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The Pauli strings appearing in the decomposition of an operator can be can be grouped into commuting
families, reducing the number of quantum circuits needed to measure the expectation value of the operator.
We detail an algorithm to completely partition the full set of Pauli strings acting on any number of qubits into
the minimal number of sets of commuting families, and we provide python code to perform the partitioning.
The partitioning method scales linearly with the size of the set of Pauli strings and it naturally provides a fast
method of diagonalizing the commuting families with quantum gates. We provide a package that integrates the
partitioning into QISKIT, and use this to benchmark the algorithm with dense Hamiltonians, such as those that
arise in matrix quantum mechanics models, on IBM hardware. We demonstrate computational speedups close to
the theoretical limit of (3/2)m relative to qubit-wise commuting groupings, for m = 2, . . . , 6 qubits.
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I. INTRODUCTION

The cost of a quantum computation depends on several
aspects of the computation, including the number of required
quantum circuits, the depth of the circuits, and the number
of times the same circuits have to be run in order to achieve
a level of confidence in the results. There are also classi-
cal preprocessing costs that depend on the algorithms used
to generate circuits for execution on a quantum device. For
computations involving expectation value measurements, e.g.,
variational quantum eigensolver (VQE) problems, the naïve
approach for a generic operator produces of order 4m circuits
for m qubits. In the NISQ era, the capacity to share the com-
putational burden between classical and quantum computers
in an optimal way will be crucial.

In this paper we revisit the problem of partitioning m-qubit
Pauli strings into commuting families, with the goal of devel-
oping a practical implementation of a complete solution. As
we describe further below, our implementation is optimal for
problems where an order one fraction of the full set of Pauli
strings need to be grouped. Pauli partitioning is a classical
problem, the solution of which can be used to reduce the
number of circuits needed to measure an expectation value
on a quantum device. For example, to optimally character-
ize the density matrix describing an N = 2m-state system by
repeated measurements from an ensemble of identically pre-
pared states, one may expand the density matrix in a basis
of N2 − 1 Pauli strings. In the brute force approach one must
then measure all of the strings. Partitioning of the Paulis into
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N + 1 commuting sets of size N − 1 can reduce the required
number of measurements by a square root. Although the scal-
ing with the number of qubits is still exponential, in the noisy
intermediate-scale quantum (NISQ) era such improvements
can be of great value: a complete characterization of, say,
a seven-qubit state is currently feasible only with grouping.
For another example, expectation-value measurements of ob-
servables with dense subspaces (e.g., a nearly block-diagonal
Hamiltonian, with small dense diagonal blocks and sparse
off-diagonal blocks) complete partitioning of the subspace
operators is again desirable.

The problem of partitioning Pauli strings has an interesting
history, and many authors have contributed to developments
and applications. Let us give a brief and necessarily incom-
plete survey. In terms of practical implementations the idea
has been studied by a number of authors (see, for example,
Refs. [1–3] and references therein) and has been shown to lead
to considerable advantage for quantum chemistry problems.
From a theoretical perspective, the problem and its relatives
have been solved with different methods in the mathematics
and quantum information science (QIS) literature. An early
characterization of the problem is known in the literature
as the construction of mutually unbiased bases (MUBs) [4].
Wootters and Fields provide an explicit construction of N + 1
MUBs for unique determination of the state through N + 1
measurements. An optimal solution to the Pauli partitioning
problem also provides a solution for a complete set of MUBs.
As described above, this solution can be used to reduce the
exponential scaling of naïve measurements by a square root,
and can be instrumental for state-tomography methods. In the
mathematical literature, the problem of Pauli partitioning is
related to the orthogonal decomposition of Lie algebras of
type An−1 [5] into a direct sum of Cartan subalgebras (CSAs),
where each CSA is pairwise orthogonal with respect to the
Killing form. An explicit construction for sl(n, C) with n = 4
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can be found in Ref. [6]. The orthogonal decomposition ap-
proach is equivalent to finding a set of MUBs [7]. We also
note that the construction of MUBs has potential applications
to quantum key distribution protocols, where they provide
increased tolerance to noise and maximize the value of the
secret key rate [8–11].

Most relevant for our study are presented here [2,12–15].
Reference [2] uses graph-theoretic methods to construct a
partitioning. This approach is particularly useful in problems
involving expectation values of sparse observables, but for the
dense case a complete solution is essential. In QISKIT [16],
the AbelianGrouper routine uses a graph-theoretic approach
to partition strings into O(N3/2) families. Our approach shares
the most in common with Ref. [12], which has constructed
solutions up to m = 24 qubits, and with Refs. [13,14], which
proved the existence of an algorithm to fully partition Pauli
strings for any m using Singer cycles and companion matrices.

The novel contributions of our work are primarily of a
practical nature. We begin by describing a complete algorithm
to sort the full set of Pauli strings, for any m, into the minimum
number of families. This algorithm is essentially the same as
what appears in Refs. [12–14], but we describe it in elemen-
tary linear algebra terms using a minimum of mathematical
machinery, and we give an efficient function that maps any
input string to its family. We further extend the algorithm by
giving an explicit construction of the unitary operators needed
to rotate each family into the computational basis. We also
describe and provide a new publicly available QISKIT [16]
module that implements the algorithms, generating a minimal
partition and the corresponding unitaries for measurement of
each partition. Finally, we benchmark the module on simula-
tions of models arising in high-energy physics, and we also
benchmark the performance against the grouping strategies
currently implemented in QISKIT. We demonstrate speedups
in runtime on quantum hardware close to that implied by
counting groups, and we demonstrate favorable scaling of the
classical resources needed to generate solutions, compared
with graph-theory-based methods.

The rest of this work is organized as follows: In Sec. II
we review basic properties of Pauli strings. Section III de-
scribes the considerations and tools needed to construct a
perfect solution, or a complete partitioning of all strings into
a minimal number of families, and Sec. IV describes the
solution-generating algorithm in detail. Readers interested
only in the description of the code and benchmarking studies
may wish to skip to Sec. V, where we present benchmark re-
sults for the algorithm on IBM quantum devices and compare
the computational cost of circuit runtimes with existing meth-
ods. We also show measurement accuracy in relation to other
grouping strategies. In Sec. VI we apply it to a simulation
of a physical model related to the quantum chromodynamics
(QCD) vacuum with a nontrivial Hamiltonian and demon-
strate overall speedup with increasing number of qubits using
timings of VQE runs. In Sec. VIII we provide a comparison of
computational efficiency and accuracy against other grouping
strategies based on graph-theoretic methods. Section VII de-
scribes the public code packages developed using the method
described in Secs. III and IV. The code generates quantum
circuits that can be run on any hardware that implements
Clifford gates. In Sec. IX we summarize our results.

Additionally, Appendixes describe the algorithm from
Sec. IV in more detail. Appendix A shows the matrix algebra
which proves the validity of the groupings, and Appendix B
describes how the change of basis circuits are represented.

II. PROPERTIES OF PAULI STRINGS

In this section we discuss some of the basic properties
of Pauli strings and commuting families. These properties
provide scaffolding for the subsequent development of a con-
structive algorithm to sort strings into commuting families.

A Pauli string is a tensor product of m factors of four
types of 2×2 matrices: the identity matrix and the three Pauli
matrices. It may be represented as a matrix, a tensor product,
or a string. For example, the tensor product σx ⊗ I ⊗ σz in the
string representation is XIZ , and a matrix representation of
the same string in the standard basis is

XIZ = σx ⊗ I ⊗ σz

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

We denote the length of the string representation, by m,
which is the number of factors in the tensor product and also
the number of qubits. The size of the matrix is N×N , where
N = 2m. N and m will continue to refer to these properties
of the Pauli strings. Two Pauli strings of the same length
must either commute or anticommute, since they are tensor
products of Pauli matrices which have the same property.
They square to the identity for the same reason.

A “family” is defined as a maximally populated set of
commuting strings. More formally we define a family f as a
set of strings such that every string commutes with every other
string, and there exist no outside strings which commute with
all members of the family. The identity matrix could exist in
every family, so we ignore it until the rest of the strings are
partitioned. We have noted that a family is a Cartan subalgebra
of the su(N ) algebra. It is known that these consist of N − 1
elements. We show this at the end of the section.

We define a “generating set of strings” as a set of strings (or
“generators,” now that they are associated with a generating
set) that has the properties that no generator is a product of
the other generators, and all of the generators commute. If
[A,C] = [B,C] = 0, then

[AB,C] = [A,C]B + A[B,C] = 0. (2)

AB commutes with anything that commutes with A and B,
so all the elements of a family containing A and B commute
with AB, and AB must be included in the family by definition.
This excludes the identity but is a group associated with each
family that includes the identity, which is closed under matrix
multiplication. Every product of the generators is unique and
commuting. We show an inductive method to get a set of
generators from any family.

022606-2



FAST PARTITIONING OF PAULI STRINGS INTO … PHYSICAL REVIEW A 110, 022606 (2024)

Suppose there is a set of k generating strings {S1, . . . , Sk}.
Construct a set of commuting strings gk from the products of
the generators, including the generators themselves. Assume
that all B ∈ gk can be written uniquely as B = ∏k

i=1 Sbi
i for a

vector b ∈ Zk
2. There are 2k − 1 vectors in Zk

2, so the cardinal-
ity of gk is 2k − 1.

We are going to define a process that we call an “extension”
where we want to add a string into this set of generating
strings. When we add a commuting generator which is not
in gk , there is a larger set gk+1 which includes products of this
new set of generators. This new set should have cardinality
2k+1 − 1, and also have the property that each product of
generators is unique. When we define this process, we can use
induction to show that all sets of generating strings produce
sets of commuting strings of length 2k − 1, where k is the
number of generators.

If there is a string Sk+1 such that Sk+1 /∈ gk and Sk+1 com-
mutes with all the generators of gk , ∀ i � k : [Sk+1, Si] = 0.
Then we can prove by contradiction that

∀ B ∈ gk : Sk+1B /∈ gk . (3)

To do this, assume that

∃ B ∈ gk : Sk+1B ∈ gk, (4)

∃ b ∈ Zk
2 : B =

k∏
i=1

Sbi
i , (5)

∃ a ∈ Zk
2 : Sk+1B =

k∏
i=1

Sai
i , (6)

(Sk+1B)B = Sk+1 =
k∏

i=1

Sai+bi
i =

k∏
i=1

Sci
i , (7)

where addition of a and b is defined mod 2. Sk+1 can be
written as

∏k
i=1 Sci

i where ci ∈ Zk
2, so Sk+1 ∈ gk . This is a

contradiction, so any product Sk+1B /∈ gk for all B in gk . Since
Pauli strings are invertible, each product is unique for each
unique B.

The new set gk+1 = {gk, Sk+1, Sk+1gk} has cardinality
2k+1 − 1. gk+1 is generated by {S1, . . . , Sk+1}, i.e., all el-
ements can be written uniquely as

∏k+1
i=1 Sbi

i for bi ∈ Zk+1
2 .

Since all the generators of the new set commute, all of the ele-
ments of the new set gk+1 commute. Following this induction,
any commuting set gk with k generators can be extended to
another commuting set gk+1 with k + 1 generators if there is
a string outside gk which commutes with all of the generators
of gk . The induction may begin with the set of a single string.

We may also use these properties to select, from any family
f , a set of m generators. First, select any string S1 ∈ f . Define
the set g1 = {S1}. g1 is generated by S1. We inductively extend
g1 → g2, g2 → g3, etc. using the previous process until we
find gm = f . Suppose we have reached a point where gk ⊆ f
has cardinality 2k − 1, and generators {S1, . . . , Sk}. Select
any string Sk+1 such that Sk+1 ∈ f \ gk . Extend gk to the set
gk+1 = {gk, Sk+1, Sk+1gk}. Any string in Sk+1gk is in f , since
all such strings commute with every string in f , and f is
assumed to be maximal. The process of adding generators can
be repeated until f = gm, and the generators of gm provide a
set of generators of f . The simplest example of a family and

a set of generators is the z family, which we also refer to as
the diagonal family, with generators {I · · · IIZ, I · · · IZI, . . . }.
Any string which contains an X or Y automatically does not
commute with the corresponding generator with a Z in that
position, so this family contains only strings with Z and I , of
which there are 2m − 1.

There is also a way to define a map between the families
using a string. Consider the transformation Ui ≡ exp(i π

4 Pi ),
where Pi is a Pauli string. Any Pauli string Pj transforms to
another Pauli string under Pj → UiPjU

†
i . Since it is a unitary

transformation, commutativity is preserved, so transforming
a family produces another family. The transformation has the
following property:

UiPjU
†
i =

{
Pj if [Pi, Pj] = 0

iPiPj if [Pi, Pj] 	= 0.

}
(8)

In Sec. IV, we use this transformation to show that any
family can be transformed into any other family by finding an
appropriate set of transforming strings {Pi1 . . . Pin}, so every
family has the same cardinality as the diagonal family. There
are m generators for this family defined above, and any tensor
product of σz and I can be written as a product of these
generators. Every family has cardinality 2m − 1.

We define a perfect solution to be a partitioning of all 4m −
1 Pauli strings on m qubits into 2m + 1 families. In the next
section we detail a constructive algorithm to produce perfect
solutions.

III. CONSTRUCTING PERFECT SOLUTIONS

A. Preliminaries

In this section, we begin the construction of perfect solu-
tions from product tables of strings and find certain conditions
on the construction. These conditions will lead us to express
families in terms of Z2 valued matrices.

We begin by selecting two arbitrary families. We consider
a canonical pair to be the diagonal z family, {z1, z2, . . . , zN−1}
which is the family which contains strings of the characters
I and Z , along with the x family {x1, x2, . . . , xN−1} which is
constructed similarly but with the X character instead of Z .

Construct a table with the members of z in the far left
column, and the members of x in the top row. The inner
members of the table are the matrix products of the member of
z in their row and the member of x in their column. For now,
we may ignore phases that appear in these products. Define
the string in the ith row and the jth column to be Si, j . An
example of such a product table is shown for two qubits in
Table I.

TABLE I. Example of a solution table for m = 2. The x and z
families are used to build the inner columns and rows. One family is
boxed, one is underlined, and the third shown in bold. Each family
contains exactly one string from each inner row and column.

IX XI XX

IZ IY XZ XY
ZI ZX Y I Y X

ZZ ZY YZ YY
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TABLE II. Latin square formulation of a perfect solution. The
latin square on the left corresponds to the solution on the right. For
each box on the left, take the z string corresponding to the column,
and multiply it by the x string corresponding to the entry in that box.
For the middle box, the row is two and the entry is three, so multiply
z2 = ZI (think binary) times x3 = XX to get Y X , which is seen in
the same position on the right, in the family XZ,Y X, ZY .

1 2 3 IY Y I YY
2 3 1 → XZ Y X ZY
3 1 2 XY ZX Y Z

There are 2N − 2 strings in the x and z families combined,
and (N − 1)2 = N2 − 2N + 1 strings represented by Si, j , for
a total of N2 − 1 labels. They are unique because the product
table of {I, Z} and {I, X } contains each Pauli matrix and the
identity exactly once. All of the N2 − 1 strings appear exactly
once in the product table of the z and x families.

Each family in a perfect solution, apart from the x and z
families, contains exactly one string from each interior row
and column of the product table. If a family contained two
strings from the same row or column, then it would also
contain the product of the two. If the strings Si, j and Si,k are
in a family, the family would also contain

zix jzixk = ±x jzizixk = ±x jxk ∈ x. (9)

The result is already in the x family (or the z family, if two
strings in the same column are in the same family). This im-
plies that the string is repeated and the solution is not perfect.
We conclude that no more than one string can be picked from
each row or column. There are N − 1 rows and columns, and
each family has N − 1 strings, so each family in a perfect
solution must contain exactly one string from each row and
column.

B. Latin square formulation

At this stage, it is natural to think of selecting a solution
as analogous to filling out a latin square. A latin square is
an (N − 1)×(N − 1) grid of numbers where each number
appears exactly once in each row or column. It is a good ex-
ercise to try solving the problem this way. Use the rows of the
latin square to indicate the families, the columns to represent
which string from the z family is being multiplied, and the
number in the grid to indicate the string from the x family
being multiplied. An example of this is shown in Table II. It
is clear that any perfect solution will have an associated latin
square, and following this line of inquiry further will give us
some insight into how to construct perfect solutions, but we
see it does not quite automate the task.

An obvious deficiency is there is no restriction in the
latin square which prevents noncommuting strings from be-
ing placed in a family, so every time one places a number
in the latin square, one must first check whether the string
corresponding to this number commutes with the rest of the
strings in the family. Since the families are associated with a
group closed under multiplication, any products between old
strings and new strings must be filled in.

Upon filling in several squares with solutions, patterns
begin to emerge. The first pattern emerges when we begin

with a “canonical” family, which is the row of ordered integers
1, 2, 3, . . .. The first column may also be organized canoni-
cally, so that the first column also reads the ordered integers
1, 2, 3, . . .. We observe that, if the square is begun in this way,
solutions correspond to symmetric latin squares. Using this
formulation, it is unclear why this is the case, which is a clue
that there is more to discover.

Every time a single number is placed in the latin square, an
entire block is filled out using closure under multiplication and
symmetry. It becomes clear that only the generating rows and
columns need to be filled in, and the rest will follow because
of the extension defined in the previous section. When filling
out Table II, the first row and column are trivial. To pick the
middle square, the only strategy is to guess and check possible
values. If the guess is three, this corresponds to the generating
string Y X . Our previous section shows that if Y X is in a family
with XZ (which is already in this row or family ), then their
product ZY must also be in this family, which corresponds
to the one at the end of the row of the square. Every new
string we add into the latin square through guess and check
can be treated as a generating string, and exponentially more
squares can be filled in using the group extension for every
generating string. This is a another hint that there may be
a another approach that is more compact, and only uses the
generating strings.

We have remarked above that commutation has to be
checked by hand. Another task for the solution builder is to
avoid contradictions in the latin square. Contradictions arise
when filling in a block forces one to repeat a number in a
row or column. In some cases there are no valid options for a
position in the grid. It is unclear at this stage if one can predict
when such contradictions will arise without explicitly working
out the consequences of adding a string to a family.

To resolve these issues, we take a somewhat different
approach which makes it more straightforward to impose
commutativity and the uniqueness of entries in rows and
columns.

C. Commutativity and a binary encoding

We first consider the issue of string commutativity and
rewrite it in a useful way as a problem in binary arithmetic.
We see in this section that encoding the strings using vectors
over Z2 allows for a convenient expression of the commuta-
tivity condition between strings. Eventually, we express the
families in a solution in terms of Z2-valued matrices, and the
commutativity formula obtained in this section is useful in the
construction.

The commutator of two strings Si, j = zix j and Sk,l = zkxl

is

[zix j, zkxl ] =
{

zizkx jxl − zkxl zix j, [x j, zk] = 0

−zizkx jxl − zkxl zix j, {x j, zk} = 0.

}
(10)

Every Pauli string either commutes or anticommutes with
every other string. The commutation of two strings Si, j = zix j

and Sk,l = zkxl only depends on whether zi commutes with xl ,
and whether zk commutes with x j . Define a map Com(xi, z j )
from an x string and a z string to {0, 1}, which maps to zero if
the strings do not commute and one if the strings do commute.
It is straightforward to check that Si, j and Sk,l commute if
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Com(x j, zk ) = Com(xl , zi ):

[zix j, zkxl ] =
{

0 Com(x j, zk ) = Com(xl , zi )

−2zkxl zix j Com(x j, zk ) 	= Com(xl , zi ).

}

(11)

The way to evaluate the Com() map is to examine the
paired characters at each position of the two strings, and for
each time X and Z both appear in the same position, the value
of the commutator switches between 0 and the product of the
two strings. This corresponds to Z2 arithmetic.

It is now convenient to adopt a binary encoding of the
strings. Strings in the z family have only two possible char-
acters for each of m positions, which can be mapped to a
binary representation. Let zero correspond to an I and 1 to
an X or Z depending on the family. Define the strings xi and
zi, i = 1, . . . , N − 1, by the binary representation of the label
i. For example, for m = 4, x15 = XXXX , and z3 = IIZZ . We
also define m-dimensional vectors vi over Z2 corresponding
to the binary representation of the integer i: vi is created by
converting i to binary, and populating the vector element (vi ) j

with the jth digit of i. A consequence of this definition is that
vi + v j = vi⊕ j where ⊕ denotes Z2 addition. The vector space
contains the vectors vi for 0 < i < N and the zero vector. For
example, in the space corresponding to m = 3,

v5 + v6 =
⎛
⎝1

0
1

⎞
⎠ +

⎛
⎝1

1
0

⎞
⎠ =

⎛
⎝0

1
1

⎞
⎠ = v3. (12)

As described above we can associate each vector vi with a
string in the x or z family. A computationally valuable aspect
of this encoding is that the commutation function Com() act-
ing on a z string and an x string can be rewritten in terms of
the corresponding v vectors:

Com(zi, x j ) = f (i, j) ≡
∑

k

(vi )k (v j )k . (13)

The binary computation of the commutation function will be
convenient for developing the algorithm to construct families.
Cf. Eq. (11), the input to f is the v vector corresponding to the
z factor in the xz decomposition of one string, and the v vector
corresponding to the x factor of xz decomposition of the other
string.

D. Generating matrix

We have learned that a solution involves picking sets of
generators for the families. We can pick a canonical set of
generators for the z family corresponding to powers of two, z2a

(i.e., the set of strings with a single Z , {I, . . . , IIZ, I İZI, . . . }).
Along with this canonical set, for any family, there is a corre-
sponding set of generators from the x family which can be
used to build the family’s generators by multiplying the x and
z generators. The rest of the strings in the family can be built
from the products of the generators. Interestingly, this process
has an analog in Z2 matrix multiplication. The linearity of the
matrix multiplication corresponds to the closure under multi-
plication, since addition in Z2 corresponds to multiplication
of strings.

Each family in a perfect solution containing the z and x
families must contain exactly one string from each row and

column in the product table of the z and x families, so perfect
solutions of this type should be expressible as a certain per-
mutation P(i) acting on the integers i = 1, . . . , N − 1. For a
family F , with a corresponding permutation P:

∀ i, 0 � i < N : zixP(i) ∈ F. (14)

Since families are associated with groups closed under multi-
plication, it is also true that the permutation is linear:

∃ i, j, i 	= j : {zixP(i), z jxP( j)} ⊂ F, (15)

(zixP(i) ) · (z jxP( j) ) ∈ F, (16)

zi⊕ jxP(i)⊕P( j) ∈ F, (17)

P(i ⊕ j) = P(i) ⊕ P( j). (18)

This motivates a Z2-valued matrix definition of the
permutation:

Avi = vP(i). (19)

Therefore, associated with any family which may appear in
a solution with the x and z families is an invertible Z2 valued
matrix A. (Since a permutation is invertible, A is invertible.)
Since A is invertible, it defines a map from any complete basis
in Zm

2 to another complete basis. This corresponds to a map
from a generating set of x strings to another generating set
of strings. This is essentially what the latin square does: it
maps which generating x strings go in which positions, and
the rest of the strings are placed based on the location of the
generators. Similar to the latin square, extensions can be used
to find the rest of the strings.

In the previous section, we saw that the latin square ap-
proach did not automatically enforce commutativity, and that
one could encounter contradictions when filling it in. It turns
out that commutativity and avoidance of contradictions can
be enforced automatically by endowing A with two more
properties.

The first condition is that A must be symmetric. This arises
as follows. Suppose we have a permutation P acting on the
first N − 1 positive integers. We can identify a simple set of
m generating strings among the elements xizP(i) of the product
table. Consider the strings z2a xP(2a ) and z2bxP(2b), with a 	= b
and 0 � a, b < m. 2a ⊕ 2b = 2c is impossible, so these strings
are generators. If they commute, then the rest of the fam-
ily commutes. They commute if f (2a, P(2b)) = f (2b, P(2a)),
and this condition implies symmetry of the A matrix associ-
ated with the permutation:

f (2a, P(2b)) =
∑

c

(v2a )c(vP(2b) )c

=
∑

c

(v2a )c(Av2b )c

=
∑
c,d

(v2a )cAcd (v2b )d

=
∑
c,d

δacAcdδb,d

= Aab. (20)
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We have used (v2a )b = δab. The condition on commutation is
the symmetry of A:

f (2a, P(2b)) = f (2b, P(2a)) ⇐⇒ Aab = Aba. (21)

The second constraint of a perfect solution is that no two
families contain the same string. If one family defined by Ai

and another family defined by Aj contain the same string, then

∃ k : Aivk = Ajvk, (22)

(Ai − Aj )vk = 0. (23)

In this case Ai − Aj must not be invertible. If Ai − Aj is in-
vertible, then the two families do not share a string. A perfect
solution can then be expressed as a set of N − 1,Z2 valued
matrices {A1, . . . , AN−1} that are m dimensional. They satisfy
the following conditions:

(1) Ai is symmetric,
(2) Ai − Aj is invertible [14].
The solution so obtained also contains the canonical fami-

lies, giving N + 1 total families.
To summarize, the two conditions listed above encode

the restrictions on the families that we set out to achieve.
The symmetry property enforces commutativity within each
family, and the invertibility property is associated with the
uniqueness of the rows and columns of the latin square. We
have specified that we are operating on qubits, so we use
the field Z2. There are more general quantum systems using
qudits, which have similar conditions for fields which are
larger prime integers. In these cases, we refer to Ref. [14] for
the conditions necessary to create similar matrices in other
finite fields.

IV. ALGORITHMIC CONSTRUCTION OF THE
GENERATING MATRIX AND SOLUTIONS

A. Symmetrizing companion matrices

We need a method to generate a set of A matrices with these
symmetry and invertibility properties. There will be a similar
method for other general Zp for prime p, but the method for
Z2 is slightly different. This section focuses specifically on
qubit operators, so all matrices are Z2 valued.

One suitable choice to fulfill the invertibility condition is
a m×m companion matrix C, which was considered by Jena
[14]. (See Appendix A for the definition of a companion
matrix and details of results used in this section.) The rel-
evant property of C is that it generates a permutation with
one cycle and no fixed points. Such a cycle must have a
period of N − 1 points, and Ci + C j is always invertible for
i − j 	= 0 mod (N − 1).

The set {C,C2, . . . ,CN−1} fulfills the invertibility condi-
tion, but not the symmetry condition. If there is an invertible
matrix B such that B−1CB = A is symmetric, then Ai − Aj =
B−1(Ci − C j )B is invertible:

(Ai − Aj )−1 = B−1(Ci − C j )−1B. (24)

There is an algorithm to construct the relevant similarity
transformation. First, one can construct a matrix D such that
DCT = CD [17]. Now suppose that D can be written as

D = BBT for some invertible B. Then A = B−1CB must be
symmetric:

CT = B−T B−1CBBT , (25)

(B−1CB)T = B−1CB, (26)

AT = A. (27)

There is an algorithm to explicitly construct D and B. For
any matrix M with all diagonal elements equal to unity, one
can find an invertible matrix L so that LLT = M, using this
algorithm. It also assumes that the field is Z2. There are
similar algorithms for other finite fields. We must first find a
matrix � such that M ≡ �T D� has diagonal elements equal
to unity. This can be done algorithmically and produces an
invertible �. Then

�T D� = M = LLT , (28)

so

D = �−T LLT �−1

= (�−T L)(�−T L)T , (29)

and

B = �−T L. (30)

Since � and L are invertible, so is B.
To recap, one chooses a suitable C and then constructs

D → � → M → L → B. The details of finding these matri-
ces can be found in Appendix A. Once B and C are known,
we construct B−1CB = A, and the set {A, A2, A3, . . . , AN−1}
provides a perfect solution.

One will find that any solution created this way will
contain the identity in the set {A, A2, A3, . . . , AN−1}. This
seems to indicate that there is a canonical set of solutions.
There are more solutions which are not of this form. To
find some of these solutions, take any invertible matrix �,
and any perfect solution {A, A2, A3, . . . , AN−1}, and construct
{�A�T ,�A2�T ,�A3�T , . . . ,�AN−1�T }. These solutions
are obviously symmetric. Their differences are also invertible:

(�Aj�T − �Ak�T )−1 = [�(Aj − Ak )�T ]−1

= �−T (Aj − Ak )−1�−1. (31)

More solutions can be found this way, but we focus on
canonical solutions.

B. Family lookup

Practically speaking, we also need a lookup algorithm that
takes a string as an input and returns the family that contains
that string. Fortunately there is a fast algorithm which uses the
permutation from Eq. (19). Each family k has a permutation
associated with it defined by

P(k)(i) = P
k times

(P(P(. . . P(i)))). (32)

P(N−1) must be the identity permutation because CN−1 is the
identity, so these permutation form a group. Finding the fam-
ily that the string Si, j belongs to is equivalent to solving

P(k)(i) = j (33)
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for k. Since each string exists in a family, this equation has a
solution for all 0 < i, j < N , making the set of permutations
transitive. An efficient way to solve this is to define the per-
mutation:

Q(k) = P(k)(1). (34)

We know that Q(k) is one-to-one in the domain 0 < k < N ,
because the group is transitive, so it also has an inverse
permutation Q−1(k). This can be calculated once quickly by
applying the permutation P on one repeatedly and storing it
in memory. (The choice of one is arbitrary.) Now our equa-
tion can be solved using i = PQ−1(i)(1):

P(k)(P(Q−1(i))(1)) = P(Q−1( j))(1), (35)

k + Q−1(i) = Q−1( j) mod (N − 1). (36)

This is a modular equation which is trivial to solve since Q−1

is known.

C. Diagonalization

Once a suitable set of commuting Pauli strings is found, it
is necessary to simultaneously diagonalize the family in order
to measure the strings. There is a surprising method to do this
with canonical solutions, where each family is diagonalized
by the generating matrix of what is typically a different family.
Diagonalization can be done by finding a unitary transforma-
tion which maps the current family to the diagonal (z) family.
In this section we describe how to construct these unitary
transformations.

We begin by examining transformations of the form

U = exp

(
iπ

4
xk

)
(37)

acting on the strings of a family,

UzixP(i)U
† =

{
zixP(i) if f (i, k) = 0

−izixP(i)⊕k if f (i, k) = 1

}

= (−i) f̄ (i,k)zixP(i)⊕(k· f̄ (i,k)). (38)

Here f̄ is equal to a cast of f into the real numbers in the
obvious way. Now consider a more general transformation
with some set K of x strings:

U = exp

(
iπ

4

∑
k∈K

xk

)
, (39)

UzixP(i)U
† =

(∏
k∈K

(−i) f̄ (i,k)

)
zixP(i)⊕∑

k k· f̄ (i,k). (40)

To reach the z family we must have

P(i) ⊕
∑
k∈K

k · f̄ (i, k) = 0. (41)

This result gives a condition for the diagonalization. The
phase in (40) will need to be calculated later. First let us
rewrite the diagonalization condition (41) using the binary
vectors (recall that ⊕ refers to converting integers into to Zm

2
vectors and then performing addition mod 2). Then (41) is

equivalent to

∑
k∈K

vk

(∑
b

(vk )b(vi )b

)
= vP(i), (42)

or rearranging and expanding in components,

∑
b

(∑
k∈K

(vk )a(vk )b

)
(vi )b = (vP(i) )a. (43)

Comparing with Eq. (19), we see that (43) will be solved if
the set K is chosen such that∑

k∈K

(vk )a(vk )b = Aab. (44)

To find the set K and the relevant vk we proceed as follows:
Let K be of order m and enumerate its elements as ka, a =
1, . . . , m. Then define a matrix Bab = (vka )b, such that A =∑

i BiaBib. If B is symmetric then A = B2. Since the powers
of A are cyclic due to the properties of companion matrices,
there is always a symmetric matrix AN/2 which is equal to B:

AN/2
ab = Bab = (

vka

)
b. (45)

In this way, the x strings needed to perform the diago-
nalizing transformation can be extracted from the generating
matrix. In general, we can diagonalize the family defined by
Ai by using (Ai )N/2. This is an efficient way to diagonalize
the family which can be faster than performing a brute force
diagonalization algorithm. (Ai )N/2 can be found via

(Ai )N/2 =
{

Ai/2 if i mod 2 = 0
A

N+i−1
2 if i mod 2 = 1.

}
(46)

In fact the matrices on the right-hand side of Eq. (46) are
calculated already when generating the families, so the most
efficient method is to construct the measurement bases at
the same time as organizing the families. In Appendix B we
review the map from the diagonalizing unitaries thus con-
structed to quantum circuits.

There are m rows of these matrices, so it takes m trans-
formations to get from a family in a perfect solution to the
z family. This is the minimum number of transformations
to take a family to a new family with no shared strings,
because any string not in a commuting subgroup commutes
with exactly half of the strings in that subgroup minus one,
since the subgroup is closed under multiplication, and does
not include the identity. Appendix B shows that each of these
transformations can be written in 2m + 1 gates, so the total
circuit depth for the entire family should scale as m2.

To calculate the phase in (40), recall that if f (i, j) = 1,
then e(i π

4 xi )Pje(−i π
4 xi ) = Pj (−ixi ), which means that each

transformation gives a right multiplication of −ixi. When
diagonalizing strings, a series of transformations is used, so
there will be a right multiplication of −ixk for all strings xk∈K

which do not commute with the Pj being diagonalized. To
formalize this, for each Pj in a family there will be a subset
H ⊆ K such that ∀ k ∈ H : [xk, Pj] 	= 0. It is this set that
transforms Pj and contributes to the phase. Suppose Pj has
the decomposition Pj = eiθ zaxb. The phase here is a power of
i that arises because of the fundamental relation σy = −iσzσx.
(The accumulated phase in a string from this decomposition
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was mentioned previously in the discussion below Table I but
is neglected in the table; we must now account for it.) In other
words, every time a Y appears in a string, there is an additional
factor of −i in the decomposition. We define Y (a, b) as a
function which returns the number of Y s in Pj . Then:

UPjU
† = (−i)Y (a,b)zaxb

(∏
k∈H

−ixk

)
. (47)

The product of the x strings must be an xb, so the product in
each tensor space has the form

UPjU
† = (−i)NH +Y (a,b)za, (48)

where NH is the cardinality of H . Thus the net phase factor
multiplying the resultant z string receives contributions both
from the decomposition of the original string and the rotation.
Computing it requires counting the commuting x strings in the
transformation, and calculating the zx decomposition.

V. IMPLEMENTATION ON IBM HARDWARE USING QISKIT

In principle, for fully dense Hamiltonians where all Pauli
strings contribute, our dense grouping algorithm will give a
quadratic improvement over naive evaluation of each string
individually. Because the dense grouping method is optimal
in the sense that it generates the fewest number of families
which can partition all 4m strings, it should also improve upon
other available methods when applied to sufficiently dense,
although not necessarily fully dense, Hamiltonians or other
observables of interest. Such problems do arise in interesting
physical models, and we consider an application to VQE on a
particular example of such a model in Sec. VI.

For real applications, there are different metrics relevant for
assessing the cost-benefit of dense grouping as compared with
other methods. These include the number of shots required
for achieving a target precision, the time required for classical
simulation, runtimes on quantum hardware, and accuracy for
fixed resource use.

To study these, we have integrated our Python package that
generates the Pauli groupings into IBM’s QISKIT framework,
which can be used to run quantum circuits on hardware from
IBM and other vendors, and may also be used for classical
simulation of quantum devices. Both the Python package and
QISKIT integration we have made open source. More informa-
tion on implementation details and usage of these are given in
Sec. VII.

As a benchmark, in addition to naive evaluation, in what
follows we compare results using the dense grouping with
the native QISKIT [16] grouping of Pauli strings into families,
based on a greedy graph coloring algorithm over qubit-wise
commuting (QWC) Pauli strings. This functionality is pro-
vided by the AbelianGrouper() class, and for a fully dense
Hamiltonian (all 4m Pauli strings have nonzero coefficients)
results in a partition into 3m families.1

1The 3m scaling can be seen as follows: Consider the set of Pauli
strings which do not contain I in their string representation. None of
these strings qubit-wise commute with each other, so any QWC set
of families will necessarily need a family for each of these strings,

FIG. 1. Poststate circuit depths after transpilation, targeting the
quantum hardware IBM_OSLO. The orange line shows the increase in
circuit depth for the family whose poststate circuit rotation is deepest.
The blue line gives depth increase averaged over all 2m + 1 families.
The dotted line shows that the depth increase scales with qubit count
nqubits = m approximately as m2.

For the dense grouping strategy, the elements of the fami-
lies are generally commuting (GC), except for the x, y, and z
families which are QWC. The circuits required to transform
a given family to the z family are described in more detail
in Appendix B. We call these operations poststate rotations,
because they are applied at the end of the circuit which gen-
erates |ψ〉 for the expectation value of interest. Circuits for
the evaluation of GC families will have increased depth as
compared with QWC families, due to the nontrivial poststate
rotations required to bring them to the z family. The average
and maximal poststate circuit depth as a function of nqubits is
shown in Fig. 1. (In this and subsequent sections, for ease
of reading figures, we use m and nqubits interchangeably.) In
contrast, circuits grouped into QWC families have poststate
rotation depth of one.

As a practical matter, the increased circuit depth can impact
the efficacy of our method relative to QWC strategies. Circuits
for GC families will have increased runtime which can modify
scaling arguments based only on the number of families, and
for noisy devices increased depth may affect the precision
of results. We find however, as discussed in more detail in
the following two sections, that the effects of increased state
depth are relatively insignificant for the ranges of nqubit studied
here, so that the algorithmic improvement of dense grouping
is close to that of scaling arguments based on the number of
families.

A. Computational cost

Here we compare the integrated quantum circuit runtime
for evaluating expectation values using the Abelian and dense

for a total of at least 3m families. Then, any strings which do contain
Is in their string representation qubit-wise commute with the corre-
sponding string where all of the Is are replaced by Zs. These strings
have already been sorted into families, so no additional families are
needed, establishing the claim.
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TABLE III. Empirical a values, measured from poststate rotation
circuits transpiled with the IBMQ_QUITO backend. The third column
(nominal) gives values based on the circuit description in the text.

m a (transpiled) a (nominal)

2 1.30 0.8
3 1.23 0.75
4 1.23 0.77
5 1.54 0.77

methods, allocating a fixed number of shots per group or
circuit. As a simple model for the runtime of a single circuit,
we take

τ = τover + τcirc(d ). (49)

In τover we include all circuit overhead costs except those
for running the circuit, τover = τreset + τdelay + τmeas [18], and
τcirc(d ) is the time to run a circuit of depth d . We assume the
runtime is approximately linear in the transpiled state depth
d . Let the state preparation circuit depth be D. We write the
average poststate depth over families as ave f [dpost( f )] and
define a = ave f [dpost( f )]/m2, to make the scaling of poststate
depth with m explicit. a itself will depend weakly on m,
and we tabulate values of a obtained using the IBMQ_QUITO

transpiler in Table III. The ratio of timings for Abelian and
dense methods can then be modeled as

τAbelian

τdense
= 3m[τover + τcirc(D + 1)]

(2m + 1)[τover + τcirc(D + am2)]
. (50)

If the circuit overhead is much greater than the circuit run-
times τcirc, or if D � am2, the runtime improvement should be
close to (3/2)m. The same considerations hold for τnaive with
3m → 4m in the numerator of (50). If am2 � D, the accuracy
of the expectation value could be impacted for NISQ hardware
or noisy simulators, relative to a QWC strategy.

B. Runtimes on IBM hardware

We ran a series of tests on IBMQ_QUITO to compare
runtimes using the Abelian and dense groupings. Device char-
acteristics measured near the time of running are collected
in Appendix C (Table IV). We prepared the state using the
EFFICIENTSU2 ansatz circuit, with randomly assigned phases
for the parameters (these were held fixed between runs). To
distinguish the different terms in Eq. (50), we varied the depth
of the state by increasing the reps argument to the ansatz
function, which appends multiple repetitions of the specified
state circuit. We took reps from one to five. Timings were all
obtained using 20 000 shots.

The results in Fig. 2 show that increased state depth has a
small effect on the time to complete calculating the expecta-
tion value, of the order of a few percent. Instead, the circuit
overhead appears to be the largest contributing factor. As a re-
sult, the improvements obtained using the dense grouping are
near to the ideal result based on counting families. Note that
time required for mitigation runs, common to both methods,
are not included in these timings.

At present, it is typical for quantum resources to be priced
on a per-shot basis—These costs range from $0.0002 to $0.01

FIG. 2. Circuits used to compute expectation values were cal-
culated on IBMQ_QUITO using both dense and Abelian grouping
methods for three to five qubits. The ratios of the calculation times
between different methods are shown here. The ideal speedup factor
is the ratio of the number of circuits, 3m/(2m + 1) shown by dotted
lines. The states measured are constructed using EFFICIENTSU2, and
the reps parameter is varied from one to five to show the effects
of increased circuit depth. Note that in two runs the time taken was
much larger than expected, leading to large error bars (determined by
the standard deviation in a sample of three to five runs) around (25,7)
and (70,4.5). It is unclear the cause of this error.

per shot depending on vendor and device [19]. With a fixed
number of shots allocated per group or circuit, the improve-
ment provided by dense grouping is the ratio of the numbers
of groups, provided accuracy is comparable between different
methods (ignoring any fixed overhead independent of method
if mitigation circuits are used). We study this in the next
section and show that expectation value results for the dense
grouping compare well with naive and Abelian methods with
a fixed number of shots per group.

C. Expectation value accuracy

In general, one expects that the grouping method can im-
pact precision due to the correlation of shots data across
multiple operators in a family [2]. For the naive grouping
method, all Pauli strings are evaluated separately, whereas for
grouped strategies the same shots data is used to evaluate con-
tributions of all the operators in the group, which introduces
correlations into the expectation value. The structure of these
correlations will depend on both the grouping method and
detailed form of the Hamiltonian and state, however it was
shown in Ref. [2] that without any prior on the state |ψ〉 the
expected value of the covariance between any two commuting
Pauli strings is zero.

In addition to covariance effects introduced by group-
ing, there is another effect specific to groupings containing
generally commuting (as opposed to qubit-wise commuting)
strings. For families of QWC strings, the poststate rotation
circuit to bring the family into the z family will have depth
one. For GC families, the poststate circuit depth will depend
on family and will be greater than one. For the optimal dense
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FIG. 3. Expectation value measurements of the A+
1 (g) Hamilto-

nian, as a function of nqubits and for different grouping strategies.
The exact values of 〈0|A+

1 (g)|0〉 for g = 0.8 and g = 0.85 are given
by dashed lines indicated on the figure. Results obtained using the
FAKEOSLO simulator are shown for naive (blue circles), Abelian (red
squares), and dense (green triangles) grouping strategies. The values
shown here are averaged over 20 runs, with 20 000 shots on each run
and using CompleteMeasFitter error mitigation with 10 000 shots.

groupings generated in this work, this depth on average grows
with qubit number like m2, as discussed in Appendix B and
shown in Fig. 1.

Here we investigate the accuracy of expectation values
obtained using the dense grouping method and compare these
with the naive and Abelian methods on the IBM simulator
FAKEOSLO [20]. We present results for the A+

1 (g) Hamilto-
nian, discussed in more detail in the following section. We
have also carried out analogous studies with random dense
Hamiltonians and find similar results, but working with a
physical Hamiltonian has the advantage that results can be
directly compared while varying nqubit = m.

We carry out repeated evaluations of the expectation
value of the Hamiltonian in the zero state, which we denote
〈0|A+

1 (g)|0〉. Note that here the zero state refers to the product
state of all qubits in the zero state, rather than the ground
state of the Hamiltonian, which is in general much more
complicated because the Hamiltonian is dense. Working with
the zero state maximizes any impact of poststate depth with
respect to the naive and Abelian methods (i.e., to make the
comparison conservative). We find that in the absence of error
mitigation techniques, biases can be present that skew the
expectation values for all grouping methods, and moreover
that in each case these biases are effectively eliminated by
applying error mitigation. The results shown in Fig. 3 use
the QISKIT function CompleteMeasFitter with 10 000 shots
to compute the mitigation matrices. CompleteMeasFitter
[21] runs circuits over the full set of computational basis
states to construct a calibration matrix M and then minimizes
|Cnoisy − MCmitigated|2 with the observed result Cnoisy to find
the mitigated result Cmitigated.

We compute 〈0|A+
1 (g)|0〉 for coupling values g = 0.8, 0.85

and m ∈ [2, 6] using 20 000 shotsper circuit for each of naive,
Abelian, and dense groupings (we omit naive data for m = 6
because the computation time became excessive on a laptop).

In each case the computation is repeated 20 times, and the av-
erage and standard deviation of the results are plotted in Fig. 3.
We find that all grouping methods are able to accurately pre-
dict the true expectation value in this state within errors, with
the occasional ≈1σ fluctuation. The uncertainties increase
with the number of qubits m, ranging from �0.1% at m = 2 to
≈0.5% at m = 6. The uncertainties are commensurate across
the three methods, with no method obviously outperforming
another. This indicates that the effect of additional poststate
depth incurred by the dense grouping is mild up to m = 6, and
that any of the methods can be used (with mitigation) to obtain
accurate estimates. Note that the computational expense is
least for the dense grouping; if computational expense was
fixed the dense (and Abelian) uncertainties would be reduced
relative to the naive grouping.

VI. TESTING WITH VARIATIONAL QUANTUM
EIGENSOLVER

The variational quantum eigensolver (VQE) algorithm
relies on repeated evaluations of expectation values of a
Hamiltonian H with a given parametrized ansatz state to de-
termine the minimum-energy expectation and corresponding
state over the ansatz manifold. For dense Hamiltonians an
optimal grouping into families may provide significant cost
per resource benefits.

A. Femtouniverse

Here we investigate this using a matrix quantum me-
chanics model obtained by the dimensional reduction of
four-dimensional (4D) SU(2) gauge theory on a spatial three-
torus, the so-called “femtouniverse” model [22–30]. This
model is interesting for isolating some of the nonperturba-
tive low-energy dynamics of a confining gauge theory into
a solvable quantum mechanics model, and because matrix
models are thought to play a significant role in holographic
theories of quantum gravity (albeit at large N .) The theory is
most compactly formulated on a gauge-invariant state space,
but constrained to such a space the Hamiltonian is generally
dense. We have recently studied quantum simulations of the
femtouniverse [31], and here we exhibit the impact of adding
Pauli grouping to the VQE determination of the ground state.

We construct a truncated Hamiltonian in the zero-flux
sector (known as the A+

1 sector, for historical reasons). We
decompose the Hamiltonian into Pauli strings and apply a cut
to remove strings which have coefficients with absolute values
less than a given tolerance. The numerical value of the cut was
taken to be 0.0001 in units of the inverse spatial torus size
1/L. We observe that the number of Pauli strings remaining
after the cut is �50% compared with the fully dense scenario
(4m) for the range studied m ∈ [2, 6], and that the number of
strings scales exponentially with m. We then group the result-
ing Hamiltonian using the dense partitioning, and we compare
this with the grouping generated by the AbelianGrouper
class native to QISKIT. The results of this are shown in Fig. 4,
where we plot the resultant number of families vs m. For
m = 2, both the Abelian and dense groupings generate five
families, for m > 2 the dense grouping outperforms. At m = 6
the dense grouping has an approximate 6× improvement with
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FIG. 4. (left) Number of family groupings generated by different grouping methods for the A+
1 (g = 0.8) femtouniverse Hamiltonian, as

a function of number of qubits m. We compare the naive decomposition into individual Pauli strings, the AbelianGrouper, and the dense
grouping. (right) The same data but plotted as a ratio to the number of families from the dense grouping (2m + 1), showing the improvement
factor of the dense grouping compared with measuring individual Pauli strings (blue squares) and grouping generated by AbelianGrouper

(orange circles). The dotted lines give an indication of the exponential improvement observed using the dense vs other methods.

365 vs 65 families for the Abelian and dense groupings, re-
spectively, and based on observed scaling, for larger m the
improvement from the dense grouping will continue to in-
crease. In Fig. 5 we plot the time for 10 VQE iterations vs
nqubits and observe an improvement consistent with the gain
predicted by ratio between number of families from Abelian
grouping vs dense grouping. Where the dense grouping makes
VQE computation tractable for higher number of qubits, it
does not guarantee an improvement in the accuracy of VQE
results since they depend on multiple simulation parameters.

VII. DESCRIPTION OF PUBLIC CODE

Our public code is presented in two packages. The first
package is called PSFAM.PY, and its purpose is to partition
strings, and to construct a unitary operator of clifford gates
which diagonalizes each family. The second package is an
extension of QISKIT that integrates the operator groupings
provided by PSFAM into expectation value measurements.

FIG. 5. Time for 10 VQE iterations vs nqubits on the Acquisition
Execution Restitution simulator.

PSFAM presents the partitioning for any number of qubits
m. The following code prints the generating matrix A from
Eq. (19) and reports each family:

from psfam.Pauli_organizer import *
m=2
PO = PauliOrganizer(m)
print(PO.properties())
print()
for f in PO.get_families():

print(f)

The output is

Qubits: 2
Generating Matrix:
[1, 1]
[1, 0]

XZ,YX,ZY
XY,ZX,YZ
IY,YI,YY
IX,XI,XX
II,IZ,ZI,ZZ

Additionally, this object has functionality to
construct the poststate rotation circuits described
in Sec. IV C and Appendix B through the
PauliOrganizer.apply_to_circuit(circuit) method.
It also calculates the coefficients from the end of Appendix B
which represent the contribution of each measurement to the
expectation value. This package can be found at [32].

The QISKIT extension DENSE_EV [33] provides two classes
used to compute expectation values using the optimal
dense groupings provided by PSFAM. The first of these is
DENSEGROUPER, which converts a SUMMEDOP object into a
sum of SUMMEDOP objects (also of type SUMMEDOP), orga-
nized according to the specification of PSFAM.
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The second class, DensePauliExpectation, contains the
logic to compute expectation values on quantum hardware or
simulators using optimal dense grouping. It can be used as a
replacement for the QISKIT native PauliExpectation class.
The code fragments below give examples of this for a simple
expectation value,

from dense_ev import DensePauliExpectation

# EV
...

ev_spec = StateFn(H).compose(psi)
expectation = \
DensePauliExpectation().convert(ev_spec)

...

and as a component of the VQE algorithm:

# VQE
...

vqe = VQE(ansatz, optimizer=spsa,
quantum_instance=qi,
callback=store_intermediate_result,
expectation=DensePauliExpectation())

result =\
vqe.compute_minimum_eigenvalue(operator=H)

...

We also provide routines that perform unit tests on our
codes, and support for the QISKIT Estimator primitive.

VIII. COMPARISON WITH
GRAPH-THEORETIC METHODS

In this section we study in more detail the performance
of DENSE grouping compared with graph-theory-based
methods. The problem of partitioning Pauli strings can be ex-
pressed as a graph theory problem [1,2,34–36], where strings
are represented as nodes, and edges between nodes represent
whether two strings commute (or anticommute, depending on
the exact problem formulation). We make comparisons with
the largest first algorithm made available through QISKIT, im-
plemented in the rustworkx package [37]. We study the sizes
of solutions generated via different methods, and the classical
computing resources required to generate those solutions.

For dense matrices where the number of Pauli strings
NPauli > 4m − 2m, the DENSE algorithm provides a grouping
with the minimal number of families, but in principle a graph
algorithm could also find optimal or near-optimal solutions.
As the density of the matrix considered (as measured by
the number of different Pauli strings in its decomposition) is

reduced, because the DENSE solution is essentially fixed to
2m + 1 families (unless some families happen to be empty),
we expect that at some point graph algorithms will generate
a solution with fewer family groupings. We investigate this
using random (fully dense) Hermitian matrices, which are
made less dense by applying a numerical cut of increasing
magnitude on the Pauli string coefficients.

Figure 6 (left) shows an example of this for a matrix with
m = 5. In this example, the DENSE method outperforms until
the number of Pauli strings is roughly 20% of the original
4m strings in the fully dense matrix. We checked that this
behavior is “typical” for these matrices by observing roughly
consistent behavior when changing the random seed used to
generate the matrices. Figure 6 (right) illustrates the relative
performance of GC vs DENSE, as m is varied. Again we find
there is a range where dense, but not fully dense, matrices are
grouped more efficiently using the DENSE algorithm. Note
that the performance of GC can depend on the details of
the operator structure, i.e., the results we found by pruning
random matrices may not hold for other classes of matrices.
For example, we found that applying GC to the femtouniverse
Hamiltonian, which has a population ≈50%, results in 2m

families, outperforming DENSE by one family.
We now turn to a discussion of the classical computing re-

sources required to generate solutions via graph methods and
DENSE. For fully dense operators, the walltime and memory
resources needed for both methods scale exponentially in m,
but as we see the DENSE method has a roughly square root
improvement over the graph methods, so that for fixed com-
putational resources the ms that can be practically reached are
significantly larger.

For fully dense matrices, graph algorithms generate a
4m×4m adjacency matrix representing the connectivity of
the graph, and so we expect the memory use to scale at
least as 16m. For DENSE, the solutions are generated by
repeated application of an m×m A matrix, and the memory
required to store the solution increases as 4m. We empiri-
cally tested these expectations, with results shown in Fig. 7
(right). For the GC or QWC routines, we measured only the
memory required for building the adjacency matrix in the
_noncommutation_graph() subroutine, while for DENSE
the values represent total peak memory usage. Peak memory
usage for GC or QWC was such that we could only access up
to m = 6 on our laptops, whereas for DENSE we could easily
generate solutions to m = 12 and beyond.

We also measured the walltimes required to generate so-
lutions in the fully dense case. Here we simply timed calls
to either the group_commuting() or Pauli_Organizer()
routines in QISKIT and PSFAM, respectively. For DENSE, so-
lutions are generated by computing the orbit of generators
produced by matrix powers of A, or alternatively by using
the lookup procedure described in IV B. In both cases we
expect the timing to scale with the number of strings, up
to subexponential corrections. This is shown for fully dense
operators in Fig. 7 (left). We find that for small m the solution
times for GC and DENSE are comparable, and that DENSE
is faster for m > 4. Note that the DENSE method can also
easily be made to run in parallel, which could further reduce
walltimes.
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FIG. 6. (left) Starting with a random (fully dense) Hermitian operator, with m = 5, a numerical cut of increasing magnitude is applied on
the coefficients of the Pauli string decomposition to reduce the number of strings present. The resulting operator is grouped according to the
GC, QWC, and DENSE methods. The x axis gives the percentage of the 4m original strings in the operator and y axis gives the number of
family groupings for each method. (right) A numerical cut of increasing magnitude is applied to a random Hermitian operator, for m ∈ [2, 6].
The corresponding lines are labeled GC-2 (lowest curve at the right of the figure) through GC-6 (top curve). The y axis now shows the ratio
of the number of families produced by GC to that of DENSE. For visual clarity, a horizontal dotted line is plotted at one, with points above
(below) the line, indicating outperformance by DENSE (GC).

IX. CONCLUSIONS

The Pauli grouping algorithm discussed in this paper can
substantially reduce the time required to measure operators
on quantum simulators and real devices. The algorithm com-
pletely sorts all Pauli strings on any fixed number of qubits
m into a minimal set of maximally sized commuting fam-
ilies without any repeated strings. It is optimal for dense
operators, with support over an order one fraction of the
strings, and in this case it can reduce runtimes by a factor of
(2/3)m relative to qubit-wise commuting groupings. The pub-
lic string partitioning package PSFAM and the QISKIT package
DENSE_EV described in Sec VII have been tested on random

Hamiltonians and a matrix quantum mechanics model rele-
vant in high-energy physics. We find timing improvements
relative to Abelian grouping close to the theoretical limit and
small impacts on precision, indicating that larger poststate
rotation depths and correlated uncertainties are not significant
effects at least for some problems of interest.

In its current form, this approach is mainly useful for
problems involving dense operators and relatively small num-
bers of qubits. For sparse operators, the grouping makes no
attempt to minimize the number of families that appear, and
graph theoretic approaches are typically better. Combining
the two methods could present interesting opportunities for
future development. We emphasize, however, that in some

FIG. 7. (left) Comparison of walltimes needed to group a random Hermitian operator using general (GC) and qubit-wise commuting
(QWC) graph algorithms, compared with the DENSE method. An empirical curve representing the large m scaling of the DENSE method is
shown as a red dashed line. (right) Comparison of memory requirements for the GC and DENSE algorithms. For GC, we monitored only the
memory needed to build the adjacency matrix. Empirical curves matching the large m results are given as dotted or dashed lines.
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cases there may not be a one-size-fits-all best method. Similar
to integration, there may be a wealth of efficient techniques,
analytic and numerical, which are effective against different
classes of problems. Also, the computational cost of measur-
ing dense operators is still exponential in m, and therefore
infeasible asymptotically. However, there are many interesting
problems in physics and quantum information that involve
dense operators, or operators with dense sub-blocks (as can
arise in lattice gauge theories), that we would like to study
with NISQ era devices. For such problems the reduction in
measurement cost from, say, a thousand circuits to a hundred
can be a significant consideration.

A sample of interesting directions for further development
include combining dense Pauli grouping with approximation
methods to optimize precision for fixed resources; extending
the method to optimize the grouping solution for operators of
intermediate density; and studying applications to simulations
of HEP models, state tomography, and others. We hope to
return to these problems in future work.
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APPENDIX A: MATRIX ALGORITHMS

In this Appendix we describe the algorithmic construc-
tion of the various matrices used in Sec. IV to construct a
suitable set of generating matrices {A1, . . . , AN−1}. We fo-
cus on exclusively Z2 valued matrices in this section. We
start by constructing a companion matrix [17]. A compan-
ion matrix is constructed by using an irreducible polynomial
f (x) = ∑n

i=0 aixi (which, for example, the galois.py package
can produce [39].) An irreducible polynomial is a polynomial
over a finite field which cannot be written as a product of poly-
nomials in that field. The companion matrix is constructed as

C =

⎛
⎜⎜⎝

0 1 0 . . . 0
. . . 1
0 0 1

−a0 −a1 . . . −am−1

⎞
⎟⎟⎠. (A1)

The matrix D such that CD = DCT is

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 b0

0 0 0 . . . b0 b1

0 0 0 . . . b1 b2

. . . . . . . . . . . . . . .

0 b0 b1 . . . bm−3 bm−2

b0 b1 b2 . . . bm−2 bm−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A2)

where the bi are defined as

bi =
i−1∑
k=0

am−i+kbk, (A3)

with b0 ≡ 1. Multiplying the matrices, one finds

CD =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . b0 b1

0 0 . . . b1 b2

0 0 . . . b2 b3

. . . . . . . . . . . .

b0 b1 . . . bm−2 bm−1

−am−1b0 −am−1b1 + . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A4)

where the elements in the bottom row are

(CD)m−1,i =
(i+1)−1∑

k=0

am−(i+1)+kbk = bi+1, (A5)

so that CD can be simplified to

CD =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . b0 b1

0 0 0 . . . b1 b2

0 0 0 . . . b2 b3

. . . . . . . . . . . . . . .

b0 b1 b2 . . . bm−2 bm−1

b1 b2 b3 . . . bm−1 bm

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A6)

This can be verified by explicit matrix multiplication. The
symmetry of D and CD implies CD = DCT

CD = (CD)T = DCT . (A7)

The next step of this process assumes that there is a one
somewhere on the diagonal of D. If m is odd, then there must
be a one on the diagonal, because b0 is on the diagonal. For
m even, the diagonals are populated by odd bi. We show by
induction and contradiction that for even m, it is impossible
that bi = 0 for all odd i. Suppose that b1 = 0. Then

b1 = am−1b0 = 0,

⇒ am−1 = 0. (A8)

The inductive step is as follows. Take some odd j > 1. Sup-
pose am−i = 0 for all odd i < j. For these values, the indices
of a are odd. Then

b j = 0 =
j−1∑
k=0

am− j+kbk . (A9)

When k is odd, bk = 0. When k is even and nonzero, m −
j − k is odd, so am− j−k = 0 by the assumption above. So the
entire sum reduces to the k = 0 term, and we find that am− j

must vanish:

b j = am− jb0 = am− j = 0. (A10)

Thus, if all bi = 0 for odd i, we may iterate this process for
increasing values of j to find

ai =
{

0 i odd
ci/2 i even

}
(A11)

022606-14



FAST PARTITIONING OF PAULI STRINGS INTO … PHYSICAL REVIEW A 110, 022606 (2024)

for some c. This corresponds to a perfect square of the poly-
nomial

∑m/2
i=0 cixi. But a describes an irreducible polynomial,

which is a contradiction. We conclude that it is impossible for
bi = 0 for all odd i, so there must be some odd value of i such
that bi = 1, and this must appear on the diagonal of D, so there
is a one on the diagonal of D.

Next, we construct a matrix � so that every diagonal entry
of M = �T D� is unity. Choose an a such that Da,a = 1 and
define a vector vi = 1 + Di,i. Then construct

�i, j = δi, j + δi,av j . (A12)

Then,

(�T D�)i,i =
∑

j,k

(δ j,i + δ j,avi )Dj,k (δk,i + δk,avi )

= Di,i + Da,av
2
i + Di,avi + Da,ivi

= Di,i + vi

= 1 + 2Di,i

= 1 (A13)

gives an M with one on every diagonal. (Note that 2Di,i = 0
because we are working in Z2.)

M is invertible because it is a product of invertible matrices.
It must also have a principal minor which is invertible, which
we prove next.

Consider a symmetric principal minor i of M, which is
called M[i]. If M[i] is not invertible then it has a eigenvector
with zero eigenvalue:

∃ c ∈ Zm
2 :

∑
k 	=i

M[i] jkck = 0. (A14)

There is no eigenvector of zero eigenvalue for M, since M
is invertible. Let ci = 0. Then

(Mc) j 	=i =
∑
k 	=i

M[i] jkck + Mjici = 0, (A15)

and so it must be that (Mc) j=i = 1. Thus Mc = u, with u
defined by u j = δi, j . Therefore cT Mc = ci = 0. We also have
M−1u = c and uT M−1u = M−1

ii = ci = 0.
Now suppose that every principal minor is noninvertible.

Then, for every i, we may construct a Zm
2 vector ci, with

ci
i = 0, which restricts to a Zm−1

2 eigenvector of M[i] with zero
eigenvalue. Therefore all diagonal elements of M−1 vanish.
Now sandwich M−1 between any vector v in Zm

2 :

vT M−1v =
∑
i, j

viM
−1
i j v j . (A16)

In the sum, every off-diagonal term of M−1 appears with its
transpose. Since M is symmetric and we are working in Z2

these terms cancel. So the only terms remaining are

vT M−1v =
∑

v2
i M−1

ii = 0. (A17)

Thus the equation vT M−1v = 0 holds for every v. In particu-
lar, for v j ≡ Mji for any i, we find

0 = vT M−1v = (MT )i jM
−1
jk Mki = MT

i,i = 1. (A18)

This is a contradiction, so M has at least one principal minor i
which is invertible and symmetric.

Assume M = LLT and M[i] = L[i]L[i]T (we use induction
to prove these decompositions momentarily). Then,

M =
(

L[i]L[i]T η

ηT 1

)

=
(

L[i] 0(
L[i]−1η

)T
d0

)(
L[i]T L[i]−1η

0 d0

)
. (A19)

The multiplication of the last row and column gives 1 = d2
0 +∑

j (L
−1
i η)2

j . If d0 = 0, then L is not invertible. This cannot be
the case. If L is not invertible, then there is a vector v such
that LT v = 0. Then LLT v = 0, which means that M is not
invertible. But we have already seen that M is invertible, so
d0 = 1.

The induction process works as follows: M has an invert-
ible principal minor, which also has an invertible principal
minor, until the principal minor is [1] = [1][1]T . Each prin-
cipal minor can be written as LLT , so the matrix which has
LLT as its principal minor can also be written as LLT , until
M = LLT .

The algorithm which completes this process must take the
inverse of L, which has O(m3) complexity. The entire algo-
rithm should then have complexity O(

∑m
i=0 i3) = O(m4).

APPENDIX B: CIRCUIT REPRESENTATION

This Appendix details the circuit representation of U =
exp(i π

4

∑
k xk ). First, a circuit representation of e

iπ
4 xk is

needed. We decompose the factors in U as

e
iπ
4 xk = 1√

2
(1 + ixk ) = 1√

2
U †

Y (1 + izk )UY , (B1)

UY =
m∏
i

e
iπ
4 y2i , (B2)

so that we find

e
iπ
4

∑
xk = U †

Y e
iπ
4

∑
zkUY . (B3)

In the definition of UY , y2i represents a string with a single Y
at the ith position, and I everywhere else; as a tensor product,
it is

e
iπ
4 y2i = 1 ⊗ · · · 1 + iσy√

2
· · · ⊗ 1. (B4)

Since each e
iπ
4 y2i is a tensor product, computing UY is the

same as computing a one qubit gate for (1 + iσy)/
√

2 and
applying it to every qubit. This one qubit gate is a U gate
with parameters θ = −π, λ = φ = 0, so UY is a product of
U(−π, 0, 0) gates on each qubit.

The operator e
iπ
4 zk can be expressed as a quantum circuit

as follows: First, find the set of qubits on which the string zk

contains a σz in its tensor product. Select one qubit Q from the
set and apply CX gates between Q and all the rest in the set.
This measures the parity of the set. Then apply an S gate to
Q, which is equal to

√
Z up to a phase. Finally undo the CX

gates. See Fig. 8 for an example.
We have so far proven that any of our unitary transforma-

tions can be expressed as a quantum circuit, except for the z
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FIG. 8. Two possible representations of the quantum circuit corresponding to exp( iπ
4 IX IXX ).

and x families. The x family is diagonalized by UY and the z
family is already diagonal:

UY ZU †
Y = 1

2 (1 + iY )Z (1 − iY ) = i(−iZ ) = +X. (B5)

This can be repeated for each qubit to diagonalize any x string.
To calculate the expectation value of a Hamiltonian,

〈ψ |H |ψ〉, follow the following procedure: First decompose
the Hamiltonian into Pauli strings. As in the main text we label
the strings based on families:

Ti, j =
⎧⎨
⎩

Si,P( j) (i) if 0 < j < N
zi if j = 0
xi if j = N.

⎫⎬
⎭ (B6)

Here P( j) represents the permutation associated with the jth
family, and Ti, j is the ith string of the jth family. We may
decompose H as

〈H〉 = α0,0 +
N−1∑
i=1

N∑
j=0

αi, j〈Ti, j〉. (B7)

There is a coefficient for each measurement including the
identity, whose decomposition we label α0,0, placing it with
the z family.

Let |χk〉 represent the kth state in the computational basis.
(Recall we are ordering this basis via binary encoding, where,
e.g., state 6 is |110〉 or | ↑↑↓〉.) Let |φ( j)

k 〉 represent the kth
eigenvector of the family j. If Uj diagonalizes family j, then

FIG. 9. Device layout for IBMQ_QUITO. Circles represent qubits
and solid lines represent connectivity between qubits.

Uj |φ( j)
k 〉 = |χk〉. Then,

〈Ti, j〉 =
N−1∑
k=0

〈ψ |Ti, j

∣∣φ( j)
k

〉〈
φ

( j)
k

∣∣ψ 〉

=
N−1∑
k=0

λi,k
〈
ψ

∣∣φ( j)
k

〉〈
φ

( j)
k

∣∣ψ 〉

=
N−1∑
k=0

λi,k〈ψ |U †
j |χk〉〈χk|Uj |ψ〉

=
N−1∑
k=0

λi,k|〈χk|Uj |ψ〉|2. (B8)

The value |〈χk|Uj |ψ〉|2 represents the fraction of measure-
ments on Uj which are measured in the k state. Placing this
into the equation for the Hamiltonian:

〈H〉 =
N−1∑
i=1

N∑
j=1

N−1∑
k=0

αi, jλi,k|〈χk|Uj |ψ〉|2

+
N−1∑
i=0

N−1∑
k=0

αi,0λi,k|〈χk|ψ〉|2. (B9)

For clarity we can factor this expression into the measure-
ments times a set of coefficients. Each family will have N
coefficients, representing the N common eigenstates:

〈H〉 =
N∑

j=0,k=0

c j,kMj,k . (B10)

Here Mj,k represents the fraction of measurements of family j
in state k. The coefficients are

c j,k =
{∑N−1

i=1 αi, jλi,k if 0 < j � N∑N−1
i=0 αi,0λi,k if j = 0.

}
(B11)

APPENDIX C: DEVICE CHARACTERISTICS

The demonstrations in Sec. V B were carried out on
IBMQ_QUITO. The device layout is shown in Fig. 9. Device
characteristics from the time of the demonstrations are tabu-
lated below.
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TABLE IV. Device data for IBMQ_QUITO, measured on April 03, 2023. The first two table sections give the collected single-qubit data,
while the third gives measured CNOT gate errors between connected device qubits.

Qubit T 1 (μs) T 2 (μs) Freq. (GHz) Anharmonicity (GHz) Readout error

0 69.885 109.664 5.3006 −0.33148 0.0405
1 73.686 109.025 5.0805 −0.31924 0.0419
2 91.183 94.412 5.3221 −0.33231 0.0647
3 65.835 17.463 5.1635 −0.33508 0.0547
4 20.609 39.990 5.0522 −0.31926 0.0436

Qubit Readout length (ns) Prob meas 0 prep 1 Prob meas 1 prep 0 ID error sx error

0 5351.11 0.0596 0.0214 0.00026747 0.00026747
1 5351.11 0.0636 0.0202 0.00027251 0.00027251
2 5351.11 0.0778 0.0516 0.00023647 0.00023647
3 5351.11 0.0870 0.0224 0.0013701 0.0013701
4 5351.11 0.0626 0.0246 0.00047614 0.00047614

CNOT gate errors

Qubit 0 1 2 3 4
0 0.007 420 8
1 0.007 420 8 0.006 787 8 0.018 267 0
2 0.006 787 8
3 0.018 267 0 0.021 355 5
4 0.021 355 5
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