
PHYSICAL REVIEW A 110, 022605 (2024)

Practical asynchronous measurement-device-independent quantum key
distribution with advantage distillation

Di Luo,1 Xin Liu,1 Kaibiao Qin,1 Zhenrong Zhang,2 and Kejin Wei1,*

1Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology,
Guangxi University, Nanning 530004, China

2Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer Electronics and Information,
Guangxi University, Nanning 530004, China

(Received 9 January 2024; accepted 11 July 2024; published 6 August 2024)

The advantage distillation (AD) method has proven effective in improving the performance of quantum
key distribution (QKD). In this paper we introduce the AD method into a recently proposed asynchronous
measurement-device-independent (AMDI) QKD protocol, taking finite-key effects into account. Simulation
results show that the AD method significantly enhances AMDI QKD, e.g., extending the transmission distance
by 16 km with a total pulse count of N = 7.24 × 1013, and enables AMDI QKD, previously unable to generate
keys, to generate keys with a misalignment error rate of 10%. As the AD method can be directly integrated into
the current system through refined postprocessing, our results facilitate the practical implementation of AMDI
QKD in various applications, particularly in scenarios with high channel losses and misalignment errors.
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I. INTRODUCTION

Quantum key distribution (QKD) enables two legitimate
users to share an unconditionally secure key, even in the pres-
ence of eavesdroppers with unlimited computational power
and storage capacity. Since the proposal of the first QKD
by Bennett and Brassard [1], through the extensive efforts
of researchers, QKD has achieved significant milestones both
theoretically and experimentally [2–11]. It is poised to be-
come a crucial technology ensuring secure communication in
the future.

However, due to the gap between the ideal model and
practical devices, especially at the detector side [12,13],
eavesdroppers can exploit these gaps to steal informa-
tion [14–20]. Fortunately, measurement-device-independent
(MDI) QKD was proposed [21,22], addressing detection loop-
holes by utilizing Bell state measurements. Currently, most
MDI QKD systems [23–31] require strict coincidence detec-
tion for key generation, limiting the key rate and transmission
distance of MDI QKD and preventing it from surpassing the
repeaterless rate-transmittance bound [32,33].

The twin-field (TF) QKD [34], based on the single-photon
interference concept, eliminates the need for coincidence de-
tection, surpassing the Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound [33]. Various TF QKD protocol variants have
been proposed [35–38], with experimental demonstrations
reported [39–45]. However, TF QKD necessitates stringent
phase and frequency locking techniques to stabilize the fluc-
tuation between two coherent states, significantly increasing
the system’s cost and complexity.

*Contact author: kjwei@gxu.edu.cn

To address these challenges, two recent works, namely,
asynchronous MDI (AMDI) QKD [46] or mode-pairing (MP)
QKD [47], were proposed almost simultaneously. Using an
asynchronous coincidence method, both protocols can surpass
the PLOB bound without requiring phase locking and phase
tracking techniques. The practicality of these MDI-type QKD
protocols has been demonstrated [48,49]. In particular, Zhou
et al. [49] achieved a breakthrough in the transmission dis-
tance of MDI QKD, extending it from 404 km [23] to 508 km
over fiber. Furthermore, theoretical developments have been
reported [50–53]. Much effort has been put into further ex-
tending the distance [23,41,45,54], which is highly sought
after in communication.

Advantage distillation (AD), proposed by Maurer [55], is
a classical two-way communication protocol used to enhance
the error tolerance [56–58]. The core step of the AD method
involves dividing raw keys into a few blocks to extract highly
correlated keys from weakly correlated keys, thereby increas-
ing the correlation between the raw keys. The AD method has
been applied to various QKD protocols [53,59–68] to extend
the transmission distance and increase the maximum tolerance
of background noise. Importantly, the AD method has been
shown to improve performance when considering statistical
fluctuations [61–63]. Recently, Liu et al. [53] demonstrated
that the AD method can significantly enhance the perfor-
mance of MP QKD. However, whether AD can improve the
performance of AMDI QKD, especially when accounting for
finite-key effects, remains unknown.

In this paper, building upon the work in Ref. [53], we in-
corporate the AD method into AMDI QKD [49]. Additionally,
we analyze its performance while considering finite-key ef-
fects. Using typical experimental parameters of AMDI QKD,
the simulation results demonstrate a significant improve-
ment in the key rate and transmission distance and enhance
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FIG. 1. Schematic diagram of the AMDI QKD protocol by using click filtering operation. Alice and Bob send the prepared state to Charlie
for interference measurement. In the maximum pairing interval Tc, for any successful coincidence, if the total pairing intensity κ tot

a (b) = μ as the
Z basis, if the total pairing intensity κ tot

a (b) = 2ν as the X basis, and if the total pairing intensity κ tot
a (b) � μ + ν, then coincidence is discarded. If

the click events are (νa, μb) or (μa, νb), these click events are discarded. If one of or both Alice and Bob do not click in the same time bin, the
corresponding data are discarded. Here BS is the beam splitter and DL (DR) represents the left (right) detector.

tolerance to misalignment errors when accounting for finite-
key effects.

The remainder of the article is structured as follows. In
Sec. II we briefly introduce the original AMDI QKD protocol.
In Sec. III we analyze the postprocessing step using the AD
method. In Sec. IV we present simulation results for a more
practical AMDI QKD model, comparing the performance of
AMDI QKD with and without AD. We discuss and summarize
our findings in Sec. V.

II. AMDI QKD PROTOCOL

Here we provide a brief overview of the AMDI QKD
protocol [46,49], using a three-intensity decoy-state scheme
as an example. The schematic diagram of the scheme is shown
in Fig. 1 and the detailed process is as follows.

Step 1: Preparation and measurement. This step is re-
peated for N rounds to accumulate sufficient data. For each
round or time bin i ∈ {1, 2, . . . , N}, Alice randomly pre-
pares a weak coherent state pulse |eiθ i

a
√

κ i
a〉, with intensities

κ i
a ∈ {μa, νa, oa} (μa > νa > oa = 0) and the corresponding

probabilities pμa , pνa , and 1 − pμa − pνa . In this context, the
random phase θ i

a = 2πMi
a/M, with Mi

a ∈ {0, 1, . . . , M − 1}.
Similarly, Bob prepares weak coherent pulses |eiθ i

b

√
κ i

b〉,
where κ i

b ∈ {μb, νb, ob} using the same operation as Alice.
Next, Alice and Bob send their prepared optical pulses to
Charlie through the quantum channel. Charlie performs the
interference measurement and then announces which detector
(DL or DR) clicked and the corresponding time bin i.

Step 2: Click filtering. For each click, Alice and Bob an-
nounce whether they had sent a decoy-state pulse of intensity
νa (νb). If the click event is (μa|νb) and (νa|μb), a click
filtering operation is applied to discard this click event. All
other click events are kept. Here we use (κa|κb) to denote a
successful click given that Alice and Bob sent pulse intensities
of κa and κb.

Step 3: Coincidence pairing. For all kept clicks, Alice
and Bob pair two adjacent clicks within the time interval
Tc to form a successful coincidence. If the partner cannot
be found within the maximum pairing interval Tc, Alice and
Bob discard the corresponding lone click. For all success-
ful pairing coincidences, Alice and Bob calculate the total
intensity [κe

a + κ l
a = κ tot

a , κe
b + κ l

b = κ tot
b ] and the phase dif-

ference ϕa (b) = θ l
a (b) − θ e

a (b) between two time bins, where
the superscript e (l) denotes the early (late) time bin and κ tot

a
(κ tot

b ) denotes the total intensity of the pairing coincidence, and
the notation [κ tot

a , κ tot
b ] denotes pairing coincidence where the

total intensity in the two time bins of Alice (Bob) is κ tot
a (κ tot

b ).
Step 4: Sifting. Alice and Bob publish the computational

results of all successful coincidences and discard the events
if κ tot

a (b) � μa (b) + νa (b). For [μa, μb] coincidence, if Alice
(Bob) sends intensity μa (ob) in the early time bin and sends
intensity oa (μb) in the late time bin, they obtain Z basis bit
0; otherwise, bit 1 is obtained. For [2νa, 2νb] coincidence,
Alice and Bob calculate the relative phase difference ϕab =
(ϕa − ϕb)mod2π . If ϕab = 0 or ϕab = π , they extract X basis
bit 0. As an extra step for the X basis, if ϕab = 0 and both
detectors are clicked or ϕab = π and the same detector clicked
twice, Bob flips his bit value. The coincidence with other
phase differences (ϕab �= 0 or π ) is discarded.

Step 5: Postprocessing. Alice and Bob assign their data
to different data sets S[κ tot

a ,κ tot
b ] and count the corresponding

amount n[κ tot
a ,κ tot

b ]. Then they respectively generate raw keys
Z by using data n[μa,μb] from S[μa,μb]. The secret keys are
obtained through error correction and privacy amplification
with a security bound εsec.

After the above steps, the final key rate of AMDI QKD
with considering finite-key effects can be expressed as

R = 1

N

(
sz

0 + sz
11

[
1 − H

(
φ

z
11

)] − λEC

− log2
2

εcor
− 2 log2

2

ε′ε̂
− 2 log2

1

2εPA

)
, (1)
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where N is the total number of pulses, sz
0 is the lower bound of

the estimated number of vacuum events, sz
11 is event number

of single-photon pair, and φz
11 is phase error rate of a single-

photon pair in the Z basis. The underline and overline of the
parameters denote the lower and upper bounds, respectively.
Here λEC = n[μa,μb] f H (Ez ) represents the maximum amount
of information stolen by Eve during the error correction step;
f is the correction efficiency, Ez is the quantum bit error rate
(QBER), and n[μa,μb] is the total successful pairing number in
the Z basis. In addition, εcor implies the failure probability in
the error correction, εPA denotes the failure probability in the
privacy amplification, and ε′ and ε̂ are coefficients after using
smooth entropies. The specific calculation of the parameters
is in Appendix A.

III. AMDI QKD WITH ADVANTAGE DISTILLATION

As a postprocessing method, AD only changes the step of
the data processing to improve the performance. Thus AMDI

QKD with AD is different from the original AMDI QKD only
in step 5. The new step 5 is as follows.

New step 5. After obtaining the raw key, Alice and
Bob divide their raw key into b-bit blocks {x1, x2, . . . , xb}
and {y1, y2, . . . , yb}. Alice chooses a local random bit c ∈
{0, 1} and sends the messages m = {m1, m2, . . . , mb} = {x1 ⊕
c, x2 ⊕ c, . . . , xb ⊕ c} to Bob. Alice and Bob only keep
the block if Bob calculates the results of {m1 ⊕ y1, m2 ⊕
y2, . . . , mb ⊕ yb} = {0, 0, . . . , 0} or {1, 1, . . . , 1} and then re-
tain the first bits x1 and y1 as the raw key. It is noteworthy
that if the block size b is 1, it means that the AD step has
not been executed. Finally, the final keys are obtained through
error correction and privacy amplification.

To gain deeper insights into the enhanced key rate achieved
through the AD method, we employ the information security
theoretical analysis method to reassess the key rate of AMDI
QKD. The detailed analysis is provided in Appendix B. The
key rate of AMDI QKD is reformulated as

R � min
λ1,λ2,λ3,λ4

1

N
nz

{
sz

0

nz
+ sz

11

nz

[
1 − (λ1 + λ2)H

(
λ1

λ1 + λ2

)
− (λ3 + λ4)H

(
λ3

λ3 + λ4

)]

− f H (Ez ) − 1

nz

(
log2

2

εcor
+ 2 log2

2

ε′ε̂
+ 2 log2

1

2εPA

)}
, (2)

where
∑4

i=1 λi = 1 and the λi (i = 1, 2, 3, 4) satisfy the following relationships with the error rates: φz
11

� λ2 + λ4 � φ
z
11 and

ez
11 � λ3 + λ4 � ez

11. After postprocessing using the AD method (new step 5), the key rate of AMDI QKD can be rewritten as
(details can be found in Appendix C)

R̃ � max
b

min
λ1,λ2,λ3,λ4

1

N

nz

b
qsucc

{(
sz

0

nz

)b

+
(

sz
11

nz

)b[
1 − (λ̃1 + λ̃2)H

(
λ̃1

λ̃1 + λ̃2

)
− (λ̃3 + λ̃4)H

(
λ̃3

λ̃4 + λ̃4

)]
− f H (Ẽz )

− b

nzqsucc

(
log2

2

εcor
+ 2 log2

2

ε′ε̂
+ 2 log2

1

2εPA

)}
, (3)

subject to

φz
11

� λ2 + λ4 � φ
z
11,

ez
11 � λ3 + λ4 � ez

11,

qsucc = (Ez )b + (1 − Ez )b,

Ẽz = (Ez )b

(Ez )b + (1 − Ez )b
, (4)

and

λ̃1 = (λ1 + λ2)b + (λ1 − λ2)b

2psucc
,

λ̃2 = (λ1 + λ2)b − (λ1 − λ2)b

2psucc
,

λ̃3 = (λ3 + λ4)b + (λ3 − λ4)b

2psucc
,

λ̃4 = (λ3 + λ4)b − (λ3 − λ4)b

2psucc
,

(5)

where φz
11

(ez
11) and φ

z
11 (ez

11) denote the lower and upper
bounds of the error rates of φz

11 (ez
11) [49,52], which can

be estimated by the decoy state; psucc = (λ1 + λ2)b + (λ3 +
λ4)b; and qsucc and Ẽz represent the successful probability
to perform the AD method and the total error rate after AD
postprocessing in the Z basis, respectively.

Equation (3) can be understood from two perspectives.
First, the quantum channel is manipulated by Eve, who can
select the optimal parameter λi (i = 1, 2, 3, 4) to diminish the
key rate. Second, the AD method is governed by Alice and
Bob, affording them the capability to choose the optimal value
of b to increase the key rate. Furthermore, Alice and Bob can
optimize the value of b in order to enhance the successful
probability qsucc. Consequently, the error rate in the Z basis
can be changed from Ez to Ẽz = (Ez )b

qsucc
and the number of raw

keys and single-photon bits retained by Alice and Bob are
nzqsucc/b and (sz

11/nz )bnzqsucc/b, respectively.

IV. SIMULATION

In this section we present simulation results that detail
the performance of the proposed scheme, taking into account
finite-key effects. The simulations use a standard symmetric
quantum channel model and include practical experimental
parameters. The specific numerical values for the simulations
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TABLE I. Numerical simulation parameters: η
DL
d (ηDR

d ) and pDL
d

(pDR
d ) denote the detection efficiency and dark count rate, respec-

tively; DL (DR) is left (right) detector; α (dB/km) and f are the
loss coefficient of the fiber and the error-correction efficiency, re-
spectively; ε is the failure probability; and the insert loss is 1.50 dB
on Charlie’s side.

η
DL
d η

DR
d pDL

d pDR
d α ε f

78.1% 77% 3.03 × 10−9 3.81 × 10−9 0.16 10−10 1.1

are outlined in Table I, taken from the experimental data in
Ref. [49]. For each distance, we optimize implementation pa-
rameters using a numerical simulation tool. This includes the
intensities of the signal and decoy states, as well as the prob-
abilities of sending them. The optimization routine resembles
that in Ref. [69]. Furthermore, the variable b is restricted to
the interval [1,4].

First, we evaluate the performance of AMDI QKD with
and without the AD method under the given parameters ez

d =
0.5%, EHom = 4%, and a total pulse count of N = 7.24 ×
1013. As shown in Fig. 2(a), at a transmission distance exceed-
ing 608 km, the key rate of AMDI QKD with AD surpasses
that of AMDI QKD without AD, resulting in a maximum
distance increase of 16 km.

To further explain the essential reasons for the AD method
increasing the key rate over long distances, we present
Fig. 2(b). At 0–372 km, the influence of noise on the corre-
lation between Alice and Bob is minimal. The AD method
cannot significantly increase sz

11 and reduce the QBER. At
372–608 km, the QBER begins to increase significantly. If the
AD method is applied and the raw key is divided into b = 2
blocks at 500 km, the QBER is reduced, but the finite-key
effect leads to a significant reduction in sz

11. The impact of the

reduction in sz
11 is greater and the key rate is lower, There-

fore, AD is not effective at those distances. At 608–628 km,
noise significantly disrupts the correlation of the raw keys
between Alice and Bob and the QBER is already close to
the maximum error tolerated by the original protocol. The
QBER using the AD method will be changed from Ez to
(Ez )2/[(Ez )2 + (1 − Ez )2] and the reduction in QBER will
contribute more to the key rate than the finite-key effect, so
the use of the AD method can obtain a higher key rate.

Now we delve into the finite-key effects and scrutinize the
distinct impact of the AD method on AMDI QKD for varying
pulse counts N = 1012, 1013, and 1015 and in the asymptotic
case. In Fig. 3 it is evident that when the pulse count is 1015,
the AD method extends the maximum transmission distance
of AMDI QKD by 28 km. Nevertheless, with a reduced pulse
count of 1013, the maximum transmission distance improve-
ment for AMDI QKD with AD is limited to 8 km. Further
reducing the pulse count to 1012, the optimal value of b is all
1, which means that the AD step is not executed. These results
suggest that AD becomes sensitive to pulse reduction when
subjected to a finite-key analysis.

Furthermore, we investigate the impact of the misalign-
ment error rate on the performance of AMDI QKD with
AD, and the results are illustrated in Fig. 4. For a relatively
small misalignment error rate of ez

d = EHom = 1% (5%), the
optimal value of b exceeds 1 at 604 km (408 km), leading to
a substantial increase in the maximum transmission distance
of AMDI QKD with AD by 20 km (96 km). However, with a
further increase in the misalignment error rate to 10%, AMDI
QKD without AD is unable to generate a key, whereas AMDI
QKD with AD exhibits a substantial key rate and transmission
distance of up to 504 km.

Finally, we assess the performance for arbitrary combina-
tions of misalignment error rates ez

d and EHom. We fix the
misalignment error rate within the range [0, 20%] and set
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FIG. 2. Comparison of AMDI QKD performance with and without AD. (a) Relationship between secret key rate and transmission distance,
and the corresponding optimal value of b. The blue solid line and red dotted line represent the secret key rate of AMDI QKD with AD and
without AD, respectively. The black dashed line is the PLOB bound and the pink scatter represents the optimal b value. (b) Relationship
between sz

11 and transmission distance, and the corresponding QBER. The black solid and red dotted lines represent the sz
11 of AMDI QKD

with AD and without AD, respectively. The blue solid and pink dotted lines represent the QBER of AMDI QKD with AD and without AD,
respectively. The red five-pointed star and pink triangles are sz

11 and QBER at 500 km and b = 2, respectively. Here we set N = 7.24 × 1013,
ez

d = 0.5%, and EHom = 4%.
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FIG. 3. Performance comparison between AMDI QKD with AD
and without AD under different pulses. We simply fix the numbers
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d = 0.05%. The solid and
dotted colored curves represent the results of AMDI QKD with and
without AD, respectively. The optimal value of b of the overlapping
part by the solid line and the dotted line is 1 and the remaining solid
line part is b > 1.

L = 500 km and N = 7.24 × 1013. The simulation results are
shown in Fig. 5. The comparison reveals that AMDI QKD
with AD exhibits a higher tolerance for misalignment er-
ror rates in the Z basis used for key generation compared
to AMDI QKD without AD. For instance, at ez

d = 6% and
EHom = 6%, AMDI QKD with AD can generate a key rate
of 1.35 × 10−9 bits/pulse, while AMDI QKD without AD is
unable to generate a key. Objectively, AMDI QKD with AD
outperforms AMDI QKD without AD, particularly at high
misalignment error rates.

V. CONCLUSION

We have explored the performance of AMDI QKD with
AD, considering a finite-key effect. Simulation results demon-
strated the feasibility and significant impact of the AD method
in enhancing the secure key rate and transmission distance
of AMDI QKD. Meanwhile, with a misalignment error rate
of 10%, AMDI QKD without AD failed to generate the key
at 0 km, whereas AMDI QKD with AD could still generate
secure bits.

In future research it would be interesting to further analyze
the performance of AMDI QKD with AD for a limited number
of modulated phases [70].
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APPENDIX A: SECRET KEY RATE CALCULATION

1. Secrecy analysis

The secrecy analysis follows the idea of Refs. [4,71]. If the
protocol successfully passes the error correction step, then it
is εcor-correct. If the extracted key length of the protocol does
not surpass a certain length, then it is εsec-secret. Specifically,
if the protocol fulfills both conditions εcor-correct and εsec-
secret, and εtol = εcor + εsec , it is εtol-secure.

Using a random universal2 hash function [72], the com-
munication parties can extract an εsec -secret key of length 


from the raw key Z [73],

εsec = 2ε + 1

2

√
2
−H ε

min(Z|E ′ ), (A1)

where E ′ denotes all information of Eve learned from the raw
key after error correction and H ε

min(Z|E ′) denotes the smooth
minimum entropy, which quantifies the average probability
that Eve guesses Z correctly using the optimal strategy with
access to E ′. According to a chain-rule inequality for smooth
entropies [59], we obtain

H ε
min(Z|E ′) � H ε

min(Z|E ) − λEC − log2(2/εcor), (A2)

where E denotes the information of Eve before error correc-
tion and λEC + log2(2/εcor) is the amount of bit information
that is leaked during the error correction step. The bits of Z
can be distributed among three different strings Z0, Z11, and
Zrest, where Z0 is the bits where Alice sent a vacuum state,
Z11 is the bits where both Alice and Bob sent a single photon,
and Zrest is the rest of the bits. Using a generalized chain rule
for smooth entropies [74], we have

H ε
min(Z|E ) � H ε′+2εe+(ε̂+2ε̂′+ε̂′′ )

min (Z0Z11Zrest|E )

� H ε̂′′
min(Z0|E ) + H εe

min(Z11|Z0ZrestE )

+ H ε̂′
min(Zrest|Z0E ) − 2 log2

2

ε′ε̂

� sz
0 + H εe

min(Z11|Z0ZrestE ) − 2 log2
2

ε′ε̂
, (A3)

where ε = ε′ + 2εe + (ε̂ + 2ε̂′ + ε̂′′) and we have used
the fact that H ε̂′

min(Zrest|Z0E ) � 0, since all multipho-
ton events are considered insecure due to the risk of
photon-number-splitting attacks, H ε̂′′

min(Z0|E ) � Hmin(Z0) =
log22sz

0 = sz
0. Here we consider that the bit values of the

vacuum states are uniformly distributed and contain no infor-
mation.

In addition, we use |01〉 and |10〉 for the Z basis and
1√
2
(|10〉 ± eiϕ |10〉) for the X basis. We let Alice and Bob use

χ11 and χ ′
11 of length sz

11 instead of the raw keys Z11 and Z ′
11

if they had measured on the X basis. According to the un-
certainty relation of smooth minimum entropy and maximum
entropy, we can get a lower bound for H εe

min(Z11|Z0ZrestE ) as

H εe
min(Z11|Z0ZrestE ) � sz

11 − H εe
max(χ11|χ ′

11)

� sz
11

[
1 − H

(
φz

11

)]
, (A4)

where the first inequality is derived from the uncertainty rela-
tion in Ref. [75], the second inequality utilizes Lemma 3 from
Ref. [73], H (φz

11) quantifies the number of bits Bob needs to
reconstruct χ11 using bit string χ ′

11, and φz
11 is the phase error
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FIG. 4. Performance of AMDI QKD with AD under different misalignment error rates. Here we assume ez
d = EHom = 1%, 5%, and 10%

and N = 7.24 × 1013. (a) Relationship between key rate and distance under different misalignment error rates ez
d and EHom. The solid line

indicates AMDI QKD with AD and the dashed line indicates AMDI QKD without AD. (b) Relationship between the optimal b value and
transmission distance.

of a single photon in the Z basis. Combined with Eq. (A1), we
obtain the expression for the key length 
 as


 = H ε
min(Z|E ′) − 2 log2

1

2εPA
, (A5)

and combining Eqs. (A2)–(A5), the specific expression for

 is


 � sz
0 + sz

11

[
1 − H

(
φz

11

)] − λEC

− log2
2

εcor
− 2 log2

2

ε′ε̂
− 2 log2

1

2εPA
,

(A6)

where εsec = 2(ε′ + 2εe + ε̂ + 2ε̂′ + ε̂′′) + εPA, we assume
ε̂′ = ε̂′′ = 0 without compromising security, and εPA =
1
2

√
2
−H ε

min(Z|E ′ ) is a security parameter that involves pri-

vacy amplification. Finally, the parameters sz
0, sz

11, and ex
11

are estimated by using the failure probabilities ε0, ε1, and
εβ , respectively; we have εsec = 2(ε′ + 2εe + ε̂) + ε0 + ε1 +
εβ + εPA.

2. Parameter estimation

By using decoy-state estimation, the key rate can be written
as [49]

R = 1

N

(
sz

0 + sz
11

[
1 − H

(
φ

z
11

)] − λEC

− log2
2

εcor
− 2 log2

2

ε′ε̂
− 2 log2

1

2εPA

)
. (A7)

FIG. 5. Relationship between arbitrary ez
d and EHom combinations and key rates. (a) Results of AMDI QKD with AD, with the open circle

for b = 1, the triangle for b = 2, the five-pointed star for b = 3, and the closed circle for b = 4. (b) Results of AMDI QKD without AD. We
assume L = 500 km, N = 7.24 × 1013, and the misalignment error rate is in the range [0, 20%]. The color depth represents the distribution of
key rates.
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We assume failure parameters εcor, ε′, ε̂, and εPA to be equal
to ε. As described in the protocol, Alice and Bob publish
information about the decoy states when the click filtering
operation is used, so only [μa, μb] can be used to generate
the key. The amount of data consumed during error correction
is

λEC = n[μa,μb] f H (Ez ), (A8)

where Ez = m[μa ,μb]

n[μa ,μb]
is the QBER in the Z basis. The total error

pairing numbers m′
[μa,μb] do not consider ez

d in the Z basis,
which include two click events with (μa|μb) and (oa|ob) to
pair.

When we take ez
d into account [50], the count of error

detection can be given as

m[μa,μb] = ez
d

(
n[μa,μb] − m′

[μa,μb]

) + (
1 − ez

d

)
m′

[μa,μb]. (A9)

The lower bound of single-photon pair events in the Z basis
estimated by the decoy-state method can be written as

sz∗
11 � e−μa−μb p[μa,μb]

νaνb(μ′ − ν ′)
(S1 − S2), (A10)

where

S1 = μaμbμ
′
(

eνa+νb
n∗

[νa,νb]

p[νa,νb]
− eνb

n∗
[oa,νb]

p[oa,νb]
− eνa

n∗
[νa,ob]

p[νa,ob]
+ n∗

[oa,ob]

p[oaob]

)
,

S2 = νaνbν
′
(

eμa+μb
n∗

[μa,μb]

p[μa,μb]
− eμb

n∗
[oa,μb]

p[oaμb]
− eμa

n∗
[μa,ob]

p[μa,ob]
+ n∗

[oa,ob]

p[oaob]

)
, (A11)

and

p[κ tot
a ,κ tot

b ] =
∑

κe
a+κ l

a=κ tot
a

∑
κe

b+κ l
b=κ tot

b

pκe
a
pκe

b

ps

pκ l
a
pκ l

b

ps
, (A12)

where p[κ tot
a ,κ tot

b ] is the coincidence pairing [κ tot
a , κ tot

b ] successful
probability, ps = 1 − pμa pνb − pνa pμb by using click filtering,
e (l) denotes the early (late) time bin. We set oa = ob = 0,
μa = μb = μ′, and νa = νb = ν ′ with symmetric channels.
The lower bound of the vacuum number is given by

sz∗
0 = e−μa p[μa,μb]

p[oa,μb]
n∗

[oa,μb]. (A13)

The upper bound on the number of errors of single-photon
pairs in the X basis is given by

t x
11 � m[2νa,2νb] − m0

[2νa,2νb], (A14)

where m[2νa,2νb] is the observed error pairing number in the X
basis and m0

[2νa,2νb] is the lower bound of error pairing numbers
when there is at least one sending vacuum state between
communication parties in the X basis,

m0∗
[2νa,2νb] = e−2νa

p[2νa,2νb]n∗
[oa,2νb]

2p[oa,2νb]
+ e−2νb

p[2νa,2νb]n∗
[2νa,ob]

2p[2νa,ob]

− e−2νa−2νb
p[2νa,2νb]n∗

[oa,ob]

2p[oa,ob]
, (A15)

where p[2νa,2νb] = 2
M

p2
νa p2

νb
p2

s
denotes the probability of coinci-

dence [2νa, 2νb] in the X basis. The single-photon pairing
error numbers in the X basis is

ex
11 = t x

11

sx
11

, (A16)

where sx
11 is the number of single-photon pairing in the X

basis, whose lower bound is estimated by the decoy state,

expressed as

sx∗
11 � e−2νa−2νb4p[2νa,2νb]

μaμb(μ′ − ν ′)
(S1 − S2). (A17)

The upper bound on the phase error rate of a single-photon
pair in the Z basis is

φ
z
11 � ex

11 + γ
(
sz

11, sx
11, ex

11, εe
)
. (A18)

3. Simulation formula

We assume that Alice and Bob send pulses of intensity κa

and κb, respectively, with phase difference θ . The gain of only
one detector response can be given

qθ,DL
(κa|κb) = yDR

(κa|κb)e
η

DR
d

√
ηaκaηbκbcosθ

× (
1 − yDL

(κa|κb)e
−η

DL
d

√
ηaκaηbκbcosθ

)
(A19)

and

qθ,DR
(κa|κb) = yDL

(κa|κb)e
−η

DL
d

√
ηaκaηbκbcosθ

× (
1 − yDR

(κa|κb)e
η

DR
d

√
ηaκaηbκbcosθ

)
, (A20)

where yDL (DR )
(κa|κb) = (1 − pDL (DR )

d )e−η
DL (DR )
d

(ηaκa+ηbκb )
2 , DL (DR) is left

(right) detector, and ηa (b) = 10−αLa (b)/10. By calculating the
phase θ from 0 to 2π , the total gain of Alice sending κa and
Bob sending κb can be given as

q(κa|κb) = 1

2π

∫ 2π

0

(
qθ,DL

(κa|κb) + qθ,DR
(κa|κb)

)
dθ

= yDL
(κa|κb)I0

(
η

DL
d

√
ηaκaηbκb

)
+ yDR

(κa|κb)I0
(
η

DR
d

√
ηaκaηbκb

)
− 2yDL

(κa|κb)y
DR
(κa|κb)I0

[(
η

DL
d − η

DR
d

)√
ηaκaηbκb

]
,

(A21)

where I0(x) ≈ 1 + x2

4 represents the first kind of zeroth-order
modified Bessel function and qθ

(κa|κb) = qθ,DL
(κa|κb) + qθ,DR

(κa|κb). The
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total number of valid successful pairings is ntot = Nqtot

1+1/qTc
,

where qTc = 1 − (1 − qtot )NTc is the probability of having at
least a click in the time interval Tc if the detector has a
click in a time bin. Thus, an average of 1 + 1/qTc valid
events is required to form a valid pairing. The average time it
takes to form a valid pairing is Tmean = 1−NTc qtot (1/qTc −1)

Fqtot
, where

F = 1 GHz is the system’s repetition rate and NTc = FTc is the
total number of time bins in the interval Tc.

When we use the three-intensity decoy-state protocol, there
are nine independent and random events, which are (μa|μb),
(μa|νb), (μa|ob), (νa|νb), (νa|μb), (νa|ob), (oa|ob), (oa|μb),
and (oa|νb). By using click filtering, (μa|νb) and (νa|μb) are
discarded. The probability of having the click event is qtot =∑

κa,κb
pκa pκbq(κa|κb) − pμa pνbq(μa|νb) − pνa pμbq(νa|μb). In addi-

tion, the number of successful pairings S[κ tot
a ,κ tot

b ] (except the set
S[2νa,2νb]) is counted as

n[κ tot
a ,κ tot

b ] = ntot

∑
κe

a+κ l
a=κ tot

a

∑
κe

b+κ l
b=κ tot

b

(
pκe

a
pκe

b
q(κe

a |κe
b )

qtot

pκ l
a
pκ l

b
q(κ l

a|κ l
b)

qtot

)
. (A22)

The set S[2νa,2νb] which we need to take into account the phase difference is counted as

n[2νa,2νb] = ntot

Mπ

∫ 2π

0

(
pνa pνbq

θ
(νa|νb)

qtot

pνa pνbq
θ
(νa|νb)

qtot

)
dθ. (A23)

In the experiment, we encode the quantum states by randomly selecting the phase {0, (2π/M ), (4π/M ), . . . , [2π (M − 1)]/M}
(M = 16) to fulfill the phase randomization requirement. The total number of errors in the X basis can be given as

m[2νa,2νb] = ntot

Mπ

∫ 2π

0

(
(1 − EHom)

p2
νa

p2
νb

[
qθ,DL

(νa|νb)q
θ+δ,DR
(νa|νb) + qθ,DR

(νa|νb)q
θ+δ,DL
(νa|νb)

]
q2

tot
+ EHom

p2
νa

p2
νb

[
qθ,DL

(νa|νb)q
θ+δ,DL
(νa|νb) + qθ,DR

(νa|νb)q
θ+δ,DR
(νa|νb)

]
q2

tot

)
dθ,

(A24)

where EHom is the interference misalignment error rate, δ =
Tmean(2π�ν + ωfib) is the light pulse phase drift cause by the
laser frequency difference �ν = 10 Hz, and the fiber drift rate
ωfib = 5900 rad/s.

4. Statistical fluctuation

We use the Chernoff bound [76] to calculate statistical
fluctuation. Assuming a failure probability ε and expectation
value x∗, we can estimate the upper and lower bounds of the
observed value x by the Chernoff bound

x = x∗ + β

2
+

√
2βx∗ + β2

4
(A25)

and

x = x∗ −
√

2βx∗, (A26)

where β = lnε−1. Similarly, the variant of the Chernoff bound
can be used to estimate the upper and lower bounds of the
expected value x∗ from the observed value x:

x∗ = x + β +
√

2βx + β2 (A27)

and

x∗ = max

{
x − β

2
−

√
2βx + β2

4
, 0

}
. (A28)

The upper bound of the phase error rate in the Z basis is
estimated by a random sampling theorem, whose specific
expression is [76]

χ � λ + γU (n, k, λ, ε), (A29)

where

γU (n, k, λ, ε) =
(1−2λ)AG

n+k +
√

A2G2

(n+k)2 + 4λ(1 − λ)G

2 + 2 A2G
(n+k)2

,

A = max{n, k}, G=n + k

nk
ln

n + k

2πnkλ(1−λ)ε2
.

(A30)

APPENDIX B: SECURITY OF AMDI QKD BASED ON
QUANTUM INFORMATION THEORY

Now we present a brief description of the security of AMDI
QKD based on quantum information theory; a more detailed
analysis can be found in [45,49,59]. The key rate based on
quantum information theory is [59]

R = min
σAB∈�

S(X |E ) − H (X |Y ), (B1)

where � represents the set of all density operators σAB within
the Hilbert space HA ⊗ HB that satisfy the requirements;
S(X |E ) represents the uncertainty of the eavesdropper’s auxil-
iary state E for Alice’s measurement outcome X , quantified by
von Neumann entropy; and H (X |Y ) represents the uncertainty
of Bob’s measurement outcome Y to Alice’s measurement
outcome X , quantified by classical Shannon entropy.

In a security analysis similar to the entanglement purifica-
tion protocol, Alice and Bob randomly prepare the quantum
states |1, 0〉i, j and |0, 1〉i, j as the Z basis and (|1, 0〉i, j ±
|0, 1〉i, j )

√
2 as the X basis and send to Charlie for Bell state

measurement. The |1, 0〉i, j indicates |1〉i ⊗ |0〉 j and is the ten-
sor product of time bins i and j, with quantum states |1〉 and
|0〉 indicating single-photon and vacuum states, respectively.
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Before the communication parties’ measurement, the whole
system consisting of Alice, Bob, and Eve can be described by
the quantum state as

|�〉ABE :=
4∑

i=1

√
λi|ϕi〉AB ⊗ |υi〉E , (B2)

where

|ϕ1〉 = 1√
2

(|1, 0〉i, j
A |1, 0〉i, j

B + |0, 1〉i, j
A |0, 1〉i, j

B

)
,

|ϕ2〉 = 1√
2

(|1, 0〉i, j
A |1, 0〉i, j

B − |0, 1〉i, j
A |0, 1〉i, j

B

)
,

|ϕ3〉 = 1√
2

(|1, 0〉i, j
A |0, 1〉i, j

B + |0, 1〉i, j
A |1, 0〉i, j

B

)
,

|ϕ4〉 = 1√
2

(|1, 0〉i, j
A |0, 1〉i, j

B − |0, 1〉i, j
A |1, 0〉i, j

B

)
,

(B3)

and
∑4

i=1 λi = 1. The single-photon error rate satisfies the
equations λ2 + λ4 = φz

11 and λ3 + λ4 = ez
11. The subscripts A

and B represent Alice and Bob, respectively, and |υi〉E denotes
the orthonormal basis in a Hilbert space HE .

Because Eve controls the channel, if the measurement out-
comes of communication parties are xy ∈ {00, 11, 01, 10}, the
quantum states that Eve obtains include

|φ〉0,0 = 1√
2

(
√

λ1|υ1〉 +
√

λ2|υ2〉),

|φ〉1,1 = 1√
2

(
√

λ1|υ1〉 −
√

λ2|υ2〉),

|φ〉0,1 = 1√
2

(
√

λ3|υ3〉 +
√

λ4|υ4〉),

|φ〉1,0 = 1√
2

(
√

λ3|υ3〉 −
√

λ4|υ4〉).

(B4)

After disturbance from Eve on the quantum channel, Alice
and Bob gain the density operators for the whole system as

σXY E =
∑

xy

|x〉〈x| ⊗ |y〉〈y| ⊗ |φxy〉〈φxy|. (B5)

Taking all of the above analysis into account, we can get

S(σXE ) = 1 + H (λ1 + λ2),

S(σE ) = H (λ1 + λ2) + (λ1 + λ2)H

(
λ1

λ1 + λ2

)

+ (λ3 + λ4)H

(
λ3

λ3 + λ4

)
,

H (X |Y ) = H (λ1 + λ2).

(B6)

Finally, we obtain the final key rate in the asymptotic case as

R � min
λ1,λ2,λ3,λ4

S(X |E ) − H (X |Y )

= min
λ1,λ2,λ3,λ4

H (σXE ) − H (σE ) − H (X |Y )

= min
λ1,λ2,λ3,λ4

1 − (λ1 + λ2)H

(
λ1

λ1 + λ2

)

− (λ3 + λ4)H

(
λ3

λ3 + λ4

)
− H (λ1 + λ2).

(B7)

Suppose that the single-photon bit error rate and phase
error rate are ez

11 and φz
11, respectively. We then have

λ2 + λ4 = φz
11,

λ3 + λ4 = ez
11,

λ1 + λ2 + λ3 + λ4 = 1.

(B8)

By simplifying the above formula, we can get

λ1 = 1 − ez
11 − φz

11 − λ4,

λ2 = φz
11 − λ4,

λ3 = ez
11 − λ4.

(B9)

By combining Eqs. (B9) and (B7), we obtain a new key rate
formula

R � min
λ1,λ2,λ3,λ4

1 − (1 − ez
11)H

(
1 − φz

11 − ez
11 + λ4

1 − ez
11

)

− ez
11H

(
ez

11 − λ4

ez
11

)
− H

(
1 − ez

11

)
. (B10)

With the minimum value of the above key rate formula, by
computing the partial derivative with respect to Eq. (B10), we
can obtain the satisfying condition λ4 = ez

11φ
z
11. In order to

find the minimum value of Eq. (B10), λ1, λ2, λ3, and λ4 should
satisfy the conditions

λ1 = 1 − ez
11 − φz

11 − λ4,

λ2 = φz
11 − λ4,

λ3 = ez
11 − λ4,

λ4 = ez
11φ

z
11.

(B11)

In the practical AMDI QKD protocol [49], we utilize
discrete phase random modulation to fulfill the phase ran-
domization requirements and the Chernoff bound to calculate
statistical fluctuations. After obtaining the raw key generated
in the Z basis, Alice and Bob perform error correction on the
raw key. So the uncertainty between Alice and Bob H (X |Y ) �
f H (Ez ), where H (Ez ) is the maximum amount of information
leaked during error correction. The key rate formula of AMDI
QKD is

R � min
λ1,λ2,λ3,λ4

1

N
nz

{
sz

0

nz
+ sz

11

nz

[
1 − (λ1 + λ2)H

(
λ1

λ1 + λ2

)

− (λ3 + λ4)H

(
λ3

λ3 + λ4

)]
− f H (Ez ) − 1

nz

×
(

log2
2

εcor
+ 2 log2

2

ε′ε̂
+ 2 log2

1

2εPA

)}
, (B12)
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where N is the total number of pulses sent by Alice, nz is the
total number of bits in the Z basis, sz

0 is the lower bound of the
vacuum state, sz

11 represents the single-photon pair successful
coincidence number, and Ez is the QBER in the Z basis.

APPENDIX C: SECURITY OF AMDI QKD WITH AD

Next we analyze the security of AMDI with AD, sim-
ilarly to the analysis in [53,64,68]. In AMDI QKD, Alice
and Bob divide the raw keys that they get into blocks of
size b, that is, {x1, x2, . . . , xb} and {y1, y2, . . . , yb}, respec-
tively. Then Alice randomly selects a privately generated bit
c ∈ {0, 1} and sends the messages m = {m1, m2, . . . , mb} =
{x1 ⊕ c, x2 ⊕ c, . . . , xb ⊕ c} to Bob through a public authen-
ticated classical channel. Alice and Bob acquire blocks when
Bob calculates the results {m1 ⊕ y1, m2 ⊕ y2, . . . , mb ⊕ yb} =
{0, 0, . . . , 0} or {1, 1, . . . , 1}; they retain x1 and y1 as raw
keys. Moreover, if Eve knows arbitrary measurement re-
sults mi (1 � i � b), she has the ability to know all the b
measurement results. Thus, only when all the b pulses are
single-photon states can they be employed for key generation.
The successful probability of advantage distillation can be
calculated as

qsucc = (Ez )b + (1 − Ez )b. (C1)

When performing the AD step, the quantum state of the
whole system composed of Alice, Bob, and Eve can be de-
scribed as [59,68]

|�̃〉ABE :=
4∑

i=1

√
λ̃i|ϕi〉AB ⊗ |υi〉E , (C2)

where

λ̃1 = (λ1 + λ2)b + (λ1 − λ2)b

2psucc
,

λ̃2 = (λ1 + λ2)b − (λ1 − λ2)b

2psucc
,

λ̃3 = (λ3 + λ4)b + (λ3 − λ4)b

2psucc
,

λ̃4 = (λ3 + λ4)b − (λ3 − λ4)b

2psucc
,

(C3)

and psucc = (λ1 + λ2)b + (λ3 + λ4)b. Based on quantum
state |�̃〉ABE and the optimal value of b, Eq. (B7) is
amended as

R̃ �max
b

min
λ1,λ2,λ3,λ4

1

b
qsucc

[
1 − (λ̃1 + λ̃2)H

(
λ̃1

λ̃1 + λ̃2

)
− (λ̃3 + λ̃4)H

(
λ̃3

λ̃3 + λ̃4

)
− H (λ̃1 + λ̃2)

]
. (C4)

When considering the practical model [49], Alice and Bob divide the raw keys nz into blocks of size b. After the AD step is
successfully completed, the number of raw keys they retain is nzqsucc/b, the number of single-photon bits is (sz

11/nz )bnzqsucc/b,
and the QBER in the Z basis can be changed from Ez to (Ez )b/qsucc. Therefore, after executing the AD step, Eq. (B12) is amended
as

R̃ � max
b

min
λ1,λ2,λ3,λ4

1

N

nz

b
qsucc

{(
sz

0

nz

)b

+
(

sz
11

nz

)b[
1 − (λ̃1 + λ̃2)H

(
λ̃1

λ̃1 + λ̃2

)
− (λ̃3 + λ̃4)H

(
λ̃3

λ̃4 + λ̃4

)]

− f H (Ẽz ) − b

nzqsucc

(
log2

2

εcor
+ 2log2

2

ε′ε̂
+ 2log2

1

2εPA

)}
, (C5)

subject to

φz
11
� λ2 + λ4 � φ

z
11,

ez
11� λ3 + λ4 � ez

11,

Ẽz = (Ez )b

(Ez )b + (1 − Ez )b
,

(C6)

where Ẽz represents total error rate after AD postprocessing in the Z basis.
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