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Fastness and robustness are both critical in the implementation of high-fidelity gates for quantum computation,
but in practice a trade-off has to be made between them. In this paper, we investigate the robust time-optimal
control problem that aims at the best balance. Based on the Taylor expansion of the system in terms of uncertainty
parameters, we formulate the design problem as the optimal control of an augmented finite-dimensional system
at its quantum speed limit (QSL), where the robustness is graded by the order of series truncation. The
gradient-descent algorithm is then introduced to sequentially seek QSLs corresponding to different orders of
robustness. Numerical simulations are carried out for single-qubit systems with frequency and field amplitude
uncertainties, and the obtained time-optimal control pulses can effectively suppress gate errors to the prescribed
robustness order. These results provide a practical guide for selecting pulse lengths in the pulse-level compilation
of quantum circuits.
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I. INTRODUCTION

Precision is the primary goal of control for gate imple-
mentation in error-correctible quantum computation [1–4]. On
top of that, the designed control protocols need to be as fast
as possible so that more gates can be performed within the
system’s finite coherence time. The control also needs to be
robust against errors caused by noises and uncertainties in the
system, so that high performance can be maintained without
frequent recalibration. The two important targets have stimu-
lated extensive studies for robust quantum control [5–9] and
time-optimal control [10–14], respectively. However, combin-
ing them in a single design task, i.e., seeking controls that are
not only fast but also robust, has been rarely considered [15].

The design task considering both fastness and robustness
can be formulated as a tri-objective optimization problem
acrossing the precision, the time duration and the robustness
of the control pulse. As is shown in Fig. 1, the best compro-
mised solutions constitute the Pareto front on which one index
cannot be further improved without sacrificing the other two.
Since the precision must be guaranteed with highest priority,
the trade-off is mainly between the robustness and the fastness
at the bottom edge of the Pareto front. For each specified
degree of robustness, the corresponding time duration at the
edge corresponds to the minimum time for achieving high-
precision robust gates, which is also called the quantum speed
limit (QSL).

In principle, the robust control of a quantum system with
uncertainties is equivalent to the ensemble control of un-
countably many determistic systems under a uniform control
field, which can be proved to exist under certain Lie algebraic
controllability conditions [16]. To find such control fields, an
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efficient approach is to Taylor expand the system into a se-
ries of interacting deterministic subsystems [7,17–19] whose
finite-order truncation can be applied for the design. The order
of truncation specifies the desired robustness. This provides a
framework for designing the fastest robust quantum control
pulses for implementing dynamically corrected gates (DCG)
[20]. For single-qubit systems, geometric restrictions on the
truncated system can be applied to derive the analytic form
of robust time-optimal control pulses [15]. Alternatively, low-
order robust time-optimal control solutions may be solved by
the Pontryagin Minimum Principle [7].

These known results focused on analytically solvable cases
in which the system is controlled by a single field and is
disturbed by a single type of uncertainty (e.g., field ampli-
tude or qubit frequency uncertainties that causes bit-flip or
phase-flip errors, respectively). Real quantum systems often
involve multiple uncertainties that jointly affect the dynamics,
under which circumstance multiple control fields (e.g., the
microwave driving of superconducting qubits with both I/Q
components) [21,22] have to be applied to improve the ability
of error suppression. To our knowledge, neither analytical nor
numerical studies have been casted to such complicated cases
in the literature.

In this paper, we will propose an algorithm for identify-
ing robust QSLs and the corresponding robust time-optimal
controls in single-qubit gate control with orthogonal I/Q
components. Since single-qubit gates are the most frequently
calibrated gates in large-scale quantum algorithms, the ob-
tained values of robust QSLs provide a useful guide for
the choice of pulse length in consideration of robustness to
uncertainties.

The remainder of this paper is organized as follows.
Section II presents the expansion-based model for robust
time-optimal control problems, which grades the degree of
robustness by the order of series truncation. Then, Sec. III
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FIG. 1. Schematics of the Pareto front of the triobjective opti-
mization between precision, fastness, and robustness. Since precision
must be guaranteed in practice, we are concerned with the bottom
edge that makes the best balance between robustness and fastness.
The corresponding time duration of each point indicates the quantum
speed limits with different degrees of robustness.

analyzes the general properties of the corresponding QSL and
the time-optimal controls, based on which a numerical algo-
rithm is presented for searching QSLs and the corresponding
robust control pulses. In Sec. IV, the proposed numerical algo-
rithm is tested by a single-qubit system with two orthogonal
controls and two uncertainty parameters. Finally, conclusion
is made in Sec. V.

II. DYNAMICAL MODEL OF SINGLE-QUBIT CONTROL
SYSTEMS WITH UNCERTAINTIES

Let us start from an ideal single-qubit system that is
resonantly driven by two orthogonal control fields. Under
the rotating-wave approximation, the evolution of the unitary
propagator U (t ) obeys the following Schrödinger equation:

U̇ (t ) = −i[ux(t )σx + uy(t )σy]U (t ), (1)

over some finite time interval [0, T ], where U (t ) is the unitary
propagator of the qubit system. The Pauli matrices are

σx = 1

2

(
0 1
1 0

)
,

σy = 1

2

(
0 i
−i 0

)
,

σz = 1

2

(
1 0
0 −1

)
.

The time-dependent functions ux(t ) and uy(t ) are the in-phase
and quadrature components of the control field subject to the
following power constraint:

u2
x (t ) + u2

y (t ) � �2, (2)

where the amplitude bound � is in unit of angular frequency.

In this paper, we consider two typical types of uncertainties
described as follows:

U̇ (t ; ε1, ε2) = −i{ε1σz + (1 + ε2)[ux(t )σx

+ uy(t )σy]}U (t ; ε1, ε2), (3)

where the uncertainty paremeters ε1 (in unit of angular fre-
quency) and ε2 (dimensionless) characterize the drift of qubit
frequency and the power fluctuation of the control field, re-
spectively. Throughout this paper, we assume that the two
parameters are slowly varying and hence can be treated as
unknown constants during the course of evolution.

The system model (3) is typical in the implementation of
single-qubit gates. The operators σz and σx associated with
the uncertainty parameters ε1 and ε2 can be taken as the
infinitesimal generator of phase-flip and bit-flip errors that are
broadly studied in stabilizer quantum error correction codes
[23]. The purpose of robust control is to maintain the error
rate to be below the error-correction threshold.

To facilitate the following analysis, we divide (3) by a
scaling factor �0 (in unit of angular frequency) on both sides,
which leads to the following nondimensionalized system:

U̇ (t̄ ; ε̄1, ε2) = −i{ε̄1σz + (1 + ε2)[ūx(t̄ )σx

+ ūy(t̄ )σy]}U (t̄ ; ε̄1, ε2), (4)

in which the rescaled time variable t̄ = �0t and uncertainty
parameter ε̄1 = ε1/�0 are both dimensionless. The rescaled
control functions

ūx,y(t̄ ) = �−1
0 ux,y(�t ) (5)

are also nondimensionalized with a dimensionless bound
�̄ = �/�0.

The above transformation shows that the robust time-
optimal control problems can be analyzed and optimized with
respect to a fixed bound �̄, and the obtained results can be
extended by rescaling to cases with an arbitrary value of �.
Without loss of clarity, we will always assume the system
is dimensionless and remove all the bars in the following
discussions.

III. SEARCHING ALGORITHM FOR QSLS AND ROBUST
TIME-OPTIMAL CONTROL PULSES

In this section, we will analyze the properties of robust
time-optimal controls and define the corresponding QSLs,
based on which a numerical algorithm will be proposed.

A. Robust quantum speed limits

The goal of robust time-optimal control in this paper is to
find the shortest control pulse ux,y(t ) so that U (T ; ε1, ε2) ≡ Uf

for arbitrary ε1 and ε2. Since ε1 and ε2 are continuous parame-
ters, this actually requires that the control must be able to steer
uncountably many noninteracting subsystems (associated to
different values of ε1 and ε2) to the same target Uf at the same
time T .

Since the uncertainty parameters are small in most systems,
we can Taylor expand U (t ; ε1, ε2) as the following series:

U (t ; ε1, ε2) =
∑

k1,k2�0

ε
k1
1 ε

k2
2 Uk1,k2 (t ), (6)
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where ε1 has been nondimensionalized. In the small parameter
regime, we only need to keep the first few dominant error
terms. Correspondingly, the ensemble of uncountably many
systems may be approximated by a finite-dimensional system
corresponding to the reserved terms. The order of series trun-
cation naturally grades the robustness to be achieved.

In this regard, a control ux,y(t ) is said to be (n1, n2)th-order
robust if it steers U00(T ) to its target Uf and meanwhile di-
minishes Uk1,k2 (T ) for all other 0 � k1 � n1 and 0 � k2 � n2.
Among all (n1, n2)th-order robust control pulses, the duration
time Tn1,n2 of the shortest one is defined as the (n1, n2)th-order
robust QSL. According to the transformation (5), the robust
QSLs are proportional to the inverse of the control bound �,
which means that higher control bounds lead to shorter QSLs.

B. Numerical algorithm

Because the time-variant Hamiltonian in (4) does not com-
mute at different times, the time-optimal control problem is
not analytically solvable except for the lowest-order case n1 =
n2 = 0, which are in the form of either sinusoidal or constant
functions [24]. For general higher-order cases, we have to
resort to numerical optimization as analytical solutions are
unavailable. In this paper, we will use the following objective
function for the search of robust time-optimal controls:

J[{uk (t )}] = F [U00(T )] + tr[U †
0,1(T )U0,1(T )]

+ · · · + tr
[
U †

n1n2
(T )Un1n2 (T )

]
, (7)

which includes the gate error

F [U ] = 1 − |tr(U †
f U )|2/22 (8)

and the higher-order error terms to be dimimished for
(n1, n2)th-order robustness.

The strategy for finding robust QSLs and their correspond-
ing time-optimal controls is straightforward. Illuminated by
our earlier works [13,25,26], we start from a small time
duration T (shorter than the QSL) and optimize the control
pulse using the gradient-ascent pulse engineering (GRAPE)
algorithm [27], after which we gradually increase T and re-
optimize the control pulse until J is decreased to some error
threshold ε, and the corresponding critical time is recorded
as the robust QSL Tn1,n2 . Since the pulse shapes continuously
vary with T , one can use the obtained optimal control pulse
as the initial guess for the next round of optimization, which
takes only a few iterations to update the control.

To facilitate the gradient calculation, we first derive dy-
namical equations for Uk1k2 (t ) by replacing (6) into (4), which
yields [7]

U̇00(t ) = −i[ux(t )σx + uy(t )σy]U00(t ), (9)

for the (0, 0)th-order term, and

U̇k1k2 (t ) = −i[ux(t )σx + uy(t )σy]Uk1k2 (t ) − iσzUk1−1,k2 (t )

−i[ux(t )σx + uy(t )σy]Uk1,k2−1(t ),

for higher-order terms. They can be further grouped into a
compact form

�̇Un1n2 (t ) = −i
{
Ln1 ⊗ In2+1 ⊗ σz + In1+1 ⊗ (

In2+1 + Ln2

)
⊗ [ux(t )σx + uy(t )σy]

} �Un1n2 (t ), (10)

where �Un1,n2 (t ) = [U00(t ),U01(t ), . . . ,Un1n2 (t )]� and

Ln =

⎛
⎜⎜⎝

0 0 · · · 0
1 0 · · · 0
...

...
. . .

...

0 · · · 1 0

⎞
⎟⎟⎠ ∈ R(n+1)×(n+1). (11)

The gradient evaluation is very expensive for high-order
robust time-optimal controls due to the rapid increase of
the systen dimension N = 2(n1 + 1)(n2 + 1). Regarding this,
we can initiate the optimization from a low order for which
the QSL is easy to find, after which we gradually increase
the order and repeat the same procedure. In this way, robust
QSLs and the corresponding time-optimal controls can be
sequentially discovered from low to high orders.

The optimization efficiency can be further improved in the
following ways. First, according to the Pontrygin Minimum
Principle, the robust time-optimal controls satisfy u2

x (t ) +
u2

y (t ) = �2 (see the Appendix for details), i.e., the fastest con-
trol must be also the strongest. This property narrows down
the search within the space of control fields in the following
form:

ux(t ) = � cos φ(t ), uy(t ) = � sin φ(t ), (12)

where the phase function φ(t ) is the free function to be
optimized.

Second, we derive a formulation (see Appendix B) to
alleviate the computation cost of matrix exponentials for eval-
uating the evolution operator of (10), which rapidly rises with
the robustness order. The formulation exploits the properties
of Pauli matrices that enables a four to ten times wall-time
speed-up compared with the traditional Padé-approximation
based method. The method also provides a simple formula-
tion for precisely evaluating the gradient vector, while the
formulation adopted in the standard GRAPE algorithm [27]
is only a first-order approximation. The proposed accurate
gradient-vector formulation guarantees the stability of the iter-
ative optimization without increasing the computational cost.

IV. SIMULATION RESULTS

In this section, we apply the proposed numerical algorithm
to the search of robust time-optimal control pulses for single-
qubit gates. For generality, we test the following four different
one-qubit gates:

X =
(

0 1
1 0

)
,

Z =
(

1 0
0 −1

)
,

S =
(

1 0
0 i

)
,

H = 1√
2

(
1 1
1 −1

)
.

The simulation is based on the nondimensionalized model
(4) with �̄ = π , under which the time duration of a square
π pulse is unit. Let T̄n1n2 be the corresponding robust QSL,
then the QSL for arbitray control bound � can be converted
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FIG. 2. The phase transitions during the optimization of robust
time-optimal controls against the frequency (blue solid curves) and
amplitude (red dash-dotted curves) uncertainties for gates X , Z , S,

and H , respectively. The sharp dips from left to the right indicate the
robust QSLs from the zeroth order to higher orders.

as Tn1n2 = π�−1T̄n1n2 . For each gate, we optimize robust
time-optimal controls under three circumstances: (1) only the
frequency is uncertain (corresponding to n1 �= 0 and n2 = 0);
(2) only the field amplitude is uncertain (corresponding to
n1 = 0 and n2 �= 0); and (3) both the frequency and the am-
plitude are uncertain (corresponding to n1 �= 0 and n2 �= 0).

We start the numerical optimization from a short duration
time T = 0.3 and from the lowest order n1 = n2 = 0. Then,
we gradually increase T by �T = 0.005 in each round and
update the field by minimizing the cost function (7) until the
error threshold ε = 10−10 is reached. The hitting time is then
recorded as the corresponding QSL, after which we increase
the order of the model (4) by 1 and repeat the same procedure
until the next QSL is detected. Figure 2 displays the transition
of optimal J value when increasing T and the robustness
order, where the sharp dips from left to the right indicate
the robust QSLs from zeroth order to higher orders. Figure 3
displays the obtained zeroth-order to third-order robust time-
optimal control fields for Z gate.

During the optimization, the pulse duration time is always
below the QSL and thus the control system (4) remains un-
controllable. The lack of controllability may cause unwanted

FIG. 3. The robust time-optimal control fields for the Z gate
with zeroth-order to third-order robustness, respectively, whose pulse
durations increase with the robustness order.

local suboptima that impede the search away from globally
optimal solutions [28,29]. This did happen in our simulations,
especially when the robustness order becomes higher. Under
such circumstances, we need to restart the algorithm from
different initial guesses and select the shortest transition time
as the approximated robust QSL.

Table I enlists the obtained QSLs for the first few orders
corresponding to the dips in Fig. 2. The QSLs are calculated
up to the fourth order for the frequency uncertainty and up to
the third order for the amplitude uncertainty. The calculation
of higher-order QSLs is much harder and also unnecessary
because they may have surpassed the qubit’s coherence time.

To test the robustness performance of the obtained time-
optimal controls, we evaluate the gate error (8) using the
uncertain model (3) when the frequency and amplitude uncer-
tainty parameters are evenly sampled within −0.5 � ε1 � 0.5
and −0.5 � ε2 � 0.5. Taking the Z-gate, for example (the
testing results for other gates can be found in Appendix C),
the dependence of the gate error on the uncertainty parameter
is depicted in Fig. 4 for different orders of robustness. It can
be seen that higher-order robust control can maintain high
precision in a wider range. For example, the third-order robust
time-optimal controls can suppress the error down below 10−6
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TABLE I. The robust QSLs for single-qubit gates (X , Z , S, and H ) against frequency and/or amplitude uncertainties.

Frequency Amplitude Freq.+Amp.

Gate T̄00 T̄10 T̄20 T̄30 T̄40 T̄01 T̄02 T̄03 T̄11 T̄22

X 1.00 2.33 4.28 5.04 6.72 2.58 4.21 5.85 4.44 8.22
Z 1.74 3.48 4.43 5.99 7.19 3.46 5.17 6.91 5.34 8.78
S 1.32 2.97 4.12 5.53 6.71 3.04 4.74 6.48 4.83 8.11
H 1.25 2.69 4.34 5.47 7.00 2.73 4.18 5.81 4.89 8.83

(a typical threshold for quantum error correction) within the
regime |ε1| � 0.26 for frequency uncertainty and |ε2| � 0.10
for amplitude uncertainty. This is to say that, to maintain the
10−6 precision under 10 MHz bound on the driving field,
the frequency offset is allowed to drift by up to 2.6 MHz abd
the field amplitude is allowed to shift by up to ±10%.

We also test the performance of (2, 2)th-order robust
time-optimal control that resists simultaneous frequency and
amplitude uncertainties. The dependence of the gate error
on the two parameters is visualized by the three-dimensional
(3D) plot in Fig. 5(a). The flat landscape indicates that the con-
trol can dynamically correct errors simulataneously induced
by the two uncertainties. By contrast, the second-order robust
time-optimal controls with respect to individual frequency (or
amplitude) uncertainty is extremely fragile to the amplitude
(or frequency) uncertainty. To see this more clearly, we draw
in Fig. 5(b) the contour plots at the level-set of 10−6. The
area enclosed by the contour curves indicate shows the over-
whelmingly superior robustness of the (2, 2)th-order control
comparing to those of single-parameter second-order robust
controls. However, it should be noted that the simultaneous
robustness against two uncertainties is achieved at the price

-0.4 -0.2 0 0.2 0.4

1/

10-12

10-6

100

Er
ro

r

(a) Frequency uncertainty

-0.4 -0.2 0 0.2 0.4

2

10-12

10-6

100

Er
ro

r

(b) Amplitude uncertainty

FIG. 4. The gate error versus uncertainty parameter under robust
time-optimal controls for Z gate: (a) frequency uncertainty (from top
to bottom: zeroth order to fourth order); (b) amplitude uncertainty
(from top to bottom: zeroth order to third order).

of a longer pulse duration T̄22 = 8.78 in comparison with
T̄20 = 4.43 and T̄02 = 5.17.

V. CONCLUDING REMARKS

To conclude, we presented the concept of robust QSL and
proposed a numerical algorithm for designing robust time-
optimal control pulses that balance between control speed and
robustness. Numerical simulations are performed for single-
qubit quantum gates against frequency and field amplitude
uncertainties, which sequentially discover QSLs from low
to high orders and their corresponding robust time-optimal
controls. Their excellent robustness performance are verified
by numerical tests.

The QSLs enlisted in Table I provide a useful guidance
for selecting pulse durations in the pulse-level compilation
of quantum circuits, so that the entire time evolution can be
minimized while maintaining error robustness. This can effec-
tivly reduce the error-per-gate (EPG) rate, which is pivotal for
the implementation of error-correctible quantum computing
algorithms.

In the simulation, we focus on the single-qubit control
system under rotating-wave approximation. The constructed
model and proposed algorithm can be directly extended to
more general systems involving mutliple qubits or without
rotating-wave approximation. In generic scenarios, it is im-
portant to investigate the system’s controllability so as to
understand to what extent one can correct the errors in com-
plex uncertain quantum systems. For numerical optimization,
the computational overhead will be a big challenge. We be-
lieve that there is much room left for developing more efficient
and more stable algorithms. For example, one can alter the
expansion of U (t ; ε1, ε2) under other polynomial basis of ε

instead of the monomial basis adopted in (6) [17], which
may lead to quicker convergence depending on the charac-
teristics of the parameter distribution. Also, the methodology
of quantum brachistchrone can also be applied for our pur-
poses. These possibilities will be further explored in our future
studies.
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APPENDIX A: PROOF OF PROPERTY 1

This property is based on the Pontryagin Minimum Prin-
ciple (PMP) in optimal control theory. For convenience, we
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FIG. 5. The gate error versus frequency and/or amplitude uncertainties under (2, 2)th-, (2, 0)th-, and (0, 2)th-order robust time-optimal
controls: (a) 3D plot; (b) the color map of the logarithm of the gate error and the contour curves at the level set 10−6.

rewrite the unified model (10) as

�̇Un1n2 (t ) = −i[H0 + ux(t )H1 + uy(t )H2] �Un1n2 (t ), (A1)

where

H0 = Ln1 ⊗ In2+1 ⊗ σz,

H1 = In1+1 ⊗ (
In2+1 + Ln2

) ⊗ σx,

H2 = In1+1 ⊗ (
In2+1 + Ln2

) ⊗ σy.

PMP claims that time optimal controls must minimize the
following pseudo-Hamiltonian

H = 1 + ReTr{ �V †
n (t )[H0 + ux(t )H1 + uy(t )H2] �Un(t )},

(A2)

where the adjoint state �Vn(t ) satisfies the following differential
equation:

�̇Vn(t ) = −i[H†
0 + ux(t )H†

1 + uy(t )H†
2 ] �Vn(t ), (A3)

along the optimal trajectory of �θ (t ) and �V (t ). This implies that

ux(t ) = −� cos φ(t ), uy(t ) = −� sin φ(t ), (A4)

where

φ(t ) = arctan
ReTr[ �V †

n (t )H2 �Un(t )]

ReTr[ �V †
n (t )H1 �Un(t )]

(A5)

as long as

{ReTr[ �V †
n (t )H1 �Un(t )]}2 + {ReTr[ �V †

n (t )H2 �Un(t )]}2 �= 0.

(A6)

The above result indicates that the time-optimal control al-
ways run with full power exerted.

Theorectically, it is also possible that ν2
1 (t ) + ν2

2 (t ) = 0,
under which circumstance the optimal control can be deter-
mined by minimizing the pseudo-Hamiltonian as above. Such
a piece of control is called a singular arc. We are not able to

prove that singular arcs do not exist, but from our numerical
simulations it is always the case.

APPENDIX B: EVALUATION OF GRADIENT

To calculate the cost function and its gradient, we need to
calculate the propagator as a time-ordered exponential of the
time-dependent Hamiltonian:

V (T ) = T exp

{
−i

∫ T

0
[H0 + � cos φ(t )H1

+� sin φ(t )H2]dt

}
. (B1)

When the control pulse is piecewise constant, we can always
decompose the propagator as V (t ) = VN · · ·V2V1, where

Vj = exp{−i[K1 ⊗ σz + K2 ⊗ (� cos φ jσx+� sin φ jσy)]�t},
(B2)

where K1 = In1+1 ⊗ (In2+1 + Ln2 ) and K2 = In1+1 ⊗
(In2+1 + Ln2 ). With this decomposition, the gradient can
be computed as

∂V (T )

∂φ j
= VN · · · ∂Vj

∂φ j
· · ·V1. (B3)

In most numerical tools, Padé approximation is broadly
applied to calculte the matrix exponentials, and this is the
most expensive part of the gradient-based algorithm. In the
following, we show that, by exploiting the special structure of
the single-qubit control system, the matrix exponential can be
computed more efficiently. This is based on the fact that

[K1 ⊗ σz + K2 ⊗ (� cos φ jσx + � sin φ jσy)]2

= (
K2

1 + �2K2
2

) ⊗ I2 (B4)
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FIG. 6. The gate errors for H , X, and S gates under robust controls with orders 0–3 for amplitude uncertainty and orders 0–4 for frequency
uncertainty.

is independent of φ. Appling this property to the Taylor ex-
pansion of the matrix exponential, we have

Vj = exp{−i[K1 ⊗ σz + K2 ⊗ (� cos φ jσx

+� sin φ jσy)]�t}
= C(�t ) ⊗ I2 − i[S(�t )K1 ⊗ σz + S(�t )K2 ⊗

× (� cos φ jσx + � sin φ jσy)]�t

where

C(�t ) =
∞∑

m=0

(−�t )m

(2m)!

(
K2

1 + �2K2
2

)m
, (B5)

S(�t ) =
∞∑

m=0

(−�t )m

(2m + 1)!

(
K2

1 + �2K2
2

)m
. (B6)

Because C(�t ) and S(�t ) is only dependent on �t and �,
they can be precalculated and stored as constant matrices dur-
ing the optimiztion. This can greatly improve the numerical
efficiency.

Since the propagator is only linearly dependent on cos φ

and sin φ, we can easily calculate the term

∂Vj

∂φ j
= −iS(�t )K2 ⊗ (−� sin φ jσx + � cos φ jσy)�t (B7)

gradient. Note that the gradient vector calculated in this way
is without any approximation, while in standard GRAPE

algorithm [27] the gradient evaluation

∂Vj

∂φ j
≈ −i[K2 ⊗ (−� sin φ jσx + � cos φ jσy)]Vj�t (B8)

is based on the first-order approximation.

APPENDIX C: ROBUSTNESS TESTS FOR OTHER
SINGLE-QUBIT GATES

To verify the effectiveness of robust control for more quan-
tum gates, we carry out the same optimization procedure for
X , H, and S gates, and test the gate errors with respect to the
amplitude and frequency uncertainties.

The testing results are shown in Fig. 6, which exhibit
similar trends to those of Z gate in Fig. 4. To compare their
performances, we list in Table II the range of uncertainty
parameters for the gate error below 10−6 under the third-order
robust controls. It can be seen that the robustness is relatively
weaker for the Z gate, and relatively stronger for the X gate.

TABLE II. The range of uncertainty parameters with gate errors
below 10−6 under the third-order robust controls.

Gate Amp. uncertainty Freq. uncertainty

X (−0.120, 0.119) (−0.415, 0.415)
Z (−0.102, 0.101) (−0.245, 0.257)
S (−0.117, 0.114) (−0.389, 0.383)
H (−0.119, 0.118) (−0.398, 0.403)
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