0.2, 0.2], and ωB → (1 + ξ )ωB, with
ξ ∈ [−0.2, 0.2]. Furthermore, we also simulate the average
fidelity as a function of the relaxation rate and dephasing rate
of the jth Xmon κ

j
− = κ

j
z → δκ

j
− = δκ

j
z , with δ ∈ [1, 10].

From Fig. 5, we can see that even with a 20% fluctuation in
coupling strength G, the fidelity of the two schemes can still
remain above 0.93, and for the frequency fluctuation of Xmon
B and the environment noise, the NNGQC+NHQC method
showed greater superiority.

In addition, leakage error is another source of infidelity in
superconducting systems. We have utilized the characteristic
that superconducting qubits can leak from low energy levels
to high energy levels to achieve the ISWAP gate and CP gate
simultaneously. Despite considering leakage at higher energy
levels, the fSim gate can still maintain high fidelity. This is
discussed in detail in Appendix B.

V. CAPACITIVE COUPLING VIA COUPLER

The process of adjusting the qubit frequency may lead to
an issue named “frequency crowding” and control crosstalk.
Although the use of asymmetric transmons can help alleviate
this problem, the impact of this issue still exists. A tunable
coupler can help alleviate this problem [54]. Moreover, after
adding a tunable coupler, the coupler strength of two logical
qubits can be adjusted between exactly 0 and over 100 MHz
(absolute value); that is, the coupling can be turned on and
off by adjusting the coupler frequency ωc. Here, we will
demonstrate that our scheme can be performed in the circuit
with a tunable coupler. Similar to the case of direct coupling,
the Hamiltonian can be written in a form consistent with
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FIG. 6. Energy-level diagrams of (a) the single-excitation man-
ifold and (b) the double-excitation manifold when performing the
fSim gate. Blue double-headed arrows denote exchange interactions
between the energy levels. The arrow color of gA′B′ is lighter than
the others to indicate the coupling of the nearest neighbor is stronger
than the coupling of the next-nearest neighbor.

Eq. (3),

Ĥs′ = ĤA′ + ĤB′ + Ĥc + Ĥint′ ,

Ĥj′ = ω j′ â
†
j′ â j′ − α j′

2
â†

j′ â
†
j′ â j′ â j′

Ĥint′ =
∑
j′<k′

g j′k′ (â†
j′ âk′ + â j′ â

†
k′ − â†

j′ â
†
k′ − â j′ âk′ ),

where j′, k′ ∈ {A′, B′, c} and we set A′ < B′ < c and ω j′

is the transition frequency from the ground state to the first
excited state for the jth Xmon. Based on the actual situation,
we consider that the system is at most doubly excited, and the
energy-level diagram is shown in Fig. 6.

To directly demonstrate the coupling between logical
qubits, when ω j′ � g j′k′ , we can adopt the Schrieffer-Wolff
transformation [55]

Û =
∑

m=A′,B′

[
gmc

ωm − ωc
(â†

mâc − âcâ†
m)

− gm

ωm + ωc
(â†

mâ†
c − âmâc)

]
; (20)

then, keeping all terms to second order, we have

ˆ̃H = eÛ Ĥs′ (eÛ )† =
∑

m

ω̃′
mâ†

mâm − α̃m

2
â†

mâ†
mâmâm

+ g̃(b̂†
A′ b̂B′ + b̂A′ b̂†

B′ ), (21)

where

g̃ ≈ gA′cgB′c

2

∑
m

(
1

ωm − ωc
− 1

ωm + ωc

)
+ gA′B′ ,

ω̃m ≈ ωm + g2
mc

(
1

ωm − ωc
− 1

ωm + ωc

)
,

α̃m ≈ αm. (22)

In this approximation, we assume that the coupler is always
in the ground state. We rotate the Hamiltonian into the in-
teraction picture, and after using the RWA and second-order
perturbation approximation, it can be observed that there is
still only coupling between two logical qubits. The effective
coupling strength g̃ varies the frequency of the coupler ωc

between two logical qubits and is shown in Fig. 7. At the point

4.5 5 5.5 6

-100

-50

0

operate point
zero point

FIG. 7. The effective coupling strength g̃ varies the frequency
of the coupler ωc. At the point marked by a pentagram, the same
coupling as for direct coupling can be achieved. At the point marked
by a triangle, the coupling between two logical qubits can be turned
off.

marked by a purple pentagram, the same coupling as direct
coupling can be achieved; that is to say, after adding a tunable
coupler, the above scheme can still be achieved.

VI. EXPERIMENTAL FEASIBILITY

In order to examine the feasibility of this scheme in the ex-
periment, we now discuss the relevant parameters, which are
shown in Table I. Based on these settings, the decay rate and
the dephasing rate of each Xmon κ

j
− = κ

j
z = 2π × 4.18 kHz.

Based on these settings, the effective coupling strength be-
tween Xmons A and B is G = 2π × 41.8 MHz. Considering
the Bessel functions of the first kind, ν = 0.369 and ε =
0.692, from Fig. 8(a), it can be seen that the coupling strength
between Xmons A and B is g = 71.92 MHz. Furthermore,
as shown in Fig. 8(b), when the magnetic flux bias is ad-
justed to ±0.3153, the frequency condition can be satisfied.
The device parameters are demonstrated in Table I. For the
NGQC+NHQC and NNGQC+NHQC methods, the gate time
is 23.92 and 11.96 ns, respectively. These parameters are
reasonable.

VII. CONCLUSION

In conclusion, we proposed a scheme to implement a
geometric fSim gate with parallel paths in one step in a
superconducting circuit. Our scheme protects the fSim gate
from the control error due to the intrinsic robustness of the
geometric phase and mitigates decoherence caused by the
environment by shortening the evolution time with the parallel
paths. Furthermore, implementing the composite two-qubit
gate in one step significantly reduces the circuit depth in quan-
tum simulation. Additionally, our scheme does not require
complex controls, making it straightforward to implement in

TABLE I. Device parameters.

QA Qc QB

Ec/2π (GHz) 0.3 0.12 0.3
Ej/2π (GHz) 8.3627 30 10

10 2.8
ω/2π (GHz) 4.18 [4.262, 6.076] [3.857, 5.241]
α/2π (MHz) 300 120 300
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FIG. 8. (a) The Bessel function of the first kind varying with β.
(b) The |0〉 → |1〉 transition frequencies of the logical qubit (yellow
solid line and blue dotted line) and the coupler (red dashed line)
varying with the flux bias �/�0. Relevant parameters are shown in
Table I.

experiments and adaptable to various circuit structures. There-
fore, our scheme may provide a significant reference and pave
an alternative path for implementing low-depth fSim-gate-
based quantum simulations in superconducting circuits.
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APPENDIX A: THE TWO-STEP IMPLEMENTATION
OF fSim GATE

Here, we will demonstrate how to use a two-step scheme
to construct a fSim gate.

(1) Adjust the frequency of |01〉 to be equal to |01〉, i.e.,
ωB = ωA. In order to minimize leakage errors as much as
possible, we have reduced the coupling strength to half of
NNGQC+NHQC in the main text, that is, g2 = G/2. After
RWA, the effective Hamiltonian in the {|01〉, |10〉} basis can
be written as

Ĥ1 =
(

0 g2

g2 0

)
, (A1)

making the evolution time T1 = (π/2)/g2 to implement the
ISWAP gate.

(2) Adjust the frequency of |11〉 to be equal to |02〉, i.e.,
ωB = ωA + αB. After RWA, the effective Hamiltonian in the
{|11〉, |02〉} basis becomes

Ĥ2 =
(

0
√

2g2√
2g2 0

)
, (A2)

making the evolution time T2 = (π/
√

2)/g2 to implement the
CP gate.

2 4 6 8 10
0.994

0.996

0.998

1

two-step scheme

NNGQC+NHQC

NGQC+NHQC

FIG. 9. The average fidelity F varies the decay (dephasing) rate
δ. Parameters are the same as those in Fig. 5. The green dotted
line represents the two-step scheme, the red solid line represents the
NNGQC+NHQC scheme, and the blue dashed line represents the
NGQC+NHQC scheme.

Next, we simulate the average fidelity of the two-step
scheme for the fSim gate while varying the decay (dephas-
ing) rate, where κ

j
− = κ

j
z → δκ

j
− = δκ

j
z (Fig. 9). We can see

that the NNGQC+NHQC method has stronger robustness to
decoherence caused by the environment.

APPENDIX B: LEAKAGE

Here, we simulate the possibility of qubits leaking into
the three-excitation subspace, where the annihilation operator
in the Hamiltonian is â = â† = |0〉〈1| + √

2|1〉〈2| + √
3|2〉〈3|

and energy levels in the Lindblad operator change to j′ ∈
{0, 1, 2, 3}. The average fidelity is simulated in Fig. 10. We
can observe that, considering decoherence and dephasing, the
average fidelity of the fSim gate can still reach 0.999.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

FIG. 10. The average fidelity F varies with evolution time when
considering that the energy levels involved are the ground state, first
excited state, and second excited state. Parameters are the same as
those in Fig. 5.
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APPENDIX C: ADJUSTABLE RANGE OF QUBIT FREQUENCY

Here, we demonstrate how to adjust the qubit frequency by adjusting the magnetic flux passing through the superconducting
quantum interference device (SQUID).

Taking QB as an example, the energy of the tunable Josephson energy can be described as

EJB = EJBL cos φBL + EJBR cos φBR

= EJBL cos

(
φBL + φBR

2
+ φBL − φBR

2

)
+ EJBR cos

(
φBL + φBR

2
− φBL − φBR

2

)
= EJBL

(
cos

φBL + φBR

2
cos

φBL − φBR

2
− sin

φBL + φBR

2
sin

φBL − φBR

2

)
+ EJBR

(
cos

φBL + φBR

2
cos

φBL − φBR

2
+ sin

φBL + φBR

2
sin

φBL − φBR

2

)
= (EJBL + EJBR)

[
cos

φBL − φBR

2
cos

φBL + φBR

2

]
+ (EJBR − EJBL )

[
sin

φBL − φBR

2
sin

φBL + φBR

2

]
= EJB�

[
cos

π�

�0
cos φ + d sin

π�

�0
sin φ

]

= EJB� cos
π�

�0

√
1 + d2 tan2 π�

�0
cos(φ − φ0), (C1)

where EJB� = EJBL + EJBR, (φBL + φBR)/2 = φ, �0 = h/2e is the superconducting flux quantum, d =
(EJBL − EJBR)/(EJBL + EJBR), tan φ0 = d tan(π�/�0), � is the magnetic flux passing through the SQUID, and
φJBL − φJBR = 2πn + 2π�/�0, with n ∈ N+.

Therefore, the frequency of QB is ωB = √
8EJBECB − ECB. To better search for the physical quantities required for the

experiment, we plot the frequency, which varies with magnetic flux bias �/�0.

APPENDIX D: NGQC IMPLEMENTATION OF THE ISWAP PART

In this Appendix, we present the details of implementing the ISWAP part with conventional NGQC. We take the two-
dimensional orthogonal eigenstates

|�+(t )〉 = cos
θ (t )

2
|01〉 + sin

θ (t )

2
eiχ (t )|10〉, |�−(t )〉 = sin

θ (t )

2
eiχ (t )|01〉 − cos

θ (t )

2
|10〉 (D1)

as our evolution states. To ensure the geometry of this evolution, the cyclic condition and the parallel-transport condition are
required,

|�+(T )〉 = e−iγ |�+(0)〉, |�−(T )〉 = eiγ |�−(0)〉, 〈�±(t )|Ĥr (t )|�±(t )〉 = 0; (D2)

that is, |�±〉 can reach geometric phases ±γ without any dynamic phase at time T .
The evolution operator can be denoted as

Ur (T ) = eiγ |�+(0)〉〈�+(0)| + e−iγ |�−(0)〉〈�+(0)| =
(

cos γ − i cos θ sin γ −ieiχ sin γ sin θ

−ieiχ sin γ sin θ cos γ + i cos θ sin γ

)
, (D3)

where θ ≡ θ (0) and χ ≡ χ (0). When θ = π/2, χ (0) = 0, and γ = π/2, an ISWAP evolution between |01〉 and |10〉 can be
obtained, with the coupling strength G and φ satisfying∫ T1

0
Gdt = π/4, χ (t ) = π/2, t ∈ [0, T1],

∫ T2

T1

Gdt = π/2, χ (t) = π, t ∈ [T1, T2],∫ T

T2

Gdt = π/4, χ (t ) = π/2, t ∈ [T2, T ]. (D4)
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