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The surface code is a quantum error-correcting code for one logical qubit, protected by spatially localized
parity checks in two dimensions. Due to fundamental constraints from spatial locality, storing more logical
qubits requires either sacrificing the robustness of the surface code against errors or increasing the number of
physical qubits. We bound the minimal number of spatially nonlocal parity checks necessary to add logical qubits
to a surface code while maintaining, or improving, robustness to errors. We saturate the lower limit of this bound,
when the number of added logical qubits is a constant, using a family of hypergraph product codes, interpolating
between the surface code and constant-rate low-density parity-check codes. Fault-tolerant protocols for logical
gates in the quantum code can be inherited from its classical parent codes. We provide near-term practical
implementations of this code for hardware based on trapped ions or neutral atoms in mobile optical tweezers.
Long-range-enhanced surface codes outperform conventional surface codes using hundreds of physical qubits,
and they represent a practical strategy to enhance the robustness of logical qubits to errors in near-term devices.
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I. INTRODUCTION

Noise is inherent in quantum computers, and if ignored,
it will always destroy any quantum computational advantage.
With advances in quantum hardware enabling controllable
systems of hundreds of qubits, the use of quantum error
correction to prolong the lifetime of quantum information
is becoming feasible. At the hardware-theory interface, a
key goal is to design optimal codes that leverage specific
hardware-level advantages, such as gate nonlocality, to mit-
igate the effects of key challenges, such as the fidelity of
few-qubit gates, or the resources required to increase the num-
ber of qubits in the system.

Quantum error correction is done by starting with a Hilbert
space of n physical qubits, and identifying a subset 2k < 2n

of the possible states within Hilbert space as encoding the
wave function of k logical qubits. The smallest number of
physical qubits on which a nontrivial logical operation can
act determines the code distance d , and such a code is often
abbreviated as �n, k, d�. A practical set of codes are stabilizer
codes [1] in which the logical codewords are the simultaneous
+1 eigenstates of a commuting set of Pauli operators called
the stabilizer group. A Calderbank-Shor-Steane (CSS) code
[2,3] is a stabilizer code for which the generators of this set
are strictly products of Pauli X ’s or Z’s.

An important example of a CSS code is the toric code
[4]. Together with its planar cousin, the surface code [5,6],
they are leading candidates for near-term implementations
of fault-tolerant quantum computation. It has local stabi-
lizer generators supported on a checkerboard-style lattice; see
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Fig. 1. The toric code has been realized with neutral atoms [7],
with fault tolerance later achieved in the surface code with
superconducting qubits [8], although the “break-even” point
after which the logical qubit is more robust than an isolated
physical qubit remains to be reached. Even more recently,
progress towards intermediate-scale fault tolerance has been
demonstrated with 40 logical qubits encoded in color codes,
a close relative of the surface code, using 280 neutral atoms
[9]. For hardware with highly biased noise (e.g., Pauli Z error
much more likely than Pauli X error), there exists elegant
modifications to the surface code [10].

Due to the spatial locality of a surface code in two spatial
dimensions, it is highly desirable for experimentalists; nearly
all platforms, including atoms in optical tweezers [11–17],
trapped ions [18–22], or superconducting qubits [23–27],
can realize geometrically local interactions in two spatial di-
mensions. Unfortunately, quantum computation with O(103)
logical qubits in a surface code architecture with typical error
rates of O(10−3) may require an architecture with O(107)
physical qubits [28], which could be prohibitively difficult to
build in the near term.

An exciting alternative are quantum low-density parity-
check (qLDPC) codes, which can achieve k ∼ n: the overhead
for encoding logical information is finite. At the same time,
the stabilizers are few-body just like the surface code (but
not necessarily spatially local), meaning they can in princi-
ple be measured efficiently using few-qubit operations. The
first qLDPC construction with a finite rate (k ∼ n) and large
distance (d ∼ √

n) was the hypergraph product (HGP) [29];
a series of improvements [30–32] eventually led to “good”
codes with k ∼ d ∼ n [33–35].

Spatial locality constrains the implementation of qLDPC
codes in quantum hardware. Suppose that each physical qubit
is arranged in a two-dimensional grid, and qubits can only
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FIG. 1. The 2D layout of a �41, 1, 5� surface code. Black dots
and colored tiles represent physical qubits and stabilizer generators,
respectively. The stringlike logical operators are also depicted.

interact with other qubits a finite distance away. Then one
can prove [36] that kd2 � n: there is an unavoidable tradeoff
between robustness to error (d) and number of logical qubits
(k), given a fixed number of physical qubits (n). Conversely,
it is known [37] that to implement a qLDPC in 2D, at least

�(
√

k
n d ) interactions of range �(

√
k√
n

) are necessary. If we

only ask for d ∼ √
n as in the surface code, the bounds of [37]

alone admit the prospect of k ∼ √
n using interactions of O(1)

range. Since [36] proves that these finite-range interactions
only allow k = O(1), the cost of nonlocality in qLDPC codes
is even higher than implied by [37]. Further challenges to
qLDPC implementation in 2D were discussed in [38,39]. It
is thus of crucial interest to know the following: how many
nonlocal stabilizers are needed to add logical qubits to a sur-
face code, while keeping d and n fixed? If we find a code that
uses the least nonlocality to add logical qubits to the surface
code, is it realizable in any near-term quantum hardware?

This paper answers these questions. We present long-
range-enhanced surface codes (LRESCs): an interpolating

family of hypergraph product codes that bridges the surface
code with constant-rate qLDPC codes. These codes (1) have
as few nonlocal stabilizers as possible in the k = O(1) limit,
(2) maintain the code distance d of the surface code while
adding logical qubits, i.e., increasing k, (3) have lower logical
failure rates compared to a surface code under measurement
noise, and (4) enable fault-tolerant gadgets to be inherited
from those of classical codes. The simplest realization of
the LRESC has a “hierarchical” structure similar to a recent
construction [40]; however, unlike [40], LRESCs are LDPC
stabilizer codes, employing as little nonlocality as possible.
Moreover, as we will explain, these codes are well suited
for implementation using multiple different architectures for
quantum computation, as the specific form of nonlocality re-
quired by LRESCs is far more efficient to implement than a
generic qLDPC code.

II. THE LRESC

A. Construction

We begin by summarizing intuitively the structure of
LRESCs; technical details are provided in Appendices. Our
construction consists of three parts, visualized in Fig. 2.

(1) First, begin with a classical base code. For instance,
one can pick a “good” classical LDPC (cLDPC) code [41,42],
which uses L0 classical bits to store �(L0) logical bits with
�(L0) distance. In this paper, we will focus on relatively
small code sizes where L0 ∼ 3 − 10, both for pedagogy and
near-term relevance. Note that a good cLDPC code will re-
quire nonlocal parity checks, with �(L0) range in general,
between the classical bits to ensure constant rate. Appendix A
overviews classical codes.

(2) Next, we increase the number of classical bits: L0 →
cL0 = L, while proportionally increasing the distance of the
code to �(L) and keeping the number of logical bits fixed as
�(L0). We can do so by replacing the bits of our starting code

HGP
2

2

2

Fla�en

(a) base code (b) graph product (c) LRESC

FIG. 2. The steps to construct a �52, 4, 4� HGP code based on a parent [3(2),2,2(2)] concatenated code are illustrated. (a) The Tanner graph
of the base [3,2,2] code is depicted where the square and circles represent the parity check and bits, respectively. The double concentric circle
with a “2” in the middle means each bit in this base code is actually the logical bit of a length-2 inner repetition code after concatenation.
(b) The Tanner graph of the concatenated code is flattened in 1D, and then a Euclidean graph product is taken that produces four types of
vertices in a 2D embedding. (c) The HGP procedure transforms the product graph into a CSS Tanner graph. Twenty long-range interactions
(magenta curves) of range 4 are required for this code. A k = 4, d = 4 surface code of the same layout will require n � 100 physical qubits.
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with another classical code, such as the repetition code, which
stores a single logical bit in c physical bits, with codewords
0 → 0 · · · 0 and 1 → 1 · · · 1. The repetition code has spatially
local parity checks when bits are laid out in one dimension: the
parity checks demand that the parity of two nearest-neighbor
bits agree. We thus build a concatenated code by replacing
the cLDPC “physical bits” with repetition codes of length c.
There is no code with fewer nonlocal edges in one spatial
dimension that has �(L0) logical bits and �(L) code distance
(see Appendix A). Decoding this concatenated code can be
done in two steps: we first decode each repetition code, and
then decode the size-L0 LDPC using the state of each repeti-
tion code as an effective “physical bit.”

(3) We now build a quantum code by taking the hypergraph
product (HGP) of this classical concatenated code with itself.
A formal definition of the HGP is technical and relegated to
Appendix B; Fig. 2 sketches the idea. We lay out two copies
of the classical code of length L along the x and y directions
in the plane. Based on the connections between checks and
physical bits of the classical code, we lay out physical qubits
and X and Z type stabilizers of the quantum code in two
dimensions. Note that the hypergraph product of two classical
repetition codes is the quantum surface code. Since our classi-
cal codes contain repetition code segments, our quantum code
consists of two-dimensional surface code patches. Long-range
parity checks from step (1) induce stabilizers with range �(L)
that connect distant patches in the code, while ensuring that
each stabilizer itself has low-weight [is a product of O(1) X ’s
or Z’s].

These are the LRESCs. The total number of physical
qubits is n ∼ L2, the quantum code distance is d ∼ L, and
the number of logical qubits is k ∼ L2

0. Alternatively, we have
constructed a code with d ∼ √

n, just like the surface code,
but where we have added k logical qubits at the cost of adding
O(L

√
k) long-range stabilizers.

B. Bounding nonlocality

There is no code that has parametrically fewer long-range
stabilizers in 2D than an LRESC, while maintaining the same
code distance d ∼ √

n and adding O(1) additional qubits be-
yond the bound of [36]. To see why, start with a 2D code C0

whose checks have support only on qubits within a ball of
radius r0 = O(1) and whose distance satisfies d0 ∼ √

n. BPT
[36] tells us that there is at most a finite k0 = O(1) number
of logical qubits, such that k0d2

0 � Kn for some K = O(1).
To increase the number of logical qubits from k0, we will
need to add longer-range interactions: how many are required?
Suppose that by modifying � � d0 of our local stabilizers to
be spatially nonlocal (but still low weight, i.e., a few Paulis),
we obtain a new code C1 with modified parameters �n, k1, d1�.
Further suppose that we have d1 ∼ d0. Then, since the new
code is still LDPC, the size of the region R which contains
the long-range checks is O(�) � d1 and hence a correctable
region. The Cleaning lemma [43] ensures that we may choose
all logical operators such that they are supported only on sites
outside of the support of these long-range checks, as shown
in Fig. 3. Since C0 and C1 share the same local checks outside
of region R, and we have only cleaned the logical operators
off of at most O(r2

0�) � d0 sites, the cleaned logical operators

FIG. 3. A geometrically local 2D stabilizer code (surface code
depicted) is modified with � � d long-range interactions (magenta
curves). For this modified code, all logical operators (two shown as
thick red and blue curves) can be cleaned to exist completely outside
of the support of the long-range checks (gray regions).

are also valid logical operators for the original local code C0;
the number of such logical operators for inequivalent logical
qubits is hence bounded by BPT: we can have no more than
k0 logical qubits.

The only way around the above argument is to relax the
condition that the long-range region is correctable so that
we cannot clean out all logical operators. As a consequence,
there would then exist a logical operator supported entirely
within this region, and so we would have d1 � d0. Thus, to
add logical qubits to a surface code without sacrificing dis-
tance, d ∼ √

n ∼ L long-range stabilizers are required. The
LRESC achieves this scaling, and is parametrically as local as
possible for finite k > k0. Interestingly, adding logical qubits
beyond the � = �(d ) restriction need not require additional
long-range interactions, but rather a “rewiring” of them. For
example, consider an L × L surface code and add a line of
L qubits encoded in a good �L,�(L),�(L)� quantum LDPC
code. Then the number of logical qubits is k ∼ L with � ∼ L
long-range interactions.

Note that the Cleaning lemma is crucial to the above ar-
gument. It has no direct classical analogue, which is why we
could improve the classical code dimension with only � � d
long-range interactions while maintaining the scaling of the
distance. The physical intuition for the Cleaning lemma is
that due to the unitarity of quantum mechanics, a correctable
region must not reveal any encoded information; otherwise it
may be possible to violate the No-Cloning theorem. As a con-
sequence, a small correctable region is effectively “invisible”
to the logical codespace. For classical codes this is not true: in
the repetition code, the value of a single physical bit reveals
the value of the logical bit.

C. Quantum error correction

Quantum error correction (QEC) for stabilizer codes is
typically done by extracting the eigenvalues of all stabilizers,
which can be deduced by measuring a set of generators called
the check set; the outcomes of these measurements comprise
the error syndrome. Decoding then proceeds by finding a
suitable correction operator according to the syndrome. The
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[[61, 1, 6]] surface (MWPM), w = 1

[[61, 1, 6]] surface (MWPM), w = 2

[[61, 1, 6]] surface (MWPM), w = 3

[[61, 1, 6]] surface (MWPM), w = 6

[[244, 4, 8]] LRESC (BP+OSD), w = 1

[[244, 4, 8]] LRESC (BP+OSD), w = 2

[[244, 4, 8]] LRESC (BP+OSD), w = 3

[[244, 4, 8]] LRESC (BP+OSD), w = 6

Noisy syndromes

FIG. 4. QEC performance is numerically estimated using MWPM decoding for three surface codes with increasing distance as well as
BP + OSD for LRESCs from Table I. Left: ∼105 clean QEC cycles are averaged per data point. Right: A comparison between a d = 6 surface
code and LRESC 2 is shown for ∼104 samples of 100 noisy QEC cycles. Decoding is performed using a sliding window technique with
variable window size w. Uncertainties are given by standard errors. A round of noiseless decoding is performed internally after each noisy
cycle to probe the residual errors. The break-even line is plotted in dashed gray.

combination of the original error and the correction then either
leaves the codespace unchanged (success) or enacts an unde-
sirable logical operation (fail). For some codes, such as the
surface code, when syndrome measurements can be faulty, it
is necessary to perform several rounds of syndrome measure-
ments and collectively decode over a “spacetime” decoding
graph [44].

We conduct numerical simulations of QEC using both
a code-capacity (clean syndromes) and a weighted phe-
nomenological (noisy syndromes) noise model under a local,
stochastic depolarization channel (single-qubit X , Y , or Z
errors are equally likely) with probability p: see Fig. 4.
For the phenomenological noise model, we scale both the
physical error and the syndrome measurement error rates
according the degree distribution of the Tanner graph: a
qubit participating in v checks has an error rate of vp,
and a check with weight w is incorrectly measured with
probability wp; this mimics the experimental way that such
syndromes are measured, as we will explain later. We imple-
ment a single-stage decoder utilizing belief propagation with
ordered-statistics [45,46] postprocessing (BP + OSD), which
has been previously shown to have favorable performance as a
general-purpose qLDPC decoder. We use the “min-sum” and
“combination-sweep” (λ = 30) variants of BP and OSD from

TABLE I. The number of long-range interactions vs total number
of pairwise interactions are displayed for three LRESCs. Optimized
embeddings of the Tanner graphs lower the number of long-range
interactions (in parentheses).

LRESC Edges LR edges (optimized) LR ratio

�244, 4, 8� 924 60 (20) 6.5% (2.2%)
�244, 4, 8� 1056 528 (176) 50% (16.7%)

open-source software [47]. Syndrome errors are accounted for
by adding an additional variable node for each check node in
the Tanner graph [48,49]. For the phenomenological model,
we perform 100 noisy QEC cycles for each Monte Carlo trial.
When syndrome errors are present, decoding is not perfect,
and there will often be a “residual error” that is carried onto
the next QEC cycle. To ensure that this residual error is not
detrimental, we perform noiseless decoding after each noisy
cycle as an internal flag to ensure that residual errors are
successfully controlled; the QEC simulation outputs a failure
if the residual error cannot be properly decoded. We decode
using a “sliding window” technique [44], where the correction
at time t is determined using the syndrome information from
times t to t + w with window size w. Recently, it was shown
that this technique considerably reduced logical error rates for
several classes of qLDPC codes [50] beyond the single-shot
regime (w = 1).

To construct the LRESCs, we use parent codes
(1) [3(4),2,2(4)] and (2) [6(2),2,4(2)], where [n′(c), k′, d ′(c)]
is short for an outer [n′, k′, d ′] code concatenated with an
inner [c, 1, c] repetition code. The corresponding LRESCs
have mutual parameters �244, 4, 8� with rate k/n ≈ 1.64%
(61 physical qubits per logical qubit). The second LRESC
contains more long-range interactions than the first; see
Table I. The performance of BP + OSD decoding on
these LRESCs is compared with that of minimum-weight
perfect-matching (MWPM) on d = 5, 7, 9 surface codes. For
the MWPM simulations we use the open-source software
PyMatching [51]. We observe that the first two LRESCs
perform similarly to surface codes of similar distance under
the code-capacity model. The benefits of the long-range
interactions are revealed when syndrome noise is taken into
consideration. Under the phenomenological noise model,
we observe that the second LRESC performs considerably
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FIG. 5. A 2D layout of a LRESC with an outer [5,2,3] parent
code is shown. Smooth (X -type) and rough (Z-type) boundaries
are located on the left (thick red) and bottom sides (thick blue) of
each patch, respectively, with long-range boundaries on the other
(magenta) sides. Four logical operators (X̄1, Z̄1, X̄4, Z̄4) correspond-
ing to two logical qubits are drawn (solid and dashed curves). A
Z-type stabilizer and an X -type error string are also shown (dotted
red and blue).

better than a surface code with the same rate for window sizes
w = 1, 2, 3, 6.

With an encoding rate of 61 physical qubits per logi-
cal qubit, the LRESCs begin to significantly outperform the
surface codes of similar rate. With hundreds of physical
qubits, an LRESC can surpass the break-even point—where
the collective logical qubit is more stable than a single iso-
lated qubit—once one- and two-qubit operations are achieved
with �99.5% fidelity, which in many platforms is near-term
[16,17] or within reach [52–54].

D. Logical operators

To understand why the LRESC not only stores more logical
qubits, but also has reduced logical error rates, we need to
understand how LRESCs encode logical qubits. As hinted at
previously, since logical operators locally look like repetition
codes in the concatenated cLDPC codes (Step 2 above), in the
HGP, logical operators locally look like surface code logicals,
which are strings of Pauli X or Z stretching across a surface
code patch. What differs from the usual surface code is the
global structure of the logical operator, i.e., how strings in
different patches are joined together. A sketch is shown in
Fig. 5, with technical details in Appendix C. In a nutshell: the
simplest logical operator in an LRESC corresponds to strings
in O(

√
k) of the surface code patches, corresponding to an

analogous logical codeword of our cLDPC from Step 1 above.
We can intuitively understand why LRESCs are more ef-

fective at protecting logical information by showing that no
matter how a logical error forms via local processes, during
the formation of the error we always violate more check
operators than in an ordinary surface code. Since more checks

are violated, we have more opportunities to catch the physical
qubit errors before they introduce a logical error. In the surface
code, we can create a logical error by introducing a physical
error near one boundary and then causing a cascade of addi-
tional errors on adjacent sites, i.e., growing a logical string in
Fig. 5. At any step during this process, for the ordinary surface
code, only one check is violated, meaning the error is almost
undetected. In condensed-matter physics, we can interpret this
as an anyonic particle that is free to diffuse around the system.
In the LRESC, we can similarly grow an error through a single
patch; however, when the error hits the long-range boundary,
it will flip multiple checks in adjacent patches (anyons are not
conserved across the long-range boundaries of the LRESC).
The rules for anyon splitting are discussed in Appendix C.
Since the error must grow across multiple patches to constitute
a logical, we must inevitably flip more checks during the
formation of the logical error, implying that it is easier to
detect.

E. Logical gates

Implementing one- and two-qubit logical gates on an
LRESC is (in principle) quite simple due to its similarly
to a surface code. By readily organizing one of our logical
qubits into a contiguous surface-code patch (e.g., moving
surface-code patches in Fig. 5 so that a logical string becomes
“continuous” and adjacent to the global boundaries), we
can apply generalized lattice surgery techniques to perform
Clifford gates [55]. Note that one will require surface code
patches of O(n) physical qubits to implement logical gates
on O(1) logical qubits. Alternatively, one can use the same
lattice surgery to teleport a logical qubit onto a surface code
[56]. Once a logical qubit is in an ordinary surface code patch,
standard methods [57,58] can then be used to apply all logical
Clifford operations in a fault-tolerant way. This process can
be repeated to pass multiple qubits into surface code patches,
onto which two-qubit gates can be fault-tolerantly applied.
As an alternative, some work has been done on applying
logical Clifford gates without the need for lattice surgery by
generalizing hole-braiding in the surface code [59].

Transversal gates have both constant spatial and tempo-
ral cost due to their inherent parallelization at the physical
level, but a hypergraph product code has yet to be found
that can transversally implement the entire Clifford group
on all its logical qubits. Some progress on transversal gates
has been previously made, which can fill the Clifford group
when supplemented with more expensive techniques such as
code switching and state injection [60]. Because the previous
techniques apply to generic hypergraph product codes, they
apply to LRESCs as well.

We now build upon these previous results by presenting ad-
ditional transversal gates in specific LRESCs, inherited from
those of specially structured parent codes, with the amount
of fault tolerance, quantified by transversality, tuned by ad-
justing the size of the local surface-code patches (i.e., the
concatenation parameter c). We showcase an example using
the [3,2,2] parity code, with details regarding the general pro-
cedure in Appendix D. The [3,2,2] code is the dual of the 3-bit
repetition code with a single parity check H = (1 1 1) and
two logical bits with codewords 1̄0̄ = 101 and 0̄1̄ = 011. The
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Concatenate HGP

(a) Base code (b) Concatenated code (c) LRESC

FIG. 6. The inheritance of the SWAP-CNOT logical gadget from the [3,2,2] base code to the corresponding LRESC is illustrated. (a) The
Tanner graph of the [3,2,2] is shown, where circles and squares represent bits and checks, respectively. A logical CNOT is performed by
swapping the bits according to the green arrow. (b) Upon concatenation with a repetition code, the bits in the base code now become segments
of repetition code. The single SWAP in the base code now becomes a segment-transversal SWAP between the respective repetition codes. (c) The
hypergraph product code using the previous concatenated code with a repetition code of length 4 is depicted. The long-range components are
organized into a single central column to which the surface-code patches are attached at their boundaries. The logical CNOT is implemented by
a patch-transversal SWAP between the corresponding patches of surface codes.

logical CNOT1̄→2̄ between the first (control) and second (tar-
get) logical bits maps 1̄0̄ → 1̄1̄ and 1̄1̄ → 1̄0̄ while leaving
the other two logical bitstrings invariant. This transformation
can be realized by physically swapping the second and third
bits. The complementary logical CNOT2̄→1̄ with control and
target switched is realized by physically swapping the first
and third bits. Note that the single 111 parity check remains
invariant under both of these physical SWAPs.

When we concatenate with a 1D repetition code of length
c, we obtain a [3(c), 2, 2(c)] code. The codewords for this
new concatenated code mimic those of the original base code
but each 0 and 1 now become strings of 0s and 1s of length
c. Because the values of the bits along each repetition-code
segment are simply copies of the original bits in the [3,2,2]
base code, any transformations of the base code now become
segment-transversal in the concatenated code: we simply ap-
ply the same transformation in parallel to all physical bits
in the corresponding repetition codes. See Fig. 6(b) for an
illustration.

Taking the hypergraph product of the above concatenated
[3(c), 2, 2(c)] code with a 1D repetition code results in a
quantum CSS code that can be arranged as three surface-code
patches connected by a shared central boundary; see Fig. 6(c).
One can quickly verify by inspection that the stabilizer checks
remain invariant upon swapping any two surface-code patches
due to the “fold” symmetry about the central column. In
addition, like the segment-transversal implementation of the
concatenated parent code, this patch swap can be imple-
mented in a patch-transversal manner: apply parallel SWAPs
between qubits paired under the “fold” symmetry. Choosing
our “horizontal” logical X̄ operators to mimic the structure
of the codewords of the parent [3(c), 2, 2(c)] code, we can
ensure that swapping surface-code patches enacts the correct
CNOT transformation on the logical X̄ operators. It suffices to
verify the SWAP action on the logical Z̄ operators. Choose Z̄1

and Z̄2 to be “vertical” strings living in the first and second
patches, respectively. Then swapping the second and third
patches leaves Z̄1 invariant while moving Z̄2 from the sec-
ond to the third patch, which becomes stabilizer-equivalent to
Z̄1Z̄2. Similarly, swapping the first and third patches leaves Z̄2

invariant while transforming Z̄1 → Z̄1Z̄2. So we see that the
patch-transversal SWAPs successfully implement the desired
logical CNOT gates.

We conclude this section with some comments regarding
the general procedure for logical gate inheritance and imple-
mentations for non-Clifford gates. The remarkable feature of
performing entangling gates at the logical level with nonen-
tangling gates at the physical level stems from the long-range
interactions of the LRESC: the codespace contains additional
entanglement from the long-range interactions, and simply
rearranging this entanglement is enough to couple logical
qubits. In the same example, we could have also taken the
hypergraph product of the [3(c), 2, 3(c)] code with itself to
obtain a LRESC with four logical qubits. We would then
have four logical gadgets comprised of simultaneous CNOTs
between (1̄2̄, 3̄4̄) and (1̄3̄, 2̄4̄) with either left or right log-
ical qubits as control or target. In general, we will only be
able to perform simultaneous logical gates along “rows” and
“columns” of logical qubits. Performing arbitrary two-qubit
logical CNOTs in this setting may require the code-switching
techniques of [60]. The [3,2,2] code is also the smallest
code in the family of (shortened) Hadamard, or equivalently
dual Hamming, codes with parameters [2k − 1, k, 2k−1]. This
family of codes is equidistant: all codewords have weight
d = 2k−1. As a consequence, the SWAP-CCNOT gadget for the
[3,2,2] code generalizes to this entire code family, and any
two-bit logical CNOT gate can be implemented by physical
SWAPs. However, these codes are not LDPC and so may be
difficult to implement in a fault-tolerant setting. In addition, in
the corresponding hypergraph product codes, one also needs
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FIG. 7. The two different weight-balancing procedures are de-
picted. Top: a [5(2),2,3(2)] code is modified so that all physical
bits participate in at most one long-range parity check. Bottom: A
weight-5 parity check is decomposed into three weight-3 checks with
two additional auxiliary bits (gray circles).

to track the action of the SWAPs on the parity-check matri-
ces (detailed in Appendix D), which will in general not be
invariant under these SWAPs. So some level of concatena-
tion with repetition codes (thus creating LRESCs) may be
necessary to maintain fault tolerance. Nonetheless, for small
base code sizes, the Hadamard codes provide many new addi-
tional CNOT gadgets available to their corresponding LRESCs,
which can reduce the need for code switching or lattice
surgery. The SWAP-CNOT gadget is also very amenable for
near-term experiments where the dominant source of error is
from two-qubit entangling gates, as we will explain in Sec. III.

To achieve a universal gate set, the Clifford group needs
to be supplemented with a non-Clifford gate, such as the T
gate (π/8 rotation). Since logical operators of HGP codes
can be chosen to be perpendicular “strips” intersecting on
only one qubit (recall Fig. 5), we do not expect non-Clifford
gates to be transversally implementable [61]. Nonetheless, as
previously mentioned, one can teleport logical qubits onto or-
dinary surface codes [56], from which magic state distillation
[62,63] can subsequently be applied, though [64–66] provide
alternatives.

F. Weight balancing

There are two simple but practical enhancements to the
LRESC described thus far by modifying the parent codes. In
Step 2 of the LRESC construction, notice that each “physical
bit” of the cLDPC from Step 1 consists of a repetition code,
but we assigned all of the “long-range” parity checks to a sin-
gle bit. We can instead evenly distribute these parity checks to
different bits inside of the repetition code: see Fig. 7—so long
as c is larger than the maximal number of parity checks per bit
of the cLDPC (Step 1), this will mean that each physical bit is
involved in at most one long-range parity check in Step 2.

The second modification is to introduce auxiliary bits into
the parent codes in order to reduce the weight of each long-
range parity check. The parity-check constraints of a classical
code can be reformulated as a boolean satisfiability problem
(SAT). It is well known in computer science that any SAT
problem can be decomposed into conjunctions of smaller
SATs of maximum size three (3-SAT), with the potential of
introducing some auxiliary bits. Moreover, this SAT → 3-SAT

decomposition can be performed in polynomial time [67]; for
our linear constraints, this decomposition takes a particularly
simple form; see Fig. 7. When we apply this decomposition
to the parity checks of a classical code, we obtain new parity
checks with bounded weights � 3 acting on the combination
of our original physical bits and some new auxiliary bits.
Importantly, the code distance remains unchanged, though the
relative distance may decrease by an O(1) factor if this method
is applied to all checks. At the quantum level, this decom-
position bears resemblance to a measurement-only version of
Shor’s cat-state syndrome extraction circuit [68], where we
have included the cat-state ancillas and measured operators as
auxiliary qubits and new stabilizer checks, respectively.

The modified parent codes will now have at most weight-3
parity checks with each physical bit participating in at most
one long-range interaction. Furthermore, by arranging each
long-range parity check to be adjacent to an end point of a
repetition-code segment, we can always localize at least one
of its long-range edges. In turn, the LRESCs will contain at
most weight-6 stabilizer checks with each physical and ancilla
qubit participating in at most four long-range interactions. A
major caveat of the weight-balancing procedure is that we will
lose the concatenated structure for logical gate inheritance
described in Sec. II E. Nonetheless, if we simply desire to use
an LRESC as a quantum memory block, then the two “weight-
balancing” procedures will be particularly advantageous for
experimental implementations, as we will discuss in Sec. III.

III. EXPERIMENTAL IMPLEMENTATIONS

Typically, experimental design of quantum hardware has
been strongly limited by the choice of QEC code and its result-
ing requirements on circuit connectivity. LRESCs imply that
one can exploit the tunable addition of nonlocality on top of
the most local of codes, the surface code, once improvements
in physical error rates, or increases in physical qubit number,
have been exhausted. Such a theoretical advance offers a
timely new tool for improving the performance of state-of-
the-art platforms, including superconducting qubits [23–27],
trapped-ions [18–22], and neutral-atom arrays [11–17] since,
as we now explain, the specific type of nonlocality needed
for the LRESC is relatively mild in multiple experimental
platforms.

In superconducting circuits, novel circuit graphs have sim-
ulated many-body physics in novel geometries [69]. To realize
the LRESC, one must use multiple planes of wiring [70], and
we expect that this construction is doable for modest values of
k (i.e., not encoding too many logical qubits). For devices with
larger values of k, we can also employ fault-tolerant quantum
repeater networks [71,72] to teleport ancilla qubits down a
strictly two-dimensional architecture. The number of such
quantum repeater rounds is constrained by the requirement
that we cannot pass two logical qubits “through each other.”
This latter construction is quite similar to the “hierarchical
codes” recently discussed in [40].

While a superconducting-qubit-based quantum computer
may take advantage of LRESCs or hierarchical codes, we
believe that the LRESC is significantly more optimized for
architectures capable of nonlocal gates and reconfigurabil-
ity, namely trapped ions and neutral atom arrays. Using the
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race-track geometry, trapped-ion quantum computers have
shown all-to-all connectivity with high fidelity gates and
midcircuit operations, including measurement and reset,
which have been exploited for state-of-the-art demonstra-
tions of quantum error correction [73]. Meanwhile, recent
advances in neutral-atom quantum computers using recon-
figurable tweezer arrays have enabled demonstrations of the
circuit encodings for a variety of quantum error correction
codes [7,9]. Importantly, while both platforms fundamentally
allow for all-to-all connectivity, the qubit moves required for
this are up to a few orders of magnitude slower than other
operations, such as single- and two-qubit gates [7,9,73]. Ac-
cordingly, in order to develop optimally performing quantum
computers—constrained by hardware level limitations asso-
ciated with qubit number, circuit encoding time, operational
fidelities, etc.—quantum error-correcting codes are desired
that allow for flexible optimization within the space of these
constraints. The LRESC construction allows for precisely this
flexibility within these two platforms, by balancing physical
qubit number against nonlocality and computation time in
order to optimize encoding capacity. The proposed implemen-
tations below reflect this perspective.

A. Trapped ions

The quantum charge-coupled device (QCCD) approach
[74] to quantum computation with trapped ions has the
potential to realize LRESCs in the near future. This archi-
tecture relies on a trap device capable of confining multiple
one-dimensional arrays of ions. Within these so-called
“ion crystals,” multiqubit operations are achieved through
laser- or microwave-induced spin-motion couplings. To facil-
itate interactions between ions initially residing in separate
ion crystals, the architecture requires real-time shuttling, split-
ting, and merging operations of ion crystals that occur on
faster timescales compared to the coherence time of the data
qubits. This dynamic control over system connectivity is made
possible through precise manipulation of electric fields that
generate the trapping potentials.

The high operational fidelities (up to 99.9999% single-
qubit fidelity [75] and 99.94% two-qubit fidelity [76]) allowed
fault-tolerant demonstrations of quantum error-correcting
codes encoding a single logical qubit in small-scale quan-
tum processors [77,78]. As systems with 100s of controllable
qubits become available in the near future, it will be fea-
sible to incorporate LRESCs in the QCCD architecture. In
particular, if state-of-the-art fidelities can be maintained for
a large-scale device, then LRESC 2 from Fig. 4 significantly
surpasses the break-even point with 244 physical qubits, and a
similar number of ancilla qubits, assuming two-qubit fidelity
from [76].

A possible implementation of LRESCs with trapped ions
is shown in Fig. 8. The envisioned architecture is structured
into multiple unit cells, each representing a surface code tile
(yellow tile in Fig. 2). Within each unit cell, multiple in-
teraction regions are designed to facilitate parallel single-
and two-qubit gates. Every unit cell contains both the data
qubits necessary for surface code operations and the necessary
ancilla ions. Data qubits are transported between interaction
regions to perform the necessary two-qubit gates. During

FIG. 8. LRESC implementation using a trapped-ion quantum
charge-coupled device architecture. (a) A possible quantum proces-
sor is structured into multiple unit cells, each representing a surface
code tile (yellow tile in Fig. 2). Each unit cell contains the neces-
sary data qubits (black dots) and measure qubits for parity checks
(blue and red rims). Ions are transported across different interaction
regions (green-shaded areas) by precise control of the voltage ap-
plied to the trap electrodes (yellow boxes) to perform the necessary
local operations. Each cell also contains additional ancilla qubits
(not shown) used for recooling operations after transport operations.
Sparse nonlocal operations required by LRESC are performed via
long-range transport of qubits across different cells (pink arrows).
(b),(c) Two possible ways to perform qubit permutation within the
QCCD architecture.

transport, unwanted motional excitations may arise due to
imperfect control of applied fields. To maintain high two-qubit
fidelities, ancilla ions are then used to recool an ion crystal
following a transport operation. While qubits primarily move
within a unit cell, an LRESC requires sparse long-range oper-
ations. The QCCD architecture in Fig. 8 efficiently facilitates
the parallel transport of multiple ions to different unit cells,
thus minimizing the time associated with nonlocal operations.

The main complexity lies in the optimal scheduling of
gates and transport operations, as well as the delivery of the
laser light used to coherently control the qubits in each inter-
action region. For trapped ions, scalable laser light delivery
based on free-space optics can be challenging due to the need
for tightly focused beams for single-qubit addressing and the
presence of nearby trap electrodes. The complexity is further
increased if multiple wavelengths of light are needed in each
region. A promising approach to address the issue of light de-
livery is using optical waveguides integrated into the structure
of the ion trap. This approach allows compact routing of light
to the various interaction regions and the generation of tightly
focused beams using grating couplers [79,80]. Ion traps with
integrated waveguides have been successfully employed in
devices controlling a single region [80–82] as well as multiple
ones [83,84]. Furthermore, experiments demonstrated the use
of integrated waveguides with multiple wavelengths ranging
from violet to infrared [81] as well as schemes for performing
all qubit control with longer wavelengths of light [85,86],
thus simplifying the waveguide requirements. To mitigate the
challenges associated with ion transport and the scheduling of
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gate operation, a possible solution is a system that allows the
manipulation of ion crystals with more than two data qubits.
Such a system not only would reduce scheduling complexity
but is also likely to reduce the unit cell’s size, as fewer interac-
tion regions are needed. Consequently, it would also decrease
the overall execution time, since the time required to transport
and recool a crystal is generally longer than those of two-
qubit gates in medium-sized ion crystals [73,87]. However,
working with large ion crystals can add extra control chal-
lenges. State-of-the-art two-qubit gates between ions in long
ion chains are generally slower than gates on two-qubit ion
crystals and also yield lower fidelities [88,89]. Furthermore,
multiqubit gates mediated by normal modes of motion cannot
be easily executed in parallel. Therefore, we speculate that
a likely optimal architecture that implements LRESCs will
compromise the advantages offered by the QCCD architecture
and those offered by the manipulation of medium-sized ion
chains.

Depending on the details of the experimental appara-
tus (i.e., the physical size of the quantum processor, qubit
coherence time, maximum achievable transport speed, and
recooling times), long-range transport may cause an increased
physical error rate due to the finite qubit coherence time
and the longer time required for long-range ion shuttling.
To mitigate this issue, teleportation of the qubit state can be
employed to replace long-distance transport. This approach
requires generating entangled Bell pairs between two distant
regions of the quantum processor using schemes for remote
entanglement generation [90–92]. This scheme would also be
compatible with a modular ion-trap architecture [90] com-
posed of multiple interlinked small devices each with a limited
number of qubits and correspondingly little computational
power [90,93].

B. Neutral atom arrays

Reconfigurable atom arrays manipulated with optical
tweezers are also well-suited to reap the benefits of LRESC
[7,9,12,13,94]. In particular, scaling to 100s of controllable
qubits has already been demonstrated [95–97], while scaling
to 1000s is a near-term prospect [98]; two-qubit gate fideli-
ties of >98.5% have been shown in multiple atomic species,
with the state-of-the-art performance at 99.5% [16,17]. Ac-
cordingly, this platform lies within an order of magnitude
of the break-even point of an LRESC (see Fig. 4). Impor-
tantly, the optical methods used for atomic reconfigurability
enable parallelism that is well-suited to the surface code and
LRESCs [7,14].

Figure 9 illustrates a possible implementation of an
LRESC using atom arrays. A static array—formed with a
spatial light modulator or optical lattice [7,95–97,99]—holds
atomic data qubits. The measure qubits that yield X and Z
parity checks (red and blue rims) sit on a grid of traps rotated
45◦ from the x/y axes. This array of traps is formed with
crossed acoustic-optic deflectors [AOD1-MQ, AOD2-MQ in
Fig. 9(b)] driven with a comb of radiofrequencies. This entire
array can be moved by adding an overall offset frequency to
the comb of tones inside each deflector, allowing any rigid
array translation in the x − y plane. Such moves are used to
bring all measure qubits into proximity with the appropriate
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FIG. 9. LRESC implementation on a neutral-atom-based pro-
cessor using Rydberg-mediated interactions. (a) Data qubits (black
circles) and measure qubits (blue and red rims) are initialized in a
static ordered 2D array generated by a spatial light modulator or
optical lattice. Local parity checks are performed with sequential
two-qubit gates (orange-dashed lines) performed on all measure/data
qubits in parallel, where each measure qubit is transported in close
proximity with a neighbor qubit (steps 1–4) using fast crossed
acousto-optic deflectors (AODs). Another pair of crossed AODs is
used to perform nonlocal operations by transporting data and mea-
sure qubits between different locations of the quantum processor.
(b) Two different pairs of crossed AODs are used for short-range
and long-range atom transport, respectively, labeled as MQ and NL.
Arrows represent the transport direction for a varying radiofrequency
offset in each AOD.

neighbor, in order to exploit short-range Rydberg-mediated
interactions for a two-qubit gate (orange-dashed lines) for
parallelized two-qubit gates [7,14]. Due to the short distance
scales and the use of AODs, each stepwise move of the SC
(top of Fig. 9) can be executed in � 10 µs.

The nonlocal gates that underlie LRESCs likewise can be
implemented in a straightforward fashion, with one adjust-
ment. A pair of crossed AODs [Fig. 9(b)]—AOD1-NL and
AOD2-NL—can be used for row translations along the y
direction [step 5 in Fig. 9(a)], as well as column translations
along the x direction (step 6). For the nonlocal gates, both
measure and data qubits are moved, which necessitates qubit
transfers between different optical potentials. Such methods
have been demonstrated and can be done while preserving
coherence [9,100,101], yet they come at the price of longer
timescales (∼100 µs) to mitigate motional heating.

In addition to allowing the core components of LRESCs,
the atom array platform is compatible with other more general
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needs of QEC. Initialization of the qubit array into the set
of optical potentials discussed above can be accomplished
with atomic rearrangement [99,102,103]. Parity checks on
the measure qubits will require midcircuit readout and reset.
This can be done in situ using qubit shelving methods, as
recently demonstrated for 171Yb or by using mixed atomic
species [104–106]—this circumvents the need for large moves
and zoned read-out [7,87]. Lossless state detection of neu-
tral atoms can be slow (at best, a few milliseconds [105]);
this timescale can be improved using destructive state detec-
tion [9,17,107], which is then paired with a qubit reservoir
for rapid replenishment [106,108]. High-fidelity single- and
two-qubit gates can be accomplished at low cross-talk with
the qubit separations illustrated, using a combination of
tightly focused and laser beams and globally addressing fields
[16,17,105,109–113]. Qubit loss—a prevalent error channel
during two-qubit gates and measurement—can be mitigated
using syndrome extraction circuits and three-outcome mea-
surements [114].

Finally, the weight-balancing procedures described earlier
(Sec. II F), which allow for reducing the number of qubits
per check (and checks per qubit), are relevant for the imple-
mentation of LRESCs in atom arrays. So long as each qubit
participates in at most four long-range interactions, a single
physical qubit will be involved in at most eight rounds of row
and column swaps—four local and four nonlocal—to couple
all corresponding physical and ancilla qubits during syndrome
extraction for one round of QEC. Using a single AOD each for
long-range row and column permutations, this may require
O(

√
k) sequential swaps. These swaps could be further par-

allelized by carefully arranging the long-range edges, or by
adding additional AODs, though we leave further optimization
for future work.

IV. OUTLOOK

We have described the LRESC: a minimal generalization
of the surface code capable of encoding multiple logical qubits
without sacrificing code distance. We show how long-range
interactions can (i) improve code overhead, (ii) improve code
performance, and (iii) enable new kinds of fault-tolerant gad-
gets. The LRESC is well-suited for near-term hardware, where
we anticipate that our fault-tolerant code might be realizable
within the next few years.

An immediate direction for future work is to design a better
decoder for LRESCs. Depending on qubit shuttling times,
a more sophisticated two-stage decoder could be designed
as follows. (i) Perform multiple rounds of local syndrome
measurements in the surface code patches while waiting for
the long-range syndrome measurements to complete [115].
(ii) Use one’s favorite standard decoder (e.g., MWPM [44]
or Union-Find [116]) for the multiround syndromes within
the surface-code patches and feed the output decisions into
a single-stage BP + OSD decoder for global decoding. In this
manner, one can strike a balance between the “fast” (but less
robust) checks of the surface code and the “slower” (but more
robust) long-range checks. Another related avenue is the con-
struction of additional fault-tolerant gadgets, taking advantage
of specially structured base codes. While the more compact
encoding of a LRESC facilitates the implementation of certain

FIG. 10. The Tanner graph of an n = 6 repetition code is illus-
trated. The circles and squares represent physical bits and parity
checks, respectively.

multiqubit logical gates, single-qubit logical gates become
harder for the same reason. In an LRESC, the support of
logical operators overlaps, and it is difficult to only manipulate
one logical qubit without affecting others.

The construction of the LRESC also opens possible av-
enues to investigate new quantum phases of matter. In
particular, it suggests new “topological phases” are enabled
using only a small density of long-range interactions, and can
thus be investigated in experiment. In the longer term, a large-
scale LRESC may also be the foundation for an autonomous
self-correcting quantum memory. Indeed, our proposed ar-
chitecture may well represent a more convenient strategy for
passive error correction versus a four-dimensional toric code
[44]. It may also be more amenable to single-shot error correc-
tion than three-dimensional single-shot codes [117–119] due
to its lower overhead.
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APPENDIX A: CLASSICAL LDPC CODES

We begin by reviewing classical low-density parity-check
(cLDPC) codes [41], which play an important role in our
construction. A classical linear code C is specified by a set
of constraints called parity checks and a set of codeword
generators satisfying those constraints. The state of the system
can be represented as an element of Fn

2 , where F2 = {0, 1},
and in F2, 1 + 1 = 0. We often represent the parity checks
as rows of an F2-valued parity-check matrix H and logical
codewords as rows of a matrix G. The statement that the code-
words satisfy the parity-check constraints becomes HGT = 0.
The dual code C⊥ is defined as the code where G and H are
swapped. We say a linear code is LDPC if its parity-check
matrix H is sparse: the number of ones per row and column
are bounded by a constant irrespective of n. The code is useful
if G is not sparse: the code distance d is the smallest number
of 1s in a codeword. We can represent any linear code as a
bipartite Tanner graph, drawing an edge between a “variable
node” v and a “check node” c if the corresponding element of
H is nonzero: Hcv = 1. The Tanner graph of a repetition code
is depicted in Fig. 10. All linear codes satisfy the Singleton
bound:

k � n − |C|, (A1)
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FIG. 11. A 1D chain is partitioned into disconnected, correctable
regions (blue) of length ≈ d with separation ≈ r such that all checks
(circles) have support in at most one region.

where C is a correctable region satisfying |C| � d − 1. Cor-
rectable here means that all codewords can be successfully
recovered upon erasure of C.

A code generated by a random sparse H has both k =
�(n) and d = �(n) with high probability [42]; its corre-
sponding Tanner graph is an asymptotically good expander
[120]. However, if we arrange the variable nodes locally in
one dimension, such a code will necessarily involve checks
c that are nonlocal. If we enforce geometric locality in
D-dimensional Euclidean space, then the code parameters
must satisfy [36]

kd1/D = O(n). (A2)

The sketch of the proof in D = 1 is as follows. The idea is to
partition the 1D chain into disjoint, correctable regions Ci of
length |Ci| ≈ d where the separation between each region is
large enough (say r) so that no parity check acts in more than
one region; see Fig. 11. Since all the correctable regions do not
share any checks, their union is entirely correctable [43]. The
Singleton bound (A1) then imposes that k � n − |C| = |C̄| =
O(rn/d ), and we thus arrive at (A2) for r = O(1) and D = 1.
Now suppose we add in � long-range connections to surpass
(A2). We can simply avoid the long-range edges and partition
the rest of the chain as before, arriving at |C| → |C| − O(�)
and thus k → k + O(�). Hence, the number of logical bits
k can scale at most linearly with the number of long-range
connections �.

We now saturate the asymptotic constraints above with a
cLDPC code of d = �(n), k logical bits, and �(k) long-range
checks. An [n′c, k′, d ′c] code is produced from the concate-
nation of an “outer” [n′, k′, d ′] code with an “inner” [c, 1, c]
repetition code of variable length c (denoted [n′(c), k′, d ′(c)]);
see Step 1 of Fig. 2. Concatenation means that we connect a
single bit of each inner repetition code to the parity checks
of the outer [n′, k′, d ′] code. This concatenating procedure
can also be interpreted as first cutting up a 1D repetition
code into disconnected segments and then reconnecting these
segments with long-range interactions. The only long-range
checks come from the outer code, and if it is a “good”
[n′, k′, d ′] = [�(k′), k′,�(k′)] cLDPC code, the concatenated
code has parameters [�(ck′), k′,�(ck′)] with �(k′) long-
range connections, which is parametrically optimal. Since we
are allowed to attach the long-range edges to any bits of the
inner repetition codes, we have some flexibility in designing
the long-range couplings (recall Sec. II F). This concatena-
tion procedure can be considered as a “dual” variant to the
edge-augmentation construction of [121]: instead of having
the repetition codes live on the edges of a cLDPC code, we
attach them to the variable nodes themselves. For a cLDPC
with average vertex degree w̄, the concatenated construction

reduces the number of surface-code patches by a factor of
w̄2 compared to the approach in [121]. As we will later see,
the “hierarchical” structure of concatenated codes also lends
the dynamics to be factorized in a systematic manner: we
can analyze the dynamics within the inner and outer codes
separately.

APPENDIX B: HYPERGRAPH PRODUCT CODES

Using an F2n
2 representation for Paulis, the stabilizer

checks of a CSS code can be represented by the parity-check
matrix

H =
(

HX 0
0 HZ

)
, (B1)

where commutativity requires HZ HT
X = 0. We use the hyper-

graph product (HGP) [29] to construct a quantum CSS code
from two classical linear codes. Specifically, suppose we have
two classical codes with parameters [n1, k1, d1], [n2, k2, d2]
and parity-check matrices H1, H2 with m1, m2 rows, respec-
tively. The associated HGP code has parity-check matrices
defined as

HX = (
H1 ⊗ 1n2 | 1m1 ⊗ HT

2

)
, (B2a)

HZ = (
1n1 ⊗ H2 | HT

1 ⊗ 1m2

)
. (B2b)

By construction, the orthogonality constraint HZ HT
X =

2(H1 ⊗ HT
2 ) = 0 is automatically satisfied. The �N, K, D� pa-

rameters of the HGP code are given by

N = n1n2 + m1m2, (B3)

K = k1k2 + kT
1 kT

2 , D = min
(
d1, d2, dT

1 , dT
2

)
, (B4)

where kT and dT are the usual k and d for the trans-
pose code. For the rest of the Appendix, we will use
lower-case letters for classical code parameters and upper-
case letters for quantum code parameters. If H1 and H2

have full rank (no redundant parity checks), then their
transpose codes are trivial, and the above HGP code
parameters (B3) simplify to

N = n1n2 + m1m2, K = k1k2, D = min(d1, d2). (B5)

Geometrically, the Tanner graph of the HGP code takes the
form of a Cartesian graph product between those of the two
classical parent codes. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), the product graph G1 × G2 is a graph with
vertices labeled by pairs (x, y) where x ∈ V1 and y ∈ V2. Two
vertices (x, y), (x′, y′) are connected by an edge if either
x = x′ and {y, y′} ∈ E2 or y = y′ and {x, x′} ∈ E1. The steps
to convert this product graph into a CSS Tanner graph are as
follows:

(i) If the vertex of the product graph is of the form (node,
node) or (factor, factor), then that vertex becomes a node
representing a physical qubit.

(ii) If the vertex of the product graph is of the form (node,
factor), then that vertex becomes a factor representing an X
stabilizer.

(iii) If the vertex of the product graph is of the form (fac-
tor, node), then that vertex becomes a factor representing a Z
stabilizer.
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qTanner transform

FIG. 12. The transformation of a �52, 4, 4� HGP code into a �36, 4, 4� quantum Tanner code is shown. Solid black dots represent physical
qubits, and red (blue) squares represent X (Z) checks. Twenty-one long-range interactions (magenta curves) are required. A k = 4, d = 4
surface code of the same layout will require n � 64 physical qubits.

Importantly, if the two parent codes are LDPC, then so is
the resultant HGP code. If the two parent codes can be locally
embedded in D1 and D2 spatial dimensions, then the HGP
code can in D1 + D2 dimensions. The surface code is the HGP
of two 1D repetition codes.

The LRESC is simply the HGP of the classical con-
catenated code defined earlier with itself. Its parameters are
��(c2k′2), k′2,�(ck′)� with �(ck′2) long-range interactions.
Denoting L ≡ ck′ and K ≡ k′2, the code parameters simplify
as ��(L2), K,�(L)� with �(L

√
K ) long-range interactions.

For K � N , the 2D layout of this HGP code can be under-
stood as patches of surface code of length c, whose boundaries
are connected by long-range stabilizers; see Fig. 2. The graph
product structure arranges these long-range interactions as
parallel row and column couplings.

In the surface code, the quantum Tanner transforma-
tion [122,123] can reduce N = D2 + (D − 1)2 to N = D2

while maintaining the same distance, producing the so-called
“rotated surface code” with parameters �D2, 1, D�. Examin-
ing Fig. 2, we see that the qubits of the HGP code can be
partitioned into two sublattices corresponding to node-node
(primary) and check-check (secondary) vertices of the graph
product. The idea of the quantum Tanner transform is to
multiply adjacent checks of the same type in order to produce
new checks which commute when restricted to the primary
sublattice; the secondary sublattice can then be discarded;
see Fig. 12. Applied to a HGP code, the transformation will
reduce N = n1n2 + m1m2 to N = n1n2. The Tanner transform
of a LRESC will unfortunately introduce a “diagonal” in-
teraction for every long-range 4-cycle in the original Tanner
graph. If the parent code has O(k′) long-range edges, then the
HGP code will contain O(k′2) = O(K ) additional “diagonal”
interactions in a 2D layout. For small platforms, the factor of
≈ 2 reduction in overhead may still be advantageous despite
the increase in the routing complexity needed to implement
the long-range checks. In practice, one will also need to worry
about decreasing the effective code distance under circuit-
level noise. For traditional HGP codes, it has been shown that
the usual methods for syndrome extraction maintain the code
distance [124]. After performing a quantum Tanner transfor-
mation, a specially engineered syndrome extraction circuit

may be required to maintain this effective code distance (cf.
surface code vs rotated surface code syndrome extraction
circuits).

APPENDIX C: ANYONS, LONG-RANGE BOUNDARIES,
AND CONFINEMENT

In this Appendix, we characterize the structure of logical
operators in LRESCs using concepts from condensed-matter
physics. We show how anyon transport properties in the
LRESC are related to domain-wall dynamics in the classi-
cal parent codes. Finally, we describe how the long-range
boundaries in an LRESC can lead to anyon confinement and
improved single-shot decoding.

1. Logical operators and boundary dynamics

Interpreting the parity checks of the 1D repetition code
(Fig. 10) as energetic terms in a Hamiltonian, we arrive at the
1D Ising model. A local bit flip in the 1D Ising model creates a
pair of domain walls separating 1s and 0s. When these domain
walls move via additional bit flips, the number of violated
checks remains constant, and we say that the domain walls are
“deconfined.” These domain walls can then travel to opposite
end points of the chain, flipping all physical bits in the process.
Thus, a logical error in the 1D repetition code can be enacted
with local processes while violating only O(1) checks.

The concatenated codes mentioned earlier consist of an
[n′, k′, d ′] base code and an inner repetition code. We now
describe how the structure of the base code dictates the dy-
namics of propagating domain walls. As a concrete example,
suppose our base code was a [5,2,3] code with

H =
⎛
⎝1 1 0 1 0

0 1 0 0 1
0 0 1 1 0

⎞
⎠, G =

(
1 0 1 1 0
0 1 1 1 1

)
,

(C1)

where we have expressed G in reduced row echelon (standard)
form. Domain walls can freely propagate within each inner
repetition code. However, upon hitting the long-range bound-
aries, these domain walls will excite the long-range checks of
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FIG. 13. The classical dynamics of long-range boundaries is depicted for a [5(c), 2, 3(c)] concatenated code. A domain-wall excitation
(star) is created in an inner repetition code and is transported across to the long-range boundaries (magenta lines). Left: Upon reaching this
boundary, the long-range checks of the outer code will be violated (red squares). Right: Additional d ′ − 1 = 2 excitations must appear among
the other connected surface-code patches in order to complete a logical operation (codeword 11001).

the base code: see Fig. 13. Satisfying the long-range checks
requires locally exciting domain walls on other repetition code
segments according to the codewords generated by G. When
a domain wall reaches a long-range check, we examine the
codewords which contain a 1 at the position of its correspond-
ing repetition-code segment. The other 1s in the codeword
label the other segments which can spawn the additional do-
main walls, thereby satisfying all long-range parity checks.
The minimum number of additional domain walls is d ′ − 1,
where d ′ is the distance of the outer code. By using a good
cLDPC code as the base code, expansion properties guarantee
that this domain-wall splitting scales with the size of the base
code.

The HGP will produce two types of horizontal and vertical
long-range boundaries: an X -type and a Z-type. For every
long-range edge connecting a node and a check, the graph
product will produce a long-range edge connecting a (node,
node) → qubit to a (check, node) → Z-check or a (node,
check) → X -check to a (check, check) → qubit. We denote
an excitation of a X (Z)-check as an e (m) anyon. Using these
conventions, we can now analyze anyon transport through
the long-range boundaries. Suppose we try and move an e
particle through an X -type long-range boundary (by growing
its “error” string of Z’s). The combination of the original and
newly emerging strings must overlap on an even number of
sites with each long-range X -check. This constraint is satis-
fied precisely by the codewords generated by G. If the code
distance of the outer code is d ′, then the e must split into at
least d ′ − 1 additional e particles. Now if we try to move an e
particle through a Z-type long-range boundary, we can simply
multiply the error string by long-range Z-checks, which will
extend the support of this error to additional surface-code
patches given by H . Growing the error strings in these other
patches will create additional e particles. The rules for m
particles follow analogously by switching the roles of X and
Z . For each surface-code patch labeled (x, y) with the origin
at the upper-left, we can arrange the rough (e absorbing),
smooth (m absorbing), and long-range boundaries as depicted
in Fig. 14. Rough boundaries are present at the bottom and
smooth boundaries on the left. The top and right bound-
aries are the long-range boundaries. The anyon transport rules
through the long-range boundaries can now be summarized as
follows:

(i) e anyons tunnel through horizontal (vertical) boundaries
according to G (H).

(ii) m anyons tunnel through horizontal (vertical) bound-
aries according to H (G).

So the tunneling of e (m) anyons through horizontal
(vertical) boundaries is analogous to that of domain walls in
the classical parent code: the codewords generated by G label
the y (x) coordinates of surface-code patches where additional
anyons can appear. The tunneling rules in the other direc-
tions are analogous but using the dual codewords generated
by H . Because e and m anyons behave differently through
long-range boundaries (G = H in general), we have lost the
usual e ↔ m duality that is present in the ordinary surface
code. However, if we use a self-dual code where G � H (e.g.,
[8,4,4] extended Hamming), then this duality is restored.

We can use the above tunneling rules to construct our log-
ical operators. We choose the standard form of G (1k′ on the
left) as a canonical basis for our logical operators like in (C1).
Starting on each surface-code patch (1 � x � k′, 1 � y � k′)
in the upper-left corner, the X (Z) -type logical operators are
horizontal (vertical) lines spanning the surface-code patches
given by the x(y)th row of G with the other coordinate fixed.
The X (Z) -type logical strings can be interpreted as dragging
a single m (e) from a smooth (rough) boundary where they
are condensed, transporting it to the long-range boundary on
the opposite side, and then transporting all tunneled anyons
across the new surface-code patches and absorbing them at
opposing smooth (rough) boundaries. Using this procedure,
we successfully construct X and Z logical operators for all
K = k′2 logical qubits. Since G is in standard form, these
logical operators only intersect once inside the patches in the
upper-left k′ × k′ corner.

2. Anyon confinement and single-shot decoding

The presence of syndrome measurement errors is detri-
mental for surface code decoding, often lowering the error
threshold by an order of magnitude. The intuitive reason is
that error strings are only detectable at their end points, and
so if both end points have a syndrome measurement error,
then that string becomes undetectable. The usual scheme to
account for syndrome measurement errors is to perform mul-
tiple rounds of syndrome measurements and use the global
space-time history for decoding. However, the number of
measurement rounds per QEC cycle will scale with the system
size [44]. If a decoder is able to account for these mea-
surement errors with a only a small overhead, then we say
this decoder is capable of single-shot correction. For stabi-
lizer codes, the relation between confinement and single-shot
ability has been well established [117,125]. Confinement im-
plies that enacting a logical operation via local moves will
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(a)

(b)

(c)

(d)

(e)

FIG. 14. Some logical (left diagram) and stabilizer (right diagram) operators are depicted for a LRESC with a parent [5,2,3] outer code
(C1). (a) The X̄1 and Z̄1 logical operators are constructed using the codeword 10110 ∈ G. (b) The X̄4 and Z̄4 logical operators are constructed
using the codeword 01111 ∈ G. (c) A Z-type stabilizer is constructed using x : 11010 ∈ H and y : 10110 ∈ G. (d) An X -type stabilizer is
constructed using x : 10110 ∈ G and y : 00110 ∈ H . (e) An X -type stabilizer is constructed from a “contractible loop” through the long-range
boundaries according to y : 01001 ∈ H . Logical operators may be deformed through the long-range boundaries by multiplying appropriate
stabilizers.

necessarily violate an increasing amount of stabilizers, and
so even if a few measurements are faulty, there still exists
a sufficient number of violated stabilizers to undo most of
the error such that any residual error remains controlled over
subsequent QEC cycles.

The Tanner graphs of good cLDPC codes are typically
constructed from bipartite expander graphs. Expander graphs
have the property that the boundary of a small subset of
vertices scales proportionally to the size of that subset. In par-
ticular, we say that a (regular) bipartite graph G = (B ∪ C, E )
of size {|B|, |C|} = {n, m} and degrees �B,�C is (γ , δ) left-
expanding if for any subset S ⊂ B with volume |S| � γ n,
the size of the boundary, the number of connected checks,
obeys |∂S| � (1 − δ)�B|S|. The definition of right-expansion
follows analogously by switching the roles of B and C above.
On a Tanner graph, the boundary of a subset of nodes is
an upper bound on the number of violated parity checks for
an error supported on that subset. For Tanner graphs that
are left-expanding with δ < 1/2, one can show a linear code
distance d � γ n by counting the number of unique neighbors,
a lower bound on the syndrome weight, of small subsets
of nodes. One can further show that the syndrome weight
|s| � (1 − 2δ)�B|e| for any error with weight |e| � γ n, with
γ n < d [126]. In other words, a cLDPC code is guaranteed
to exhibit linear confinement if the underlying Tanner graph
exhibits sufficient left-expansion. As a consequence, effecting
a logical error via local bit flips, or equivalently moving a
domain-wall excitation, will necessarily violate a growing
number of checks in the process. Reformulating the parity
checks as multispin interactions in a classical Hamiltonian,
we can reinterpret the previous statement as the existence of
macroscopic energy barriers between different ground states.

The notion of confinement for cLDPC codes has been
generalized to HGP codes [127,128]. (In these references,

confinement is referred to as robustness.) We summarize the
relevant results as follows. For HGP codes to achieve D =
�(

√
N ), we require the Tanner graph of the parent cLDPC

codes to be both left- and right-expanding with δ < 1/2 so
that both the distance and transpose distance are linear in
the system size. In quantum codes, due to degeneracy, there
are many errors related by stabilizer elements that produce
the same error syndrome. It suffices to examine the so-called
“reduced weight” of a given error, which is defined as the
minimum Hamming weight over its stabilizer group orbit. If
the parent expansion satisfies δ < 1/6, then it has been shown
that the syndrome weight obeys |s| � 1

3 |e|red for errors in the
HGP code with reduced weight |e|red � min(γ n, γ m) with
γ min(n, m) � min(d, dT ) [60]. For a HGP code to provably
exhibit linear confinement, its parent code requires a larger
expansion (δ < 1/6) than what is needed for the classical
analogue (δ < 1/2).

Finding explicit constructions of bipartite graphs with
the necessary expansion parameters above is often difficult.
Fortunately, a random regular bipartite graph with degrees
�B,�C > 1/δ exhibits (γ = �(1), δ) expansion with high
probability [120]. We also note that in practice, one can often
get away with smaller expansions compared to the theoretical
guarantees [129].

To construct the parent code of a LRESC, we begin with
a good cLDPC code and concatenate a repetition code of
variable length c. If the Tanner graph of the outer cLDPC code
exhibits δ < 1/6 expansion, then we know that |s| � 2

3�B|e|.
The concatenation with a repetition code simply decreases the
confinement to |s| � 2

3c �B|e|, since the structure of the outer
code is unchanged but each physical outer bit can now host
c inner bits. An analogy holds for the associated LRESC due
to the product structure of the HGP. The long-range checks
in both horizontal and vertical directions mimic those of the
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nonconcatenated HGP code, but now the surface codes can
host an additional ≈2c2 physical qubits. Thus, the confine-
ment in the LRESC can be quantified as |s| � 1

6c2 |e|red. Let
us now analyze the scaling of confinement with the num-
ber of long-range interactions. Let [n′,�(n′),�(n′)] be the
parameters of the outer cLDPC code constructed using the
expander graph methods previously mentioned; this code will
necessarily contain �(n′) long-range interactions. After con-
catenating with a length-c repetition code, the parameters
become [n′c,�(n′),�(n′c)]. The confinement of this concate-
nated code scales as |s| = �(n′/n · |e|). Suppose the number
of long-range interactions scales as n′ = nb for some 0 � b <

1. Then small errors of weight |e| < n1−b have no confinement
because they can be chosen to live on a single repetition-code
segment. For large errors with weight |e| = �(n), the confine-
ment scales as |s| = �(nb). Taking the HGP of this code with
itself yields a LRESC with ��(n′2c2),�(n′2),�(n′c)� code
parameters, |s| = �(Nb−1 · |e|red ) confinement, and O(n′√N )
long-range interactions. For a b > 0 scaling of the long-range
interactions in the parent code, the LRESC satisfies the “good
confinement” definition of [125] and is provably single-shot
decodable under adversarial noise. A sustainable threshold
under local stochastic noise has been proven for b = 1 (linear
confinement and fully nonlocal limit), but it remains an open
problem as to whether this threshold can exist for b < 1,
though numerical evidence suggests an affirmative for certain
families of 3D homological product codes [125]. Because
LRESCs can systematically vary their density of long-range
interactions, they provide tunable qLDPC codes to numer-
ically benchmark sustainable thresholds for 0 < b < 1. We
leave such studies to future work.

We also emphasize that in practice, the existence of a
threshold may not be as important when dealing with finite-
size overheads, as supported by the numerical simulations in
Fig. 4.

APPENDIX D: LOGICAL GATE INHERITANCE

In this Appendix, we elaborate on how a HGP code can
inherit certain logical gates from its parent classical codes. In
the parent codes, we show how non-fault-tolerant operations
can be made increasingly transversal upon concatenating with
a repetition code. We then demonstrate that this transversal-
ity is inherited by the associated LRESC, using the parent
[3(c), 2, 2(c)] code as a guiding example.

1. Linear transformations on the codespace

Suppose we have a classical linear code with parity-check
matrix H ∈ Fm×n

2 and generator matrix G ∈ F k×n
2 . We exam-

ine transformations on the code of the form

H −→ HU, G −→ GU, (D1)

where U ∈ Fn×n
2 is an orthogonal matrix obeying U TU =

UU T = 1. The columns of U represent linear transformations
on the columns (physical bits) of H and G. In particular,
since U is invertible, we can always decompose this linear
transformation into a series of elementary ones corresponding
to adding (A) and swapping (S) columns. Each column swap
corresponds to a physical SWAP, while each column addition

can be implemented by a CNOT gate on the physical bits:

CNOTi→ j ⇒ H�i −→ H�i + H� j

G�i −→ G�i + G� j,
(D2)

where H�i denotes the ith column of H . For U to be a valid
transformation on the codespace, we require the row space of
G [i.e., ker(H )] to remain invariant, which is satisfied if and
only if

GU = V G (D3)

for some invertible V ∈ Fm×m
2 . Since U is orthogonal, we

have (HU )(GU )T = HUU TGT = HGT = 0. At the same
time, H (GU )T = H (V G)T = HGTV T = 0. Hence ker(H ) =
ker(HU ), which implies that H and HU are row-equivalent,
i.e., there exists some invertible W ∈ Fm×m

2 such that

HU = W H. (D4)

As an example, let us take the 3-bit parity code with

H = (
1 1 1

)
, G =

(
1 0 1
0 1 1

)
. (D5)

A logical CNOT gate between the first logical qubit (first row
of G, control) and the second logical qubit (second row of G,
target) results in the transformation

g1 −→ g1 + g2, (D6a)

g2 −→ g2, (D6b)

which becomes 101 → 110 and 011 → 011 explicitly for the
3-bit parity code. This logical operation can be achieved by
swapping the second and third bits (columns of G) given by
the permutation matrix

U =
⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠. (D7)

Similarly, the logical CNOT with control and target roles re-
versed is achieved by swapping bits 1 and 3. The column
swaps results in the desired transformation (D1) where U is
a permutation, and thereby orthogonal, matrix. The logical
CNOTs correspond to row addition on G, and so (D3) is also
satisfied. Because H is permutation-symmetric, we have W =
1 in (D4).

2. Segment-transversality with repetition

We now show how concatenation with a repetition code
maintains the same circuit depth to perform logical opera-
tions. Intuitively, this is because the repetition codes simply
clone the value of the physical bits of the outer code. Any
operations performed on the outer bits now become parallel
(transversal) operations among the repetition code segments.
Since the code distance is increased in the process, this con-
catenation will increase the fault tolerance of the original
gadgets.

Suppose the m′ × n′ parity-check matrix of the outer code
is H . Then the parity-check matrix H (c) of the concatenated
code can be written as

H (c) =
(

H ⊗ v
1n′ ⊗ H (c)

rep

)
, (D8)
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where ⊗ denotes the Kronecker product, v = (1 0 0 . . . ) is
a vector of length c with 1 in the first entry and 0 elsewhere,
and H (c)

rep is the parity-check matrix of the 1D repetition code
of length c with dimensions (c − 1) × c, e.g.,

H (3)
rep =

(
1 1 0
0 1 1

)
. (D9)

The generator matrix G(c) takes the form

G(c) = G ⊗ 11×c, (D10)

where 11×c = (111. . .) is the nonzero codeword of the repeti-
tion code of length c. The orthogonal column transformation
(D1) on the concatenated code takes the transversal form

U (c) = U ⊗ 1c, (D11)

where the Kronecker product can be physically interpreted
as performing U transversally between the repetition code
segments; we accordingly describe this physical operation as
segment-transversal. It is straightforward to verify that the
right-action of (D11) on (D8) and (D10) reproduces the con-
catenated analogue of (D4) and (D3), respectively, with

V (c) = V, (D12a)

W (c) = diag(W, U ⊗ 1c−1). (D12b)

Since V (c) = V , we conclude that the right-action of
U (c) (D11) enacts the same logical transformation as the
original U .

3. Patch-transversality in LRESCs

Suppose now that we use the previous concatenated code
as the parent code in the hypergraph product. Recall that the
parity-check matrices for a HGP code with parent code H (c)

take the form

HX = (H (c) ⊗ 1n | 1m ⊗ H (c)T ), (D13a)

HZ = (1n ⊗ H (c) | H (c)T ⊗ 1m). (D13b)

For simplicity, we will focus on codewords induced by G(c)

on the primary lattice (node-node qubits); the analysis of the
transpose codewords on the secondary lattice (check-check
qubits) follows analogously. Mirroring the structure of the
parity checks, we can construct generator matrices for the
K = k2 logical qubits as follows:

GZ = (G(c) ⊗ 1n | 0), (D14a)

GX = (1n ⊗ G(c) | 0). (D14b)

It is easy to verify that HX GT
Z = HZ GT

X = 0. For quantum
CSS codes, we can choose either X -type or Z-type logical
operators to inherit our classical transformations. Suppose we
want to enact our desired logical transformation on the logical
Z̄ operators (D14a). Define the following right-action on HX :

U (Z̄ )
X = diag(U (c) ⊗ 1n, W (c) ⊗ 1m), (D15)

which physically corresponds to applying U (c) simultaneously
to all primary rows and W (c) to all secondary rows in the 2D
layout of Fig. 2. Examining the structure of U (c) (D11) and
W (c) (D12b), we see that the above operation can be inter-
preted as transversal operations among surface-code patches

given by the hypergraph product of the repetition code seg-
ments; we accordingly describe this physical operation as
patch-transversal. For ease of notation, we will henceforth
drop the superscript (Z̄ ); unless stated otherwise, UX corre-
sponds to the choice (D15). Note that the physical action of
UX does not transform HZ in the same way. Nonetheless, we
can easily compute the corresponding UZ by decomposing UX

into elementary matrices:

UX = S6A5S4A3 · · · . (D16)

The swap operations S correspond to physical SWAP gates and
so remain the same for UZ . However, the addition operations
become transposed because CNOT reverses the roles of control
and target for X ↔ Z . So the corresponding UZ is given by

U (Z̄ )
Z = S6AT

5 S4AT
3 · · · = (

U −1
X

)T ≡ U −T
X

= diag(U (c) ⊗ 1n, (W (c) )−T ⊗ 1m), (D17)

where we have used the fact that S2 = A2 = 1 over F2 in
the first line and U T = U −1 in the second line. The orthog-
onality condition HX HT

Z → HXUXU T
Z HT

Z = HXUXU −1
X HT

Z =
HX HT

Z = 0 is thus preserved, which is expected since we
know that physical unitary operations preserve commutativity.

To ensure that the stabilizer group remains invariant, it
suffices to verify that (HXUX )HT

Z = 0. Acting UX (D15) to the
right of HX (D13a) gives

HXUX = ( H (c)U (c) ⊗ 1n | W (c) ⊗ H (c)T )

= (W (c)H (c) ⊗ 1n | W (c) ⊗ H (c)T )

= (W (c) ⊗ 1n) HX

≡ WX HX , (D18)

from which the orthogonality condition (HXUX )HT
Z =

WX HX HT
Z = 0 follows. Since WX is invertible, we conclude

that HXUX is row-equivalent to the original HX . A similar
calculation also shows row-equivalence between HZUZ and
HZ . Thus, the patch-transversal operation corresponding to
(D15) and (D17) preserves the stabilizer group.

The action on the codespace is given by

GZUZ = (G(c)U (c) ⊗ 1n | 0) = (V G(c) ⊗ 1n | 0),

(D19a)

GXUX = (U (c) ⊗ G(c) | 0), (D19b)

where in the second line we have used (D12a) and (D3).
We see that the patch-transversal operation enacts parallel
logical operations along the n′ = n/c columns of surface-code
patches, transforming the logical Z̄ operators in the same
manner as in the classical code (D3). We can also enact
patch-transversal operations between columns of surface-code
patches, accordingly transforming the logical X̄ operators,
using the choice

U (X̄ )
X = diag(1n ⊗ U (c), 1m ⊗ (W (c) )−T ), (D20a)

U (X̄ )
Z = diag(1n ⊗ U (c), 1m ⊗ W (c) ). (D20b)

The analogous operations for the transpose code follow sim-
ilarly by switching the roles of the primary and secondary
lattices [left and right sides of (D13) and (D14)]. In general,
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FIG. 15. The layout of the local surface-code patches of the
[3,2,2] LRESC family is illustrated. The patches can be labeled by
coordinates (x, y), where x, y = 1, 2, 3. The logical X̄ and Z̄ opera-
tors for the first two logical qubits are also shown.

from the form of (D20), we see that both codewords and
transpose codewords are transformed simultaneously. Another
thing to check is whether the complementary transformation
on the other type of logical (D19b) is the desired one.

Now let us see how the 3-bit parity code fits into the
above machinery. Its associated LRESC family has four log-
ical qubits living among nine surface-code patches arranged
in a 3 × 3 layout in the manner of Fig. 15. In the base [3,2,2]
code, the U that implements the logical CNOT1→2 is given by

(D7). In the LRESC, the corresponding transformation (D20)
involves exchanging the x = 2 column of patches with those
of x = 3. We will now show that this transformation enacts
CNOT1→2 · CNOT3→4, focusing on CNOT1→2 since the analy-
sis of CNOT3→4 follows identically by examining the second
(y = 2) row instead of the first (y = 1). It is easy to see that
this column swap maps X̄1 → X̄1X̄2 while keeping X̄2 and Z̄1

unchanged, up to stabilizer equivalence. To complete the (op-
erator) CNOT truth table, it suffices to verify that Z̄2 → Z̄1Z̄2.
Notice that Z̄2 gets mapped from the second (x = 2) to the
third column (x = 3); denote the transformed operator as Z̄ ′

2.
Using the tunneling rules of Appendix C 1, we can construct
a Z-type stabilizer element consisting of vertical strings living
in patches indexed by h1 = (1 1 1) for the x coordinate and
g1 = (1 0 1) for the y coordinate. This Z-stabilizer element is
precisely given by

SZ = Z̄1Z̄2Z̄ ′
2. (D21)

We thus verify that Z̄ ′
2 � Z̄ ′

2SZ = Z̄1Z̄2 for the logical
CNOT1→2, completing the truth table.

For larger codes in the Hadamard code family, we will in
general lose the permutation symmetry of H in the parent
code, leading to a nontrivial W in (D4). As a consequence,
from (D12b) and (D15), we see that additional transversal
gates may need to be applied between the long-range bound-
aries of the associated LRESCs. For suitably small base codes
and presentations of H , the additional SWAP-CNOT gadgets
may still be advantageous despite the added gate costs.
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