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Frequency-dependent squeezing for gravitational-wave detection through quantum teleportation
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Ground-based interferometric gravitational-wave detectors are highly precise sensors for weak forces, limited
in sensitivity across their detection band by quantum fluctuations of light. Current and future instruments address
this limitation by injecting frequency-dependent squeezed vacuum into the detection port, utilizing narrow-band,
low-loss optical filter cavities for optimal rotation of the squeezing ellipse at each signal frequency. This study
introduces a scheme of such vacuum injection employing the principles of quantum teleportation which works
the same as an arbitrary number of filter cavities without additional kilometer-scale infrastructure. We applied
this scheme to a detuned signal-recycled Fabry-Pérot–Michelson interferometer, which is the baseline design
of the low-frequency detector within the Einstein Telescope xylophone detector. It is shown that our scheme
achieves broadband suppression of quantum noise without requiring additional filter cavities or modifications to
the core optics of the main interferometer.
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I. INTRODUCTION

In 2015, the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) [1] achieved a milestone by detecting the
first gravitational wave from a binary-black-hole merger [2].
This heralded the beginning of gravitational-wave astronomy,
following which the LIGO-Virgo-KAGRA [3,4] collaboration
has identified more than 90 gravitational-wave events [5–8].
Furthermore, the third-generation detectors, i.e., the Cosmic
Explorer [9] and the Einstein Telescope [10], striving for
tenfold greater sensitivity, will empower the exploration of
gravitational-wave signals from the events spanning the entire
history of the universe [11,12]. This endeavor will illuminate
unresolved inquiries in fundamental physics and cosmology
[13–15].

Gravitational-wave detectors serving as highly precise
displacement-measurement instruments are limited by quan-
tum noise across most of their frequency band. At low
frequencies, the optimal sensitivity of a conventional detector
faces the constraints of the standard quantum limit (SQL)
[16] as a natural consequence of Heisenberg’s uncertainty
principle [17]. To overcome the SQL, scientists have proposed
a variety of technologies based on the quantum nondemolition
measurement principle [18,19]. The mainstream approach for
quantum noise reduction in existing and future detectors is
frequency-dependent squeezing (FDS) injection [20,21]. The
injected squeezed vacuum is produced by means of degenerate
parametric down-conversion in nonlinear optical crystals. The
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squeezing angle at each frequency is optimized by passive op-
tical cavities to cancel out the rotation of the squeezing ellipse
due to the ponderomotive effect within the interferometer.
Current gravitational-wave detectors employ a single filter
cavity for their tuned-broadband configurations [22], as it is
sufficient for broadband compensation of the ponderomotive
squeezing angle in the narrow-band approximation [23,24].
However, when this approximation breaks down, a larger
number of filter cavities become necessary (see Refs. [25,26],
for example). In either case, as the scale of the detectors in-
creases, these filter cavities, which are currently at the 100-m
scale [27,28], will need to reach the kilometer scale.

The installation of kilometer-scale filter cavities entails
substantial costs and technological difficulties. To tackle this
challenge, several approaches have been proposed to achieve
the required sensitivity without the need for filter cavities.
These include the use of electromagnetically induced trans-
parency [29], entangled light and negative-mass atomic spin
ensembles [30,31], and small-scale optomechanical filters
[32]. Einstein-Podolsky-Rosen (EPR) or conditional squeez-
ing was proposed by Ma, et al. [33] and experimentally
demonstrated in [34–37]. In this scheme, by applying the
concept of EPR steering [38,39] to gravitational-wave detec-
tors, the main Fabry-Pérot–Michelson interferometer can be
repurposed as a single filter cavity [see Fig. 1(a)].

In this paper, we propose a generalized scheme of the EPR
squeezing, employing the concept of quantum teleportation.
Quantum teleportation of an optical state is a well-established
technique in the field of continuous-variable quantum infor-
mation processing that was first demonstrated by Furusawa
et al. based on the Braustein-Kimble scheme [40,41]. Through
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FIG. 1. Schematics of (a) EPR steering and (b) quantum teleportation. We use the two-photon formalism, in which each beam is described
by quadrature amplitude operators, where subscripts 1 and 2 denote the amplitude and phase quadratures, respectively. All transformations of
the beams are represented by transfer matrices, and âsqz is a squeezed vacuum. The Bell observables here are defined as α̂1 = (V̂1 − Â1)/

√
2

and α̂2 = (V̂2 + Â2)/
√

2. When Victor’s, Alice’s, and Bob’s states undergo physical transformations, Uv and Ua, which are assumed to be
phase rotations, and Ub, which corresponds to the ponderomotive squeezing, the teleported state is transformed accordingly to UbUaUvv̂.

our scheme, one can realize an arbitrary number of operations
of quadrature-angle rotation without the use of filter cavities.

The teleportation procedure in the Braustein-Kimble
scheme involves Alice, the sending station; Bob, the receiv-
ing platform which shares EPR-entangled photons [42]; and
Victor, which brings an unknown quantum state and initiates
the process [see Fig. 1(b)]. Alice conducts the Bell measure-
ment involving Victor’s and her own photons, transmitting the
outcome to Bob through the classical communication channel.
Bob then displaces his photon based on Alice’s information,
leading to the successful teleportation of Victor’s quantum
state. By adding physical operations to Alice’s, Bob’s, and
Victor’s paths, described as Ua,b,v in Fig. 1(b), one can also
manipulate the final teleported state as UbUaUvv̂. Further-
more, Bell measurement extends the limit of participating
modes from two to an arbitrary number. By plugging the
steered state or the teleported state into the initial state of Vic-
tor in a new teleportation protocol, v̂, via Bell measurement,
one can increase the number of equivalent filter cavities to an
arbitrary number (see the detailed discussion in Appendix B).

In the following sections, we illustrate how Quantum
Teleportation (QT) squeezing can be implemented in fu-
ture detectors, which necessitates multiple filter cavities.
Specifically, we focus on the low-frequency interferometer of
the Einstein Telescope’s xylophone detector (ETLF). In the
ETLF, the round-trip phase in the signal-extraction cavity is
slightly detuned to connect the suspended mirrors by the so-
called optical spring [16,43], which enables overcoming the
SQL. Additionally, for a narrow-band interferometer such as
the ETLF, detuning offers the flexibility to boost the detector’s
sensitivity [10].

To realize broadband noise suppression for such a de-
tuned configuration, two filter cavities are required: one is for

compensating the optical detuning resonance in the interfer-
ometer, and the other is for compensating the so-called optical
spring resonance from the ponderomotive rigidity effect. We
associate the main interferometer response including the pon-
deromotive squeezing [20] with Ub in Fig. 1(b) and quadrature
rotations by passive cavities with Uv,a. Figure 2 shows the
implementation. Three beams, Victor, Alice, and Bob, are
injected into the interferometer from the antisymmetric port.
The interferometer, acting as an empty cavity for Victor and
Alice, provides an optimized frequency-dependent quadrature
rotation by tuning their center frequencies and the macro-
scopic lengths of the arm and signal-extraction cavity, which
functions as the filter cavities. Bob’s frequency is matched
to the main laser from the symmetric port; then he sees the
interferometer as an active cavity including ponderomotive
squeezing [20]. The output is spectrally separated into two
detection ports by the output mode cleaners; Bob’s beam
gets collapsed via homodyne detection, while Victor’s and
Alice’s are detected through Bell measurement. By applying
Wiener filters to the two outputs of the Bell measurement,
quantum noise suppression is achieved (see Fig. 4 below). In
the following sections, we will present the details for each step
mentioned above.

II. QUANTUM STATE PREPARATION

The initial quantum states of three beams, Alice, Bob, and
Victor, are prepared with a multimode squeezer [44]. The
entangled beams, Alice and Bob, are centered at frequencies
ω0 + �a and ω0, created by driving the Optical Parametric
Amplifier (OPA) with a pumping beam at frequency 2ω0 +
�a; the squeezed beam, Victor, at frequency ω0 + �v , is cre-
ated by the second pumping beam at frequency 2(ω0 + �v )
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FIG. 2. Configuration of QT squeezing. The OPA in the antisym-
metric port is pumped at two frequencies, 2ω0 + �a and 2(ω0 + �v ),
generating entanglement at the sideband frequencies symmetrically
[see also Fig. 3(b)]. The former pumping results in a two-mode
EPR entanglement, Alice and Bob, while the latter forms a squeezed
state, Victor. Three beams are injected through a Faraday isolator.
The central part consists of a signal-recycled Fabry-Pérot-Michelson
interferometer, which includes the beam splitter (BS), input-test mass
(ITM), end-test mass (ETM), and signal-extraction mirror (SEM).
The interferometer is pumped at the frequency ω0, matching Bob’s
frequency. The output is spectrally separated by an output mode
cleaner (OMC). Bob’s beam is collapsed at the homodyne detection,
while Victor’s and Alice’s beams are detected through Bell measure-
ment: two beams are combined with local oscillator (LO) fields with
the LO angle ξLO and are subsequently detected by two photodetec-
tors. The outputs are subtracted from each other and demodulated
by two demodulation angles. The two sets of measurement data are
combined using the optimal filter gain (g1 g2), and finally, we achieve
quantum noise suppression.

[see Fig. 3(a)]. Here, �a is supposed to be a free spectral range
(FSR) of the OPA cavity away from Bob’s frequency to retain
the resonant conditions of the entangled beam, and �a − 2�v

equals the multiples of the FSR of the OPA cavity (see Fig. 3).
In two-photon formalism [45,46], the zero-mean ran-

dom fluctuations of the light field are described by a
two-dimensional vector consisting of the operators of the am-
plitude and phase quadrature, and for Alice, Bob, and Victor,
â = {â1,�, â2,�}T, b̂ = {b̂1,�, b̂2,�}T, and v̂ = {v̂1,�, v̂2,�}T,
where � is the sideband frequency and the superscript T
stands for the transpose. Below we omit the superscript � for
simplicity.

FIG. 3. The OPA resonance for (a) two pump fields and (b) the
signal and idlers. In this specific case two pump fields are separated
by five FSRs of the OPA cavity, and the frequency difference be-
tween Victor and Bob is 3 time larger than that of Alice and Bob.
(c) Schematics of three beams. The top and bottom panels show
fields in the sideband and quadrature pictures, respectively. The OPA
is pumped at two frequencies, 2ω0 + �a and 2ω0 + 2�v , generating
entanglement at the sideband frequencies symmetrically. The former
pumping results in a two-mode EPR entanglement, Alice and Bob,
while the latter forms a squeezed state, Victor.

FIG. 4. Top: Quantum-noise-limited strain sensitivity of the
ETLF. The red dashed and solid blue curves represent the base-
line FDS with −10-dB squeezing and QT squeezing, respectively.
The dashed purple curve is the baseline FDS with −15-dB squeezing.
We also show the sensitivity of the High-frequency interferometer
of the Einstein Telescope’s xylophone detector, which covers the
frequency region above 20 Hz. Bottom: Quantum noise enhancement
in power-spectral density compared to the nonsqueezed case of the
baseline FDS (shown by the dash-dotted curve in the top panel).

022601-3



NISHINO, DANILISHIN, ENOMOTO, AND ZHANG PHYSICAL REVIEW A 110, 022601 (2024)

As shown by Duan et al. [47], the strength of the EPR
entanglement of Alice’s and Bob’s states can be expressed
in terms of the spectral densities of the four EPR operators,
(âi ± b̂i )/

√
2, as

S(â1±b̂1 )/
√

2 = e±2r, S(â2±b̂2 )/
√

2 = e∓2r, (1)

where r signifies the squeezing factor. When r → ∞, the
noise spectra of S(â1−b̂1 )/

√
2 and S(â2+b̂2 )/

√
2 approach zero,

corresponding to the original EPR entanglement [42]. In a
more general situation, with the quadrature â−θ = â1 cos θ −
â2 sin θ measured, the quadrature b̂θ = b̂1 cos θ + b̂2 sin θ is
conditionally squeezed and vice versa. The spectral density of
the conditional squeezed field reads

Sâ−θ

b̂θ b̂θ

= 1/cosh(2r), Sâ−θ

b̂π/2+θ b̂π/2+θ

= cosh(2r). (2)

Victor’s amplitude (phase) quadrature experiences
(anti)squeezing as

Sv̂1v̂1 = e−2r, Sv̂2 v̂2 = e2r . (3)

Throughout this work, we assume uniform squeeze factors for
each pumping frequency for the sake of simplicity.

III. NOISE SUPPRESSION THROUGH
QUANTUM TELEPORTATION

After passing through the main interferometer, Bob’s read-
out phase quadrature, represented by the observable B2, can
be written as

B̂2 = 	eiβb (b̂1 cos θb − b̂2 sin θb), (4)

where 	, θb, and βb represent the frequency-dependent gain,
quadrature rotation, and phase shift from the ponderomotive
squeezing as defined in [48] (see also Appendix A). In order
to squeeze B̂2, we need to displace its photon at the input stage
by applying quadrature rotation −θb. This can be prepared by
applying a phase rotation to its entangled pair, Alice, θa, and
displacing Victor’s state with quadrature rotation, θv , where
θa + θv = −θb is required. By configuring detunings of Alice
and Victor with respect to the main interferometer, the inter-
ferometer can function as an empty optical cavity for Victor
and Alice and can provide desired quadrature rotations at its
output.

A. Bell measurement

The teleportation of Victor’s state to Bob requires a Bell
measurement between Alice and Victor. In the Bell mea-
surement, a local oscillator at frequency ω0 + (�a + �v )/2
is combined with Alice and Victor by a half beam splitter.
Subsequently, the two output beams are detected by two
photodetectors, and their photon currents are demodulated at
frequency (�v − �a)/2. By setting the local oscillator an-
gle to −π/2 and properly choosing the demodulation phase,
Bell observables can be carried out (details are given in
Appendix C):

α̂ =
(

α̂1

α̂2

)
= 1√

2

(
V̂1 − Â1

V̂2 + Â2

)
, (5)

where Â1 = eiβa (â1 cos θa − â2 sin θa) and Â2 =
eiβa (â1 sin θa + â2 cos θa) and V̂1 = eiβv (v̂1 cos θv − v̂2 sin θv )
and V̂2 = eiβv (v̂1 sin θv + v̂2 cos θv ) are the quadratures
of Alice’s and Victor’s beams after passing through the
interferometer. βv and βa are the average phases of both
quadratures.

B. Postprocessing

The classical communication channel can be built with
displacement operation or, equivalently, achieved through
postprocessing by combining B̂2 with g1α̂1 and g2α̂2, namely,

B̂tel
2 = B̂2 − g1α̂1 − g2α̂2, (6)

where g1 and g2 are filter gains, whose optimal values can be
derived by

g1 = SB̂2α̂1
Sα̂2α̂2 − Sα̂2α̂1 SB̂2α̂2

Sα̂1α̂1 Sα̂2α̂2 − ∣∣Sα̂1α̂2

∣∣2 , (7)

g2 = SB̂2α̂2
Sα̂1α̂1 − Sα̂1α̂2 SB̂2α̂1

Sα̂1α̂1 Sα̂2α̂2 − ∣∣Sα̂1α̂2

∣∣2 (8)

(for more details see Appendix A). In an idealized case with-
out imperfections, we can obtain the eventual noise spectrum
density of Btel

2 ,

Stel
B̂2B̂2

= |	|2 1 + e−2r cosh 2r

e−2r + cosh 2r
r�1−−→ |	|2 3

e2r
(9)

(see detailed derivations in Appendix A). Taking into account
that the gravitational-wave signal sidebands are not affected
throughout the postprocessing, Eq. (9) indicates that the strain
sensitivity is improved by a factor of 3/e2r in power across
a wide range of frequencies with sufficient squeezing, which
corresponds to the 4.8-dB penalty discussed in Sec. V.

IV. SENSITIVITY COMPARISON

In the top panel of Fig. 4, we show the quantum noise-
limited sensitivity of the ETLF [10] with the conventional
frequency-dependent squeezing (hereafter called the baseline
FDS) and QT squeezing. As a comparison we also plot the
enhancement factor compared to nonsqueezed case of the
baseline FDS (denoted as “No SQZ Baseline”). As shown, the
detuned configuration creates a dip of optical spring at very
low frequency (<10 Hz), enabling us to broaden the detector’s
total bandwidth to lower frequency than a tuned configuration.
The parameters considered, including imperfections such as
losses and phase noises, are consistent with the current design
of the ETLF employing filter cavities, except for the squeezing
level, as shown in Table I. Detuning frequencies �a and �v

are also shown in Table I, while the method for parameter
searching and details of macroscopic length tuning are dis-
cussed in Appendix D.

In general, QT squeezing exhibits sensitivity levels that are
inferior to those of the baseline FDS, as shown in most of the
frequency range in the bottom panel of Fig. 4. This disparity
arises from the 4.8-dB penalty inherent in QT squeezing, as
indicated by Eq. (9), and there are also threefold optical losses
stemming from the three optical paths.

022601-4



FREQUENCY-DEPENDENT SQUEEZING FOR … PHYSICAL REVIEW A 110, 022601 (2024)

TABLE I. Parameters for squeezing in the ETLF.

Parameter Baseline FDS QT squeezing

Detuning of the SEC (rad) 0.75 0.75
Filter-cavity length (km) 1
Arm round trip loss (ppm) 45 45
SEC loss (ppm) 1000 1000
Injection loss (%) 4 4
Readout loss (%) 3 3
Filter cavity round-trip loss (ppm) 20
Squeezer noise rms (mrad) 10 10
Local oscillator rms (mrad) 10 10
SEC length rms (pm) 1 1
Filter-cavity length rms (pm) 1
Detuning �a (MHz) ∼319
Detuning �v (MHz) ∼962
Squeezing level (dB) −10 −15

However, the performance of QT squeezing can potentially
surpass that of baseline FDS around the optical spring res-
onance. The uneven sensitivity enhancement in the baseline
scenarios arises from the dephasing of the squeezed vacuum.
As studied in [48,49], the dephasing of the squeezed beam will
lead to coupling of the noise fluctuation from the antisqueezed
quadrature to the squeezed quadrature. Around the resonance,
where the effective mechanical susceptibility of the test mass
strengthens due to the optical spring effect, the interferom-
eter creates more significant ponderomotive squeezing of the
quantum fields interacting with the mirrors, and the dephasing
from the filter cavity becomes large. Therefore, the sensitivity
is more susceptible to the dephasing effect, particularly at
this frequency band, and the optimal input squeezing level
is limited to ∼10 dB (see the dashed and dotted curves in
the bottom panel of Fig. 4). Such dephasing can stem from
the length fluctuation of optical paths and optical losses in
detuned cavities. In the baseline FDS, the filter-cavity length
is constrained to 1 km due to infrastructure limitations, which
were also employed in [50]. In contrast, QT squeezing lever-
ages the stability and length of the 10-km-long arm cavities as
filter cavities. The length fluctuation of the arm cavities is well
suppressed by multistage suspension and control systems. In
the particular case of ETLF with the parameters in Table I, QT
squeezing exhibits better sensitivity than the baseline FDS at
8 Hz, as shown in Fig. 4.

As a filter cavity, the 10-km interferometer has lower ef-
fective loss than the 1-km filter cavity, evaluated through the
term loss per unit length [49]. We take the 1000-ppm loss
from Signal Extraction Cavity (SEC) into account, and it
turns out the SEC loss is mitigated by the low transmissivity
of the input-test masses (see Appendix E for more details).
Those result in less effective loss and dephasing, thus allowing
a higher input squeezing level. By accommodating −15-dB
squeezing to compensate the 4.8-dB penalty, we can achieve
an ∼5-dB sensitivity improvement over the whole frequency
band. In this particular case, a higher squeezing level up to
−17 dB allows us to improve the sensitivity across the overall
frequency range (for details, see Fig. 10 in Appendix E).

As a figure of merit, we plot the detection horizon of equal-
mass nonspinning compact binary coalescence in Fig. 5. The

FIG. 5. Detection horizon of the ET with three squeezing
schemes in the ETLF, i.e., the baseline FDS with −10- and −15-dB
squeezing and QT squeezing with −15-dB squeezing.

detection criterion is set at a signal-to-noise ratio of 8. The
overall power spectral densities integrate the classical and
quantum noise of the ETLF, as well as the total noise of
High-frequency interferometer of the Einstein Telescope’s xy-
lophone detector, which covers the sensitivity above 20 Hz,
as shown in Fig. 5. The horizon plot indicates that the QT
squeezing achieves a performance almost equivalent to the
baseline FDS; more precisely, QT squeezing shows a slightly
better maximum horizon at the cost of the mass range below
20M�.

V. DISCUSSION

Our scheme attains frequency-dependent squeezing by re-
placing the arbitrary number of external filter cavities, which
would otherwise require additional kilometer-scale vacuum
tunnel and suspension systems, with the main interferometer
itself through the application of the quantum teleportation
technique. When applying the scheme to ETLF, we revealed
that it offers a sensitivity advantage around the optical spring
resonance which is the primary objective of detuning. It ben-
efits from the long effective length of the arm cavity acting as
the filter cavities and contributes to expanding the bandwidth
of the whole detector to lower frequencies.

However, we also need to note two drawbacks of the QT
squeezing: (1) the factor of 3 (4.8 dB) higher injected squeez-
ing required to reach the same level of detected squeezing
at the readout port as achieved by the baseline FDS and
(2) the threefold noise contributions from input and output
losses, which limit the sensitivity across the entire frequency
band (see Fig. 9 in Appendix E). More generally, if N states
participate in the teleportation, the eventual squeezing level is
degraded, and noise contributions from both input and output
loss increase by a factor of N in power.

In addition, it is essential to highlight the technical flexi-
bility of our scheme. The configuration illustrated in Fig. 2
allows for seamless transitions between detuned and tuned
configurations. This transition can be achieved by turning off
the pumping laser beam for Victor and adjusting the pumping
frequency of the other beam, along with the macroscopic
lengths of the arm and signal-extraction cavity, effectively
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reverting back to the EPR squeezing in [33]. Furthermore,
QT squeezing provides the capability to address variations in
the SEC detuning by optimizing the parameters of pumping
frequencies and macroscopic length tuning. This means we do
not need to replace the input mirror of the filter cavity itself to
adjust the filter-cavity bandwidth, which might otherwise be
required due to practical factors, such as changes in the main
laser power or ice formation on the cryogenic mirrors.
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APPENDIX A: DERIVATION OF WIENER FILTERS

In the ideal lossless case, the response of a differential
mode cavity of the detuned interferometer for the carrier
field can be written as follows according to the scaling-law
theorem [51]: (

B̂1

B̂2

)
= 1

M̃

(
C11 C12

C21 C22

)(
b̂1

b̂2

)
, (A1)

where

M̃ = {(γ − i�)2 + δ2}�2 − δ,

C11 = C22 = �2(�2 − δ2 + γ 2) + δ,

C12 = 2δγ�2 − 2γ,C21 = −2δγ�2.

Here, δ and γ are the effective detuning and half bandwidth.
 = 8ω0Pc

McL is the normalized optical power, with Pc being the
arm circulating power, M being the reduced mass, and L being
the arm length. From these relations, 	, θb and βb in Eq. (4)
in the main text can be derived as

	 =
√

C2
21 + C2

22

|M̃| , θb = − arctan

(
C22

C21

)
,

βb = arg M̃∗. (A2)

Combining the measurement data with filter gains (g1 and g2)
such that B̂g

2 = B̂2 − g1α̂1 − g2α̂2, we have the noise spectrum

SB̂g
2B̂g

2
= SB̂2B̂2

+ |g1|2Sα̂1α̂1 + |g2|2Sα̂2α̂2

− g∗
1SB̂2α̂1

− g1Sα̂1B̂2
− g∗

2SB̂2α̂2
− g2Sα̂2B̂2

+ g1g∗
2Sα̂1α̂2 + g∗

1g2Sα̂2α̂1 , (A3)

where

SB̂2B̂2
= 	2 cosh 2r,

Sα̂1α̂1 = e−2r cos2 θv + e2r sin2 θv + cosh 2r

2
,

FIG. 6. Schematics of the generalized quantum teleportation
squeezing with (a) three equivalent-filter cavities and (b) four filter
cavities. Here, U1 represents the ponderomotive squeezing, other
operations represent phase rotations, and v̂sqz is a squeezed vacuum.

Sα̂2α̂2 = e−2r sin2 θv + e2r cos2 θv + cosh 2r

2
,

Sα̂1α̂2 = (e−2r − e2r ) sin θv cos θv

2
,

SB̂2α̂1
= S∗

α̂1B̂2
= −	ei(βb−βa ) cos θv sinh 2r√

2
,

SB̂2α̂2
= S∗

α̂2B̂2
= −	ei(βb−βa ) sin θv sinh 2r√

2
.

SB̂g
2B̂g

2
takes its minimum when g1 and g2 are Wiener filters

determined as follows:

g1 = SB̂2α̂1
Sα̂2α̂2 − Sα̂2α̂1 SB̂2α̂2

Sα̂1α̂1 Sα̂2α̂2 − ∣∣Sα̂1α̂2

∣∣2

= −
√

2	ei(βb−βa ) sinh 2r cos θv

cosh 2r + e−2r
,

g2 = SB̂2α̂2
Sα̂1α̂1 − Sα̂1α̂2 SB̂2α̂1

Sα̂1α̂1 Sα̂2α̂2 − ∣∣Sα̂1α̂2

∣∣2

= −
√

2	ei(βb−βa ) sinh 2r sin θv

cosh 2r + e−2r
.

Note that we used the relation θb + θa = −θv . Substituting
those into Eq. (A3) leads to the noise spectrum density shown
in Eq. (9) in the main text.

APPENDIX B: GENERALIZATION
TO N PHASE ROTATIONS

Figure 6 illustrates quantum teleportation squeezing to
generate an arbitrary number of phase rotations. There are
two possible approaches: connecting EPR squeezing and QT
squeezing to the QT squeezing protocol, as shown in Figs. 6(a)
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and 6(b). The first protocol prepares three phase rotations,
while the second prepares four. Inductively, one can achieve
an arbitrary number of prefiltering phases by preparing mul-
tiple entanglement states and iterating Bell measurements.
When one prepares N phase rotations, Wiener filters g =
(g1 g2 · · · gN )
 can be expressed as follows:

g = S−1
ααSBα, (B1)

where Sα and SBα are the cross-spectral density matrix and
vector, respectively, defined as

Sαα =

⎛
⎜⎜⎜⎝

Sα1α1 Sα1α2 · · · Sα1αN

Sα2α1 Sα2α2 · · · Sα2αN

...
...

. . .
...

SαN α1 SαN α2 · · · SαN αN

⎞
⎟⎟⎟⎠, (B2)

SBα =

⎛
⎜⎜⎜⎝

SBα1

SBα2

...

SBαN

⎞
⎟⎟⎟⎠. (B3)

APPENDIX C: MATHEMATICAL DESCRIPTION
OF BELL MEASUREMENT

We describe the Bell measurement procedure, with specific
reference to Sec. II C in [52]. Bell measurement utilizes a
coherent laser as the local oscillator (LO) to measure the
quadratures V̂1 − Â1 and V̂2 + Â2 (see Fig. 2 in the main
text). The frequency of the LO is precisely tuned to match
the central frequency of Victor and Alice. In our specific
experimental context, it is necessary to control the LO fre-
quency to ω0 + (�a + �v )/2, a frequency regime in the
radio-frequency domain, typically in the megahertz range.

Bell measurement involves several key steps. First, a half
beam splitter (HBS) is employed to combine the two idlers
with the LO, expressed as

Er,t (t ) = S(t ) ± L(t )√
2

. (C1)

Here, Er,t are the reflection and transmission of the HBS. S(t )
and L(t ) are the output from the interferometer and the LO
field, respectively, expressed in the sideband picture as

S(t ) =
∫ �

−�

d�

2π

{
Âω0+�a+�e−i(ω0+�a+�)t

+ V̂ω0+�v+�e−i(ω0+�v+�)t + H.c.
}
, (C2)

L(t ) = Dei{ω0+(�a+�v )/2}t + H.c., (C3)

where � � (�a + �v )/2 is the demodulation bandwidth, D
is the complex amplitude, and H.c. represents the Hamiltonian
conjugate.

Second, two fields are detected by the photodetectors, com-
bining two outputs to reject classical and quantum fluctuations
in the LO field. After the combination, the photocurrent is
proportional to the square of the field [Eq. (C1)]:

i(t ) ∝ E2
r − E2

t ∝ S(t )L(t )

= D
∫ �

−�

d�

2π

{
Aω0+�a+�ei{(�v−�a )−�}t

+ Vω0+�v+�e−i{(�v−�a )+�}t} + H.c.

+ [irrelevant terms at high frequencies]. (C4)

Finally, by mixing cos{(�v + �a)t/2 + ξd} and applying a
low-pass filter with a cutoff of �, one obtains

O(ξd; t ) = D
∫ �

−�

d�

2π

{
Aω0+�a+�e−iξd e−i�t + H.c.

}

+ D
∫ �

−�

d�

2π

{
Vω0+�v+�eiξd e−i�t + H.c.

}
. (C5)

In the quadrature picture, the quadrature operator Aζ is defined
as

Aζ = A1 sin ζ + A2 cos ζ , (C6)

where

A1 = Aω0+� + A†
ω0−�√

2
, A1 = Aω0+� − A†

ω0−�

i
√

2
. (C7)

Using those relations, Eq. (C5) leads to

O(ξd; �) = |D|
∫ �

0

d�

2π
e−i�t

{
AζA (�) + VζV (�)

}
, (C8)

where ζA = −ξd + π
2 + arg D and ζV = ξd + π

2 + arg D (see
also Eqs. (9)–(12) in [52]). In the frequency domain, one
obtains

O(ξd; �) = |D|AζA (�) + VζV (�)√
2

. (C9)

The LO angle arg D is considered a free parameter, deter-
mined experimentally, while the demodulation angle ξd can be
adjusted after detection. By setting arg D = π/2, the outputs
become (V1 − A1)/

√
2 and (V2 + A2)/

√
2, with ξd of −π/2

and π , denoted as I and Q phases in Fig. 2 in the main text,
respectively.

APPENDIX D: INTERFEROMETER
RESPONSE FOR IDLERS

In this section, we examine the response of the central
interferometer as a filter cavity for two idlers. We show the
parameter optimization process, which is crucial for using
the interferometer as a quantum filter cavity per our specific
requirements, and then investigate the effect of the arm cavity
and SEC losses on those filter parameters in comparison with
the conventional filter-cavity scheme.

1. Parameter searching

The coupled cavity formed by the SEC, input-test mass
(ITM), and end-test mass functions as a passive optical cavity
for two idler beams as (see Fig. 7). Due to the phase shifts
acquired in the SEC, the bandwidths for two idlers can be
tuned to meet the requirement of filter-cavity bandwidths. To
begin, let us examine the bandwidth of the arm cavity, which
can be expressed as

γ1arm = cTITM

4Larm
. (D1)
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FIG. 7. Resonance conditions for differential mode cavities.
Shown from top to bottom are the resonance conditions for Bob,
Alice, and Victor.

According to the scaling-law theorem [51,53], the effective
bandwidth can be expressed as follows:

γ = γ1armRe

[
1 − √

RSEMe2iφSEC

1 + √
RSEMe2iφSEC

]

= γ1armTSEM

1 + 2
√

RSEM cos 2φSEC + RSEM
, (D2)

leading to the requirement of the round-trip phase φSEC:

φSEC = 1

2

[
arccos

(
TSEM

γ1arm

γ
− 1 − RSEM

2
√

RSEM

)]
+ nπ. (D3)

Here, n is an integer that determines the number of spectral
ranges of the SEC. The phase φSEC for Victor and Alice,
denoted as φv,a, can be described as

φv,a = (ω0 + �v,a)LSEC

c
= π − φ0

2
+ �v,aLSEC

c
, (D4)

where φ0 represents the detuning phase of the SEC for the
main carrier. φv,a should be tuned to realize the required filter-

cavity bandwidth γ1,2; substituting Eq. (D4) into Eq. (D3),
�v,a needs to satisfy the following relation:

�v,a = c

2LSEC

[
arccos

(
TSEM

γ1arm

γ1,2
− 1 − RSEM

2
√

RSEM

)

+ (2nv,a − 1)π + φ0

]
, (D5)

where n1,2 are free parameters. On the other hand, φv,a should
also satisfy the following relation to realize the effective
detunings δ1,2:

δ1,2 = Modωarm
FSR

(�v,a) − γ1armIm

[
1 − √

RSEMe2iφv,a

1 + √
RSEMe2iφv,a

]
, (D6)

where ωarm
FSR is the FSR of the arm cavity.

We have four tunable parameters: the macroscopic arm and
SEC lengths, δLarm = qλ/2 and δLSEC = pλ/2, where q and
p are integer values, and nv,a, the numbers of SEC spectral
ranges contained in �v,a. In Table II, we provide the optimal
length and frequency tuning parameters. The adjustments re-
quired for both the arm and SEC are approximately −2.1 and
4.6 cm, respectively. The detuning frequencies of Victor and
Alice are approximately �a ∼ 319 MHz and �v ∼ 962 MHz,
and the corresponding OPA cavity length is ∼94 cm.
Figure 8 illustrates a comparison of phase rotations, high-
lighting the ponderomotive squeezing and the approximate
rotations achieved through the combination of the two idlers.

2. Effect of arm-cavity and SEC loss

The arm-cavity loss contains the power loss per each mirror
and the transmissivity of the end mirror, which have values of
20 and 5 ppm in the current design of the ET. The arm loss
is amplified by the arm cavity approximately by a factor of
finesse, which expands the bandwidth of the coupled cavity
as a filter cavity for idlers. On the other hand, the SEC-loss
contribution to the cavity bandwidth is not significant even
though it has a large value of 1000 ppm.

TABLE II. Parameters for the ETLF [10].

Symbol Definition Value

λ Carrier wavelength 1550 nm
Tarm ITM power transmittance 7000 ppm
TSEM Signal-extraction mirror power transmittance 90%
m Mirror mass 211 kg
I0 Power at beam splitter 63 W
φ0 Detuning of the SEC 0.75 rad
L(0)

arm Arm initial length 10 kma

L(0)
SEC SEC initial length 100 m

γ1arm Arm-cavity bandwidth 8.35 Hz
γ1/δ1 Bandwidth/detuning of the first filter cavity 4.27/19.54 Hz
γ2/δ2 Bandwidth/detuning of the second filter cavity 1.64/−7.62 Hz
δLarm Arm length tuning 30 000λ

δLSEC SEC length tuning 14 030λ

�a Detuning of Alice 769 kHz + 213 FSRSEC
b

�v Detuning of Victor 656 kHz + 642 FSRSEC

aTo be more precise, L(0)
arm = 6 451 612 903λ and L(0)

SEC = 64 516 129λ, where λ is the wavelength of the main laser.
bThe free spectral range of the SEC (Signal Extraction Cavity) na = 213, and nv = 642.
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FIG. 8. Left: Quadrature rotations. The solid red curve is caused by the interferometer (IFO), and the dashed blue curve is rotation given
to two idlers. Right: Angle error between the two rotations.

According to the scaling-law theorem, the effective band-
width of the lossy SEC-arm coupled cavity γ eff

loss can be
expressed as follows:

γ eff
loss = γloss + γ2

= (TSEC + ASEC)γ1arm

1 + 2
√

RSEC cos 2φSEC + RSEC
+ cAarm

4Larm

= TSγ1arm

1 + 2
√

RSEC cos 2φSEC + RSEC
+ cAeff

4Larm
, (D7)

where

Aeff = TarmASEC

1 + 2
√

RSEC cos 2φSEC + RSEC
+ Aarm. (D8)

Here, γloss represents the coupled-cavity bandwidth when the
arm cavities have no loss, γ2 is the contribution of the arm-
cavity loss to the expansion of the bandwidth, and φSEC is
the one-way phase inside the SEC for idlers. Equation (D8)
is the expansion of the bandwidth due to the losses. Using
the current ETLF parameter, the numerator of the first term

TarmASEC is calculated as 7 ppm. Considering the amplification
gains of the denominator for two idlers, approximately 1.0
and 2.5, the effective filter-cavity losses are Aeff

v ∼ 52 ppm
and Aeff

a ∼ 63 ppm. Since the length of the filter cavity is
that of the arm cavity Larm = 10 km, the QT squeezing has
a smaller noise contribution than conventional filter cavities
in terms of the loss per unit length (this is also explained in
Refs. [24,49]). Given that the round-trip loss in the filter cavity
is AFC = 20 ppm and the length LFC = 1 km, the discussion
above leads to

Aeff
v,a

Larm
<

AFC

LFC
,

showing that the optical-loss contribution to the expansion of
the filter-cavity bandwidth is smaller in the QT squeezing than
in the conventional squeezing.

APPENDIX E: NOISE BUDGET

Figure 9 displays the quantum noise budget for the QT
squeezing with a squeezing level of −15 dB, alongside the

FIG. 9. Left: Noise contributions of each loss source to the strain sensitivity. Phase noises such as squeezer noise rms, local oscillator rms,
and SEC length rms are all encompassed within the antisymmetric (AS) noise. The black curve depicts the ideal case without imperfections.
Right: Quantum noise enhancement factor (in dB) compared to the noise spectrum without squeezing (shown in gray in the left panel).
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FIG. 10. Quantum noise enhancement with various squeezing
levels.

corresponding ETLF results for conventional squeezing. Vac-
uum fields are introduced into the beam path by each loss
source, and their total contribution is obtained by integrating
the fields from the same loss point. Four optical losses have
been accounted for: (1) a 4% injection loss that considers
losses in the OPA cavity and Faraday isolator; (2) a loss of
45 ppm assumed for the round trip of light in the arm, as
discussed in Sec. D 2, (3) a loss of 1000 ppm assumed for
the signal-extraction mirror, the central beam splitter, and
the imperfections of the Michelson interferometer, included

in the overall SEC loss; and (4) a 3% loss in readout due
to the combined losses in the Faraday isolator, output mode
cleaner, and inefficiency of the photodetector. Losses from any
source result in uncorrelated vacuum noise in the beam path
that reduces the level of squeezing and correlation between
EPR-entangled photons.

We evaluate three types of phase noise via root-mean-
square (rms) values in our analysis: (1) 10 mrad of squeezer
phase noise, which indicates the relative phase noise between
the squeezer and the primary laser; (2) 10 mrad of local
oscillator rms phase uncertainty, which indicates the relative
phase fluctuations between the local oscillator and the primary
laser; and (3) 1 pm of SEC rms length variations, which refers
to the fluctuations in the optical length of the signal-extraction
cavity. These imperfections do not introduce any uncorrelated
vacuum noise; rather, they contaminate the output with the
contribution from the quadrature of light orthogonal to the one
measured, which should not appear in the detection.

As shown in Fig. 9, all noises induced by phase fluctua-
tions are included in the antisymmetric port vacuum. Breaking
down the phase noise into parameters called dephasing, as
exemplified in [48], to elucidate the specific impact of each
phase noise will be the subject of future work. We also plot
the noise enhancement curves with various squeezing levels
in Fig. 10. Figure 10 shows that the phase noise does not
exceed the merit of squeezing when the squeezing level is
below −17 dB, while above that the sensitivity deteriorates
at the optical spring resonance.
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