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Recent progress in quantum computing and quantum simulation of many-body systems with arrays of neutral
atoms using Rydberg excitation has provided unforeseen opportunities towards computational advantage in
solving various optimization problems. The problem of a maximum-weight independent set of unit-disk graphs is
an example of an NP-hard optimization problem. It involves finding the largest set of vertices with the maximum
sum of their weights for a graph which has edges connecting all pairs of vertices within a unit distance. This
problem can be solved using quantum annealing with an array of interacting Rydberg atoms. For a particular
graph, a spatial arrangement of atoms represents vertices of the graph, while the detuning from resonance at
Rydberg excitation defines the weights of these vertices. The edges of the graph can be drawn according to
the unit-disk criterion. Maximum-weight independent sets can be obtained by applying a variational quantum
adiabatic algorithm. We consider driving the quantum system of interacting atoms to the many-body ground
state using a nonlinear quasiadiabatic profile for sweeping the Rydberg detuning. We also propose using a
quantum wire, which is a set of auxiliary atoms of a different chemical element, to mediate strong coupling
between the remote vertices of the graph. We investigate this effect for different lengths of the quantum wire.
We also investigate the quantum phases of matter realizing commensurate and incommensurate phases in one-
and two-dimensional spatial arrangements of the atomic array.

DOI: 10.1103/PhysRevA.110.022442

I. INTRODUCTION

In the realm of computer science [1] there is a class of
nondeterministic polynomial-time NP-hard problems that are
notoriously challenging to solve efficiently. The algorithms
designed for classical computers struggle to find solutions
of such problems within a reasonable time frame or cost.
With the development of the capabilities of quantum comput-
ing technologies there is a growing interest in finding useful
applications of near-term quantum machines [2]. Recent
achievements in this field have allowed further exploration of
the possibility of finding solutions of a number of NP-hard
problems [3]. In particular, recently it has been proposed to
implement a quantum annealer with heteronuclear ultracold
Rydberg atoms in optical lattices, featuring a highly control-
lable environment to explore the many-body adiabatic passage
[4].

In graph theory [5] we define a graph G(V, E ) with V the
set and E the edges. A graph is called planar if its vertices

*Contact author: ahmed.farouk@azhar.edu.eg
†Contact author: beterov@isp.nsc.ru

are embedded in the plane and its edges are not intersecting.
Nonplanar graphs represent a class of graphs where the edges
between some of the vertices are intersecting and the vertices
can be represented in three-dimensional space. A subset S of
a set V is called an independent set if there are no couples of
vertices of S which are connected by the edge E . If there is no
larger independent set S′ with |S′| > |S|, then S is a maximum
independent set (MIS). In other words, the size of the maxi-
mum independent set is the cardinality (number of vertices) of
the largest independent set of the graph. Assigning a weight
wv > 0 to each vertex v ∈ V generalizes the MIS problem to
a maximum-weight independent set (MWIS) problem, which
can be solved by finding the independent set with the total
weight W = ∑

v∈V wv . Finding the solution for the MIS or
MWIS is an NP-hard problem [1], meaning there is no known
efficient algorithm to solve it for all possible graphs. However,
there are approximate classical algorithms and heuristics that
can provide good solutions in practice. Examples of weighted
graphs considered in our work are presented in Fig. 1(a).

Different approaches related to quantum computing can be
used to solve both MIS and MWIS problems. Basically, there
are two main approaches to driving the quantum system to the
many-body ground state, which reveals a solution for MIS,
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FIG. 1. (a) Arbitrary undirected planar graphs being represented by Rydberg atoms. The positions of the vertices are defined as a function
of graph spacing constant λ in Table I. The labels inside the circles represent weights of the corresponding vertices. The numbers outside the
circles mark the position of each vertices. (b) Scheme of the atomic energy levels and laser excitation scheme for 87Rb atoms. (c) Time profiles
of two-photon Rabi frequency �(t ) and detuning from the Rydberg state �(t ) for three different laser excitation courses with parameters
α in Eq. (5): αd = 1.0 (teal solid curve), αd = 1.7 (teal dashed curve), and αd = 2.0 (teal dash-dotted curve). Here �0/2π = 1.75 MHz,
�0/2π = −6.0 MHz, � f /2π = +6.0 MHz, and τ = 5.0 µs. (d) Scheme of quantum phases of matter represented by Rydberg excitations in
the atomic array (shown as colored circles) with commensurate orders Z2, Z3, and Z4 and possible incommensurate floating phases between
Z3 and Z4. Numerically calculated probability distributions (e) PZ2 , (f) PZ3 , and (g) P f are plotted for ordered states Z2 and Z3 and an
incommensurate floating phase, respectively, for an array of ten atoms arranged in one dimension with lattice spacing constant a (µm). The red
rectangle on top of graph (e) marks the position of a domain wall.

TABLE I. Sites of atoms demonstrating the considered graphs as a function of graph spacing constant λ.
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where x0 and y0 are arbitrary points.
In calculations, we considered x0 = y0 = 0.
To get equal lengths of triangle and square
sides, we set η0 � −0.183 368 and q0 = 1.
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MWIS, or other optimization problems. These approaches can
be implemented on a physical platform of ultracold neutral
atoms using advantages provided by specific properties of
laser-driven atomic systems with Rydberg interactions [6].
The first one is a quantum approximate optimization algo-
rithm (QAOA) [7–9] and its hybrid quantum iterative version
[10,11]. QuEra’s quantum hardware processor Aquila has
been used to find a solution for the max-cut problem and
the IEEE 9-bus power grid graph state [12]. To physically
implement the QAOA with neutral atoms, it is possible to use
Rydberg excitation of the atomic ensemble by resonant laser
pulses with varied pulse phases and durations. These varia-
tional parameters are used to generate the desired many-body
evolution. The other approach is a variational quantum adi-
abatic algorithm (VQAA), which was theoretically proposed
in [13], optimized for adiabatic paths in [14], and physically
implemented with atomic ensemble in Refs. [15–17]. In this
approach the detuning of a laser pulse exciting the atom to
the Rydberg state is swept from the initial negative value to
a large final positive value while the Rabi frequency is kept
constant. The VQAA has shown better performance com-
pared with the QAOA due to the difficulty of finding the
optimal parameters for implementing the QAOA with high
depth circuits [18]. A comparison of the performance of the
state-of-the-art classical solvers with the QAOA and VQAA
for different optimization problems has been reported [19,20].
Recently, many researchers have proposed hybrid methods
and algorithms for using neutral-atom architectures to find
solutions of graph problems [21,22]. A protocol for solving
hard combinatorial graph problems by combining variational
analog quantum computing and machine learning is assessed
by quality score in Ref. [21]. Moreover, in Ref. [22] a hy-
brid digital-analog algorithm on Rydberg atoms shows the
feasibility of the VQAA to the near-term implementation of
quantum learning with the scalable architecture of arrays of
neutral atoms.

Finding solutions for optimization problems as the MIS
or MWIS of unit-disk graphs is beneficial for practical ap-
plications such as network design, scheduling tasks [23,24],
gene selection, and prediction of protein-protein interaction
in bioinformatics [25]. Realizing the solutions of the MIS
has been experimentally achieved using an atomic architec-
ture with quantum wires for planar and nonplanar graphs [3],
transforming Platonic three-dimensional (3D) planar graphs
to 2D planar graphs [26], using 3D spatial arrangements of
atoms to embed non-unit-disk, nonplanar, or other more com-
plex classes of graphs [27] and also for a large-size graph on
the king’s lattice [28]. Construction of rigorous and challeng-
ing solutions for the MIS problem via the adiabatic approach
was presented in Ref. [29]. The framework for solving combi-
natorial optimization problems for non-unit-disk graphs was
provided for MIS and max-cut problems in Ref. [30] and
adjusting local detunings on atoms to approximate the MIS
was studied in Ref. [31]. A generalized framework for solving
the MWIS and other optimization problems was discussed in
Refs. [32,33].

In this paper we study theoretically the problem of finding
the MIS or MWIS on unit-disk graphs using an array of
ultracold neutral atoms and the VQAA. We propose a non-
linear quasiadiabatic profile of sweeping the detuning from

resonance when exciting atoms into Rydberg states. We study
the quantum phases of matter by analyzing commensurate
Zn-ordered states and incommensurate phases of matter in
1D and 2D spatial arrangements of atoms and we discuss the
ability to construct a desired phase by controlling the system
parameters. We study the effect of the sweeping rate on the
generation of Zn-ordered states and the detection of domain
walls and we calculate the critical detuning which is related to
the minimum weight of each vertex in weighted graphs.

We investigate the solutions of the MIS and MWIS for
planar and nonplanar graphs. Then we consider a dual-species
quantum architecture for mediating the interaction between
distant atoms by a quantum wire composed of atoms from
different chemical elements. Quantum wires also can be used
to consider non-unit-disk graphs. Dual-species quantum ar-
chitectures are advantageous to avoid crosstalk between the
graph atoms and wire atoms during the measurement pro-
cess, following the initial proposal [34]. This architecture
also provides opportunities for blockade enhancement and
additional flexibility of interaction energies by dual-species
Förster resonances. Moreover, we investigate the cost of em-
ploying quantum wires of different lengths on mediating the
interaction between distant atoms for finding the MWIS.

The paper is organized as follows. In Sec. II we discuss the
Hamiltonian of the atomic system and the procedure used for
annealing the system to the desired many-body ground state.
We show the dynamics of the states of a laser-driven single
atom and of a spatially arranged ensemble of atoms represent-
ing a graph. In Sec. III we study the quantum phase transition
of commensurate and incommensurate phases and discuss the
ability to realize a floating incommensurate phase. In Sec. IV
we discuss the results of MISs and MWISs for our simulation
for planar graphs. In Sec. V we find the MISs and MWISs
of a nonplanar graph representing a Johnson solid J14, whose
facets are different regular polygons in a three-dimensional
array. The use of a heteronuclear quantum wire to mediate the
interaction between distant atoms is discussed in Sec. VI. We
summarize and discuss our results in Sec. VII.

II. QUANTUM SYSTEM

The spatially arranged array of atoms excited into the
Rydberg states can be represented by a mathematical graph
G(V, E ) in which the vertices V represent the atoms and the
edges E represent the pairwise interaction between atoms. The
governing Hamiltonian of this system can be written as

Ĥ = Ĥq + Ĥc, (1)

where Ĥq is the quantum driver Hamiltonian, which is
composed of off-diagonal operators, and Ĥc is the cost
Hamiltonian [35,36]. Minimizing the cost parameters is an
ultimate goal. The scheme of atomic energy levels is shown
in Fig. 1(b). These two basic ingredients of the system Hamil-
tonian are given by

Ĥq = 1

2

V∑
i

[�(t )|g〉i〈r| + H.c.], (2)

Ĥc = −
V∑
i

�i(t )n̂i +
E∑

i< j

C6

|Ri − Rj |6 n̂in̂ j, (3)
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where |g〉 = |5S1/2, F = 2〉 is the ground state of the trapped
87Rb atom, |r〉 = |81S1/2, mj = 1/2〉 is the Rydberg state,
and the operator n̂i = |r〉i〈r| is the projector to the Rydberg
state of the ith atom. In addition, �(t ) is a time-dependent
effective two-photon Rabi frequency for the |g〉 → |r〉 transi-
tion with the maximum value �0 = �420 �1013/2�m, where
�420/2π = 40 MHz and �1013/2π = 50 MHz are the one-
photon Rabi frequencies of laser radiation which couples
|g〉 to |r〉 through the intermediate state |m〉 = |6P3/2, F =
2, mF = 2〉, and �m/2π = 570 MHz is the detuning from the
intermediate state. The values of Rabi frequencies are chosen
to excite a single atom to the Rydberg state according to the
considered timescale with high fidelity. Further, �i(t ) is the
detuning from the two-photon resonance with the Rydberg
state |r〉 of the atom or vertex i. For the MIS problem we
set identical detunings for all atoms �i(t ) ≡ �(t ). Later, for
the MWIS problem we will select detuning for each atom
individually. We used the following shapes of time profiles
�(t ) and �(t ) [see Fig. 1(c)]:

�(t ) =

⎧⎪⎪⎨
⎪⎪⎩

�0

(
t

t f1

)
, 0 � t � t f1

�0, t f1 < t � t f2

�0
(t−τ )

(t f2 −τ ) , t f2 < t � τ,

(4)

�(t ) =

⎧⎪⎨
⎪⎩

�0, 0 � t < t f1

A sin2
(
αd

t−t f1
τ

)
+ �0, t f1 � t < t f2

� f , t f2 � t � τ.

(5)

Here τ = 5 µs is a quantum annealing time, t f1 = 1
10τ , and

t f2 = 9
10τ . In addition, �0 and � f are the initial and fi-

nal values of Rydberg detuning. The amplitude A = (� f −
�0) csc2(αd

t f2 −t f1
τ

) guarantees that � will not exceed the
predefined maximum of � f for any possible value of the
parameter αd > 0, which controls the course of detuning
[see Fig. 1(c)]. The nonlinear quasiadiabatic time profile of
the detuning at a constant value of Rabi frequency �0 mini-
mizes nonadiabatic excitations [37]; almost the same profile
was used in [38] as the parameter of adiabatic path, which
minimizes the cost Hamiltonian. To find the MISs of graphs
with unweighted vertices, the value of � f is kept constant.
However, for graphs with weighted vertices the maximum
value of the Rydberg state detuning � f will define each vertex
weight of the corresponding atom and should be selected
individually for each atom, as we discuss later in Sec. IV B.

In the regime of the Rydberg blockade [39], when simulta-
neous laser excitation of two Rydberg atoms located at small
interatomic distances becomes impossible, Rydberg interac-
tions within an atomic array result in complex phases and
phase transitions. For 1D arrays of interacting atoms the phase
of a quantum system can be structured into Zn-ordered states
(n � 2 is the number of sites separating neighboring Rydberg
atoms), which are a class of commensurate phases. Spatial
arrangements of Rydberg excitations in different 1D atomic
arrays for the quantum phase of matter with commensurate
order Z2, Z3, and Z4 and other possible incommensurate
floating phases between Z3 and Z4 are shown in Fig. 1(d).
The commensurate phases Z2 and Z3, numerically calculated
for a 1D array of 10 × 1 atoms, are shown in Figs. 1(e), 1(f),

(a)

(c)

(b)

FIG. 2. (a) Time dynamics of the probabilities of ground and
Rydberg states during Rydberg excitation of a single atom for dif-
ferent values of αd . (b) Probability of exciting a single atom to the
Rydberg state P|r〉 as a function of the detuning course parameter
αd for different values of annealing time τ . (c) Pair-state interaction
energy for two 87Rb, |81S1/2, mj = 1/2〉 Rydberg atoms. Teal solid
curves are the eigenenergies of the interaction matrix after diago-
nalization, calculated using the alkali Rydberg calculator [40], with
θ = 0, φ = 0, δn = 2, and δl = 1. Curves are the fitting approxima-
tions for short-range dipole-dipole (red dashed curve) and long-range
van der Waals (violet dash-dotted curve) regimes, showing that
C3/2π = 54 GHz µm3, C6/2π = 2550 GHz µm6, RL = 2.0 µm, and
RvdW = 3.7 µm. The inset shows a log-log plot of the fitting values
and the corresponding eigenenergy.

and 1(g), respectively. The details of the numeric calculations
will be given below.

The numerically calculated probabilities to excite a single
atom to the Rydberg state using the quasiadiabatic profile
from Eq. (5) are shown in Fig. 2(a) with a probability of
0.9995 for the Rydberg state |r〉. Here, for simplicity, we
neglect spontaneous decay of the excited states, and the fi-
delity is limited purely by the nonadiabatic dynamics of the
quantum system. The inset in Fig. 2(a) shows the effect of
different courses αd of sweeping the detuning on the calcu-
lated probability of the single-atom Rydberg excitation. In
Fig. 2(b) we plot the probability of exciting a single atom
to the Rydberg state as a function of the detuning course
parameter αd for different annealing times. We choose αd = 1
in our calculations, since it provides the maximum excitation
probability, as shown in the insets of Figs. 2(a) and 2(b).

For any two vertices i, j (i �= j) on a graph, which are
represented by two atoms separated by an edge E , defined by
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interatomic distance R = |Ri − Rj |, the interaction between
atoms can be either a short-range dipole-dipole interaction of
approximately C3/R3 for R < RvdW or a long-range van der
Waals (vdW) interaction of approximately C6/R6 for RvdW <

R. The interatomic distance should be much larger than the
Leroy radius RL, which marks the minimum interatomic dis-
tance between two atoms to satisfy Leroy-Bernstein theory
[41]. The vdW radius RvdW characterizes the border between
different interaction regimes. It depends on the structure and
properties of the atomic energy levels of a particular chem-
ical element and can be significantly increased in cases of
an asymmetric homonuclear or heteronuclear Rydberg in-
teraction in the vicinity of Förster resonances [34,42]. In
Fig. 2(c) we show the eigenenergies of the interaction Hamil-
tonian for two atoms excited symmetrically to the Rydberg
state |81S1/2, mj = 1/2〉. We use the alkali Rydberg calculator
[40] for calculations. The dominant regime for interatomic
distances R > RvdW = 3.7 µm is the vdW interaction with
C6/2π = 2550 GHz µm6. The Rydberg blockade occurs when
R < Rb = (C6/�0)1/6, where Rb is a blockade radius.

We use a time-dependent Schrödinger equation ih̄ ∂
∂t |ψ〉 =

Ĥ|ψ〉 to calculate the time dependences of probabilities in
Fig. 1(c) for any graph with N � 8 vertices and to plot the
phase diagrams of P4 and seven-pan graphs in Figs. 1(a), and
8(d), respectively. We perform a Monte Carlo simulation with
the Lindblad master equation considering the radial positional

fluctuations δR =
√

δ2
x + δ2

y of each atom arising from fluctua-

tions in trapping power. Also, the axial positional fluctuations
δz arising from the nonzero temperature of trapped atoms are
considered in the calculations. The Lindblad master equation
is written as

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] +

V∑
i

(
L̂iρ̂L̂†

i − 1

2
{L̂†

i L̂i, ρ̂}
)

, (6)

where ρ̂ is the density matrix and L̂i =
√

1
2γmn̂i is the jumping

operator describing the dissipative processes in the system,
with γm = 1/τ|m〉 the decay of the intermediate state |m〉 with
lifetime τ|m〉 = 0.118 µs.

III. QUANTUM PHASE TRANSITIONS

The solution for the MIS and MWIS for unit-disk graphs
can be found in the ordered phases of Z2 or Z3, depend-
ing on the spatial arrangement of the graph vertices. In this
section we study the commensurate (or ordered) and incom-
mensurate states for a linear arrangement of atoms, with the
aim of obtaining a clear understanding of the regimes and
stability of solutions.

In the atomic arrays, a quantum phase transition into the
Zn-ordered state was realized experimentally in the 1D array
[43,44], on a 1D ring [45], and on a 2D checkerboard phase
[16], which enabled the investigation of the quantum Kibble-
Zurek mechanism (QKZM) [46,47] and the critical dynamics
of ordered states. The QKZM provides a solid understanding
of the nonequilibrium dynamics of cosmological, particle, and
condensed-matter systems [48]. Ordered states are beneficial
for creating exotic states of matter with topological order,
such as a quantum spin liquid [49]. The transition from the

disordered phase to the ordered phase takes place at a specific
value of the Rydberg detuning �c depending on the phase of
the transition and the value of the sweeping rate. Here �c

is called the critical detuning. The QKZM of commensurate
phases of Zn-ordered states of an atomic array was studied
earlier in Refs. [16,43–45,50] for equal maximum values of
Rydberg detuning for all atoms in the array. Consequently, the
value of critical detuning �c is related to the number of sep-
arated sites n of Zn-ordered states. Therefore, the parameters
of critical dynamics, such as critical length and critical scaling
exponents, which characterize the Ising universality class and
the QKZM, can be obtained. Also, critical incommensurate
phases (floating phases) were theoretically predicted in a 1D
Rydberg array [51–53] and experimentally observed in 2D
ladder Rydberg arrays [54].

To keep the interaction between atoms in the vdW regime,
we restrict our calculations to 1 � Rb/a � 3.2. For this re-
striction we find that the realization of Z4 is not conceivable.
In our numeric simulations of the commensurate phases Z2

and Z3 of the 1D array of 10 × 1 atoms, which are shown
in Figs. 1(e)–1(g), we have four and three spins for Z2 and
Z3, respectively. For the Z2-ordered state, the interruption of
the ordering sequence is observed [which is indicated by the
red rectangle in Fig. 1(e)]. This interruption of the ordering
is called a domain wall, which occurs in different positions
of the array. Domain walls are identified as having either
one atom at the edge of the array in ground state or two
neighboring atoms in the same state [43].

Figure 3 illustrates the effect of the sweeping rate v on
the probability of finding the ordered state Z2. In an ideal
case without domain walls, as shown in Fig. 3(a), it is clear
that with increasing sweeping rate the maximum possible
probability of the ordered state decreases. In Fig. 3(b) we
plot the susceptibility χ = ∂〈n〉/∂� f , which is calculated by
interpolating the numerical data and then differentiation. The
maximum value of the susceptibility corresponds to the criti-
cal value of detuning �c. From Fig. 3(b) it is clear that with
an increase of the sweeping rate the value of �c/�0 shifts
to higher values. This is analogous to results of Ref. [45].
A pulse profile with moderate sweeping rate can minimize
the detuning parameter in the cost Hamiltonian. To find a
solution for the MWIS, in Sec. IV B we define the weight
wi > �c of a vertex i. For quantum annealing time τ = 5 µs
we select the weights following the condition wi > 0.8 �0 =
2π × 1.4 MHz and keep the lattice spacing constant at ap-
proximately a � 1

1.5 Rb.
The construction of the Z2-ordered state with a defect (do-

main wall) induced by an ancilla and optimizing the driving
fields on QuEra’s quantum hardware Aquila was performed
in Ref. [55]. The transition from the Z2-ordered to the Z3-
ordered crystalline state occurs at Rb � 2a. In our simulation,
we find that the incommensurate phases between Z2 and Z3

for a 1D spatial arrangement do not exist, as concluded in
[44], despite the fact that they were predicted in Ref. [56].
According to our calculations, in the range of validity of the
vdW interaction, an incommensurate floating phase emerged
in the regime of 2.6 � Rb/a � 3.2 and � f /�0 � 1. This is
supposed to be a floating phase between Z3 and Z4.

There are two types of domain walls depending on the
number of interrupted sites [57]. Domain walls of type I and
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(a)

(c) (d)

(b)

FIG. 3. (a) Probability of obtaining the ordered state Z2 for an
array of 9 × 1 atoms as a function of the dimensionless parameter
� f /�0 for different values of the annealing time τ by consider-
ing Rb/a = 1.5 µm. (b) Susceptibility χ = ∂〈n〉/∂� f for different
sweeping rates, showing the critical detuning �c as the value of
detuning corresponds to the maximum value of χ . Also shown is
the probability of obtaining (c) the first and (d) the second type of
domain wall in a Zn chain of atoms.

type II include two and three interrupted sites, respectively.
High sweep rates reduce the probability of obtaining an ideal
case for the ordered state Z2, as illustrated in Fig. 3(a).
Therefore, the possibility of obtaining a chain of atoms with
interrupted sites, or domain walls, increases. In Figs. 3(c) and
3(d) we show the effect of increased sweeping rates on the
probability of obtaining an interrupted Zn state with type I
and type II domain walls, respectively.

IV. PLANAR GRAPHS

A. Maximum independent set

The maximum independent sets of unweighted planar
graphs are obtained for the maximum Rydberg detuning
� f equal for all atoms resembling the graph, as shown in
Fig. 1(a). Here we omit the weights of the vertices. The graph
spacing constant λ defines the distance between vertex i and
the nearest vertex j (i �= j) and is an alternative to the lattice
constant a, which is shown in Fig. 1(d).

The phases of the P4 graph, shown in Fig. 1(a), could
be different from the phases of an 1D atomic array due to
differences in the energies of all pairwise interactions in a
two-dimensional graph. In Fig. 4 the phase diagram of the P4

graph shows regions of dominant phases. The phase diagram
is obtained by parametrizing the Hamiltonian via the ratios
Rb/λ and � f /�0. The positions of the graph vertices are given
in Table I as a function of the graph spacing constant λ. Fluc-
tuations of positions of atoms, laser noise, and spontaneous

FIG. 4. Phase diagram of the P4 graph showing the regions
of dominant phases. The antiferromagnetic phase where atoms are
singly excited to the Rydberg state is bounded by 0 < � f /�0 �
β2(Rb/λ). The MIS phase is dominant in the region β1(Rb/λ) <

� f /�0 < β2(Rb/λ). There are two PM phases: (i) the PM↓ phase
of ground states, which is bounded by � f /�0 < 0, and (ii) the PM↑
phase, which is bounded by � f /�0 > β1(Rb/λ). The phase bounded
within β1(Rb/λ) < � f /�0 < β3(Rb/λ) is where three atoms can be
excited to the Rydberg state simultaneously.

emissions are neglected. The boundaries between different
phases can be fitted by functions βi(

Rb
λ

) = 1
4CRb-Rb

6 e−ξiRb/λ,1

where the parameters ξ1 = 1.4, ξ2 = 2.8, and ξ3 = 1.23 define
three different curves β1, β2, and β3, shown in Fig. 4. There
are two different regions where paramagnetic (PM) phases
are dominant: (i) The PM↓ phase is located where � f < 0
and only the ground state of all four atoms |g〉⊗4 can be
found in this region of parameters and (ii) the PM↑ phase is
located where � f /�0 > β3, where all atoms are excited to the
Rydberg state. The bounded phase within β3 � � f /�0 � β1

is a PM↑-like phase where three atoms can be excited to the
Rydberg state. For 0 < � f /�0 � β2, we observe a phase with
only one atom excited to the Rydberg state due to the strong
interaction between atoms. The state of the system in this
phase can be written as |ψ〉 = ∑N

l �=i, j,k |g〉⊗3
i, j,k|r〉l . The region

bounded between β1 and β2 is an antiferromagnetic phase
revealing the MISs.

In Fig. 5 we show the calculated probability distributions of
all possible states of an atomic system after being driven to the
many-body ground state. We set the values of the graph spac-
ing constant λ = 7.0 µm and the maximum value of Rydberg
detuning � f /�0 = 2.28, which are compromised values for
finding MISs, as pointed out in Fig. 4. These values of λ and
� f will be constant for all graphs in Fig. 5. We consider finite
lifetimes of intermediate excited and Rydberg states using
Lindblad equation and perform a Monte Carlo simulation to
take into account fluctuations of atomic positions.

The MISs of the P4 graph are {{1, 3}, {1, 4}, {2, 4}}. These
states are shown in Fig. 5(a) as positions of Rydberg atoms,
i.e., state {1, 3} corresponds to first and third atoms excited
into Rydberg states. Their probabilities are represented by
violet bars. From Fig. 5(a) we can see that the quantum
states corresponding to solutions of the MIS demonstrate the

1We consider here the numerical value of C6.
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(a)

(d)

(b) (c)

FIG. 5. Probability distributions indicating the MIS solutions (violet bars) of the graphs (a) P4, (b) three-fan, (c) three-pan, and (d) Eiffel-
tower, for �0/2π = −6.0 MHz, � f /2π = 4.0 MHz, τ = 5.0 µs, and the graph spacing constant λ = 6.0 µm. The insets show the errors bars
resulting from considering positional (radial and axial) fluctuations δR = ±0.447 µm (δx = δy = 0.1 µm) and δz = ±0.6 µm. White (red) bars
correspond to the independent sets (frustrated sets). In (d) only the first 90 states of a total of 27 = 128 states are shown. The probabilities of
other states are infinitely small. A black-filled circle indicates a weightless vertex whose corresponding atom is excited to the Rydberg state
with labels indicating the vertex number. Open circles correspond to atoms in the ground state.

highest probabilities. Finding the MISs of unit-disk graphs
is a geometry-constrained problem, and the probabilities of
MISs can be varied by adjusting the distance between vertices
according to the phase diagram. The MISs of a three-fan
graph, shown in Fig. 5(b), are the same as in the P4 graph,
since vertex 1 is connected to all other vertices. However,
the probabilities of MISs in the three-fan graph are lower
than the corresponding probabilities of MISs in the P4

graph. The sets {1, 3} and {2, 4} of P4 and {2, 4} and {3, 5}
of the three-fan graph are of the same geometric pattern and
consequently have the same probabilities. The error bars in
the inset show the range of calculated errors for the MIS
states (plotted in the same sequence as in the main figure)
due to the fluctuations of the atomic positions. The white bars
show the probability of a single atom being excited to the
Rydberg state, which corresponds to an independent set of the
graph.

The MISs of the three-pan graph, shown in Fig. 5(c), are
{{1, 4}, {2, 4}}. The corresponding states have almost equal
probabilities, since both vertices 1and 2 are equally displaced
from vertex 4. Also, the frustrated set or configuration {1, 2, 4}
appears in the calculations due to an imperfect Rydberg block-
ade for vertices 1 and 2.

Figure 5(d) shows the MISs of the Eiffel Tower graph
[shown in Fig. 1(a)], which can be considered a combination
of three-pan and three-fan graphs. The MISs of the tower
graph are {{1, 5, 7}, {1, 3, 5}, {1, 4, 7}, {2, 5, 7}}. Frustrated
configurations are also present, but they have lower probabil-
ities than those of the MISs. The MISs {{1, 3, 5}, {1, 4, 7}}

have identical geometric patterns and their probabilities are
almost equal.

B. Maximum-weight independent set

In this section we study the MWIS of the same graphs,
which are shown in Fig. 1(a), but take into account the weights
of their vertices. The positions of the vertices and weights are
defined in Table I and the weights are indicated in Fig. 1(a).
The goal of the MWIS is to find the independent set with the
maximum sum of its weights. The weight of each vertex is
represented by the maximum value of Rydberg detuning � f

[58]. The weights � f of vertices are not equal. Therefore, the
probability of exciting a particular atom to the Rydberg state
is different. In Fig. 6 we show the calculated probabilities
of transition of the atomic ensemble from the ground state
|g〉⊗N to many-body states with a different configuration of
Rydberg excitations. In Fig. 6(a) the MWIS of the P4 graph is
the set {1, 3}, which has a much higher probability than other
independent sets. Also, it can be noted that the probability of
state {2, 4} is higher than that for {1, 4}, which is different
from the results in Fig. 5(a) for the MIS problem. Analogous
results are obtained in Fig. 6(b). The MWIS for the three-pan
graph in Fig. 6(c) is {1, 4}. It worth noting that the calculated
probability for the frustrated set {1, 2, 4} is much higher than
obtained before for the MIS problem for the same graph in
Fig. 5(c).

Overall, we note here that the MWIS problem is not only
a geometry-constrained one as in the MIS. The probabilities
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(a)

(d)

(b) (c)

FIG. 6. Probability distributions indicating the MWIS solutions (green bars) of the corresponding graphs in Fig. 1(a) with the same values
of parameters as in Fig. 5 but with different values of � f (see the text for details). White (red) bars correspond to the independent sets (frustrated
sets). A circle with a number indicates that the corresponding atom is excited to the Rydberg state, with the light green label indicating the
weight of this vertex and the open circles representing atoms in the ground state.

of independent sets with the same geometric pattern are not
equal. Also, the probabilities of the MISs are sorted in ascend-
ing order of the sum of their weights.

V. NONPLANAR GRAPH

In this section we discuss the results of finding the MWIS
and MIS of a nonplanar graph. Figure 7(a) shows a 2D scheme
representation of the J14 graph. The J14 is a graph with eight
vertices in three dimensions, as defined in Table I. The J14

graph is known as an elongated equilateral triangular bipyra-
mid, which is one of Johnson’s 92 convex polyhedra solids
[59], whose facets are regular polygons. The graph includes
F = 9 faces, as six equilateral triangles and three squares.
Euler’s characteristic of this graph is χ = V − E + F = 2.
A similar nonplanar graph, represented in two dimensions, is
called X̄152, as classified in the nomenclature of the Informa-
tion System on Graph Classes and their Inclusions [60]. The
J14 graph is a combination of two three-pan graphs.

In Fig. 7(b) we plot the calculated probabilities of MISs
and MWISs for the J14 graph in two cases. In the first case
all vertices are equally weighted, which shows the MISs
{{1, 5}, {1, 6}, {1, 7}, {1, 8}, {2, 8}, {3, 8}, {4, 8}} in violet-
colored bars. The sets {{1, 5}, {1, 6}, {1, 7}, {2, 8}, {3, 8},
{4, 8}} have the same probability due to the fact that the
atoms, representing vertices, are physically displaced equally
from each other. Frustrated sets can be obtained from the
simulation with probabilities much smaller than those of the
MISs. In the second case the weights of vertices are not equal
[the weight of each vertex is labeled in green in Fig. 7(a)].
The MWIS according to the considered weights is {1, 5}, as

shown by a green bar in Fig. 7(b). The independent sets, when
considering the weighted graph, are the over plotted black
bars. The frustrated set {1, 2, . . . , 8} (|r〉⊗8) is shown by the
red bar and exhibits infinitely low probability.

(a)

(b)

FIG. 7. (a) 2D representation of the scheme of the Johnson solid
J14 graph. The black label is the vertex number and the green label
represents the weight of each vertex. The exact positions of the ver-
tices are given in Table I. (b) Probabilities of MWISs for J14. Some of
the graph states with infinitely small probabilities are omitted from
the plot.
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(a)

(e) (f) (i) (ii)

(b) (c) (d)

FIG. 8. (a) Pair-state energy (GHz) for the heteronuclear interaction between Rb and Cs atoms excited simultaneously to the Rydberg state
|81S1/2, mj = 1/2〉 considering the same conditions and methods in Fig. 1(c). (b) Pair-state energy interaction energy between two Cs atoms.
(c) Graph scheme of the three-pan graph with vertices 1 and 2 connected using two different spatial configurations of quantum wires W1 (two
vertices in violet) and W2 (four vertices in orange). (d) Phase diagram of the mediation of the vertices v1 and v2 by the quantum wire W2, which
is composed of four equally weighted vertices (weight ϑ MHz). (e) Probabilities indicating the MWIS of the five-pan graph (3-pan+W1). (f)
Contour plots of the probability P of the MWIS of (i) the five-pan graph and (ii) the seven-pan graph as a function of dimensionless parameters
μ/�0 (ϑ/�0) and Rb/λ.

VI. QUANTUM WIRE

In this section we consider mediating a strong interaction
between distant vertices using the concept of a quantum wire
[3,61]. Here we consider a dual-species quantum architec-
ture by considering the wire to be composed of atoms from
a different alkali-metal element used for graph representa-
tion. The dual-species architecture allows separation of the
readout wavelengths during detection of the MIS or MWIS
and suppression of crosstalk between neighboring atoms. The
heteronuclear Rydberg interaction in atomic arrays was first
discussed in Ref. [34]. The concept of dual-species quantum
annealers was then introduced in Ref. [4]. A dual-species
heteronuclear Rb-Cs array of ultracold atoms was experimen-
tally demonstrated in Ref. [62]. Schemes of controlled-NOT

gates with several control and target atoms exploiting het-
eronuclear Rydberg interactions were studied in Ref. [42].
The two-qubit controlled-Z gate with different chemical el-
ements was demonstrated in Ref. [63], showing advantages
compared with single-species homonuclear architectures. The
scalability of heteronuclear atomic architecture with coherent
transport of control qubits was studied in Ref. [64]. Analysis
of heteronuclear interspecies interactions between Rydberg
d states of Rb and Cs atoms was presented in Ref. [65]. A
dual-element model of quantum processors with single atoms
or superatoms in the regime of Rydberg blockade was de-
veloped for quantum computations without the need of local
addressing [66]. Here we propose using a quantum wire of

Cs atoms created from an array of traps generated by an
acousto-optic deflector, with the graph represented by Rb
atoms, which are loaded in the array of static traps generated
by a spatial light modulator. The ground state of Cs atoms of
the quantum wire |g〉W = |6S1/2, F = 3, mF = 3〉 are excited
to the Rydberg state |r〉W = |81S1/2, mj = 1/2〉 through the
intermediate state |m〉W = |7P3/2, F = 2〉 by using 460- and
1039-nm laser lights, respectively. Atoms representing the
graph and the wire are excited to the Rydberg state with
the same principal quantum number n = 81. In this case the
dominant regime of interaction is the van der Waals regime
[39]. Figures 8(a) and 8(b) show the interaction between pairs
of Rb and Cs atoms (graph and wire) and pairs of Cs atoms
(wire and wire), respectively. For an interatomic distance R >

RvdW � 4 µm, it is guaranteed that all interactions are in the
vdW regime. The values of C3 and C6 for all interactions are
calculated by fitting the curves with the calculated interaction
energy with all the parameters as in Fig. 2(c). The quantum
wire should be in the antiferromagnetic phase, where at most
only one of the adjacent atoms can be excited to the Rydberg
state, known as the Z2 phase.

Figure 8(c) illustrates mediation of the interaction between
the vertices v1 and v2 of a three-pan graph by two quantum
wires W1 and W2 formed by Cs atoms. The quantum wires are
of different lengths (have different numbers of atoms) w̄1 = 2
and w̄2 = 4. Atoms of each wire are equally weighted. The
weights of the quantum wires are μ/2π for W1 and ϑ/2π

for W2.
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In Fig. 8(d) we plot the phase diagram of a three-pan graph
with quantum wire W2 showing the probabilities as a function
of two dimensionless parameters: the ratio of wire weights to
the effective Rabi frequency ϑ/�0 and the ratio of Rydberg
blockade radius to the graph spacing constant Rb/λ [67]. In
general, the obtained phase diagrams can vary for the same
type of graph depending on the spatial arrangement of the
atoms and the properties of the interactions between atoms.
Hence, the discussion about phase diagrams here is valid only
for the considered spatial arrangement of the atoms. If the
quantum wire W2, consisting of four atoms, is not connected
to graph atoms, then the probability distribution of its quan-
tum states for the same laser excitation pattern, as shown
in Fig. 2(c), should behave similarly to the phase diagram,
shown in Fig. 4. The phase diagram in Fig. 8(d) shows the
realization of a different ordered state Z̄2 [the bar sign over Z2

indicates that the ordered states for a graph are different from
the linear configuration from Fig. 1(d)]. The ordered state Z̄4

is also realized for the graph-wire states |gggr〉G|gggr〉W2 and
|gggr〉G|ggrg〉W2 .

In Fig. 8(e) we show the probabilities of finding the MWIS
({1, 4} = |rggr〉G|gr〉W1 ) of the three-pan graph while using
the quantum wire W1 to mediate the interaction between v1

and v2. Finding the MWIS {1, 4} of the three-pan graph is in-
dependent of the wire weights μ, as shown in Fig. 8(f), and the
MWIS is {1, 4, 6} (the bold text indicating the wire atom ex-
cited to the Rydberg state). We plot the probabilities of states
{1, 4, 6} = |rggr〉G|gr〉W1 and {1, 4, 6, 7} = |rggr〉G|grrg〉W2

in Figs. 8(f i) and 8(f ii), respectively. The contour plot shows
the probability of the considered state as a function of the
weights of the wire atoms and distance parameter λ. In this
figure we illustrate the effect of using quantum wires of dif-
ferent lengths (numbers of atoms). As shown, the minimum
value of the vertex weight for the probability of the MWIS
with a quantum wire W1 formed by two auxiliary atoms is
μ/�0 � 0.92 and for a quantum wire W2 formed by four
auxiliary atoms ϑ/�0 � 1.2. The slightly increased cost for
employing different lengths of a quantum wire to mediate the
distant atoms is due to the spatial arrangement of the wire
and graph atoms, which is interrupted by undesirable weak
interactions.

Due to the spatial arrangement of atoms representing
the graph, an incommensurate phase emerges, showing a
combination of Z̄2- and Z̄3-ordered states. The probability
distribution of the incommensurate state is shown in Fig. 9.
The realization of this incommensurate phase is controlled by
the Rydberg detuning of each atom of the considered array
in the 2D spatial arrangement of the atoms. This phase may
boost realizing new dimer models which can be obtained from
optimizing the interaction between atoms of homonuclear or
heteronuclear architecture with the detuning of the Rydberg
state of each atom. In Fig. 8(f) the length of the quantum wire
changes the dynamics of the system. In this case the quantum
wire is not in an antiferromagnetic phase and that breaks the
considered condition [3]; then the quantum wire W2 can be
regarded as a superatom [66].

In terms of phases of MWIS solutions, using the longer
wire W2 to find the solution is quite different from using
the shorter wire W1. In W1 the only phase for the solution

(a) (b)

FIG. 9. Probability distribution P of the incommensurate state
|rggr〉G|gggr〉W2 .

is the case when the sixth atom is excited to the Rydberg
state, which blocks Rydberg excitation of the second and
fifth atoms. At the same time, for the W2 wire there are two
phases, which is the case of Fig. 8(f ii) (the sixth and seventh
atoms are excited to the Rydberg state) in addition to Fig. 9(b)
(only the eighth atom is excited to the Rydberg state). Both
phases can be shown as solutions. The case shown in Fig. 9(b)
is a solution with � f /�0 � 1, but for a different range of
interatomic distances compared with Fig. 8(f i).

VII. CONCLUSION

We proposed and optimized a quasiadiabatic profile for
sweeping the detuning of the Rydberg state and studied the
quantum phase transitions from disordered to ordered crys-
talline states of an 1D atomic array and realized Z2- and
Z3-ordered states with the existence of a domain wall in Z2.
Also, an incommensurate floating phase between Z3 and Z4

was obtained. We also investigated the effect of the sweeping
rate on the probability of obtaining the Z2-ordered state and
calculated the corresponding critical detuning and studied the
domain walls. Further optimization of the generation of quan-
tum phases of matter can include special design of composite
laser pulses.

We considered solutions for the MIS and MWIS problems
using arrays of ultracold neutral atoms excited to Rydberg
states. We have obtained MISs and MWISs of planar and
nonplanar graphs. For the MIS problem, we concluded that
it is a geometry-constrained problem, and generation of the
independent sets for the same geometric patterns have equal
probabilities. For the MWIS problem the weights of each
vertex change significantly the character of the resulting most
probable independent set. The probabilities of MISs of the
weighted graph are sort in descending order by the sum of
weights of each set. The use of quantum wire can help mediate
strong interactions of distant vertices. Also, quantum wires
can be used to perform quantum annealing of non-unit-disk
graphs. Using the heteronuclear structure of the atomic array,
it is feasible to distinguish the measurement of atomic states
representing the graph and the wire vertices due to the sep-
aration of the wavelengths and reduction of crosstalk among
different chemical elements. Moreover, the cost � f of finding
the MIS or MWIS increases proportionally for longer lengths
of quantum wires.
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An incommensurate floating phase between Z̄2 and Z̄3

in the 2D atomic array, formed as a seven-pan graph repre-
sentation, was realized, allowing us to use a quantum wire,
which is not in the antiferromagnetic state, for a solution
of the MWIS. This incommensurate phase does not exist in
1D arrays for equal detunings of transitions to the Rydberg
state. The results of incommensurate phases can open new
directions for realizing exotic states of matter.

Note added. Recently, we became aware of the foremost
experimental demonstration of the weighted graphs, verify-
ing the ability to prepare weighted graphs in 1D and 2D
arrays [68].

Data sets supporting plots in this paper are available upon
request from A.M.F.
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