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Quantum reservoir complexity by the Krylov evolution approach
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Quantum reservoir computing algorithms recently emerged as a standout approach in the development of
successful methods for the noisy intermediate-scale quantum (NISQ) era because of its superb performance and
compatibility with current quantum devices. By harnessing the properties and dynamics of a quantum system,
quantum reservoir computing effectively uncovers hidden patterns in data. However, the design of the quantum
reservoir is crucial to this end in order to ensure an optimal performance of the algorithm. In this work, we
introduce a precise quantitative method with strong physical foundations based on the Krylov evolution to
assess the wanted good performance in machine-learning tasks. Our results show that the Krylov approach to
complexity strongly correlates with quantum reservoir performance, making it a powerful tool in the quest for
optimally designed quantum reservoirs, which will pave the road to the implementation of successful quantum
machine-learning methods.

DOI: 10.1103/PhysRevA.110.022446

I. INTRODUCTION

Quantum computing is currently a rapidly evolving field,
exerting a substantial impact on various domains, including
cryptography, optimization, and machine learning. Despite
remarkable recent progress, the development of fault-tolerant
quantum computers, capable of solving most challenging
tasks such as integer factorization [1] or unstructured search
[2], remains a long-term goal that necessitates extensive error
correction for a significant number of qubits. As an interesting
alternative, noisy intermediate-scale quantum (NISQ) [3] al-
gorithms, which leverage the current generation of quantum
computers with tens or hundreds of qubits, have recently
accomplished important milestones [4].

A promising application of NISQ devices is quantum
machine learning. Machine learning focuses on developing
algorithms to learn from and make predictions based on data,
without being explicitly programed. In particular, quantum
reservoir computing (QRC) [5,6] has emerged as a power-
ful algorithm, demonstrating an excellent performance on a
wide range of applications [7–11]. Notably, QRC represents a
significant leap in the realm of machine learning, built upon
the foundations of classical reservoir computing [12]. While
classical reservoir computing relies on the dynamic properties
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of neural networks for computational tasks, QRC exploits the
dynamics and properties of characteristic quantum systems as
computational resources to perform machine-learning tasks
[13,14]. These dynamics have been recently shown to play
a key role in the efficiency of QRC [7], and the main goal
of this work is to provide an adequate venue for its optimal
design, which allows the processing of larger input datasets
taking advantage of the exponential size of the associated
Hilbert space. Within this framework, QRC has been able to
solve multiple problems within classification, regression and
temporal tasks. These include tasks like image classification
[15], electronic energy computation for quantum chemistry
[10,16], and time series forecasting [6,9,17–21].

In gate-based quantum computing, QRC relies on a ran-
dom quantum circuit, also known as the quantum reservoir,
which is applied to an initial quantum state representing the
input data. The objective is to extract valuable information
from it by measuring local operators, yielding the relevant
features necessary for predicting the output, which are then
fed into a classical machine-learning algorithm, typically a
linear model. It has been shown that, for an effective learn-
ing of input-output relationships, the quantum reservoir must
be a complex enough quantum circuit [7,10,11]. Hence, a
careful design of the quantum reservoir is vital to achieve an
optimal performance of the QRC model. Moreover, consid-
ering the effect of noise in the performance of the reservoir
is crucial for the practical applications of quantum reservoir
computing, which is carefully studied in a previous work
[11]. The majorization principle [22], a statistical concept
used to assess the degree of discordance between probability
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distributions, has emerged as a significant and efficient indi-
cator of complexity for random quantum circuits [22,23], and
it has proven to be a compelling indicator of performance
in QRC as well [10]. However, given the recent advance-
ments in quantum technologies, there is a pressing need for
more powerful complexity methods to understand the phys-
ical properties of quantum algorithms that can facilitate the
optimal design of large-scale quantum solutions.

In this paper, we present a significant step forward along
this line, by delving into a complexity measure known as
the Krylov complexity and the associated Lanczos sequence
[24,25], which have been proposed for operators [24] and
states [26]. These measures are built on robust physical
principles, and the Krylov complexity’s unique growth be-
havior provides a precise definition of complexity over large
timescales. Moreover, they offer applicability to a broad vari-
ety of problems, having proven suitable for analyzing intricate
systems in condensed-matter physics [27], quantum field the-
ory [28], and quantum information [29]. In this sense, our
analysis of the Krylov complexity paves the road to unlock
deeper insights into quantum systems, facilitating the develop-
ment of superior quantum algorithms for different real-world
challenges.

Originally developed to efficiently calculate the expo-
nential of a matrix [30,31], Krylov methods have found
widespread use in quantum evolution of states and operators
within systems with large Hilbert spaces [32]. These methods
involve mapping the system’s evolution to a noninteracting
tight-binding model within the so-called Krylov space. Such
mapping leads to a measure of complexity that has garnered
significant attention in recent research [24,25,27,33–41]. The
key aspect of this measurement, called K complexity, lies in
the concept of spreading of the one-particle wave function
over Krylov basis. In fact, it has been demonstrated that, by
using this basis, the dispersion of a wave packet is minimized,
thereby avoiding ambiguities when defining the complexity
associated with quantum evolution. Several authors have ex-
tensively considered this measure to study the transition from
integrability to chaos in a variety of systems [42–44]. It is
important to note that, when applied to operators, the effec-
tiveness of this complexity measure appears to be contingent
on the specific operator under consideration [39]. Similarly,
in the case of states, it may not yield satisfactory results
depending on the initial conditions [45]. However, in the case
of state evolution and within the effective tight-binding model,
both the Krylov complexity and the statistics of the onsite
potentials have shown to be promising robust measures of
quantum complexity.

In this paper, we focus on the investigation of the reservoir
complexity using Krylov methods to advance in the optimal
design for QRC. However, an important challenge arises in
the case of reservoirs, as we lack a Hamiltonian description,
having instead an evolution operator U(t ). To overcome this
hurdle, we propose to use an effective Hamiltonian for these
reservoir systems, which involves taking the logarithm of the
operator U(t ). To validate this approach, we first delve into
analyzing spin chains as a starting point of our research. By
careful examination of the system behavior at different time
instances, the Krylov approach is found to effectively quantify
the system complexity only when the evolution operator is

used for times smaller than the t1/2 time [46]. This specific
time is defined as the moment when the K complexity of the
system reaches half of its asymptotic plateau. Beyond this
time, the system exhibits a level of chaoticity that makes it
challenging to describe it using conventional methods. We
then further proceed with our validation by analyzing the
complexity of the standard map, the paradigmatic system
extensively studied for both classical and quantum chaos,
where, as stated before, the quantum dynamics is governed
by an evolution operator, without a Hamiltonian description.
Our results demonstrate that the Krylov complexity aligns
perfectly with other conventional measures of quantum chaos.
The complexity measure derived from Krylov methods pro-
vides valuable insights into the quantum reservoir’s chaotic
dynamics across various temporal scales, especially for times
before the onset of significant scrambling effects. This yields
more comprehensive information regarding the system’s com-
plexity. Additionally, a pivotal objective of our research is
to shed light on the relationship between Krylov methods
and other well-established measures of complexity, providing
a comprehensive understanding of these intriguing quantum
systems.

The article is organized as follows: Section II introduces
the specifics of QRC and gives an outline of the Krylov
method and its application in defining complexity. In Sec. III,
we comprehensively demonstrate the efficacy of the Krylov
approach in describing complexity based on the evolution
operator. We initiate our analysis with spin chains, where the
evolution operator is constructed up to a certain time and sub-
sequently transition to discussing the standard map. Finally,
we investigate the complexity of reservoirs employed in the
QRC model. We conclude the paper with our final remarks.

II. METHODS

A. Quantum reservoir computing

Reservoir computing is a machine-learning framework that
harnesses the dynamics of a fixed reservoir, such as a recurrent
neural network or a quantum circuit, to process and analyze
data, enabling efficient training and prediction tasks. The idea
of QRC lies in using a Hilbert space as a high-dimensional
embedding of the input data. In this way, the extracted features
enhanced by quantum operations are used to feed a classical
machine-learning model, which predicts the desired target.

Consider the dataset {(xi, yi )}, where xi are the input
samples and yi the target outputs. The goal of the machine-
learning algorithm is to predict the desired output yi given an
input data sample xi. In this work, the input data xi represents
the electronic ground state of a molecule, and the output yi

is the first-excited energy of such molecule (see Sec. II A 2).
The data samples are encoded as an n-qubit quantum state
|xi〉. Then, a random unitary transformation U implemented
by a quantum circuit is applied to extract features from the
input data, resulting in the quantum state U |xi〉. The operator
U is sampled from a carefully selected family of operators,
such that U creates enough entanglement to generate useful
transformations of the input data while being experimentally
feasible. For this reason, the design of the reservoir U is
crucial for the optimal performance of the algorithm. In this
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work, the quantum reservoirs are designed as random quan-
tum circuits whose gates are chosen from a family containing
a finite set of gates. That is, given a family of quantum gates,
a quantum circuit is generated by uniformly sampling gates
from that family. The depth of the circuit is fixed to depth =
40, and 100 simulations are run for each of the families.
We have repeated the experiments with circuits with different
number of qubits, n = 6, 8, and 10. The K complexity and the
statistics of the Lanczos coefficients of the resulting unitary
operators U will be compared with the performance of the
quantum reservoirs in the machine-learning task presented in
Sec. II A 2 for two molecules: LiH, requiring n = 8 qubits,
and H2O, requiring n = 10 qubits.

After applying U to the initial quantum state, the expected
value of single-qubit observables is measured. These ob-
servables are Pauli operators {X0, Z0, . . . , Xj, Zj, . . . , Xn, Zn},
where Xj , Zj represent the Pauli operators X , Z applied to
qubit j. Notice that, in general, a n-qubit unitary U transforms
a simple observable Z (or X ) into a linear combination of Pauli
operators

UZU† =
∑

k

αkPk, (1)

where {Pk} are tensor products of local Pauli operators.
Therefore, measuring single Pauli operators of a state which
has received a unitary transformation could produce com-
plex nonlinear outputs, which could be represented as a
linear combination of exponentially many nonlinear functions
[5,20]. As an example, consider a scenario where we en-
code a two-dimensional classical vector x = (x1, x2), x1, x2 ∈
[0, 1] into the quantum state |x〉 = (

√
x1 |0〉 + √

1 − x1 |1〉) ⊗
(
√

x2 |0〉 + √
1 − x2 |1〉). When measuring the expectation

value of the single-qubit operator Z1, we observe a linear
function of x1, 〈Z1〉 = 2x1 − 1. However, measuring a cor-
related operator Z1Z2 yields a nonlinear function of x1 and
x2, 〈Z1Z2〉 = (2x1 − 1)(2x2 − 1). This correlated operator is
achieved by applying a CNOT gate to the input state |x〉 (where
U = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X ), followed by measuring the lo-
cal Z2 operator on the resulting state U |x〉. Consequently,
the unitary transformation U enables the measurement of a
nonlinear transformation of the input data.

Finally, the extracted features x̂i = (〈X0〉, 〈Z0〉, . . . , 〈Xn〉,
〈Zn〉), where the expected value is defined with respect to
the output state of the quantum reservoir are fed to a clas-
sical machine-learning algorithm, usually a linear regression
model. Even though more complex models can be used, the
quantum reservoir should be able to extract valuable features
so that a simple machine-learning model can predict the target
y. A linear model with regularization, called ridge regression,
is enough to learn the output. A Ridge regression consists of
learning the optimal parameters W that minimizes the follow-
ing expression:

MSEr (ŷ, y) = 1

t

T∑
t=1

[(y(t ) − W x̂(t )]2 + γ ||W ||2, (2)

where γ is the regularization parameter and W are the
linear coefficients and || · ||2 is the L2 norm. This loss
function prevents the algorithm from learning large coeffi-
cients W , which usually leads to unstable training and poor

generalization capacity. γ is a hyperparameter which needs
to be tuned depending on the problem at hand. When γ is
too large, the model will learn very small values of W , which
leads to predicting constant values. On the other hand, if γ is
too small the chances of overfitting increase.

1. Families of quantum reservoirs

The design of the quantum reservoir is crucial for the per-
formance of the algorithm. For this reason, seven families of
quantum circuits are studied. For a given family, the quantum
circuit is built by adding a fixed number of random quantum
gates from such family. For each family, 100 simulations are
carried out.

The seven families of quantum reservoirs can be ordered in
terms of complexity according to the majorization principle
[23], which in turn corresponds to different performances in
QRC [10]. In this study, we demonstrate that the distinction
in complexity can also be quantified using the Krylov evo-
lution. As a result, Krylov measures offer excellent means
to identify optimal families of random quantum circuits
for machine-learning tasks. This approach provides a more
precise and quantitative method for comprehending the vari-
ations between various quantum reservoir designs, enabling
the formulation of practical guidelines for efficient quan-
tum algorithm implementations. Additionally, it bridges the
gap between quantum machine-learning designs and quantum
complexity theory, opening up new possibilities for advance-
ments in quantum machine-learning research.

The seven families considered are the following: The first
three circuits are constructed from a few generators: G1 =
{CNOT, H, X}, G2 = {CNOT, H, S}, and G3 = {CNOT, H,
T}, where CNOT is the controlled-NOT gate, H stands for
Hadamard, and S and T are π/4 and π/8 phase gates, respec-
tively. The circuits constructed from G2 generate the Clifford
group [47], and G1 generate a subgroup of Clifford [48].
Therefore, both G1 and G2 are nonuniversal and classically
simulatable. On the other hand, G3 is universal and thus
approximates the full unitary group U(N ) to arbitrary preci-
sion. The fourth family is composed of matchgates (MGs),
which are two-qubit gates formed from two one-qubit gates,
A and B, with the same determinant. Matchgates circuits are
also universal (except when acting on nearest-neighbor lines
only) [49,50]. The last families of gates are diagonal in the
computational basis and are divided into three families: D2,
D3, and Dn. Here, D2 gates are applied to pairs of qubits, D3

gates are applied to three qubits, and Dn gates are applied to all
the qubits. Diagonal circuits cannot perform universal compu-
tation but they are not always classically simulatable [51]. For
more details about these families of quantum reservoirs see
Appendix A.

2. Quantum machine-learning task

To assess the performance of the different quantum reser-
voirs, a machine-learning task needs to be defined. In this
work, the task consists of predicting the first-excited elec-
tronic energy E1 using only the associated ground state
|ψ0〉R with energy E0 for the LiH and H2O molecules. The
ground states |ψ0〉R for such Hamiltonians are calculated
by exact diagonalization for different configuration ranges:
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RLiH ∈ [0.5, 3.5] a.u. (atomic units), ROH ∈ [0.5, 1.5] a.u., and
φHOH = 104.45◦. The details of the ground-state calculation
are given in Ref. [10]. Notice that, in order to use as few qubits
as possible, we remove the spin-orbitals which are very likely
to be either occupied or virtual in all Slater determinants in
the wave function [52]. In this way, the electronic Hamilto-
nian is effectively mapped to the qubit space by using the
Jordan-Wigner transformation [53]. The ground state of the
molecules is described using n = 8 qubits for LiH and n = 10
qubits for H2O. The datasets {|ψ0〉R , E1(R)}R is split into
training and test sets, where the test set contains the 30% of the
data RLiH ∈ [1.1, 2.0] a.u. and ROH ∈ [1.05, 1.35] a.u. and it is
chosen so that the reservoir has to extrapolate to unseen data.
The performance of the seven families of quantum reservoirs
will be compared with the Krylov evolution.

B. The Krylov approach to complexity

The Krylov method is a numerical technique originally
designed to approximate the action of a matrix or operator
on a vector, without explicitly calculating the full matrix ele-
ments [30,31]. It is particularly useful when dealing with large
matrices or operators, which are common in quantum mechan-
ics, especially in the context of solving the time-dependent
Schrödinger equation, Heisenberg evolution of operators, or
eigenvalue problems [30,32,54–59]. Notably, it has been re-
cently used to determine the complexity of quantum evolution
for both operators and states [24–26]. In this work, we focus
on the second case, i.e., states.

Let us consider a state |ψ〉 in a complex Hilbert space H
with dimensionality N , i.e., H = CN . This state evolves under
the influence of a time-independent Hamiltonian denoted by
H ∈ End(H). We introduce the D-dimensional Krylov sub-
space, denoted KD,

KD = span{|ψ〉 , H |ψ〉 , . . . , HD−1 |ψ〉}. (3)

To ensure generality, we assume that the state |ψ〉 and the
Hamiltonian H do not share any symmetries, meaning KN =
H. When there are shared symmetries, the time evolution is
constrained within their respective subspaces. Consequently,
the problem should be redefined to operate solely within that
subspace.

The Krylov method endeavors to approximate the time-
evolved state |ψ (t )〉 using the most optimal element from
the set KD. To accomplish this, we create a set of orthonor-
mal basis vectors, denoted as BD = {|v0〉 ≡ |ψ〉 , . . . , |vD−1〉},
for the Krylov subspace. Usually, the basis is created us-
ing Lanczos’s algorithm, which is a modified version of the
Gram-Schmidt procedure. Lanczos’s algorithm leverages the
fact that orthonormalization is only required for the last two
vectors in the basis. In order for the Krylov subspace to fully
encompass the entire evolution at all times, it must span the
entire Hilbert space, meaning that D = N , where D repre-
sents the dimension of the Hilbert space. By following this
approach, the Hamiltonian is transformed into its tridiagonal
form,

H |vk〉 = an |vk〉 + bk+1 |vk+1〉 + bk |vk−1〉 , (4)

where ak and bk are values that define the Lanczos sequences.
This observation leads us to interpret the system on the Krylov

basis, as a one-dimensional (1-D) noninteracting tight-binding
model. An initial state localized at one end of this effective
chain evolves under the influence of the onsite potentials ak

and hopping amplitudes bk at the nth site—causing the exci-
tation to propagate and populate the rest of the lattice.

By expressing the evolved state |ψ (t )〉 in this Krylov basis,
we have

|ψ (t )〉 =
D−1∑
k=0

ψk (t ) |vk〉 . (5)

The coefficients ψk (t ) can be obtained by solving the
Schrödinger equation,

i ψ̇k (t ) = akψk (t ) + bkψk−1(t ) + bk+1ψk+1(t ). (6)

From this formalism, the concept of Krylov complexity
denoted by Cψ

K(t ) arises, which represents the average position

Cψ

K(t ) =
D−1∑
k=0

k|ψk (t )|2. (7)

This complexity measure can be understood as the average
dimension of the Krylov subspace needed to accurately repre-
sent the evolution of the initial state over time.

In recent studies [42–44], the potential of using Krylov
complexity as a reliable measure to assess the transition from
integrability to chaos has been explored. This investigation
has been conducted in various systems, including those with
and without semiclassical limits. The results indicate that
both the complexity and variance of the Lanczos coefficients
provide an excellent description of this transition when con-
sidering Krylov evolution for states.

III. RESULTS

In this section, we analyze the performance of quantum
reservoirs using the Krylov approach to complexity.

In the realm of QRC, random quantum circuits are rep-
resented by a unitary evolution operator U, which creates a
quantum-enhanced representation of the input data. A prob-
lem arises here; although the Krylov method is typically well
defined for studying quantum systems when described by a
Hamiltonian operator, there is no satisfactory adaptation for
the case of unitary operators. This severe limitation needs
to be addressed beforehand to make it possible to study the
Krylov complexity for quantum reservoirs. To this end, we
introduce in Sec. III A a suitable method to analyze the Krylov
complexity with quantum unitaries, which is then validated
by showing that it can accurately reproduce the properties
of two benchmark quantum systems with chaotic dynamics:
the longitudinal-transverse field Ising model and the standard
map.

A. Krylov complexity for evolution operators

The method that we propose to use is simple. Given an
evolution operator U, a corresponding effective Hamiltonian
Heff is calculated as

Heff = −i ln U. (8)
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We show that this choice allows us to use the above method
to characterize the K complexity of U. The operator Heff is
then used to calculate the Lanczos coefficients and Krylov
complexity for an initial quantum state |ψ〉.

To validate this ansatz, we first apply the proposed method
to the longitudinal-transverse field Ising model, with nearest-
neighbor interactions in the z direction, and a transverse
magnetic field in the (x, z) plane. The corresponding Hamil-
tonian is then given by

H =
n∑

k=1

(
hxσ

x
k + hzσ

z
k

) − J
n−1∑
k=1

σ z
k σ z

k+1, (9)

where n is the number of spin −1/2 sites in the chain, σ
j

k
is the Pauli operator at site k = 1, 2, . . . , n in the x, y, and z
directions, hx and hz are the components of the magnetic field,
and J is the nearest-neighbor coupling. To expand an operator
in the Krylov space, it is necessary to work in a symmetry
subspace. Our system is invariant under reflection with respect
to the center of the chain. In this work, we always operate in
the positive-parity subspace and fix h̄ = 1 and the coefficients
hx = J = 1, so that the energy hz is measured in units of J .
Hamiltonian (9) is integrable for hz = 0 and for hz � 3, while
it exhibits a quantum chaotic behavior for intermediate values
of hz.

We next construct the evolution operator U = eiHT for our
Hamiltonian. In this case, the unitary is also normalized to
the chosen time T , to recover the scale of the original Hamil-
tonian. Finally, the chaotic properties of Heff associated with
the Ising model are computed for three different values of the
characteristic time, which all have units of J−1. The longest
one is taken as the Heisenberg time,

tH = 2π

ρE
, (10)

where ρE represents the mean density of states around energy
E . The second time is the t1/2 time, defined as the time it takes
to reach half the value of the saturation of the K complexity
calculated using H of Eq. (9). Figure 1 shows the scaling of
the t1/2 time with the number of spins of the quantum system,
which increases cubically with n. This power-law behavior
is characteristic of integrable or mixed systems than chaotic
[60], which requires a more detailed study that we will do in
the future. A representation of how the t1/2 time is defined is
shown in the inset. Finally, a third time is chosen, correspond-
ing to a short period of time t1/2/25.

With these three timescales, we study the chaotic dynamics
of the Ising Hamiltonian for different values of hz for a system
with n = 10 spins. The results are displayed in Fig. 2. There,
the black curve shows the mean value of the distribution of the
ratio of consecutive level spacings r calculated with the actual
Hamiltonian in Eq. (9) [61–63], which indicates the regular or
chaotic character of the system according to criteria of random
matrix theory [64]. This curve clearly shows a very sudden
phase transition from an integrable system for hz ≈ 0 to a
chaotic system for hz ≈ 1, and gradually back to an integrable
system for hz � 3. On the other hand, the color curves show
the values of r calculated with the effective Hamiltonian Heff

for the three characteristic times using Eq. (8). As can be
seen, when the timescale is short, i.e., t1/2/25, Heff correctly

FIG. 1. Scaling of the t1/2 with the number of quantum spins (n)
in the Ising model (9). The inset illustrates the calculation of the t1/2

time, defined as the duration required for the K complexity CK, as
defined in Eq. (7) to reach half of the average value at the plateau for
a system of size n = 10.

reproduces the behavior of r. However, when the character-
istic time increases, the resulting effective Hamiltonian loses
the phase transition, becoming integrable for all values of hz.

To complete our study, we show in Fig. 3 the mean K
complexity, CK, averaged over multiple initial quantum states,

CK = 1

m

m−1∑
i=0

∫ T2

T1

Cψi

K (t )dt, (11)

FIG. 2. Mean value of the distribution of the ratio of consecu-
tive level spacings r for the Ising model of Eq. (9) as a function
of the coupling constant hz, measured in units of J . The values
r ≈ 0.386 (horizontal dashed line) and r ≈ 0.536 (horizontal dotted
line) corresponds to a regular and a chaotic system, respectively. The
Hamiltonian has been constructed from the unitary evolution oper-
ator for three different times: the Heisenberg time tH , the t1/2 time,
and a shorter period of time t1/2/25, all measured in units J−1. The
black curves represent the statistics obtained with the Ising-model
Hamiltonian.
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FIG. 3. (a) Variance of the Lanczos coefficients a and b for the
Ising model with n = 10 spins, as a function of hz, measured in units
of J . (b) Mean K complexity CK as a function of hz. The three times
used are the same as in Fig. 2.

where the initial states |ψi〉 are chosen to be eigenvalues of
the Ising Hamiltonian in Eq. (9) and T1 is chosen so that the
system has arrived at saturation and T2 is the final time for our
simulations. Figure 3 also shows the variance of the Lanczos
coefficients a and b for the same three timescales considered
before. The Krylov complexity has been computed using sev-
eral initial states |ψ〉 [see Eq. (3)], that are eigenstates of H in
the integrable regime (hz > 5). Let us remark that the choice
of the initial states is vital to accurately capture the evolution
of the K complexity with hz [45]. The results in Fig. 3(a)
shows that the variance of a and b increases with hz for the
true Hamiltonian (black curve). However, as the time period
becomes longer, the variance of such coefficients increases in
a slower fashion (colored curves). In fact, in the limit t = tH
the variance of the coefficients is basically constant. Comple-
mentarily, Fig. 3(b) shows CK at the t1/2 time for the different
timescales, from which it can be concluded that, while for
t = t1/2/25 the dynamics of CK is correctly reproduced, the
pattern is completely lost at t = tH , and for t = t1/2 it exhibits
an intermediate dynamics.

The previous results show that as long as the time of the
evolution operator is small enough, the effective Hamiltonian,

FIG. 4. Variation of r as a function of the chaos parameter k for
the standard map.

introduced by us in Eq. (8), is able correctly reproduce the
chaotic dynamics of the system (r), as well as the K com-
plexity (CK). Notably, the computational time and resources
required to apply this method to large-scale systems can be
substantially reduced by considering only the first few coeffi-
cients of the Lanczos sequence. As it is shown in Appendix B,
the coefficients still allow for an accurate reproduction of the
Krylov statistics and complexity.

To further confirm our previous conclusions, we consider a
second benchmark system, with different mathematical char-
acteristics. This system is the (quantum) standard map, a
quantum-mechanical version of the classical standard map,
which describes the dynamics of a periodically kicked rotor
system on a torus. The associated torus structure gives rise to
periodicity in both position and momentum. When quantized,
this periodicity leads to a discrete Hilbert space with a dimen-
sion of N , and Planck constant denoted h = 1/(2πN ).

Mathematically, the standard map is defined by a unitary
operator U such that

|ψ〉 −→ U |ψ〉 = e−i p̂2

2 e−i k cos (2π x̂) |ψ〉 , (12)

where x̂ is the position operator, p̂ is the momentum operator,
and k is the chaos parameter. For small values of k, the level
spacing statistics (r) is described by the Poisson law, and by
the Wigner-Dyson law of the random matrix theory for large
values of k [42]. This behavior is depicted in Fig. 4, which
shows the variation of r with the parameter k for different
sizes of the Hilbert space. As can be seen, the evolution
of r is qualitatively equivalent for all different system sizes
considered.

Similarly to what we did before with the Ising model,
for which the system Hamiltonian was known, we have ob-
tained the mean complexity CK and variance of the Lanczos
coefficients with the effective Hamiltonian Heff in Eq. (8).
The results, displayed in Fig. 5, show that also in this case
the Krylov statistics correctly reproduce the quantum chaotic
behavior of the system. In particular, Fig. 5(a) shows that the
variance of the Lanczos coefficients decreases as k increases,
in accordance with the behavior of the mean level spacing r
[39,42]. Moreover, Fig. 5(b) shows that the mean and variance
of the K complexity also increase (decrease) with k, result
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FIG. 5. Same as Fig. 3 for the standard map with Hilbert-space
sizes N = 100, 200, 400, and 800.

which also reproduces the integrable-chaotic transition taking
place in the system with k. Here, variances are calculated over
the 100 simulations varying the initial state |ψ〉 of the system
[see Eq. (3)], which are all chosen to be eigenstates of the
standard map in the integrable region with k = 0.01.

In summary, we can state that our results reflect that the
Krylov dynamics obtained with the effective Hamiltonian
correctly captures the complexity and chaotic properties of a
quantum map. This confirms the fact that our construction of
Heff is a valid method to compute the K complexity of a uni-
tary operator, which will be next used to calculate the Krylov
statistics for the title case of multiple quantum reservoirs.

B. Krylov complexity for quantum reservoirs

Once our method described in Sec. III A has been vali-
dated, we proceed to discuss the results for the chaotic and
Krylov statistics of seven families of random quantum cir-
cuits, which often serve as quantum reservoirs, and compare
them with their performance in QRC (see Sec. II A 2).

We begin by analyzing the statistics of the Lanczos co-
efficients, together with the mean and variance of the K
complexity for the seven families of quantum reservoirs. The
corresponding results are presented in Fig. 6. In particular,
Fig. 6(a) depicts the variance of the Lanczos coefficients a
and b, showing that the families achieving better performance
[lower mean squared error (MSE)] are also those with smaller

FIG. 6. Same as Fig. 3 for the seven families of quantum reser-
voirs for n = 10, 8, and 6. CK and Var(CK) have been normalized
with the dimension of the Hilbert space for better visualization.

variance in a and b. The variances here have been calculated
over 100 simulations performed for each family. The initial
state |ψ〉 is here chosen randomly from the computational
basis. Moreover, Fig. 6(b) also indicates the existence of a
significant correlation in the mean and variance of the K com-
plexity, with the better-performing reservoirs having lower
Var(CK) and higher CK. Therefore, these results clearly show
that the Krylov statistics are an excellent choice for designing
optimal quantum reservoirs, which present high performance
for quantum machine-learning tasks.

One final point is worth discussing here. In Refs. [10,11],
we studied the distribution of the unitary operators generated
by the seven families of quantum reservoirs in the Pauli space,
which is the space of quantum operators. Using a simple toy
model of two qubits, we demonstrated that the less complex
families of reservoirs, G1 and G2, only span a small subspace
of the operator space. On the other hand, the more complex
families, such as G3 and MG, uniformly sample the entire
operator space, resulting in improved performance in QRC.
Now, the Krylov approach to complexity further clarifies and
allows a better understanding of this result. Indeed, the K
complexity measures the average dimension of the Krylov
subspace required to represent the evolution of an initial state
over time, described by the unitary operator sampled from any
of the quantum reservoir families. Therefore, only the families

022446-7



LAIA DOMINGO et al. PHYSICAL REVIEW A 110, 022446 (2024)

FIG. 7. (a) Mean squared error (MSE), obtained with the quan-
tum reservoir computing algorithm for the seven families of quantum
reservoirs and the two molecules: LiH (n = 8) and H2O (n = 10).
The MSE has units of energy squared, which is expressed in atomic
units. (b) Variation of r for the different families of quantum reser-
voirs with sizes n = 6, 8, and 10.

able to generate the whole set of quantum operators will be
able to span larger Krylov subspaces, then giving rise to higher
values of CK. On the contrary, families that only produce
nonuniversal, limited sets of quantum operators will result in
low-dimensional Krylov spaces, leading to lower complexity
values.

This is clearly seen in the results of Fig. 7, which com-
pares the mean squared error (MSE) of the predictions in
the machine-learning tasks [Fig. 7(a)] reported in Ref. [10],
with the mean energy-level spacing, r, for the seven families
of quantum reservoirs [Fig. 7(b)] obtained here. The results
show that there is a strong correlation between the quantum
chaotic behavior of the families of quantum circuits and the
performance in QRC. Actually, the families with higher values
r, such as the G3 and MG, are also those providing better per-
formance as quantum reservoirs. On the contrary, G1 and G2
are the families with worse performance, which also present
lower values of r. Finally, the diagonal circuits D2, D3, and
DN provide intermediate results both in terms of MSE and r.

IV. CONCLUSIONS

In the realm of the rapidly progressing field of develop-
ing quantum methods for NISQ devices, which is aimed at

surpassing classical approaches using the currently available
quantum computers, QRC algorithm has emerged as a stand-
out approach. This algorithm harnesses the inherent properties
and dynamics of a quantum system, referred to as the quantum
reservoir, to discover hidden patterns within the input data
crucial to perform optimal machine-learning tasks. Indeed, the
design of the quantum reservoir is of uttermost importance
for the successful implementation of the algorithm. In this
respect, it was recently proven that the complexity of the quan-
tum reservoir, measured by the majorization criterion [23],
is an excellent indicator of performance in machine-learning
tasks [10,11].

Building upon this knowledge, the present work expands
the understanding by providing a quantitative and precise
method to assess the performance of quantum reservoirs,
employing the Krylov approach to complexity. The Krylov
complexity relies on robust physical principles, and its dis-
tinctive growth pattern offers a precise characterization of
complexity across multiple temporal scales. This technique
entails representing the system’s evolution through a map-
ping onto a noninteracting tight-binding model within the
Krylov space. The K complexity is derived by spreading a
one-particle wave-function across the Krylov basis. Utilizing
this basis minimizes the dispersion of a wave packet, thus
circumventing uncertainties in defining complexity associated
with quantum evolution and providing valuable insights into
the system’s chaotic nature. To evaluate the K complexity
for quantum reservoirs, we first had to develop a technique
able to calculate the Krylov evolution for quantum unitary
operators. Through this approach, we successfully reproduced
the chaotic phase transition of two quantum systems, namely,
the longitudinal-transverse-field Ising Hamiltonian and the
standard map, validating our ansatz of Eq. (8).

Subsequently, we demonstrated that Krylov statistics, in-
cluding the mean K complexity at saturation CK and its
variance Var(CK), along with the variance of the Lanczos
coefficients, exhibit a strong correlation with the performance
of quantum reservoirs measured as the mean squared error
of the predicted electronic energies of multiple molecules.
Consequently, the Krylov evolution emerges as an efficient
and precise tool for estimating the performance of QRC. Fur-
thermore, the Krylov approach has the potential to evaluate
the complexity of additional quantum substrates that serve
as quantum reservoirs, including bosonic [65] and fermionic
systems [66], as well as optical networks, thus expanding the
comprehension of complexity within QRC to a wider range
of contexts. These findings hold immense promise for design-
ing optimal quantum algorithms involving random quantum
systems, facilitating successful implementations of quantum
machine-learning methods.

The underlying code for this study is available in the
GitHub repository and can be accessed online [67].
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APPENDIX A: FAMILIES OF QUANTUM RESERVOIRS

The seven families of quantum reservoirs considered in this
work are the following:

(1) G1: The quantum circuit is constructed from the gen-
erator G1 = {CNOT, H, X}, where CNOT is the controlled-NOT

gate, H stands for a Hadamard gate, and X is the NOT gate. The
set G1 generates a subgroup of Clifford [48] group and thus is
nonuniversal and classically simulatable.

(2) G2: The quantum circuit is constructed from the gen-
erator G2 = {CNOT, H, S}, with S being the π/4 phase gate.
The circuits constructed from G2 generate the whole Clifford
group [47], so they are nonuniversal and classically simulat-
able but more complex than G1 circuits.

(3) G3: The quantum circuit is constructed from the gen-
erator G3 = {CNOT, H, T}, where T is the π/8 phase gate. G3
is universal and thus approximates the full unitary group U(N )
to arbitrary precision.

(4) Matchgates (MGs): Two-qubit gates formed by two
one-qubit gates A and B with the same determinant. A acts
on the subspace spanned by |00〉 and |11〉, while B acts on
the subspace spanned by |01〉 and |10〉. A and B are randomly
sampled from the unitary group U(2):

G(A, B) =

⎛
⎜⎜⎝

a1 0 0 a2

0 b1 b2 0
0 b3 b4 0
a3 0 0 a4

⎞
⎟⎟⎠, |A| = |B|. (A1)

Matchgates circuits are also universal (except when acting
only on nearest-neighboring lines) [49,50].

(5) Diagonal-gate circuits (D2, D3, Dn): The last families
of gates are diagonal in the computational basis. The diagonal
gates are separated into three families: D2, D3, and Dn. Here,
D2 gates are applied to pairs of qubits, D3 gates are applied to
three qubits, and Dn gates are applied to all qubits:

Dk (φ1, . . . , φ2k ) =

⎛
⎜⎜⎜⎝

eiφ1 0 · · · 0
0 eiφ2 · · · 0
...

...
. . .

...

0 0 · · · eiφ2k

⎞
⎟⎟⎟⎠, (A2)

for k ∈ {2, 3, n} and with φi chosen uniformly from
[0, 2π ) ∀ i. The gates are applied on all combinations of k
(out of n) qubits, the ordering being random. At the beginning
and at the end of the circuit (after the initialization of the
state), Hadamard gates are applied to all qubits. As diagonal
gates commute, they can be applied simultaneously. Diagonal
circuits cannot perform universal computation but they are
not always classically simulatable [51]. As opposed to the
other families of circuits, which can be of arbitrary depth, the
diagonal D2, D3, and Dn families contain a fixed number of
gates, being those

(n
2

)
,
(n

3

)
, and 1 gates, respectively.

FIG. 8. (top) Variance of the Lanczos coefficients a and b for
the Ising model with n = 10 spins, as a function of hz in units of
J (bottom). Mean K complexity (CK) as a function of hz. The size
of the Lanczos sequence (LS) is reduced to 100%, 50%, 25%, and
12.5%.

APPENDIX B: KRYLOV APPROACH WITH REDUCED
LANCZOS COEFFICIENTS

In this Appendix, we study the performance of the Krylov
approach when considering only a simplified subset of co-
efficients from the complete Lanczos sequence. Rather than
calculating the Krylov complexity and statistics using all co-
efficients a and b, we perform the calculations here using
only a fraction of these coefficients while disregarding the tail
end of the sequence. The percentage of the sequence of the
Lanczos coefficients used for the calculations will be called
the Lanczos sequence (LS) from now on.

Figure 8 (top panel) illustrates the variance of a and b,
while Fig. 8 (bottom panel) shows the mean complexity CK
with respect to different initial conditions for the Ising model
with n = 10 spins. The colored lines in the graphs represent
the obtained statistics using all Lanczos coefficients (green)
and also when using only a fraction of them, with LS = 50%
(red), 25% (blue), and 12.5% (black). As can be seen in the
bottom panel of Fig. 8, the transition of the K complexity
is accurately reproduced when using all Lanczos coeffi-
cients and also fairly well reproduced when only 50% of the
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coefficients are included. On the contrary, the K complexity
phase transition is completely lost when using only a small
fraction of coefficients, for example, 12.5%. On the other hand
(Fig. 8, top panel), the evolution of the variance of the Lanczos
coefficients is well reproduced even when using very small
fractions of the Lanczos sequence, as it consistently exhibits
a growing behavior with respect to hz. More interestingly,
the variance obtained from smaller fractions of coefficients
actually shows higher variances than those obtained from the
entire set of coefficients. These findings indicate that when
studying the dynamics of Lanczos coefficients, one can focus
solely on the first few values and still achieve accurate results,
leading to a significant reduction in the computational com-
plexity of the method. As for the K complexity, its evolution is
reasonably replicated when using smaller sets of coefficients,
but its trend becomes completely lost when considering only
the initial few values.

Finally, the same trends are observed when studying the
quantum standard map for N = 400, as depicted in Fig. 9.
The behavior of the variance of the Lanczos coefficients is
well-reproduced even for smaller sets of coefficients, with as
little as 12.5% of them being sufficient. Moreover, thcce K
complexity is also well-reproduced when using only 50% of
the coefficients, but its dynamics are lost when using 25% and
12.5% of the coefficients. These results highlight the com-
putational efficiency of the Krylov approach, as significantly
reducing the size of the Lanczos coefficients still allows for an
accurate reproduction of the Krylov statistics and complexity.
Consequently, employing only the first coefficients of the
Lanczos sequence can substantially reduce the computational
time and resources required to apply this method to large-scale
systems.

FIG. 9. Same as Fig. 8 but for the quantum standard map with
N = 400.

[1] P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
[2] L. K. Grover, in Proceedings of the Twenty-Eighth Annual

ACM Symposium on Theory of Computing: STOC ’96, Philadel-
phia, Pennsylvania (Association for Computing Machinery,
New York, NY, USA, 1996), pp. 212–219.

[3] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik,
Rev. Mod. Phys. 94, 015004 (2022).

[4] J. Preskill, Quantum 2, 79 (2018).
[5] K. Fujii and K. Nakajima, Quantum reservoir computing:

A reservoir approach toward quantum machine learning on
near-term quantum devices, in Reservoir Computing: The-
ory, Physical Implementations, and Applications, edited by K.
Nakajima and I. Fischer (Springer Singapore, Singapore, 2021),
pp. 423–450.

[6] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H.
Liew, npj Quantum Inf. 5, 35 (2019).

[7] R. Martínez-Peña, G. L. Giorgi, J. Nokkala, M. C. Soriano, and
R. Zambrini, Phys. Rev. Lett. 127, 100502 (2021).

[8] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L.
Giorgi, M. C. Soriano, and R. Zambrini, Adv. Quantum
Technol. 4, 2100027 (2021).

[9] A. Kutvonen, K. Fujii, and T. Sagawa, Sci. Rep. 10, 14687
(2020).

[10] L. Domingo, G. G. Carlo, and F. Borondo, Phys. Rev. E 106,
L043301 (2022).

[11] L. Domingo, G. Carlo, and F. Borondo, Sci. Rep. 13, 8790
(2023).

[12] H. Jaeger, German National Research Center for Information
Technology GMD Technical Report No. 148 (2001).

[13] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Neural Netw.
115, 100 (2019).

[14] S. Ghosh, K. Nakajima, T. Krisnanda, K. Fujii, and T. Liew,
Adv. Quantum Technol. 4, 2100053 (2021).

[15] P. Zapletal, A. Nunnenkamp, and M. Brunelli, PRX Quantum
3, 010301 (2022).

[16] H. Kawai and Y. Nakagawa, Mach. Learn.: Sci. Technol. 1,
045027 (2020).

[17] P. Mujal, R. Martínez-Peña, G. L. Giorgi, M. C. Soriano, and R.
Zambrini, npj Quantum Inf. 9, 16 (2023).

[18] J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Parigi, M. C.
Soriano, and R. Zambrini, Commun. Phys. 4, 53 (2021).

[19] K. Nakajima, K. Fujii, M. Negoro, K. Mitarai, and M.
Kitagawa, Phys. Rev. Appl. 11, 034021 (2019).

022446-10

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41534-019-0149-8
https://doi.org/10.1103/PhysRevLett.127.100502
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1038/s41598-020-71673-9
https://doi.org/10.1103/PhysRevE.106.L043301
https://doi.org/10.1038/s41598-023-35461-5
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1002/qute.202100053
https://doi.org/10.1103/PRXQuantum.3.010301
https://doi.org/10.1088/2632-2153/aba183
https://doi.org/10.1038/s41534-023-00682-z
https://doi.org/10.1038/s42005-021-00556-w
https://doi.org/10.1103/PhysRevApplied.11.034021


QUANTUM RESERVOIR COMPLEXITY BY THE KRYLOV … PHYSICAL REVIEW A 110, 022446 (2024)

[20] J. Chen, H. I. Nurdin, and N. Yamamoto, Phys. Rev. Appl. 14,
024065 (2020).

[21] R. Martínez-Peña, J. Nokkala, G. L. Giorgi, and J. Amato-Grill,
Cogn. Comput. 15, 1440 (2023).

[22] J. I. Latorre and M. A. Martín-Delgado, Phys. Rev. A 66,
022305 (2002).

[23] R. O. Vallejos, F. de Melo, and G. G. Carlo, Phys. Rev. A 104,
012602 (2021).

[24] D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, and E. Altman,
Phys. Rev. X 9, 041017 (2019).

[25] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner,
J. High Energy Phys. 06 (2021) 062.

[26] V. Balasubramanian, P. Caputa, J. M. Magan, and Q. Wu, Phys.
Rev. D 106, 046007 (2022).

[27] F. B. Trigueros and C.-J. Lin, SciPost Phys. 13, 037 (2022).
[28] K. Adhikari, S. Choudhury, and A. Roy, Nucl. Phys. B 993,

116263 (2023).
[29] Y. Shen, K. Klymko, J. Sud, D. B. Williams-Young, W. A. de

Jong, and N. M. Tubman, Quantum 7, 1066 (2023).
[30] M. Hochbruck and C. Lubich, SIAM J. Numer. Anal. 34, 1911

(1997).
[31] B. N. Parlett, The Symmetric Eigenvalue Problem: 20, Classics

in Applied Mathematics (Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1987).

[32] J. M. Ruffinelli, E. M. Fortes, D. A. Wisniacki, and M. Larocca,
Phys. Rev. A 106, 042423 (2022).

[33] B. Craps, O. Evnin, and G. Pascuzzi, Phys. Rev. Lett. 132,
160402 (2024).

[34] A. Dymarsky and A. Gorsky, Phys. Rev. B 102, 085137
(2020).

[35] X. Cao, J. Phys. A: Math. Theor. 54, 144001 (2021).
[36] B. Bhattacharjee, P. Nandy, and T. Pathak, J. High Energy Phys.

08 (2023) 099.
[37] A. Bhattacharya, P. Nandy, P. P. Nath, and H. Sahu, J. High

Energy Phys. 12 (2022) 081.
[38] B. Bhattacharjee, X. Cao, P. Nandy, and T. Pathak, J. High

Energy Phys. 05 (2022) 174.
[39] B. L. Español and D. A. Wisniacki, Phys. Rev. E 107, 024217

(2023).
[40] J. Barbón, E. Rabinovici, R. Shir, and R. Sinha, J. High Energy

Phys. 10 (2019) 264.
[41] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner,

J. High Energy Phys. 03 (2022) 211.

[42] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner,
J. High Energy Phys. 07 (2022) 151.

[43] H. A. Camargo, V. Jahnke, H.-S. Jeong, K.-Y. Kim, and M.
Nishida, Phys. Rev. D 109, 046017 (2024).

[44] K. Hashimoto, K. Murata, N. Tanahashi, and R. Watanabe,
J. High Energy Phys. 11 (2023) 040.

[45] G. Scialchi, A. Roncaglia, and D. A. Wisniacki (unpublished).
[46] I. García-Mata, R. A. Jalabert, and D. A. Wisniacki,

Scholarpedia 18, 55237 (2023).
[47] D. Gottesman, Group22: Proceedings of the XXII International

Colloquium on Group Theoretical Methods in Physics, edited
by S. P. Corney, R. Delbourgo, and P. D. Jarvis (International
Press, Cambridge, 1999), pp. 32–43.

[48] R. Jozsa and M. V. den Nest, Quantum Inf. Comput. 14, 633
(2013).

[49] R. Jozsa and A. Miyake, Proc. R. Soc. A 464, 3089 (2008).
[50] D. J. Brod and A. M. Childs, Quantum Inf. Comput. 14, 901

(2013).
[51] M. J. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A

467, 459 (2011).
[52] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X.

Yuan, Rev. Mod. Phys. 92, 015003 (2020).
[53] P. Jordan and E. Wigner, Eur. Phys. J. A 47, 631 (1928).
[54] T. J. Park and J. Light, J. Chem. Phys. 85, 5870 (1986).
[55] Y. Saad, SIAM J. Numer. Anal. 29, 209 (1992).
[56] D. E. Stewart and T. Leyk, J. Comp. App. Math. 72, 359

(1996).
[57] R. B. Sidje, ACM Trans. Math. Software 24, 130 (1998).
[58] C. Moler and C. Van Loan, SIAM Rev. 45, 3 (2003).
[59] T. Jawecki, W. Auzinger, and O. Koch, BIT Numer. Math. 60,

157 (2020).
[60] F. Toscano and D. A. Wisniacki, Phys. Rev. E 74, 056208

(2006).
[61] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[62] K. Kudo and T. Deguchi, Phys. Rev. B 97, 220201(R) (2018).
[63] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Phys. Rev.

Lett. 110, 084101 (2013).
[64] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[65] A. Bhattacharyya, D. Ghosh, and P. Nandi, J. High Energy Phys.

12 (2023) 112.
[66] C. Liu, H. Tang, and H. Zhai, Phys. Rev. Res. 5, 033085 (2023).
[67] https://github.com/laiadc/Krylov_QR/

022446-11

https://doi.org/10.1103/PhysRevApplied.14.024065
https://doi.org/10.1007/s12559-020-09772-y
https://doi.org/10.1103/PhysRevA.66.022305
https://doi.org/10.1103/PhysRevA.104.012602
https://doi.org/10.1103/PhysRevX.9.041017
https://doi.org/10.1007/JHEP06(2021)062
https://doi.org/10.1103/PhysRevD.106.046007
https://doi.org/10.21468/SciPostPhys.13.2.037
https://doi.org/10.1016/j.nuclphysb.2023.116263
https://doi.org/10.22331/q-2023-07-25-1066
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.1103/PhysRevA.106.042423
https://doi.org/10.1103/PhysRevLett.132.160402
https://doi.org/10.1103/PhysRevB.102.085137
https://doi.org/10.1088/1751-8121/abe77c
https://doi.org/10.1007/JHEP08(2023)099
https://doi.org/10.1007/JHEP12(2022)081
https://doi.org/10.1007/JHEP05(2022)174
https://doi.org/10.1103/PhysRevE.107.024217
https://doi.org/10.1007/JHEP10(2019)264
https://doi.org/10.1007/JHEP03(2022)211
https://doi.org/10.1007/JHEP07(2022)151
https://doi.org/10.1103/PhysRevD.109.046017
https://doi.org/10.1007/JHEP11(2023)040
https://doi.org/10.4249/scholarpedia.55237
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.26421/QIC14.11-12
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1007/BF01331938
https://doi.org/10.1063/1.451548
https://doi.org/10.1137/0729014
https://doi.org/10.1016/0377-0427(96)00006-4
https://doi.org/10.1145/285861.285868
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1007/s10543-019-00771-6
https://doi.org/10.1103/PhysRevE.74.056208
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.97.220201
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1007/JHEP12(2023)112
https://doi.org/10.1103/PhysRevResearch.5.033085
https://github.com/laiadc/Krylov_QR/

