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Quantum approximate optimization algorithm with random and subgraph phase operators
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The quantum approximate optimization algorithm (QAOA) is a promising quantum algorithm that can be used
to approximately solve combinatorial optimization problems. The usual QAOA ansatz consists of an alternating
application of the cost and mixer Hamiltonians. In this work, we study how using Hamiltonians other than the
usual cost Hamiltonian, dubbed custom phase operators, can affect the performance of the QAOA. We derive
an expected value formula for the QAOA with custom phase operators at p = 1 and show numerically that
some of these custom phase operators can achieve higher approximation ratios than the original algorithm
implementation. Out of all the graphs tested at p = 1, 0.036% of the random custom phase operators, 75.9%
of the subgraph custom phase operators, 95.1% of the triangle-removed custom phase operators, and 93.9% of
the maximal degree edge-removed custom phase operators have a higher approximation ratio than the original
QAOA implementation. Furthermore, we numerically simulate these phase operators for p = 2 and p = 3
levels of QAOA and find that there exist a large number of subgraph, triangle-removed, and maximal degree
edge-removed custom phase operators that have a higher approximation ratio than the QAOA at the same depth.
These findings open up the question of whether better phase operators can be designed to further improve the
performance of the QAOA.
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I. INTRODUCTION

The quantum approximate optimization algorithm
(QAOA) is an algorithm consisting of a parametrized
quantum circuit that is well-suited to approximate solutions to
combinatorial optimization (CO) problems [1]. The algorithm
evolves a given input state under the alternating action of
cost and mixing Hamiltonians for variable amounts of time
that are selected to optimize the expectation of the cost
Hamiltonian. The QAOA can be used to find an approximate
solution to any CO problem that can be formulated as an Ising
problem [2], among which the most studied is the MaxCut
problem [3–7]. The goal of MaxCut is to partition the vertices
of a given graph G = (V, E ) into two sets to maximize the
number of edges between the sets.

Initial QAOA implementation on noisy intermediate scale
quantum (NISQ) devices was used for some small-scale prob-
lems [8–10] due to the challenges of extending it to larger
problems related to the depth limitations of the current gener-
ation of NISQ devices. However, with advancements in error
mitigation the QAOA can be implemented on NISQ devices
for problems in some cases involving more than 100 qubits
[11–15]. Several variations of the QAOA have been developed
that attempt to reduce the required hardware resources, such
as multiangle QAOA (MA-QAOA) and XQAOA [16–19], but
hardware implementation remains challenging. As a result,
the performance of QAOA is often studied through the clas-
sical simulations of the algorithm. In particular, closed-form
equations for the expected value of the MaxCut cost Hamil-
tonian C have been derived for the special case when only
one layer of the QAOA is applied [7,16]. Furthermore, more
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general closed-form equations for all combinatorial optimiza-
tion problems that have an Ising formulation have also been
derived by Ozaeta et al. [2]. Closer inspection of these equa-
tions reveals that the expectation value of the cost Hamiltonian
may be negatively affected by the presence of triangles in the
graph or may be impacted by the maximum degree of the
graph. As such, removing one of the terms that correspond
to an edge in a triangle or an edge incident to a maximal
degree vertex of the graph might improve the performance of
the QAOA. Furthermore, one can consider other modifications
of the QAOA circuit, detailed below, and their effect on the
performance of the QAOA. One such modification is to use a
subgraph of the original graph to generate the circuit. Using
subgraphs for the QAOA has been explored in Refs. [20–22]
in order to solve large instances of the MaxCut problem using
fewer quantum resources.

Generally, the state vector prepared by the QAOA circuit
can be written as

|�γ , �β〉 = U (B, βp)U (C, γp) · · ·U (B, β1)U (C, γ1)|s〉,
where U (B, β ) and U (C, γ ) are the unitary evolution opera-
tors under the action of the corresponding Hamiltonians B and
C, and |s〉 is a maximum (or minimum) energy eigenstate of
B. The mixer Hamiltonian B is usually defined as a sum of
Pauli X operators on each qubit:

B =
∑

Xi,

although other mixers have been considered [23,24]. The
phase operator Hamiltonian C is usually taken to be equal
to the cost (or phase) Hamiltonian C′, i.e., the Hamiltonian
whose expectation needs to be minimized by the QAOA,

min〈�γ , �β|C′| �γ , �β〉.
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However, the ideas described above make the phase operator
different from the cost Hamiltonian (C �= C′), which may
potentially improve the performance of the QAOA for some
choices of the phase operators.

One similar development has been considered in Ref. [25],
where the authors used a Hamiltonian based on a hardware
connectivity graph as a phase operator and concluded that a
worse, but still nontrivial, performance can be achieved with
such a phase operator. However, they did not try to search
for other phase operators that could potentially achieve better
performance than the usual cost Hamiltonian.

Other works have tried using different phase operators. In
particular, the authors of Ref. [26] suggested removing the
terms of the phase operator corresponding to the edges that are
not likely to be in the MaxCut and found that this indeed may
improve the performance of the QAOA, while also reducing
the number of gates in its circuit implementation. Another
independent work [27] considered a different set of strategies
to choose the terms to remove and arrived at similar conclu-
sions for the case of not-all-equal 3-SAT problems. However,
both of these works rely on starting from a classical solution,
which results in a poor performance if such a solution is far
from optimal. There has also been work on using random gate
activation in the setting of a variational quantum eigensolver,
where in each step of optimization they activate or unfreeze
the trainable parameters of the two-qubit gates [28].

In this work, we focus instead on strategies that are based
directly on graph structure and do not require classical so-
lutions. Another important contribution of this work is the
analytical formula for the expected value of MaxCut for ar-
bitrary subgraph phase operators in the p = 1 case, which we
derive in Sec. II.

In Sec. III, we start by comparing the standard (C = C′)
formulation to a “random” phase operator formulation, where
each term in the cost Hamiltonian is selected randomly. Note
that one can imagine a phase operator with ZiZ j interactions
as a graph with edges ZiZ j ; hence we may also talk about
phase operator graphs occasionally throughout the text. We
also consider the case where some fraction of the terms in the
cost C′ Hamiltonian are used to generate the phase operator
Cα

sub, where α represents the fraction of terms selected from
the original Hamiltonian C′. If G is quite dense and α is
small, the number of terms and, correspondingly, gates in the
circuit can be significantly reduced, therefore lowering the
error in the circuit. Lastly, there is evidence that triangles
in problem graphs affect the QAOA MaxCut approximation
ratio [3,4,29,30]. Thus, we consider a special case of the
phase operator that corresponds to the original graph G with a
subset of triangles removed. The resulting graph is then used
to generate the phase operator.

Finally, we discuss this work and future research directions
in Sec. IV.

II. DERIVATION OF ANALYTICAL MAXCUT EXPECTED
VALUE WITH CUSTOM PHASE OPERATORS

For the MaxCut problem, the cost Hamiltonian is
defined as

C′ =
∑

uv∈E

C′
uv =

∑

uv∈E

1

2
(I − ZuZv ). (1)

Using the Pauli-solver algorithm detailed in Ref. [31], the
expected value of 〈C′

uv〉 from Eq. (1) after one layer of the
QAOA with a random Hamiltonian is

〈s|eiγCrand eiβBCuve−iβBe−iγCrand |s〉
= 1

2 − 1
2 〈s|eiγCrand eiβBZuZve−iβBe−iγCrand |s〉. (2)

Most terms of the mixer commute to leave

eiβBZuZve−iβB = cos2(2β )ZuZv + sin(2β ) cos(2β )

× (YuZv + ZuYv ) + sin2(2β )YuYv. (3)

The first term of this sum commutes with e−iγCrand and does
not contribute to the expected value of the sum, i.e.,

〈s|eiγCrand ZuZve−iγCrand |s〉 = 0.

Let us look at the effect of conjugation on the second term
of Eq. (3):

〈s|eiγCrandYuZve−iγCrand |s〉.
Crand has terms of the form 1

2 (I − ZaZb); however, all terms
that do not have the form ZuZc for some c commute and
cancel, so

〈s|eiγCrandYuZve−iγCrand |s〉 = 〈s|e−iγ
∑

c (ZuZc )YuZv|s〉.
If ZuZv is not a term of Crand, then there is no contribution

to the expected value and

〈s|e−iγ
∑

c (ZuZc )YuZv|s〉 = 0.

Otherwise,

〈s|e−iγ
∑

c (ZuZc )YuZv|s〉 = 〈s|e−iγ ZuZv e−iγ
∑

c �=v (ZuZc )YuZv|s〉

= 〈s|[cos(γ )I − i sin(γ )ZuZv]
d∏

i=1

× [cos(γ )I − i sin(γ )ZuZci ]YuZv|s〉,
where d is the number of terms of the form ZuZc in Crand, with
c �= v. The only term that contributes to the expected value
is −i sin(γ )ZuZv cosd (γ )YuZv = − sin(γ ) cosd (γ )Xu, which
implies

〈s|eiγCrandYuZve−iγCrand |s〉 = 〈s| − sin(γ ) cosd (γ )Xu|s〉
= − sin(γ ) cosd (γ ).

By symmetry, the third term of Eq. (3) is also 0 if ZuZv is
not a term of Crand; otherwise,

〈s|eiγCrand ZuYve−iγCrand |s〉 = 〈s| − sin(γ ) cose(γ )Xv|s〉
= − sin(γ ) cose(γ ),

where e is the number of terms of the form ZhZv in Crand,
where h �= u.

Hence, we have

〈s|eiγCrand (YuZv + ZuYv )e−iγCrand |s〉 = −χuv sin(γ )[cosd (γ )

+ cose(γ )],

where χuv = 1 if ZuZv is a term in Crand and 0 otherwise.
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FIG. 1. An eight-vertex graph where a subgraph phase operator
achieves an approximation ratio of 1. The subset of edges included in
the subgraph phase operator is marked by the color red. The diamond
and round vertices mark the two subsets that achieve the maximum
cut. Note that the red edges form a perfect matching.

Let us look at the effect of conjugation on the last term of
Eq. (3):

〈s|eiγCrandYuYve−iγCrand |s〉 = 〈s|eiγ
∑

b�=v ZuZbeiγ
∑

a �=u ZaZvYuYv|s〉

= 〈s|
d∏

i=1

[cos(γ )I−i sin(γ )ZuZbi ]
e∏

j=1

× [cos(γ )I−i sin(γ )Zaj Zv]YuYv|s〉.
By approaches similar to those in Ref. [31], the expected

value contribution from this term is 1
2 cosd+e−2 f (γ )[1 −

cos f (2γ )], where f is the number of pairs of terms that satisfy
the triangle condition for edge (u, v). We say two terms, ZuZw

and ZwZv , for w �= u, v in the phase operator Crand satisfy the
triangle condition if (u, v) is an edge in the graph of interest.

Combining the above terms yields

〈C′
uv〉 = 1

2
+ χuv

4
sin(4β ) sin(γ )[cosd (γ ) + cose(γ )]

− 1

4
sin2(β ) cosd+e−2 f (γ )[1 − cos f (2γ )]. (4)

A. Example: An eight-vertex graph where a subgraph phase
operator achieves an approximation ratio of 1

Figure 1 shows a graph G where there exists a subgraph
G′ consisting of only the red edges such that using the corre-
sponding phase operator yields a higher approximation ratio
compared to the usual QAOA phase operator. The approxi-
mation ratio for this graph using the original QAOA phase
operator is 0.934, as found with the code from Ref. [32].

The phase operator in this case is given by

C = Z0Z7 + Z1Z4 + Z2Z5 + Z3Z6.

From Eq. (4), one can see that the cost expectation of edges
in G that are not in G′ is 0.5. The edges that are in G′ do

FIG. 2. The star graph, which consists of vertices and the solid
edges. The dashed red edges are the terms included in the phase
operator. This choice of phase operator yields an approximation ratio
of 0.5.

not form triangles; therefore, it is easy to see that their cost
expectation becomes equal to 1 for γ = π/2 and β = π/8.
There are six edges that are in G but not in G′ and four edges
in G′; therefore, the total cost expectation, 7, in this case
coincides with the maximum cut for this graph.

B. Example: A family of graphs and circuits with an
approximation ratio of 0.5

The star graph on n vertices is a connected n-vertex graph
that has exactly one vertex of degree n − 1 and n − 1 vertices
of degree 1. An example of a star graph is depicted in Fig. 2.

Consider a star graph with three or more leaves. Label
the center vertex of the star n − 1 and the other vertices 0
to n − 2 in clockwise order, starting at some arbitrary leaf.
Now consider the phase operator with the terms of the form
ZiZi+1 modulo n − 2, which has n − 1 terms, the same as
the cost Hamiltonian. With this choice of the phase operator,
the last term of Eq. (4) for all edges of the graph is 0, since
none of them satisfy the triangle condition. Furthermore, the
second term in Eq. (4) is also 0 since none of edges are chosen
as a term in the phase operator. Therefore, all edges in the
graph have the cost expectation of 0.5, and the overall cost
expectation for a star graph with this phase operator is |E |

2 . In
general, if the edges of the graph do not correspond to the
terms of the phase operator and do not satisfy the triangle
condition, the approximation ratio will always be 0.5. Note
if the star has two leaves, this phase operator construction
will contain a multiedge and thus require additional parameter
optimization considerations.

III. RESULTS

In this work, we considered a QAOA with random
phase operators, subgraph phase operators, a special case of
subgraph phase operators in which a subset of triangles are re-
moved (abbreviated TR phase operator for triangle-removed),
and a subcase of random subgraphs where edges that are
incident to maximal degree vertices are removed (abbreviated
MDER phase operator for maximum-degree edge removal)
for solving the MaxCut problem on all 11 117 nonisomorphic
eight-vertex graphs. The simulations at p = 1 were performed
by maximizing the expected value formula in Eq. (4) over
the parameters γ and β. The p = 2 and p = 3 code and
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FIG. 3. Comparison of the approximation ratio for each phase
operator and p tested. For each p, the random phase operator per-
forms the worst, while one of the TR phase operators performs the
best, with the regular QAOA in the middle.

classical optimization subroutine can be found in Ref. [33].
The optimizer used was the L-BFGS algorithm with 100 ran-
dom parameter initialization seeds.

A. Random phase operators

First, we consider random phase operators and analyze the
effect of phase operator structure on the approximation ratio.
In order to create the phase operator graphs, we randomly
selected m of the

(8
2

)
possible edges of the complete graph on

eight vertices, where m is the number of edges in the original
graph. Mathematically, this is given by

Crand =
∑

ab

1

2
(I − ZaZb),

where the indices (a, b) are random. For each graph, up to
ten nonisomorphic random phase operators were considered.
Note that in some cases, such as the complete graph K8, we
cannot select ten nonisomorphic phase operators, since we
keep the same number of edges in the phase operator graph.
However, when possible, we generated ten nonisomorphic
random phase operators and evaluated the approximation ratio
for each.

From Fig. 4, we can see that in almost no cases did a
random phase operator outperform the cost phase operator.
Specifically 0.036% of the graphs tested at p = 1 had a ran-
dom phase operator that outperformed the cost phase operator.
The random graphs are not guaranteed to have any structure
with respect to the original graph, so it is not surprising that
the random phase operators typically perform worse. Fur-
thermore, there are far more than ten nonisomorphic phase
operators that can be generated in most cases, so it is of course
possible that the remaining graphs have better phase opera-
tors. Figure 3 shows the performance of the random phase
operators as compared to the cost phase operator for each p.
On average, the random phase operators not only performed

FIG. 4. The percentage of eight-vertex graphs that had at least
one instance of the phase operator perform better than the regular
QAOA in terms of the approximation ratio.

worse than the cost phase operator, but also worse than all the
other phase operators considered in this work, with the lowest
average approximation ratio. This trend continued for all p
tested.

B. Subgraph phase operators

The subgraph phase operators differ from the purely ran-
dom ones in that we chose a random subgraph of the original
graph G and added to the phase operator ZiZ j only the terms
corresponding to edges of this subgraph. In other words, only
a subset of terms from the cost Hamiltonian can be considered
for the phase operator.

In this experiment, we tested five cases of the sub-
graph phase operator, where the subgraphs chosen contain
�α|E (G)|	 edges of G for one α ∈ { 1

4 , 1
3 , 1

2 , 2
3 , 3

4 }. We labeled
each case as Sub-α, for the corresponding α. Similar to before,
we chose up to ten nonisomorphic subgraphs for each α and
used 100 parameter initialization seeds.

Figure 3 shows the performance of the subgraph phase
operators as compared to the cost Hamiltonian for MaxCut
for each p. We can see that the subgraph phase operators
performed better than the random phase operators, but not as
well as the TR phase or the MDER phase operators. What
is more interesting to note is that all the subgraph phase
operators performed worse than the normal QAOA for ev-
ery p tested. We can see from Fig. 4 that for Sub- 1

4 and
Sub- 1

3 the percentage of graphs that had at least one phase
operator that performed better than the normal QAOA de-
creases with p, while for the other cases there is a decrease
at p = 2 and an increase at p = 3. Out of all the subgraph
phase operators tested, 75.9% of the considered graphs had
at least one subgraph phase operator with a higher approx-
imation ratio at p = 1. These results suggest that randomly
choosing a subgraph to create the phase operator from does
not always yield a better approximation ratio. Since only ten
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nonisomorphic subgraph phase operators were tested, it is
possible that there exist phase operators that have even better
performance. Specifically, as we will see with the TR phase
operators in Sec. III C, subgraphs that have specific edges
removed to reduce the number of triangles can improve the
approximation ratio.

One interesting note is that there were ten phase operator
subgraphs that achieved an approximation ratio of 1, meaning
that the optimal MaxCut value was found. The structures of
these subgraphs all have the same form, where the subgraph is
a perfect matching as in Fig. 1. A perfect matching M ⊂ E is
a subset of graph edges such that every vertex in G is incident
to exactly one edge in M. While interesting to note, this con-
dition is not necessary or sufficient to define subgraph phase
operators that achieve an approximation ratio of 1. However,
if the MaxCut value is |V |

4 + |E |
2 , then a perfect matching phase

operator, if it exists, does yield an approximation ratio of 1. In
general, this information is not known a priori.

C. TR phase operators

The TR phase operators are a special case of the subgraph
phase operators in which one or more triangles are removed
from the original graph. All edges that are not in triangles
remain in the phase operator. The importance of this case
is to reduce the number of triangles so that the last term
of Eq. (4) is 0 for a larger number of edges in the graph,
with the hope that this increases the overall expected value.
This experiment examines four types of TR phase operators.
The first type, named TR-Most, removes a single edge that
is contained in most triangles in the graph. The second type,
named TR-2 Most, implements the same “most” rule, but
applied consecutively 2 times. The third type, named TR-All,
iteratively removes edges until there are no more triangles
left in the graph. The final type, named TR-Random, just
chooses a single random edge included in a random triangle
and removes it.

Figure 3 shows the performance of the TR phase oper-
ators as compared to the cost phase operators for each p.
These results indicate that removing triangles from the cost
phase operator can improve the approximation ratio, while
also using fewer gates in the circuit. The TR phase oper-
ators (excluding TR-Random) performed the best over all
compared to the other phase operators, which becomes more
apparent as p increases. Out of all the TR phase operators
tested at p = 1, 95.1% of the considered graphs had at least
one TR phase operator that yielded a higher approximation
ratio. From Fig. 4, we see the same trend that TR-All begins
to perform better on more graphs than TR-Most and TR-2
Most as p increases. However, comparing the performance of
TR-Most, TR-2 Most, and TR-All, we see that removing all
triangles did not yield the best performance initially, but at
p > 2 TR-All outperforms the other two. This may be due to
the fact that removing all triangles may result in new structure,
such as an increase in the diameter of the graph, which may be
difficult for the QAOA to see. Additionally, the expectation of
the removed edges tends to decrease, which offsets the gain
from the remaining edges. We can also see that for each p,
removing at least two edges performs better on average than
removing only a single edge. In every case, the TR-Random

phase operator performed the worst among the TR phase op-
erators, but was still comparable to the regular QAOA, which
implies that edges should be strategically removed.

D. MDER phase operators

The MDER phase operators are subcases of the subgraph
phase operator in which at least one edge that is incident
to maximum-degree vertices is removed from the original
graph. We examine this type of phase operator because the
exponents of the trigonometric functions in the expected value
equation depend on the degree of the vertex incident to each
edge. Removing an edge with a high degree drives down the
degree of a subset of the trigonometric functions in Eq. (4).
This may slightly increase the expected value of all edges that
share a common vertex with the removed edge at the cost of
setting the expected value of the removed edge to 0.5 plus
possibly the triangle term in the expected value. Thus, edges
incident to high-degree vertices are removed. This experiment
considers three types of MDER phase operators: the MDER-1
phase operator where we find the maximal degree vertex and
remove a random edge incident to it, the MDER-2 phase
operator, which consecutively applies the previous strategy 2
times, and the MDER-all phase operator where we find the
maximal degree vertex and remove all the edges incident to it.

As shown in Fig. 4, over 60% of the tested graphs had
at least one MDER-1 and MDER-2 instance that gave a
higher approximation ratio than the QAOA, while almost no
MDER-All phase operators did. Furthermore, MDER-1 and
MDER-2 result in approximation ratios comparable to those
of the QAOA, while MDER-All performed worse at p = 1,
as seen in Fig. 3. However, as p increases the MDER phase
operators begin to perform increasingly worse than the regular
QAOA. These results indicate that removing edges incident to
maximum-degree vertices can yield comparable performance
at lower depth to QAOA while using fewer gates. However,
removing all the edges incident to the maximum-degree vertex
can lead to worse performance.

IV. DISCUSSION

In this work, we examined the impact of the QAOA phase
operator design on the approximation ratio on all nonisomor-
phic, connected eight-vertex graphs and up to three layers of
the QAOA. In general, removing a subset of triangles from the
phase operator tends to yield a higher average approximation
ratio, and using a random phase operator tends to result in
an approximation ratio lower than the approximation ratio
yielded by the cost phase operator.

The main implication of this work is that, on average, fewer
gates can be used in the QAOA circuit and a comparable ap-
proximation ratio can be attained. This can provide a modest
noise reduction when implementing the algorithm on NISQ
devices. Future work may include multiple directions. First,
one can examine how the subgraph phase operators affect the
optimization landscape, as there could be a risk that modifying
the phase operator results in more barren plateaus. Second, it
is important to consider the scalability of the custom phase
operators with respect to the number of layers of the QAOA.
Another direction includes characterizing of when removing
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gates will improve the approximation ratio. We will also
consider using the MA-QAOA with the subgraph phase oper-
ators to see if the approximation ratio of a given problem can
be increased even further. Since the subgraph phase operators
have fewer gates, there would be fewer angles to optimize.
Thus, the parameter optimization of these multiangle circuits
should be easier, which overcomes one of the challenges of
MA-QAOA implementation [34]. It would also be interesting
to choose other types of phase operators. In particular, at
iteration p of the QAOA, cycles of length 2p + 1 contribute
to the expected value of edges in the cycle. One could study
how removing edges from appropriate length cycles at each
iteration of the QAOA impacts the approximation ratio. We
believe this type of dropout method would result in even
higher approximation ratios than just removing edges in tri-
angles, as in this work.

One possible application of this work is in the area of
privacy. In Ref. [35], the authors explore creating multiple
circuits with various gates removed from the QAOA cost
Hamiltonian in order to protect the privacy of the problem at
hand at the cost of having to run multiple circuits on different
third-party hardware and recombining the results. Our work
shows that we can remove certain gates from the cost Hamil-
tonian, thus increasing the privacy of the original problem, and
have comparable results without relying on multiple circuits.
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