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Topological nonlocal operations on toroidal flux qubits
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We propose a method to achieve coherent, field-free coupling between the toroidal flux qubit (tfluxon), which
is isolated from the environment, and a charged particle on a quantum ring. The resulting nonlocal coupling is
mediated only by the vector potential and can be used to control the tfluxon by acting on the quantum ring’s
degrees of freedom. Furthermore, the emergent coupling can facilitate coherent interaction between states of
distant tfluxons mediated by an electron on a quantum ring. We demonstrate that the topological and nonlocal
aspects of this system are of fundamental interest and can have important applications in quantum information,
benefiting from the decoupling from the environment and the topological protection.
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I. INTRODUCTION

Storing and processing quantum information requires two
seemingly contradictory processes: complete isolation of a
system from the environment and precise control of a system’s
degrees of freedom. One example of a well-isolated qubit
candidate is a toroidal flux qubit or tfluxon, which is defined
as a volume of enclosed magnetic flux lines whose outer
surface is topologically equivalent to a torus. As in the case of
standard flux qubits, the persistent toroidal current generating
this magnetic flux can be in a superposition [1]. Tfluxons
are expected to be better isolated from environmental noise
such as flux noise, charge noise, 1/ f noise, and external
electromagnetic fields [2,3]. In [2] the authors proposed to
control the tfluxon by coupling its dipolar toroidal moment to
high-frequency electromagnetic fields. However, this brings
back the associated noise.

Here we take another approach assuming that the high-
frequency fields are filtered out and address the question of
how to couple two different tfluxons. This raises the question
of how to do operations on the quantum states of a system if
it is isolated from external e.m. fields and the environment.

We propose solving this problem by nonlocally coupling
the tfluxon with a charged particle on a quantum ring (QR)
that encloses the flux lines of the tfluxon; see Fig. 1. The QR is
a well-studied system implemented in many materials [4–8].
Any noise charge must close a loop around the tfluxon to get
coupled to it. The environmental noise charge fluctuations do
not affect the system unless they make coherently a trajectory
that encloses the flux with a nonzero winding number. Yet,
the control of the tfluxon quantum states is possible via the
nonlocal Aharonov-Bohm (AB) coupling of the electron with
the vector potential of the tfluxon.

The AB effect has been studied in a context where the
gauge vector potential of a classical magnetic field affects
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nonlocally a charged particle’s phase for scattered states and
the energies of the bound states [9]. Furthermore, the AB
interference effect is ubiquitous in superconducting circuits
such as superconducting quantum-interference devices. In the
proposed system, a quantized AB effect defines interaction.
More precisely, for a QR threaded with a quantized toroidal
magnetic flux, the electron and tfluxon states are coupled only
via nonlocal quantized AB interaction. We demonstrate that
this kind of coupling is fundamentally different from, e.g, the
Jaynes-Cummings (JC) interaction in superconducting circuit
QED or cavity QED. The detailed description of the model
is presented in Sec. III. Some examples of the operations are
given in Sec. IV. We show that the joint quantum state of the
electron and tfluxon can be manipulated by external e.m. fields
acting only on the electron degrees of freedom; hence we can
deterministically control the tfluxon state despite its isolation
from the environment.

In Sec. V we describe the dynamics and operations on
two or more tfluxons coupled by QRs. We show that a
QR coupled to two tfluxons that are separated in space and
isolated from each other and the environment will result
in an emergent interaction that inherits the nonlocal and
topological aspects of the AB effect. This interaction can
be used to coherently manipulate the state of the tfluxons
and facilitate entanglement between them. The nonlocal cou-
pling between the two tfluxons will result in the exchange
of energy and can be used to create entanglement between
them without direct or mediated local interactions. This rea-
soning is scalable to a chain of coupled tfluxons, where
it simulates interesting spin chain systems with nonlocal
coupling.

Finally, in Sec. VI we discuss possible experimental imple-
mentations of the proposed system and limitations stemming
from decoherence.

II. TOPOLOGICAL PROTECTION OF THE AB PHASE

Consider a QR of length L = 2πr that surrounds a vol-
ume with a magnetic flux trapped inside, as sketched in
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FIG. 1. (a) Schematic of a tfluxon coupled to an electron on a
quantum ring. The magnetic field is confined inside the toroid and the
electron on the ring is coupled to the vector potential only. (b) Two
tfluxons coupled nonlocally through the electron on a quantum ring.
(c) A chain of coupled tfluxons.

Fig. 1(a). The eigenvalues and eigenvectors of the system are
invariant under length-preserving deformations of the charge
path, deformations of the flux lines, or simultaneous defor-
mations of the charge path and the closed flux lines [10].
In fact, in the semiclassical Bohr-Sommerfeld quantization
condition,

h̄
∮

dr · k − e
∮

dr · A = 2π h̄n,

the second term is clearly invariant under the deformation
of the closed flux lines. For length-preserving deformations,
the first term is also invariant. Hence, the allowed momenta
and energies are invariant and these systems have topological
protection. Note that length-preserving shape deformations
will not change the eigenvalues of energy as they depend
on the length L of the charge path. Now consider a charge
path enclosing two such fluxes as in Fig. 1(b). We notice that
the second term depends only on the total flux enclosed, and
therefore the system is invariant under changing the distribu-
tion of the magnetic field or changing the distance between the
two toroids. This may address the design and fabrication chal-
lenges such as uniformity and reproducibility across qubits,
disorder, and fabrication defects.

III. TFLUXON-ELECTRON COUPLING

The Hamiltonian for a massive charged particle in a field-
free region outside of an infinite solenoid is given by

Ĥ = 1

2me
( p̂ϕ − eÂϕ )2, Aϕ = �

2πr

and ϕ is an angular coordinate along the QR which changes
from 0 to 2π . We quantize the enclosed flux � by demanding
that � = n̂ϕ0 where n̂ is a number operator, and ϕ0 = h/2e is
the flux quantum.

For all examples below, we will limit the tfluxon exci-
tations to the two lowest states with n equal to 0 or 1 in

order to have a two-state flux qubit, which is the simplest
and most studied case for applications. In the “physical” basis
|n = 0〉, |n = 1〉 the tfluxon Hamiltonian is �σx where �

is the energy splitting between these two states and σx is
a Pauli matrix. Note that it is often written as �σz, after
performing the Hadamard transformation [2]. Furthermore,
we will start with the one-dimensional motion of a particle
on a ring. The case of a finite-width two-dimensional annulus
geometry is qualitatively the same, unless we want to utilize
the energy levels related to transverse quantization which
happens at higher-energy scale. The resulting tfluxon-electron
Hamiltonian is

Ĥ = 1

2me

(
p̂ϕ − eϕ0n̂

2πr

)2

+ �σx. (1)

We can see from expanding the first term that the Hamilto-
nian has an interaction term p̂ϕ ⊗ n̂. Here we have a two-level
system coupled to fermionic excitations of matter field replac-
ing the bosonic (photonic) excitations of the JC model. The
interaction term has the coefficient

ga = h̄eϕ0

2πmer2
= h̄2

2mer2
. (2)

This constant sets the scale for both the energy of the
electron’s first excited state and the electron-tfluxon inter-
action. For r ≈ 1 µm and me ≈ 0.01 of free electron mass,
ga/h̄ ≈ 1 GHz. The energy splitting between the quantized
flux states � is also expected to be a few GHz, mean-
ing that the system is typically in the ultrastrong-coupling
regime.

To solve for the eigenstates, we take the basis of the Hilbert
space to be |ψmn〉 = |m〉 ⊗ |n〉 where

〈ϕ | m〉 = e−imϕ

√
2πr

and n̂|n〉 = n|n〉.

Using the ansatz |ψm〉 = |m〉 ⊗ (α|0〉 + β|1〉) to solve the
time-independent Schrödinger equation Ĥ |ψm〉 = Em|ψm〉,
we obtain

Ĥ |ψm〉 = ga|m〉 ⊗ {(αm2 + �β )|0〉
+ [β(m − 1)2 + �α]|1〉}

= Em[|m〉 ⊗ (α|0〉 + β|1〉)].

Setting the energy scale ga ≡ 1 so that � is now in units of ga

and simplifying, we arrive at the eigenvalue problem which
can be written in the matrix form as[

m2 �

� (m − 1)2

][
α

β

]
= Em

[
α

β

]
. (3)

Solving it gives

E±
m = 1

2
[1 − 2m + 2m2 ±

√
(1 − 2m)2 + 4�2]. (4)

The new energy levels combine the parabolic dispersion of
the electron m2 and the energy of the two-level system �.
Changing the QR material will change the dispersion relation
for the electron energy. For example, in the case of graphene
one would get a linear scaling with m as in the harmonic
oscillator.
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FIG. 2. (a) Plot of the eigenstates of the tfluxon for � = 5 on a section of a Bloch sphere, where each arrow represents a state that has
a different quantum number m. The red arrows on the right and blue arrows on the left correspond, respectively, to the lower and the upper
energy bands shown in panel (b). The horizontal dotted arrow shows an example of an electric dipole allowed transition. (b) The energies E±

of the states in panel (a) given by Eq. (4) as a function of quantum number m, with the transition from panel (a) shown with a solid black arrow.
(c) Same as panel (a) but for � � 1. (d) Same as panel (a) but for � 	 1. Both E± and � are in units of ga and therefore dimensionless.

Note that the effective Hamiltonian matrix on the left-
hand side of Eq. (3) can be written as h0I + 
h.
σ where

σ = (σx, σy, σz ), 
h = (�, 0, m − 1

2 ), and h0 = m2 − m + 1.
In spin-1/2 terminology, � is the x component of the effective
magnetic field, h3 is its z component, and h0 is a total-energy
shift. So, changing the quantum number m (for example by the
e.m. field) will result in changing the effective Hamiltonian of
the tfluxon.

The eigenvectors that describe the tfluxon part of the eigen-
states, namely α|0〉 + β|1〉, are shown as arrows on the Bloch
sphere in Figs. 2(a), 2(c) and 2(d) for different values of �,
whereas the eigenenergies from Eq. (4) are shown in Fig. 2(b).
If � 	 1, the eigenvectors are concentrated around the poles
of the Bloch sphere as in Fig. 2(d) because the z component
will dominate. As � increases, the states initially condensed
at the poles will start to spread out as shown in Fig. 2(a) for
� = 5 and Fig. 2(c) for � � 1. In particular, the states with
m of the same order as � will move towards the x axis of the
Bloch sphere. One notices from Figs. 2(a) and 2(b) that even
when m = 0, i.e., the electron has zero angular momentum as
is the case for state |g1〉 and therefore does not generate any
magnetic field, the value of h3 = −1/2 is still nonzero and
the electron still affects the state of the tfluxon. Proving this
in experiment would be a vivid demonstration of the “reality”
of e.m. potentials and would close a loophole in the Tono-
mura experiment [11] where electrons move around magnets
covered with superconducting films. Indeed, it was argued
that the superconductor cannot perfectly shield from the e.m.
field generated by fast-moving electrons, and therefore the
observed phase shift could be due to the interaction energy

resulting from the overlapping of the e.m. fields instead of the
nonlocal AB effect due to potentials [12].

IV. NONLOCAL COUPLING
AND OPERATIONS ON TFLUXONS

Can we use the gauge-field nonlocal coupling between the
electron and the tfluxon to do quantum operations on the
tfluxon(s)? The tfluxons are completely shielded from any
e.m. field and we have access only to the electron on the QR
degrees of freedom.

Consider, as an example, the transitions between the elec-
tron m states caused by an external e.m. field and their effect
on the tfluxon state. In the electric dipole approximation,
the selection rules are �m = ±1. A simple operation on the
tfluxon would be to excite the joint system to a higher state,
as shown in Fig. 2(b). This will result in rotating the tfluxon
state on the Bloch sphere as indicated in Fig. 2(a). Note that
each eigenstate of the system is a product state, so after the
excitation, even if the ring were somehow “cut” (e.g., the
electron removed from the ring), the x-basis measurement of
the tfluxon would not change, as the tfluxon state would rotate
around the x axis. Since the tfluxon is well isolated from the
environment, it can be used to store quantum states. Injecting
or removing the electrons from the QR could be used to turn
the interaction on and off, and to control the strength of the
interaction [13].

Another set of operations to manipulate the state of the
tfluxon is to add a potential to the electron on the ring,
for example, by applying a lateral electric field(s). Consider
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the lower two m states only, so that the Hamiltonian can
be mapped to a two-qubit Ising model: ĤI = (−σ (e)

z σ
( f )
z +

I ) + �σ
( f )
x + g1(t )σ (e)

x + g2(t )σ (e)
y . Here superscripts (e) and

( f ) denote the operators acting only on electron and tfluxon
degrees of freedom, respectively. Then geometric phase gates
can be performed on the tfluxon [14] by adiabatically chang-
ing g1,2(t ).

Creating entanglement between the electron state and the
tfluxon has interesting implications in the context of nonlocal
gauge effects. Indeed, consider an initial state of the system to
be a product state of the electron and the tfluxon, so that there
is no correlation between the measurements done on both. To
illustrate the idea of nonlocal effects with the same simple
model, we take the same Hamiltonian as in Eq. (1) but with
an arbitrary coupling of the electron to an external field:

Ĥ = 1

2me

(
p̂(e)

ϕ − eϕ0n̂( f )

2πr

)2

+ �σ ( f )
x + Ĥe, (5)

where He = g(t )σ (e)
x . The operator Ĥe is acting only on the

electron subspace and can describe, e.g., the interaction of
the electron dipole moment with an e.m. field. According
to our scenario, at t � 0 we have g = 0 and the eigenstates
of the Hamiltonian (5) are product states of the |m〉 and |n〉
basis states. At t = 0 the interaction term He is turned on.
Accordingly, the time evolution will result in changing the
reduced density matrix of the tfluxon. One can easily check
numerically that the expectation value of the energy and von
Neumann entanglement entropy of the tfluxon will increase
due to the coupling. This implies that the exchange of infor-
mation and energy between the two subsystems is nonlocally
mediated by the gauge field potential only.

V. SCALING UP THE SYSTEM

The system can be scaled up to include more complicated
operations. Consider a setup that involves two of such tflux-
ons, as in Fig. 1(b). The Hamiltonian is now

Ĥ =
(

p̂ϕ − eϕ0n̂1

2πr
+ eϕ0n̂2

2πr

)2

+ �σ ( f 1)
x + �σ ( f 2)

x . (6)

Here ( f 1) and ( f 2) denote operators acting on the degrees
of freedom of tfluxon 1 and 2. We assumed the configuration
in which the two tfluxons have opposite directions, hence the
opposite signs in parentheses in Eq. (6). For the eigenstates of
the system, we use the ansatz

|ψm〉 = |m〉 ⊗ (a1|00〉 + a2|01〉 + a3|10〉 + a4|11〉),

and the effective Hamiltonian becomes⎡
⎢⎢⎢⎣

m2 � � 0
� (m − 1)2 0 �

� 0 (m − 1)2 �

0 � � m2

⎤
⎥⎥⎥⎦.

Its eigenenergies are E (1)
m = (m − 1)2, E (2)

m = m2, and

E (3,4)
m = 1

2 [1 − 2m + 2m2 ±
√

(1 − 2m)2 + 16�2 ].
They are plotted in Fig. 3. The salient feature of the system

is that the tfluxon parts of the corresponding eigenstates are
entangled states of the tfluxons. For example, |�−〉 = |00〉−|11〉√

2

FIG. 3. The eigenenergies E of the two-tfluxon system plotted
as a function of the quantum number m for � = 3. From bottom to
top the energies are E (4) (dashed green line), E (2) (solid orange line),
E (1) (dashed blue line), and E (3) (dashed red line). Both E and � are
in units of ga and therefore dimensionless. The solid black arrows
represent electric dipole allowed transitions from the ground state,
which is a product state for the tfluxons |n1〉 ⊗ |n2〉, to excited states
in E 1 and E 2 bands which are entangled Bell states.

is the tfluxon part of the eigenstate of the entire E (1)
m band, and

|
−〉 = |01〉−|10〉√
2

is the same for the E (2)
m band. All the states

of these bands are still orthogonal because they have different
quantum numbers m. These are maximally entangled Bell
states of the tfluxons. Therefore, a simple operation of exciting
the system from the ground state E (4)

m , which is a product state,
to any state in the E (1)

m or E (2)
m bands, as shown in Fig. 3,

will nonlocally create a maximally entangled state between
the two tfluxons. Any known protocol to create entanglement
involves either direct interaction between two quantum sub-
systems or entanglement swapping, which also requires, for
example, that each of the entangled photons interacts locally
with each subsystem. Here the entanglement creation does not
require any local interaction between the fields of the tfluxons.

The effective Hamiltonian given by the matrix above can
be written as

Ĥm = h0I + 
h.
σ ( f 1) + 
g.
σ ( f 2) + Jmσ ( f 1)
z σ ( f 2)

z , (7)

where the nonzero coefficients are

h0 = m2, h1 = g1 = �, h3 = g3 = m − 1/2,

Jm = 2m − 1.

The coupling coefficient Jm between the two initially non-
interacting tfluxons emerged due to the coupling with the
electron and describes electron-induced tfluxon-tfluxon inter-
action. Since Jm is a function of m, it can be tuned and changed
between antiferromagnetic for m > 0 and ferromagnetic for
m < 0. Moreover, the coupling coefficient does not change by
deforming the QR or changing the distance between the two
tfluxons as long as the electron path encircles both tfluxons.
This is different from the usual situation when the interaction
strength falls off with the distance between the interacting
parts of the system. The interaction strength Jm is in units of
ga so the minimum value Jm = 1 is also in the GHz range.

Another interesting feature of the coupled QR-tfluxon
models is that the energy can be transferred nonlocally
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FIG. 4. Exchange of information and energy between the two
tfluxons. (a) for � = 1, the dimensionless probability for measuring
|010〉 is plotted as function of time. Around t = 6 the excitation
is completely transferred from tfluxon 2 to tfluxon 1. (b) The von
Neumann entanglement entropy (in bits) of the tfluxon as a function
of time. The time is normalized by h̄/ga ≈ 1 ns.

between the two tfluxons. To illustrate this, consider the initial
state in the form |ψ (0)〉 = |m = 0〉 ⊗ |n1 = 0〉 ⊗ |n2 = 1〉.
The time evolution of this state will keep m fixed and results
in rotation of the tfluxons part of the wave function by
the effective Hamiltonian above. Accordingly, after some
time τ , the state vector becomes |ψ (τ )〉 = |0〉 ⊗ |1〉 ⊗ |0〉.
Figure 4(a) shows the probability of finding the system with
n1 = 1. This means that the flux (energy) initially in tfluxon 2
transfers to tfluxon 1. From an operational point of view this
might be viewed as just swapping |10〉 to |01〉. However, in
our case the two toroids are isolated from each other with no
overlapping fields. Moreover, one can start from the state with
m = 0, i.e., zero magnetic moment which rules out any effect
of the magnetic field produced by the electron. Similarly to
the case of one tfluxon, this would demonstrate the observable
effects of the gauge potential while eliminating the possibility
that the AB phase is acquired due to the interaction energy
between the e.m. field of the moving particle and the external
fields [12].

The models considered here can be straightforwardly
scaled up or extended to include more operations. For ex-
ample, more than one electron can be injected into a QR,
which will lead to the occupation of several m states and
excited energy bands in Fig. 3. Furthermore, a chain of the
tfluxons can be created where each two consecutive tfluxons
are coupled to each other, as shown in Fig. 1(c). Following the
same procedure as in the case of two tfluxons, the effective
Hamiltonian of the tfluxons on the chain can be written as

Ĥm =
∑

i

Jmσ (i)
z σ (i+1)

z + �σ (i)
x + hmσ (i)

z + h0I. (8)

This is a transverse field Ising Hamiltonian with tunable
parameters. Hence, this system can be used as a quantum
simulator [15]. The two protocols discussed above can be

applied for the chain setup, for example, by entangling the
tfluxons on the chain pairwise consecutively by changing the
m state of an electron in the corresponding QR.

VI. DISCUSSION AND CONCLUSIONS

Experimentally, the realization of the proposed qubit
system in a solid-state platform seems possible by in-
tegration of two existing technologies: the ballistic QRs
which allow observations of the AB oscillations [4–8,16–18]
and three-dimensional (3D) integrated superconducting qubit
technology, especially heterogeneous flip-chip 3D integration
[19] and curved 3D nanoarchitectures [20] which allow fabri-
cation of superconducting or magnetic nanotubes in the shape
of a hollow cylinder with a broad range of diameters.

The size of the QR is limited by phase coherence length
which in the above experiments was around several μm. In
addition to that, a simple superconducting loop can be used
with some qualitative differences from the QR such as equally
spaced energy levels.

Obviously, the decoherence time will limit the number of
operations discussed in this paper. The coherence time for the
tfluxon is expected to outperform the micro- to millisecond
coherence time of planar flux qubits due to the better de-
coupling from the environment. It will also depend on the
dielectric material inside the toroid. Calculating the perfor-
mance limits imposed by decoherence should be done for
a specific design and choice of a material system, which is
outside the scope of this paper. It is expected that the real-
ization of a toroidal fluxon is going to be the most difficult
technological part.

As the first experimental attempt, one could build a sim-
ilar system on the basis of QRs coupled to standard planar
flux qubits. Such a system would have the same dephasing
timescale as a standard superconducting circuit. It would not
have a toroidal topology protection from decoherence. Also,
the magnetic fields would be directly threading the QR, thus
weakening some of the above nonlocality arguments. How-
ever, one could still demonstrate the new type of tunable
coupling and test the same operations within a less demanding
design. In any scenario, we hope that our paper will attract the
interest of various research communities and stimulate their
interdisciplinary collaboration to implement this novel qubit
system.
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