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A normalizing flow computes a bijective mapping from an arbitrary distribution to a predefined (e.g., normal)
distribution. Such a flow can be used to address different tasks, e.g., anomaly detection, once such a mapping
has been learned. In this work we introduce normalizing flows for quantum architectures, describe how to model
and optimize such a flow, and evaluate our method on example datasets. Our proposed models show competitive
performance for anomaly detection compared to classical methods, especially those ones where there are already
quantum inspired algorithms available. In the experiments we compare our performace to isolation forests (IF),
the local outlier factor (LOF), or single-class SVMs.
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I. INTRODUCTION

Anomaly detection is the task to identify data points,
entities, or events that fall outside a normal range. Thus
an anomaly is a data point that deviates from its expecta-
tion or the majority of the observations. Applications are
in the domains of cybersecurity [1], medicine [2], machine
vision [3], (financial) fraud detection [4], or production [5].
In this work we assume that only normal data are available
during training. Such an assumption is valid in production
environments where many positive examples are available
and events happen rarely which lead to faulty examples.
During inference, the model has to differ between normal
and anomalous samples. This is also termed semi-supervised
anomaly detection [6], novelty detection [7,8], or one-class
classification [9].

In this work we will make use of normalizing flows [10] for
anomaly detection. A normalizing flow (NF) is a transforma-
tion of an arbitrary distribution, e.g., coming from a dataset
to a provided probability distribution (e.g., a normal distri-
bution). The deviation from an expected normal distribution
can then be used as anomaly score for anomaly detection.
A defining property of normalizing flows is the bijectivity,
thus an NF can be evaluated as a forward and backward path,
an aspect which is trivial for quantum gates which can be
represented as unitary matrices. Another aspect is that on a
quantum computer the output is always a distribution of mea-
surements. This distribution can be directly compared to the
target distribution by using a KL-divergence measure for eval-
uation. In general, this step will require sampling. We would
like to raise two aspects as to why quantum anomaly detection
(QAD) can be useful. First, in combination with quantum
machine learning algorithms, QAD can question the quality
of the decision, just as a safety net to prevent overconfident or
useless decisions [11]. The second advantage lies in the log2
amount of qubits to represent the data compared to the original
representation. For example, in the experiments, the wine and
iris datasets are represented as 12- and 28-dimensional feature
vector (details are in the experimental Sec. III C), whereas
only four and five qubits are needed on a quantum device.

We therefore propose to optimize an NF using quantum
gates and use the resulting architectures for anomaly detec-
tion. In the experiments, we compare the resulting quantum
architectures with standard approaches for anomaly detec-
tion, e.g., based on isolation forests (IF), local outlier factors
(LOF), and one-class support vector machines (SVMs) and
show a competitive performance. These methods have been
selected since previous works already presented quantum im-
plementations for these variants, or one is in general possible
as summarized in Sec. II C 1. We additionally demonstrate
how to use the quantum normalizing flow as a generative
model by sampling from the target distribution and evaluating
the backward flow. A very recent work in this direction was
presented in [12]. For the optimization of the quantum gate
order, we rely on a quantum architecture search and directly
optimize the gate selection and order on a loss function. In our
experiments we will use as loss the Kullback- Leibler (KL)
divergence and the cosine dissimilarity.

Our contributions can be summarized as follows.
(1) We propose quantum normalizing flows to compute a

bijective mapping from data samples to a normal distribution.
(2) Our optimized models are used for anomaly detection

and are evaluated and compared to quantum usable reference
methods demonstrating a competitive performance.

(3) Our optimized models are used as a generative model
by sampling from the target distribution and evaluating the
backward flow.

(4) Our source code for optimization will be made pub-
licly available [13].

II. PRELIMINARIES

In this section we give a brief overview of the quantum
framework we use later, a summary on normalizing flows, and
provide an overview of existing classical and quantum driven
anomaly detection frameworks. Three classical and quantum
formalizable methods are later used for a direct comparison
with our proposed quantum-flow algorithm, namely, isolation
forests, LOFs, and single-class SVMs.
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A. Quantum gates and circuits

We focus on the setting where our quantum information
processing device is comprised of a set of N logical qubits,
arranged as a quantum register (see, e.g., [14] for further
details). Thus we use a Hilbert space of our system H ≡
(C2)⊗N ∼= C2N

as algebraic embedding. Therefore, a quan-
tum state vector of a five-qubit register is a unit vector in
C25 = C32. We further assume that the system is not subject
to decoherence or other external noise.

Quantum gates are the basic building blocks of quantum
circuits, similar to logic gates in digital circuits [15]. Ac-
cording to the axioms of quantum mechanics, quantum logic
gates are represented by unitary matrices so that a gate acting
on N qubits is represented by a 2N × 2N unitary matrix, a
quantum gate sequence comprised of a set of such gates which
in return are evaluated as a series of matrix multiplications.
A quantum circuit of length L is, therefore, described by an
ordered tuple [O(1), O(2), . . . , O(L)] of quantum gates; the
resulting unitary operation U implemented by the circuit is
the product

U = O(L)O(L − 1) · · · O(1). (1)

Standard quantum gates include the Pauli-(X , Y , Z) oper-
ations, as well as Hadamard, CNOT, SWAP, phase-shift, and
TOFFOLI gates, all of which are expressible as standardized
unitary matrices [16]. The action of a quantum gate is ex-
tended to a register of any size exploiting the tensor product
operation in the standard way. Even though some gates do
not involve additional variables, however, a phase-shift gate
RX (θ ) applies a complex rotation and involves the rotation
angle θ as free parameter.

B. Normalizing flows

A NF is a transformation of a provided (simple) probabil-
ity distribution (e.g., a normal distribution) into an arbitrary
distribution by a sequence of invertible mappings. They were
introduced by Rezende and Mohamed [17] as a generative
model to generate examples from sampling a normal distribu-
tion. Compared to other generative models such as variational
autoencoders (VAEs) [18] or generative adversarial networks
(GANs) [19] an NF comes along with the property that it maps
bijectively and is bidirectionally executable. Thus, the input
dimension is the same as the output dimension. Usually, they
are optimized via maximum likelihood training and the mini-
mization of a KL-divergence measure. Given two probability
distributions P and Q, the Kullback-Leibler divergence (KL
divergence) or relative entropy is a dissimilarity measure for
two distributions

DKL(P ‖ Q) =
∑
x∈X

p(x)ln

(
p(x)

q(x)

)
. (2)

Since the measure is differentiable, it has been frequently
used in the context of neural network models for a variety
of downstream tasks such as image generation, noise mod-
eling, video generation, audio generation, graph generation,
and more [10]. Other dissimilarity measures can be based on
the cosine-divergence, optimal transport or the χ2 measure.
Specifically, the cosine-divergence is a useful alternative for

FIG. 1. Visualization of a normalizing flow f . It is a bijective
transformation f of an arbitrary distribution (from a given dataset) to
a normal distribution.

quantum computers, as this measure is also directly express-
ible as quantum gate sequence [20]. The cosine dissimilarity
of two unit vectors can be expressed as its simple scalar
product (denoted as ·)

Dcos(P, Q) = 1 − P · Q. (3)

After the training process, a learned NF can be used in two
ways, either as generator or likelihood estimator. The for-
ward pass f : X → Z allows for computing the likelihood
of observed data points given the target distribution pZ (e.g.,
unit Gaussian). The backward pass f −1 : Z → X allows for
generating new samples in the original space X by sampling
from the latent space Z according to the estimated densities
as in [21,22]. Figure 1 visualizes the change of variables given
the source distribution pX and the target distribution pZ .

Several neural network architectures for such transforma-
tions were proposed in the past [23–26]. Note that all of these
architectures allow for learning highly nonlinear mappings,
a property which is by definition not possible when solely
quantum gates are used (which all comprise linear mappings).
We therefore perform later on experiments solely on methods
where quantum solutions are presented. Still, since quantum
gates are by definition expressible as unitary matrices which
are invertible, a quantum gate fulfills the basic properties of an
invertible and bijective mapping. Thus, we aim for optimizing
a quantum architecture providing the desired NF transforma-
tion and use the likelihood estimation from the forward pass
to compute an anomaly score for anomaly detection.

C. Anomaly detection

Anomaly detection is the task to identify data points, en-
tities, or events that fall outside an expected range. Anomaly
detection is applicable in many domains and can be seen as a
subarea of unsupervised machine learning. In our setting we
focus on a setting where only positive examples are provided
which is also termed one-class classification or novelty detec-
tion. In the following we will first summarize recent quantum
approaches for anomaly detection and will then introduce
in more detail three reference methods we will use in our
experiments.

1. Quantum anomaly detection

One of the first approaches to formulate anomaly detection
on quantum computers was proposed in [27]. The authors
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mainly built up on a kernel principal component analysis and
a one-class support vector machine, one of the approaches we
will introduce in more detail later. The so-called change point
detection was analyzed in [28–30]. In [31], Liang et al. pro-
posed anomaly detection using density estimation. Therefore
it was assumed that the data followed a specific type of distri-
bution, in its simplest form a Gaussian mixture model. In [32]
the LOF algorithm [33] was used and remapped to a quantum
formulation. As explained later, the LOF algorithm contains
three steps, (i) determine the k-distance neighborhood for each
data point x, (ii) compute the local reachability density of
x, and (iii) calculate the local outlier factor of x to judge
whether x is abnormal. In [34] the authors proposed an effi-
cient quantum anomaly detection algorithm based on density
estimation which was driven from amplitude estimation. They
showed that their algorithm achieved exponential speed up on
the number of training data points M over its classical coun-
terpart. In addition to the fundamental theoretical concepts,
many works do not show any experiments on real datasets and
are therefore often limited to very simple and artificial exam-
ples. Also the generated quantum gate sequences can require a
large amount of qubits and they lead to reasonable large code
lengths which is suboptimal for real-world scenarios [27,32].

In the following we will summarize three classical and
well-established methods which we will later use for a di-
rect comparison to our proposed quantum flow. For the
experiments we use the implementation of these algorithms
provided by MATLAB [35]. The optimization on the used
datasets is very fast and takes less than 1 second on a standard
notebook.

2. Isolation forests

An isolation forest is an algorithm for anomaly detection
which has been initially proposed by Liu et al. [36]. It detects
anomalies using characteristics of anomalies, i.e., being few
and different. The idea behind the isolation forest algorithm is
that anomalous data points are easier to separate from the rest
of the data. To isolate a data point, the algorithm generates
partitions on the samples by randomly selecting an attribute
and then randomly selecting a split value in a valid parameter
range. The recursive partitioning leads to a tree structure and
the required number of partitions to isolate a point corre-
sponds to the length of the path in the tree. Repeating this
strategy leads to an isolation forest, and finally, all path lengths
in the forest are used to determine an anomaly score. The
isolation forest algorithm computes the anomaly score s(x)
of an observation x by normalizing the path length h(x):

s(x) = 2− E [h(x)]
c(n) , (4)

where E [h(x)] is the average path length over all isolation
trees in the isolation forest and c(n) is the average path
length of unsuccessful searches in a binary search tree of n
observations.

The algorithm was extended in [37] and [38] to address
clustered and high-dimensional data. Another extension is
anomaly detection for dynamic data streams using random cut
forests, which was presented in [39]. In [40] quantum decision
trees ereween proposed, which are the basis for an optional
quantum isolation forest.

3. Local outlier factor

The LOF algorithm was introduced in [33]. Outlier de-
tection is based on the relative density of a data point with
respect to the surrounding neighborhood. It uses the k-nearest
neighbor and can be summarized as

LOFk (p) = 1

|Nk (p)|
∑

o∈Nk (p)

dlr k (o)

dlr k (p)
. (5)

Here, dlrk denotes the local reachability density and Nk (p)
represents the k-nearest neighbor of an observation p. The
reachability distance of observation p with respect to obser-
vation o is defined as

d̃k (p, o) = max[dk (o), d (p, o)], (6)

where dk (o) is the kth smallest distance among the distances
from the observation o to its neighbors, and d (p, o) denotes
the distance between observation p and observation o. The
local reachability density of observation p is reciprocal to
the average reachability distance from observation p to its
neighbors

dlr k (p) = 1∑
o∈Nk (p) d̃k (p,o)

|Nk (p)|

. (7)

The LOF can be computed on different distance metrics, e.g.,
an Euclidean, mahalanobis, city block, Minkowsky distance,
or others. In [32] a quantum LOF algorithm was presented.

4. Single class SVM

SVMs for novelty detection were proposed in [7]. The idea
was to estimate a function f which is positive on a simple set
S and negative on the complement, thus the probability that a
test point drawn from a probability distribution P lies outside
of S equals some a priori specified v between 0 and 1. Let
xi ∈ RN denote the training data and � be a feature map into
a dot product space F such that a kernel expression

k(x, y) = �(x)T �(y) (8)

can be used to express a nonlinear decision plane in a lin-
ear fashion, which is also known as kernel trick [41]. The
following formulation optimizes the parameters w and ρ and
returns a function f that takes the value +1 in a small region
capturing most of the data points and −1 elsewhere. The
objective function can be expressed as quadratic program of
the form

minw∈F,ξ∈Rt ,ρ∈R
1

2
‖w‖2 + 1

vl

∑
i

ξi − ρ (9)

s.t. (wT �(xi )) � ρ − ξi, ξ � 0. (10)

The nonzero slack variables ξi act as penalizer in the ob-
jective function. If w and ρ can explain the data, the decision
function

f (x) = sgn((wT �(x)) − ρ) (11)

will be positive for most examples xi, while the support vec-
tors in ‖w‖ will be minimized, thus the tradeoff between
an optimal encapsulation of the training data and accepting
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outlier in the data is controlled by v. Expanding f by using
the dual problem leads to

f (x) = sgn((wT �(x)) − ρ) (12)

= sgn

(∑
i

αik(xi, x) − ρ

)
, (13)

which indicates the support vectors of the decision boundary
with nonzero αis. This basic formulation was frequently used
in anomaly detection and established as a well performing
algorithm [9,42]. For more details in linear and quadratic
programming we refer to [43–46]. Quantum SVMs have been
matter of research over several years [47–49]. An approach
for a quantum one-class SVM was presented in [27].

III. METHOD

In the following we present the proposed method and con-
ducted experiments. The section starts with a brief summary
of the used optimization strategy based on quantum architec-
ture search, continues with the evaluation metrics, based on
a so-called receiver operating characteristic curve (ROC), and
presents the proposed quantum flow anomaly detection frame-
work. The evaluation is performed on two selected datasets,
the iris dataset and the wine dataset. Here, we will compare the
outcome of our optimized quantum flow with the performance
of isolation forests, the LOF and a single class SVM.

A. Optimization

Optimization is based on quantum architecture search.
The name is borrowed and adapted from Neural Architec-
ture Search (NAS) [50,51], which is devoted to the study
and hyperparameter tuning of neural networks. Many QAS
variants are focused on discrete optimization and exploit opti-
mization strategies for nondifferentiable optimization criteria.
In the past, variants of Gibbs sampling [52], evolutional ap-
proaches [53], genetic algorithms [54,55], and neural-network
based predictors [56] were suggested. A recent survey on
QAS can be found in [57]. For this work, we rely on the
previous work [58] proposing Monte Carlo graph search. The
optimized loss function is in our case the Kullback-Leibler
divergence, DKL(P ‖ Q) [see Eq. (2)], which is the stan-
dard loss for many anomaly detection frameworks. We will
also perform experiments using the cosine-similarity measure.
As discussed later, this measure can be evaluated directly
from quantum states via a SWAP test. Thus, our approach
can be executed on a quantum computer with a sequence
comprising of state preparation, the optimized quantum gates
sequences and followed by evaluating the quantum cosine
dissimilarity as proposed in [20]. A quantum architecture
search requires at the end (i) a pool of elementary quantum
gates OP = {O1, O2, . . .} to sample from, (ii) a loss function,
and (iii) some simple hyperparameters, e.g., the maximum
length of the quantum gate sequence or a stopping criteria.
Then different gate orders are sampled and evaluated. The
used quantum architecture search algorithm is based on Monte
Carlo graph search (MCGS) [59,60] and measures of impor-
tance sampling. MCGS is very efficient, since many operators
for quantum computing act locally (e.g., the H gates, X gates,

FIG. 2. Tiny example graph of quantum circuits. The edges are
labeled with elementary gates. The vertices are given by the unitary
operator built by taking the product of the gates along the shortest
path. (Image taken from [58].)

Z gates, and more). Therefore, many combinations of sampled
unitary matrices representing the gate order are algebraically
commutative. The MCGS-algorithms can be motivated from
Monte Carlo tree search (MCTS). It is a heuristic search
algorithm for decision processes [60]. It makes use of random
sampling and balances the exploration-exploitation dilemma
in large search spaces. MCTS can be very efficient as it visits
more interesting subtrees more often. Thus, it grows asym-
metrically and focuses the search time on more relevant parts
of the tree. For the MCGS, we start with the identity operator I
and build quantum circuits by selecting elementary gates from
a predefined set OP = {O1, O2, . . .} of elementary quantum
gates that we are allowed to apply. Due to the universality the-
orem [61] it is possible to approximate any unitary matrix to
arbitrarily good accuracy by using a sufficiently long product
of such gates. The general idea is to grow a graphical model
with nodes containing unitary matrices and edges encoding a
unitary operator Oi ∈ OP . The graph is initialized with the
identity matrix I as root node. An operator Oi is selected
and applied to the root node. This yields a new node by
multiplying the selected operator with the unitary matrix of
the parent node (which is the identity matrix in the beginning).
If the resulting unitary is already existing as node in the graph,
a direct edge from the parent to the already existing node can
be added. In addition, a new node is generated and connected
with the parent node. Thus, while growing the graph, the
resulting unitary matrices are provided as graph nodes and
the underlying quantum code can be computed by finding the
shortest path from the root node to the target unitary and by
collecting the operators along the edges of the path. Figure 2 is
taken from [58] and shows the general principle. Thus, each
node is identified with a possible quantum circuit. Please note,
that this graph contains cycles since identical quantum circuits
have multiple representations with different gates and gate
orders. The remaining challenge is to grow the graph in an
efficient manner. Given a specific task, every node will receive
a quality score which is used to compute a probability for its
selection and development along this graph area. Poisson sam-
pling is then exploited as the underlying sampling process for
selecting a vertex to further develop. It is the basic paradigm
of Monte Carlo search [62] and adapted Gibbs sampling [63]
to iteratively grow a graph. We refer to [58] for further details.
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B. Evaluation metrics

To compare the performance of different algorithms, the
area under the ROC curve (receiver operating characteristic
curve) [64] is a common measure. To summarize, a ROC
curve is a graph showing the performance of a classification
model at all classification thresholds. In our case, the classi-
fication threshold is the anomaly score of the algorithm and
the x-y axes contains the false-positive rate (x axis) versus the
true-positive rate (y axis) for all possible anomaly thresholds.
The area under the generated curve is the AUROC which is 1
in the optimal case when all examples are correctly classified
while producing no false positives. For anomaly detection,
the AUROC is the standard measure in the literature for
the following reasons, (i) the AUROC is scale invariant. It
measures how well predictions are ranked, rather than their
absolute values and (ii) the AUROC is classification-threshold
invariant. It measures the quality of the model’s predictions
irrespective of what classification threshold is chosen.

C. Quantum flow anomaly detection

For the experiments, the classical wine and iris datasets
were used. The datasets present multicriterial classification
tasks, with three categories for the wine dataset, and three
for the iris dataset. The datasets are all available at the UCI
repository [65]. To model an anomaly detection task using
a quantum circuit, first the data is encoded as a higher-
dimensional binary vector. Taking the iris dataset as a toy
example, it consists of four-dimensional data encoding sepal
length, sepal width, petal length, and petal width. A kMeans
clustering on each dimension with k = 3 is used on the
training data. Thus, every datapoint can be encoded in a
4 × 3 = 12-dimensional binary vector which contains exactly
four nonzero entries. The iris dataset contains three categories,
namely setosa, versicolor, and virginica. We select 50% of
data points from one class (e.g., setosa) for training and use
the remaining datapoints, as well as a second class (e.g.,
virginica) for testing. Thus, the setosa test cases should be
true positives, whereas the virginica should be correctly la-
beled as anomalies. Figure 3 shows a TSNE-plot (t-distributed
stochastic neighbor embedding plot) [66] of the iris dataset on
the top and a TSNE plot of the wine dataset on the bottom.
The iris dataset was selected since one class separates very
easily from the rest, whereas the remaining classes are more
similar and overlapping. The second class of the wine dataset
is spreading into the classes one and three, here the anomaly
detection is also challenging. These properties will also be
reflected in the anomaly scores in the experiments.

For the classically computed quantum architecture search,
we compute the discrete distribution Nhist as the normalized
histogram of the training dataset as input and use a binomial
distribution (p = 0.5) as target

X ∼ p(X == k) ∼ Nhist(k, n), (14)

Y ∼ p(Y == k) ∼
(

n

k

)
pk (1 − p)n−k . (15)

The optimization task is to find an ordered set of quantum
gates [see Eq. (1)] which lead a unitary matrix U = O(L)
O(L-1)· · · O(1) which minimizes the KL divergence of the

FIG. 3. TSNE-plot of the iris (top) and wine (bottom) datasets.
The iris dataset has been selected since one class separates very easy
from the rest, whereas the remaining classes are more similar and
overlapping. The second class of the wine dataset is spreading into
the classes one and three.

transformed input distribution.

min
U=O(L)O(L−1)···O(1)

DKL((|UX |) ‖ Y ). (16)

Figure 4 shows an example of how an input distribution is
transformed towards a target distribution using an optimized
quantum gate sequence U . The KL divergence between both
distributions is used as anomaly score. Here the ROC curve
evaluates all optional thresholds used for anomaly detection as
a scale-invariant measure. This is useful, as it measures how
well predictions are ranked, rather than their absolute values.

To make the resulting code more suitable for a quantum
implementation, we also optimized the cosine-dissimilarity

min
U=O(L)O(L−1)···O(1)

Dcos((|UX |),Y ), (17)
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FIG. 4. Optimized NF from an input distribution (magenta cross)
to a target distribution (blue circle), and the comparison to a discrete
Gaussian distribution (red triangle).

and evaluate the performance. It turns out that the obtained re-
sults for using a KL divergence and cosine score only deviate
up to some noise.

The quantum architecture search algorithm requires as in-
put a pool of optional quantum gates to select from. In our
experiments we used the Pauli-(X , Y , Z) operations, as well as
Hadamard, CNOT, SWAP, phase-shift, and TOFFOLI gates. The
phase shift gates have a continuous parameter θ we sampled
with π, π

2 , π
4 . Thus, only the discrete ordering and selection

of quantum gates is optimized by the quantum architecture
search. Table I summarizes the used datasets, the settings and
the train and test splits. Across all experiments, the optimiza-
tion of the quantum circuits requires between 10 seconds and
1 minute. Please note that this is only the (offline) training
stage. Inference on a quantum computer does not require
further optimization. Figure 5 summarizes the resulting ROC
curves and the area under the ROC curve as a final quality
measure. Additionally, we provide the ROC curves and the
obtained results of isolation forests, the LOF and the single-
class SVM. The final performance is also summarized in
Table II. It is apparent that our proposed optimized quantum
flows can achieve competitive performance. Additionally, the
code is available as short and highly performant quantum gate
sequence. The obtained quantum gate sequences are provided
in Fig. 6. In the following section we will discuss how the de-
cision algorithm can be implemented on a quantum computer.

D. Quantum implementation

The anomaly detection algorithm described in this work
essentially consists of two parts. First, we use quantum archi-
tecture search to find the unitary that models the normalizing

TABLE I. Datasets overview, the used normal class, the anomal
class, and train or test splits.

Dataset Dim BDim qubits # Train # Test

Iris 1–2 4 12 4 25 25/50
Iris 2–3 4 12 4 25 25/50
Wine 1–2 14 28 5 29 29/71
Wine 2–3 14 28 5 35 35/48

FIG. 5. The resulting ROC curves and the aurea-under the ROC
curve (AUROC) for different settings on the Iris and Wine dataset.
QF-KL shows the performance using the KL divergence for op-
timization and QF-cos shows the performance using the cosine
dissimilarity score.

flow. In the second step we evaluate the normalizing flow on
new samples to detect a potential anomaly. In this section we
discuss how this second part can also efficiently handled by
a quantum computer. First, starting from the sample we need
to prepare the input to our unitary. A common assumption,
see e.g., [27], Sec. III], is that we have access to the unitary
that prepares the input state |�〉 = V |0〉. Note, however, that
typical classical datasets, such as the examples discussed in
this work, often give sparse vectors that can, also without
the previous assumption, be encoded efficiently into a pure
quantum state [67].

Next, we implement the normalizing flow unitary as for
the case of our examples given in Fig. 6. These consist of
elementary gates and the circuit depth is a parameter that can
be set in the quantum architecture search. The resulting state
is again a pure state, given by |ψ〉 = U |�〉.

TABLE II. Area under ROC performance on different anomaly
detection cases for isolation forests, single-class SVMs, and our
proposed quantum normalizing flow. QF-KL shows the performance
using the KL divergence for optimization and QF-cos shows the
performance using the cosine dissimilarity score. Highest score per
dataset highlighted in bold.

Dataset iso-Forest LOF SVM QF-KL QF-cos

Iris 1–2 0.93 0.89 1.0 1.0 1.0
Iris 2–3 0.88 0.67 0.92 0.97 0.96
Wine 1–2 0.946 0.91 0.968 0.97 0.979
Wine 2–3 0.92 0.84 0.94 0.95 0.98
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FIG. 6. Obtained quantum gate sequences after optimization. Despite the competitive performance the resulting codes are reasonable small
and efficient.

The final step is to determine the similarity with the target
normal distribution. In general, reading out the exact state of
|ψ〉 can be challenging, e.g., using tomography would require
an exponential number of measurements. We hence focus on
the cosine-dissimilarity measure. By its definition, it sufficient
to compute overlap of |ψ〉 with the target distribution. To
avoid reading out the |ψ〉, we can instead preprare a state |φ〉
according to the normal distribution in Eq. (15) and then apply
a simple SWAP test [68].

This requires one auxilliary qubit, two Hadamard gates, a
controlled SWAP operation, and a final quibit measurement.
The implementation is shown in Fig. 7. The result of the
measurement is a binary random variable with probability

p = 1
2 − 1

2 |〈ψ |φ〉|2, (18)

allowing us to approximate the scalar product |〈ψ |φ〉|2 up to
error ε with O( 1

ε2 ) samples. In summary, we have an algorithm
that after initial classical optimization can efficiently run on
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FIG. 7. Implementation of the SWAP test for two quantum states
ψ and φ.

a quantum computer and reaches higher performance then
previous algorithms with known quantum implementations.

E. Normalizing flow as a generator

As already mentioned in Sec. II.2, a normalizing flow
can be used for several purposes, e.g., anomaly detection as
shown in the previous part. Another application is to use the
normalizing flow as a generator by sampling from the normal
distribution and inverting the forward transformation. Thus,
in the final experiment, a normalizing flow has been trained
on the first class of both, the iris and wine dataset, respec-
tively. Afterwards, samples from the normal distribution are
generated and transformed using the inverse flow which leads
to new samples in the original data. Figure 8 visualizes the
TSNE plots for these datasets (in crosses) as well as gen-
erated examples (in circles) after sampling complex values
from the normal distribution and inverting the learned forward
mapping U . Note, that the backward transformation can lead
to nonuseful samples since only the distribution on the abso-
lute values is optimized in the forward flow. Thus, sampling
complex numbers can lead to unlikely examples. We therefore
verify the samples by backprojecting them onto the normal
distribution again and only select samples which have a small
KL divergence. As expected, the generated samples are in the
domain of the training data and generalize examples among
them. Figure 8 shows the TSNE data for the three classes and
in circles the generated samples which are located around the
first class label.

IV. SUMMARY

In this work, quantum architecture search is used to com-
pute a normalizing flow which can be summarized as a
bijective mapping from an arbitrary distribution to a normal
distribution. The optimization is based on a Kullback-Leibler
divergence or the cosine dissimilarity. Once such a mapping
has been optimized, it can be applied to anomaly detection by
comparing the distribution of quantum measurements to the
expected normal distribution. In the experiments we perform
comparisons to three standard methods, namely, isolation

FIG. 8. A NF has been trained on the first class for the iris and
wine dataset, respectively. The crosses denote the TSNE plot of the
training data. The generated examples from sampling the normal
distribution are shown in circles and consistently fall into the learned
domain.

forests, the LOF and a single-class SVM. The optimized
architectures show competitive performance despite being
fully implementable on a quantum computer. Additionally we
demonstrate how to use the normalizing flow as generator by
sampling from a normal distribution and inverting the flow.
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