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Rotational covariance restricts available quantum states
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Quantum states of angular momentum and spin generally are not invariant under rotations of the reference
frame. Therefore, they can be used as a resource of relative orientation, which is encoded in the asymmetry
of the state under consideration. In this paper we introduce the analytical characterization of the rotational
information by parametrizing the group characteristic function by polynomial functions. By doing so, we
show that the set of states achievable through transformations lacking a reference frame (rotationally covariant
ones) admits an analytical characterization and can be studied through the use of semidefinite optimization
techniques. We demonstrate the developed methods via examples and provide a physical scenario in which a
reference-independent operation performs a metrologically useful operation: the preparation of a state of light
improving interferometer sensitivity, which equivalently can be realized as a postprocessing step.
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I. INTRODUCTION

Symmetry plays a leading role across different fields of
physics. From the most basic interactions to effective mod-
els, physical systems often exhibit some sort of it, e.g., the
(a)symmetry of a state the system is found in determines its
physical properties and the evolution may be invariant un-
der a particular group of transformations, and yet symmetric
states are sometimes unstable, as evidenced by spontaneous
symmetry-breaking phenomena.

Symmetric evolution implies a type of conserved quantity
exists. This is the statement of Noether’s theorem, valid for
nondissipative systems, but similar observations can be made
in the general case. The resource theory of asymmetry studies
this type of questions and the constraints resulting from sym-
metric evolution in the context of state transformations are the
main topic of this paper (see Fig. 1).

The group of rotations is described by O(3), the orthog-
onal group of order 3, or, in the context of quantum spin
states, the closely related SU(2), the special unitary group
of order 2. Here the resource under consideration is the di-
rectional reference: the amount of orientation information a
system provides. Systems found in rotationally invariant states
convey no such information; they are singlet states, maxi-
mally mixed states of definite angular momenta, and their
probabilistic combinations. Physically, no quantization axis
is distinguished by such states, so they cannot be used to
convey directional reference. Any other state can, in multiple
inequivalent ways, and some states are better suited for that
than others. For instance, two spin-% particles can transmit
directional information either through a symmetric pair of
parallel spins along the direction to be transmitted [11) or as
an antiparallel one |1]); the latter choice provides a better
quality reference than the former spin-coherent state [1].

Systems can also be symmetric with respect to time evo-
lution. Harmonic evolution exhibits such a behavior: It is
periodic, hence symmetric with respect to discrete time trans-
lations, and the relevant group of time translations becomes
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isomorphic to U(1), the unitary group of order 1. The infor-
mation held in the state can be viewed as a time or relative
phase reference across distant systems.

Questions arising from this type of structure have been
studied before. In a two-party scenario, a reference frame can
be established via state transfer, and optimal protocols are
known [1-3]. The amount of information that can be gained
by the measurement of a state modified by an unknown trans-
formation is directly tied to the properties of the input state
and can be quantified [4]. This is the only way to do so: The
reference needs to take a physical form and the information is
unspeakable [5]. Consequences of relations between different
reference frames include foundational aspects of quantum
theory such as interpretation of Wigner’s friend thought ex-
periment [6].

Finally, establishing a reference frame between parties
might be infeasible, e.g., it fluctuates rapidly and maintenance
would have to be performed too often. It is known that even
with this limitation, a state prepared with respect to an un-
known frame might be manipulated to some extent [7], but the
allowed operations are known to only decrease the informa-
tional content of the state [8,9]. The lack of a reference frame
effectively leads to additional noise, reducing the efficiency of
quantum metrology schemes [10].

The meaning of frame-independent operations can be inter-
preted in the following way. Consider two laboratories A and
B (Fig. 1). If the relation between reference frames between
the laboratories is known, the mathematical description of a
state (amplitudes of a pure state or matrix elements of a mixed
state) with reference to A could be translated to B via an op-
eration U (system-dependent, e.g., phase shift, rotation of the
coordinate system). However, if the relation is not determined
(the phase shift fluctuates or optical fiber modes mix), the
operation U is not known. Therefore, if B were to transform
the received state via a channel £ and send it back through
the same quantum link, the only deterministically realizable
operations from A’s perspective would be the ones that act
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FIG. 1. Constraint of a quantum channel being symmetric with
respect to a certain symmetry group is called covariance and can
be interpreted in the two pictured ways. In the top diagram a state
p is transferred between two laboratories, but as a result of lack
of common reference laboratory B receives a state modified by a
unitary U describing a particular element of a symmetry group. The
channel £ is applied to the modified state U/(p) = UpUT and it is
sent back; the result from the perspective of A is equal to £(p) if the
channel £ is covariant. The bottom diagram shows that, equivalently,
the channel £ is covariant if the result of state transformation by
sequential application of £ and U/ does not depend on the order of
operations (for all ¢/ and p).

the same regardless of /. Such operations are called covariant
with respect to the group of frame transformations in question.

Equivalently, the covariant transformations can be thought
of as commuting with all relevant I/: In this view, the prepa-
ration step with the channel £ with subsequent unknown
transformation U/ is equivalent to the application of I/ first
and postprocessing with £. One of the consequences of this
property is explored in Sec. V, where we show that in a bal-
anced interferometer, the metrological properties of a coherent
light state can be (probabilistically) improved with such an
operation. In this scenario, if £ is applied first, it can be
interpreted as the preparation of squeezed vacuum, but it is
possible to use it in the postprocessing step with the same
overall result.

Abstract classical and quantum information can be trans-
ferred even without reference; e.g., the amplitudes defining
a qubit state may be encoded in a two-dimensional subspace
invariant to the relevant transformation group [11]. A quan-
tum state can also be sent along with a finite-size reference
state, and a joint measurement of both parts leads to a better
communication efficiency than the sequential procedure of
establishing the reference frame and quantum communication
[12]. Similarly, if the information is encoded as a relation be-
tween a pair of systems prepared with respect to an unknown
reference frame, the optimal estimation procedure involves
entangled measurements of both parties [13].

The allowed transformations can be characterized for ar-
bitrary groups [8,14], but the form of the transformation
criterion may be unwieldy for non-Abelian groups [15]. This
is the case for the group of rotations, and due to this mathe-
matical complexity only limited results are known [7,15].

This article addresses the question of state transformation
with rotationally covariant channels, and with this in mind

we develop the analytical characterization of the SU(2) char-
acteristic functions (Sec. III), a concept stemming from the
polynomial description of U(1) [15,16]. It allows for a direct
answer to the question of pure state interconversion by uti-
lization of the algebra of complex homogeneous polynomials.
The main results are contained in Sec. IV. In Sec. V we
present a possible application of our formalism, by proving
that metrological properties of light states can be probabilisti-
cally improved with operations commuting with the action of
an interferometer.

In order to provide mathematical and physical context of
our research, in Sec. II we review known results with the
exemplary use of U(1), the group representing the time evo-
lution of a harmonic system, as a toy example for the theory.

II. THEORETICAL BACKGROUND

A. Phase reference and U(1) group

Consider a standard quantum harmonic oscillator system,
described by the Hamiltonian

H=ada'a, (1)

and denote the eigenstate of the energy n € N by |n). An
arbitrary pure state can be written as a sum

W)=Y vuln), )

neN

and its evolution dictated by Eq. (1) is described by the unitary
operator U (¢) via

2 neny exp(—int)|n){n|
—

U() [¥) =D Ywexp(—int)in). (3)

neN

V(1) =

The system described by Eq. (1) is harmonic and its evolution
is cyclic: U(t) = U(t + 2m). Evidently, U (¢) is described by
just a single phase exp(—it). The set of all such phase shifts
{exp(—it) € C :t € [0,2m)} is the definition of the group
U(1), and U (¢) can be interpreted as a representation of this
group. This means that harmonic evolution realizes abstract
phase shifts in a physical system.

The eigenstates {|n)} evolve only trivially: They gain a
phase factor, which without any other input is undetectable.
Any measurement can only detect a phase difference, either
from an external reference or, as in the case of Aharonov-
Bohm effect, another part of the same system undergoing a
different evolution. The eigenstate could therefore be con-
sidered as maximally symmetric states with respect to the
U(1) group. The study of state (a)symmetry with respect to
different groups has been considered before [7-9,14,17]; in
this section we present the main already known results in order
to provide a theoretical background for our findings.

Suppose the state |) of Eq. (2) is prepared with respect
to an unknown phase reference. Such a situation could arise
if the state describes a quantum state of a single mode of
light, which was prepared in a distant laboratory (see Fig. 1):
Laboratory A created |y/) and sent it to laboratory B, but from
its perspective any | (¢)) [Eq. (3)] is equally likely. For some
purposes this means that the received state can be described

022440-2



ROTATIONAL COVARIANCE RESTRICTS AVAILABLE ...

PHYSICAL REVIEW A 110, 022440 (2024)

by a density operator [18]
p = [Wul’ln}(nl, )

neN

but this is not the entire picture: If the same state is simply
reflected back to laboratory A unaltered, it is still coherent.

Can laboratory B perform any nontrivial operation main-
taining its coherence? The answer is affirmative if and only if
the operation is reference independent. If laboratory B applies
a unitary T to the received state and subsequently sends it
back, from the perspective of laboratory A it is described
by U(t)"'TU(t), i.e., the frame change, the applied opera-
tion, and the final inverse frame change back to the original
one. Since U (¢) is unknown, for the realized operation to be
frame independent, U @)~'TU(t) = T, which is equivalent to
[T,U(t)] = 0forallz.

Most general quantum operations are mathematically de-
scribed by a unitary interaction 7 involving an environment
(or auxiliary system), which is then discarded since, by as-
sumption, it never interacts later with the system of interest.
Such operations may create statistical mixtures of pure states,
which are typically described by density operators: If an
operation produces a state |y;) with probability p;, the cor-
responding density operator is ), pi| i) (¥l.

In this view, quantum operations are linear maps £. Here
such an operator would take an arbitrary density operator p =
Zm,neN Pm.n|m)(n| as an input and return a modified state p’
of similar form.

Which of such most general operations could be deter-
ministically performed on the state even without the phase
reference? Similarly to the restricted case of unitary transfor-
mations (where [T, U(¢)] = O for all ¢), a quantum channel
should commute with phase shifts, in the following sense.

Let us denote the change of phase reference by a unitary
channel U, (p) = U(t)pU (t)". Whatever quantum channel £
is applied, the result of the operation should not depend on the
(unknown) reference: U,‘l o & oU; should not depend on ¢.
This results in the covariance criterion for realizable quantum
channels &, presented below. For later use, it is formulated for
an arbitrary group G; here the relevant group is U(1).

Definition 1. A quantum channel £ is group covariant with
respect to the group G with representation U, if and only if for
all g € G,

Eoly=Uzo0&. ®)

In short, the operations have to commute with the action
of the symmetry group. This is a fundamental limitation in-
dependent of experimental feasibility: A complex, but still
covariant, quantum channel might require an improvement in
experimental techniques for its implementation. On the other
hand, even very simple noncovariant operations cannot be
realized at all.

A covariance requirement independently arises in other
contexts: It is a part of the constraints for thermal operations
[19,20] and is a result of fundamental symmetries of nature,
through axiomatic superselection rules [7].

For the phase shift group U(1), the characterization of
covariant operations is known [7]. Therefore, it is possible
to classify states which can be prepared from a given |¢) if
its phase reference is unknown. For instance, the phase of

FIG. 2. Example of probability distributions compatible with
Proposition 1. Deterministic transformation of |) =), A/ Pnln) to
|¢) = >, /quln) is possible with a U(1)-covariant channel, because
P 1s a convolution of g, with an auxiliary w,.

each eigenstate can be manipulated independently as a U(1)-
covariant operation; therefore, any state defined by Eq. (2) can
be turned to the canonical form of

1Y) = /paln), 6)

neN

with p, = [¥,|2. Such a shift would require the engineering of
a nonlinear addition to the Hamiltonian (1), but is independent
of a phase reference.

Because of this reduction, let us concentrate on states with
real, positive amplitudes. It is known [7] that the state |y)
defined above can be turned into another if and only if p, can
be split into a convolution of two probability distributions over
N after a constant shift (see Fig. 2 for an example with § = 0)

Proposition 1. The U(1)-covariant quantum channel £ such
that 3 /paln) = €Y, N, +/dnln) exists if and only if there
exists § € N and a sequence w, such that ) _w,=1,
w, = 0, and

Pn—s = Z qmWn—m- (7)

n>m>=0

This condition can be cast in the language of polynomial the-
ory [15]: It is exactly the equation describing the coefficients
pn of a product of univariate polynomials

P o)) o

neN k

Via this observation, it is straightforward to verify several
properties of the accessible states. For arbitrary |y), only
finitely many pure states are accessible, up to a shift in en-
ergy. The variance of the energy of the resulting state cannot
increase [17], and for generic probability distributions p, only
trivial operations (energy shifts) are admissible, since no de-
composition of the form (8) exists with valid (non-negative)
coefficients w,,.

B. General results

The general theory of group-covariant transformations for
arbitrary groups was developed in [8] and articles following
the thesis [9,14,17]. It is an abstract characterization valid for
any group G; the central point of the theory is the so-called
characteristic function.

Definition 2. Consider a group G with representation U,.
The characteristic function of a state |i) belonging to the
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space of the representation is the function x : G — C,

Xu (&) = (V|Uglr). )

The characteristic function captures the entire asymme-
try information of the state with respect to the group and
in certain cases, e.g., |{) is contained within a single irre-
ducible representation, contains the entire information needed
to reconstruct the state. What has been found in [8,14] is
that the characteristic function x, determines the set of co-
variantly accessible pure states |¢). We present a version
of the propositions in [8], modified for clarity and tailored
to the requirements for SU(2)-covariant transformations. For
simplicity, we assume that the group G has no nontriv-
ial one-dimensional irreducible representation; in order to
avoid mathematical inconsistencies, one might also require
that the characteristic functions x are sufficiently regular.
The simplest (but most restrictive) regularity condition is
that all appearing states belong to a given finite-dimensional
Hilbert space H (which may contain arbitrarily many trivial
one-dimensional irreducible representations of G); commonly
encountered infinite-dimensional states, e.g., coherent states
in the case of U(1), cause no problems as well.

The equality of characteristic functions implies the exis-
tence of two-way covariant transformations.

Proposition 2. Consider two pure states |) and |¢). There
exists a G-covariant unitary V such that V|i{) = |¢) and
VT|¢) = |) if and only if the characteristic functions of the
states are equal:

xv(8) = x4(8)Vg € G. (10)

This serves as a basis for a one-way conversion criterion:
Via the Stinespring dilation of G-covariant channels, a G-
invariant auxiliary state |n) [x,(g) = 1 for all g € G] can be
added, followed by the application of a G-covariant unitary
and possibly partial trace. The system traced over may carry
some information; together with the target state, it should
have the same symmetry properties, leading to the following
characterization of pure state transformations (one of the main
results of [14]).

Proposition 3. There exists a G-covariant channel £ map-
ping a pure state |Y) to |¢) if and only if there exists a state
|€) such that for all g € G,

Xy (&) = x£(8)Xp(8)- (1D

Further analysis shows that the probabilistic generation is
described by characteristic functions as well. They are real-
ized in a similar fashion as the deterministic transformations:
A G-invariant auxiliary state is added, followed by the ap-
plication of a G-invariant unitary and a measurement of the
auxiliary state in a G-invariant basis. Depending on the out-
come of this measurement, a part of the system is traced out to
end up with an ensemble {|¢;), p;};. This can be summarized
as follows (Theorem 65 in [8]).

Proposition 4. There exists a G-covariant map transforming
|Yr) to the ensemble {|¢;), p;}; if and only if there are states
{|&)}i such that for all g € G,

X (®) =Y pixe (&)X, (8)- 12)

Note that the output of the channel is a postselected pure
state and not the mixed state p = ), pi|¢;) (¢;|. If only the
target state is of interest, the result can be modified as shown
in Corollary 66 in [8].

Corollary 1. There exists a G-covariant map transforming
|Yr) to |¢) with probability p if and only if there are states |&)
and |o) such that for all g € G,

Xy (&) = pxe(@x4(8) + (1 — pP)xs(8). (13)

These findings, after minor modifications! that allow for
the structure of U(1), are consistent with the earlier results
concerning this group. In particular, the characteristic func-
tion of the state (6) is the Fourier transform of the defining
probability distribution

Xy(0) =) puexp(—int), (14)

neN

which can be interpreted as one of the polynomials appearing
in Eq. (8) with z := exp(—it). The product of characteristic
functions appearing in Proposition 3, after an inverse Fourier
transform, corresponds to the convolution of two probability
distributions, a result equivalent to Proposition 1.

C. Three-dimensional rotations: SU(2)

Physical reality does not depend on the chosen coordinate
system, but some must be chosen in order to accumulate ex-
perimental results. Frequently, a Cartesian coordinate system
is used to refer to spatial degrees of freedom: Any point
is described by 7 := (x,y,2) € R3. The three numbers im-
plicitly assume some directional reference; another observer
may prefer a different one, with the transformation defined as
7+ OF + ¥y, where O is an orthogonal matrix (that is, oo’
is an identity matrix) and ry is a constant coordinate shift.

Here we are interested in the lack of a rotational frame
reference and its effect on quantum operations. For this, a
description of how a rotation of the reference frame affects
the mathematical description is needed. Naturally, a wave
function of a single spinless massive particle, e.g., electron
in the original Schrédinger work [21], transforms as ¥ (¥) +—
¥'(F) := ¢ (OF). If a state is expanded in the basis of definite
angular momenta j, and its projection on the z axis (plus
auxiliary indices « for any other degrees of freedom preserved
by rotations, e.g., the principal quantum number)

J
W= > 3 Vimalim ), (15)

j=0.1,... a@ m=—j

the effect of a coordinate change can be summarized as

J
W= Y > > Ul imalima). — (16)

j=0,1,... @ mm'=—j

The matrices U/ form a representation of the group of ro-
tations; they describe the effect of coordinate change on the
mathematical description of the state.

'There exist nontrivial one-dimensional representations of U(1):
Every Fock state |n) corresponds to one.
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The group of rotations is the main subject of this paper,
and the above description is sufficient for orbital angular mo-
menta. To accommodate the spin degrees of freedom (which
cannot be expressed as coordinate change in wave function),
in calculations we will use the related group SU(2), which is
the set of complex matrices

SUQ2) := {(ﬁ

Any matrix from SU(2) can be transformed to an orthogonal
coordinate change O and subsequently the action on ampli-
tudes through U, but it provides a bit more generality and
a more straightforward mathematical description. Represen-
tations of this group can be identified with spin and angular
momentum states; explicitly, the matrices in Eq. (17) can
be though of as rotations of spin % with V = expli(n,o, +
nyoy + n.0;)] € SU(2), where o; are the standard Pauli matri-
ces. Our aim is to provide exhaustive criteria and numerical
methods for the problem of state interconversion, that is, the
problem of which quantum channels £ do not depend on
spatial orientation and what states can be reached with them.
So far only limited results are known, One of them is the
characterization of Kraus operators that can be used to build
SU(2)-covariant channels (Lemma 17 in [7]).

Proposition 5. Any SU(2)-covariant quantum channel £
allows the decomposition £(p) =), K,-,oK; into Kraus op-
erators with the most general form of K; as

_'j*) Cul? + ) = 1}. (17)

i I+
Ko=) Z >
J=0,1/2,1,...m=—j" j=lJ—j|
j/ J .] im0
% <—m M m—M>( D
x 1j',m)(j,m — M, (18)
whereJe{O,z,, b Me{=J,—J+1,...,J}, a is a

multiplicity index, the Wigner 3;j symbol related to the
Clebsch-Gordan coefficients is denoted by ( . [JVI wlm)s

and the vector f7 , has entries f J’ ) The standard normaliza-
tion condition

> Kima({fra)) Kima({fra)) =1 (19)

J.M,

can be written as

D el NP =2j+1. (20)

J.j o

SU(2)-covariant unitary channels have just one Kraus op-
erator Ko 0,0 = Z e T1;, with I1; being projectors onto the
irreducible representatlon Js changmg the relative phases be-
tween the irreducible representations.

This has led to partial answers to the transformation
problems [7]: If we restrict ourselves to superpositions of
spin-coherent states in a single direction 7, the set of acces-
sible states admits a simple characterization. Without loss of
generality, we can assume that 7i = (0, 0, )T and the states

take the form

W)= Jpili=im=j), Q1)
J

with {p;};—0,1/2,1,.. being a probability distribution. The
following proposition (Theorem 20 in [7]) solves the inter-
conversion problem for this restricted subset of spin states.

Proposition 6. Consider a pair of states defined as in
Eq. (21): the state |y) defined by the probability distribution
p; and |¢) defined by g;. There exists an SU(2)-covariant
channel £ such that £(|v)) = |¢) if and only if there exists
a probability distribution &; such that

pj= Z §/qj+i- (22)

J=0,1/2,1,...

Note the similarity to Proposition 1. It is not accidental; for
this class of states the most relevant part of the SU(2) group
is rotation along the quantization axis, again described by
U(1). Here a shift of the prior probability distribution p; is not
allowed, because the only pure invariant state, which can be
added as an ancilla in the Stinespring dilation of the channel
&, is 10,0) (plus multiplicities). Further results concerning
stochastic transformations can be found in [7].

III. RELEVANT MATHEMATICAL STRUCTURES

A. Polynomial SU(2) representation

In this section we show how the action of SU(2) rotations
on spin states can be parametrized using polynomials. The
parametrization is extracted from the form of overlap func-
tions (v |7i), where |7i) is a spin coherent state; this is related to
the Majorana stellar representation (see Appendix A), which
allows for an equivalent description of a state [i/) by points
7i on a sphere for which this overlap vanishes. Here a partic-
ularly simple form of a coherent state transformation under
rotations [Eq. (32)] is employed to extract the polynomial
form of the rotation from the overlap function [Eq. (28)],
which then can be applied to an arbitrary state |y) (Propo-
sition 8). The reasoning starts with pure states of definite total
angular momentum:

J
= > Yuliim). (23)

m=—j

The spin coherent states used in the derivations maximize the
spin component along a certain axis defined as follows [22].
Definition 3. The spin coherent state |7i) within an ir-
reducible representation corresponding to the total angular
momentum of j (with the spin matrices Jy, Jy, and J;) is the
normalized eigenstate of the maximum eigenvalue of 7i - J:

@i - D)y = jliil|i). 24)

A simple example of a coherent state is |j = J, m = J) for
any J; it corresponds to the vector 7#i = (0, 0, 1). Such states
are defined up to a phase only, but this does not pose an issue
here, since we employ a concrete parametrization stemming
from the observation that |7i) can be regarded as a symmetric
product state of 2 spin-% subsystems

) = @11) + 2214, (25)
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where the complex numbers z; and z, determine the state of

each individual spin-% subsystem. Back to the spin-j repre-

sentation, it can be written in full as

J .
2 j+m_j—m, .
DESY (j _Jm)z{+ 2 "j,m). (26)

m=—j

Provided that |z;]? + |z2|> = 1 (which amounts to normal-
ization of |7i)), the expectation values of the spin operators can
be shown to be

(i =2jRe(z2z]), ()i = 2jIm(z5z1),
(i = jlzil* = |zal?). (27)

Now we can define a homogeneous polynomial f;, in complex
variables z; and z, associated with the state |) via the overlap

fo (21, 22) = (Y ]i)

J 2j o
=y (j_m>w;;z{+’”z§"”. (28)

m=—j
If a state |1) undergoes a rotation with

U =exp[i(n g +nJP 4+ nJP)], (29)
the homogeneous polynomial of U |y) transforms as

WlyNHt
—_——
fo = Wiy = fuy = (YIUT 7). (30)

Importantly, one can act with U  on the coherent state itself;
evidently, it amounts to a rotation of each individual spin-%
component in Eq. (25). The action on the spin—% subspace
defines the rotation completely. In accordance with the defini-
tional requirements of the group SU(2) (that they are unitary
and unit determinant complex matrices of size 2), one can
parametrize the action as

yu=2 = (fj o ) 31)

and in consequence, a state |7i) defined by complex numbers
71 and z, is transformed to U |ii), corresponding to Zj and 2}
by

vt

——
OG0 e
2 —v u 22

This simple transformation of the coherent state parameters z;
and z, under rotations can be translated to a strict statement
(see Chap. 4.3.4 of [16]).

Proposition 7. Let us parametrize the element V of SU(2)
as in Eq. (31). Take a state defined as in Eq. (23) corre-
sponding to a polynomial f, defined in Eq. (28). Then the
state |¢) = U|y) transformed by a standard representation

corresponding to spin j has the polynomial

o) = fy (V*(Z))

7

=

/—’* —\* [P S
= fy(W'z1 + v 20, —vz +uz22)

: 2] /j /j—.
=2 ( )I/f;llzl’*’"z; " (33)
NN\J—m
m=—j

As a result, the action of SU(2) on a space of spin-j
states can be parametrized by polynomials in u, u*, v, and
v*; this is the basis of the results in the following section.
The polynomial representation U can be read off from the
transformation laws for monomials appearing in Eq. (33), and

the matrix element Urfl],,)m = (j,m'|UY|j, m) is given by

min{j—zm,:ﬁm'] i—m itm
a m—m +a

(jzjm’) a=max{0,m'—m}

% (_1)auj-‘rm/—au*j—m—avm—m’-ﬁ-av*a' (34)

The inside sum can be calculated to yield an ordinary hyper-
geometric function ,F; (see Appendix A for details); in the
following text the hypergeometric form of U is not going to
be used.

Proposition 8. The coefficients {1#,,,}',;1:7 i of a spin-j

state transform under a rotation by V = (} _uli*) € SU(2) as

Y = Y0 UL U with U given by Eq. (34).
For instance, the low-spin polynomial parametrizations (in

the basis of {|j, m = j), ..., |j,m = —j)}) are

yl=t2 _ (v
v u* k]

u? —2uv* v*2
V2uv ot — oot —2uv* |. (35)
v? V2u*v u*?

This form is easier to algebraically manipulate than the stan-
dard exponential parametrization [Eq. (29)]; it contains the
same information, but in explicit form. Since for characteris-
tic functions (Definition 2) one has to calculate expressions
of the form (¥ |U|y¥) and compare them to ascertain state
reachability (Propositions 3 and 4), this is a significant sim-
plification: The equality of polynomials can be determined
by comparing their coefficients (after taking into account the
constraint |u|? 4 |v|?> = 1), while expressions stemming from
matrix exponents contain unwieldy trigonometric expressions
(see Appendix E for an example).

Uu=b —

B. Semidefinite programs

Semidefinite programs are a method for solving a class
of convex optimization problems. With their usage it is pos-
sible to efficiently numerically optimize a linear function,
e.g., maximize the expectation value or probability, over a
subset of positive-semidefinite matrices, e.g., quantum states
with additional constraints, or quantum channels by their dual
representation. We will use such methods in later parts of

022440-6



ROTATIONAL COVARIANCE RESTRICTS AVAILABLE ...

PHYSICAL REVIEW A 110, 022440 (2024)

the text; in particular, the result of Proposition 8§ with some
modifications allows for maximizing the fidelity over a subset
of states reachable with SU(2)-covariant channels.

For a general definition of the semidefinite optimization
problem, let us consider two complex vector spaces X = C”"
and Y = C™. Now let & transform Hermitian operators acting
on X to Hermitian operators on ) and fix two Hermitian oper-
ators C = C" and D = D' (acting on X’ and ), respectively).
With this, we define the primal problem

m}?x tr(CX),

st £(X) =D,
X = 0. (36)

Here X = 0 signifies that X is positive semidefinite. The qual-
ity of the optimization of the primal problem can be ensured
by the use of a dual problem. It provides an upper bound on
the optimal solution. For many classes of problems, the upper
bound can be proven to be exact [23].

There are many applications of semidefinite programs in
quantum information, e.g., it is possible to determine the
fidelity between two states, as independently discovered in
[24,25].

Proposition 9. The fidelity between two states p,o €
Pos(#H), H = C", given by

Flp,0) =tr(y/Jopo), (37

can be computed with a semidefinite program [24] with the
following primal problem:

1
_ T
m)?x 2tr(X +X"),

p X
S.t. (XT O') = O,

X e C™", (38)

Here the standard form of the semidefinite program
[Eq. (36)] has been replaced with a simplified one, better
suited for this particular case. This semidefinite optimization
will be used later in Sec. IV B for determination of maximum
fidelity achievable with rotationally covariant operations.

IV. APPLICATION TO SU(2)-COVARIANT
TRANSFORMATIONS

A. Pure state transformations

The SU(2) polynomial representation introduced in
Sec. III A can be applied to define the characteristic func-
tion in purely analytical terms. Recall that for a state |/) =

fn:_j Y| j, m) contained in a representation corresponding
to the total angular momentum j there is an associated polyno-

mial fy (21, 22) = Y0 fuz] 73 ". The group SU(2) acts
on the polynomials by a linear transformation of the vector of
variables (z1, z2) [see Eq. (33)]. The transformed polynomial
' corresponds to a state U |1/ ); thus, the form of the character-
istic function (Y |U|y) can be read out from the transformed
polynomial.

Proposition 10. The SU(2) characteristic function of a state
with definite spin j,

J
W)=Y Yulim), (39)

m=—j

can be parametrized via two complex variables u and v obey-
ing |u|?> + [v|> = 1 via

S UL Y. (40)

m',me{—j,...,j}

Xy (u, u*, v, 0%) =

where the representation U/ is extracted from the polynomial
representation [see Proposition 8 and Eq. (34)].

If a state is a superposition of states belonging to different
irreducible representations, i.e., |¥) = Y j |;), the charac-
teristic function yx also decomposes:

Xo =D Xu- (41)
J

If the maximal total angular momentum appearing in |y)
is denoted by J, the characteristic function of a state |y/) is in
this context a polynomial of degree 2J in u, u*, v, and v*, the
variables characterizing an SU(2) group element.

Example 1. The characteristic function of the state |) =
|j =1,m = 1) is given by

Xy (u, u*, v, v*) = . (42)

Similarly, a superposition of multiple irreducible repre-

sentations |¢) = L2(|j =1l,m=1)+1j=0,m=0)) cor-

responds to a sum of characteristic functions

Xo = 2(Xjmtm=t) + Xjjmo.m=0) = 5(u* + 1). (43)

For a strict mathematical formulation of SU(2) charac-
teristic functions through their polynomial parametrizations,
some care has to be taken. In particular, the exact form of
the polynomial might depend on the method of calculation,
and a direct comparison of the coefficients is insufficient to
determine the equality of characteristic functions (which is
needed for Proposition 2 and subsequent results). Evidently,
xy and xy + f(lul* + |v|> — 1) are the same functions (with
the constraint |u|?> 4 |v|> = 1) but in general are different
polynomials. Another problem is practical; when searching
for auxiliary states |£) and |o) (appearing in Proposition 3
and Corollary 1), the dimension of the Hilbert space must
be bounded for computational tractability. A detailed analy-
sis of these problems is presented in Appendix B; here we
present the results most important for the understanding of
the method.

The first problem is solved by comparing coefficients of a
definite representative of a given characteristic function.

Definition 4. For a given polynomial x in variables u, u*,
v, and v*, let [ x ] denote a coefficient list

7T[X] = (Xa,b,c,d)a,b,c,deN (44)
such that the value of
X= D Fabeau'uvv (45)
a,b,c,deN

is equal to x whenever |u|?> 4 |v|*> = 1 and ¥ is not divisible
by |u|?> 4+ |v|> — 1. This operation is linear in x and can be
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thought of as a projection of coefficients onto a fixed sub-
space.

With this definition, we can compare polynomials through
the coefficient list provided by ;. Then the direct application
of Proposition 3 yields the following result.

Proposition 11. The deterministic SU(2)-covariant trans-
formation |r) > |¢) is possible if and only if there is a state
|€) such that

Tlxy]l = Tlxewel- (46)

See Appendix C for the proof.

Similarly, the application of the polynomial description to-
gether with Proposition 4 and Corollary 1 can be summarized
by the following proposition.

Proposition 12. There exists an SU(2)-covariant map trans-
forming |v) to |¢) with probability p if and only if there are
states |£) and |o') such that

7 xy] = prlxeee]l + (1 — p)wlxo]. 47)

Proof. Analogously to the proof of Proposition 11, the
characteristic functions appearing in Proposition 4 can be
expressed as polynomials and their canonical versions are
compared to yield the result. |

The structures presented in Propositions 11 and 12 can be
used directly to prove the existence of an SU(2)-covariant
transformation if the auxiliary states can be guessed. However,
they also allow for numerical methods; the constraints (on
polynomial coefficients) they impose are linear, and the search
spaces are quantum states. This is exactly the formulation
allowing for a semidefinite optimization approach.

Proposition 13. The maximum probability for an SU(2)-
covariant transformation |y) — |¢) can be determined with
the following semidefinite program:

max tr(p),
feXed

st lxyl =7 Xpee]l + 7xo],
p =0,
o »=0. (48)

The Hilbert space dimension of p and o can be constrained
by the maximal total spin appearing in [¢) and |¢) (see
Appendix B).

Proof. This directly follows from Proposition 12 with the
probability of the transformation as being absorbed in the
states p and o, which are no longer normalized. Their support
is restricted with respect to Proposition 16 in order to ensure a
finite-dimensional set to optimize over. ]

This observation can be implemented as a numerical pro-
cedure; in the following example, such an approach leads to a
result consistent with an analytical prediction.

Example 2. The transformation [i) + |¢) with

|I//)=—1 <|O 0) + |1 O)—i—Z‘§ §>)
Jg b 9 2’ 2 b
22

is possible with probability p = % [26].

B. Transformations of mixed states

The methods presented above are well suited for pure ini-
tial and target states. Here we present the generalization to
mixed states. The basic idea is to express the quantum channel
by the known form of its Kraus operators (from Proposition 5)
with proper constraints in order to parametrize the end state.
Then an optimization is performed to evaluate the metric of
choice; here we use the maximum fidelity. The basic problem
statement is thus as follows. For a given initial p and target o,

maximize
F(E(p), o) =tr[y/ Vo E(p)/o] (50

over all SU(2)-covariant quantum channels £. Suppose for a
while that the channel £ is fixed. Then, according to Propo-
sition 9, the fidelity between o and £(p) can be found as the
solution to the semidefinite optimization problem of

1
_ i
m;lx 2t1r(X +X"),

o X
s.t. <XT S(p)> = 0. (1))

The further optimization over £ naively might be un-
derstood as a complex nonlinear maximization over the
coefficients appearing in Eq. (18) with the constraints set by
Eq. (20). It does however permit a semidefinite relaxation,
which can be proven to return a strict solution.

Using the nomenclature of Eq. (18), the output state

E(p) contains quadratic expressions fJ(JaJ ) J(k{;k)* The output
can be linearized by defining the parameter matrices Fj , =
f],a ffa and considering optimization over full-rank matrices
=3, Fua

Proposition 14. Consider an initial mixed state p and a
target o. The maximal fidelity between the output state £(p)
and the target o optimized over an SU(2)-covariant channel
£ is the optimum of the following semidefinite optimization
problem:

1
max —tr(X + X7 ,
X (F} 2 X+ )

S.t (U X )»0
S\XT Ew ARD) T

§{FH =0,
F = 0VJ. (52)

Here the linear constraints £ are the analogs of Eqgs. (19) and
(20) expressed for the matrices Fj instead of vectors f .

See Appendix D for the proof.

If the target state o = |o){o| is pure, the semidefi-
nite program can be simplified. The pure state fidelity
is F(E(p),0) =t[/(o]|€(p)lo)] = /(o|E(p)lo) and the
squared fidelity F2(E(p), o) = (o|E(p)|o) = tr[cE(p)] can
be optimized instead.

Proposition 15. For any mixed initial state p and pure target
state o, the maximum attainable fidelity between o and £(p)
optimized over SU(2)-covariant channels £ is the optimum of
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FIG. 3. An unknown phase shift 0 can be determined by mea-
suring the difference of the photon numbers at the output of the
interferometer. The accuracy of phase estimation can be increased
by the action of a device D transforming the initial state |y) & |0)
into a more sensitive one |y) ® |t). Since the device action com-
mutes with the interferometer, the preparation stage can be replaced
by postprocessing by the same device, with the same metrological
improvement.

the following semidefinite optimization problem:

trfo& ,
max rlo&(p)]

s.t. §({F)}) =0,
F; = 0VJ. (53)

This observation can be implemented numerically. As an
illustration, let us consider the states defined in Eq. (49).

Example 3. With the states defined as in Eq. (49) of
Example 2, the maximum achievable fidelity [26] via SU(2)-
covariant channels is

FEop (W) (WD, [9) (o) ~ 0.93. (54)

This matches the earlier observation that the transformation
|Y) — |¢@) is not possible deterministically.

Here we can also determine the fidelities for transforma-
tions where the total angular momentum is increased, whereas
the characteristic function approach would always return a
vanishing probability due to Proposition 16: Any spin increase
is forbidden in the context of pure state transformations with
postselection on the target state. The fidelity can still be
nonzero exactly because the optimal output state is not pure.

Example 4. The maximum fidelity for an SU(2)-covariant
transformation |) = |%, %) — |¢) = |2, 2) numerically con-
verges to [26]

4
F(Eopt (1Y) (¥ ]), 19)(@]) = \/; ~ (.89, (55)
with

4 1
Eopt (1Y) (W) = 51220221+ 512, D2, 11, (56)

V. PHASE ESTIMATION EXPERIMENT

Consider a phase estimation experiment pictured in Fig. 3.
Here two quantum light modes are transformed by an interfer-
ometric setup corresponding to an operation Uy and a device

D in two possible orders: D o Uy and Uy o D. Subsequently,
the photon numbers of the two output modes are measured. In
the linear optics description, the action of a beam splitter

L /1
=50 1) °7

can be described as the Heisenberg transformation of the

annihilation operators
ai
B (dz) , (58)

(=)
H
a;
while the phase shift operation
e’ 0

Py = (0 i (59)
corresponds to straightforward multiplication, (aj, a2) —
(€?ay, e7®ay). The overall transformation Iy = BPyB' leads
to output modes

Iy

b\ _ [cosf —sinf\ (a;
(b2> B (sin@ cos 6 > <a2>' (60)

In the Schrodinger view, the mode transformations corre-
spond to a unitary operator transforming the initial state |i/):

) > ) ), ©1)
Uy

The interferometer action, described by a U(1) subgroup of
SU(2) (which describes mode transformations more gener-
ally) formed by the matrices Iy, acts on quantum states via
its unitary representation Uy, on the level of mixed states
described by Uy (p) = Uy pUJ . Interestingly, there exist oper-
ations D commuting with all fy. They can be placed before or
after the interferometer, with the same overall operation of the
interferometer and device in total. With such operations, the
preparation step is equivalent to postprocessing, and they can
be made to perform useful work, as shown in the following
example.

Example 5. Consider an interferometer with its input arms
initialized in the coherent and vacuum states, respectively:
[Y) = |y)]0). There exists a device D, for which Uy o D =
D o Uy, transforming the state |y) with nonzero probability p
into

l9) = [y —e)lr), (62)
where ¢ > 0 and the |t) is a two-photon approximation of the
squeezed vacuum,

|T) = cost|0) —sinT]|2). (63)

Proof. The possibility of state transformation is ascertained
by the structure of the U(1) characteristic function asso-
ciated with the interferometer action (see Corollary 1 and
Appendix E). In this case, the characteristic function of a state
|[) takes the form

X (0) = (WUslyp) = e, (64)
keZ

where the C; have to be non-negative and sum up to 1. The
interconversion to a state |¢) with the characteristic function
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of xp = Y ez € Py is possible with probability p if C; =
PP + (1 — p)Ox, where Qy > 0. This is possible in this case:
The characteristic functions of |¢) and |¢) read [with z :=
exp(if)]

Cr
——
2
Xoor = e TRy,
keZ

Xo = Xy (y(1—e)) X (A_az ™+ +AsD)
= ZPka, 65)

keZ

where I, is the modified Bessel function and the coefficients
A; (I = —4,...,4) are expressions involving y, 7, and ¢. By
analyzing the asymptotic behavior of P, and Cy, one can show
that for any ¢ > 0,

p := min % > 0. (66)
keZ Py

The details of the calculations, including the definition of A;

and proof that p > 0, are presented in Appendix F and the

Supplemental Material. ]

Importantly, the state |¢) offers a metrological advantage

over the coherent input |1/) = |y)|0): The vacuum state |0)

is transformed to an approximation of the squeezed vacuum

state |t). This is visible in the output of the entire system:

With the difference of the output arm photon numbers defined
as

SN = blb; — bibs, (67)

the phase estimation uncertainty A6 is [27]

A = JA%SN)‘%

where AZ2(8N) = (8N?) — (8N)? is the photon-number vari-
ance. For both states |¢) and |¢), the maximum accuracy is
achieved around 6 ~ 7; in this case (for large y and optimal
angle t; see Appendix F for details)

-1
, (68)

AOy, = —,
VT 2y

~0.74
——

ABy ~ NGy /3 — V6. (69)

VI. CONCLUSION

The most important results of this work are Propositions
11-15: They utilize a description of the SU(2) characteris-
tic functions in terms of polynomial expressions in order to
answer basic questions related to rotationally covariant state
transformations. Such a characterization enables the direct
use of the more general characteristic function theory, in a
manner similar to the application of polynomials in the case of
U(1). The SU(2) transformations can be interpreted as passive
linear optics mode mixing, and the results found were applied
in Sec. V to show the possibility of state transformation in
an interferometric setting improving metrological sensitivity;
this transformation can be realized as either a state preparation

or postprocessing step, since it explicitly commutes with the
interferometer action.

Solutions to the SU(2)-covariant state transformation prob-
lems presented in this work provide answers to the basic
questions of quantum information science. The basic inter-
actions found in the physical world do not depend on the
frame of reference. This leads to the angular momentum being
conserved, but further constraints on the allowed output states
can be made by application of our observations. The same
structure arises if a quantum state of angular momentum is
prepared with respect to an unknown orientation: It can be
deterministically transformed to only a subset of quantum
states, characterized by Proposition 11.

The results presented here are also applicable in the
abstract theory of quantum reference frames, due to signifi-
cant simplification of calculations involving SU(2) rotations
through the polynomial parametrization (Propositions 8 and
11). These observations together with known state trans-
formation conditions offer a way to determine possible
transformations between resource states. While it is known
that deterministic transformations are unable to increase the
relative orientation information, through Proposition 11 it is
possible to verify if a single reference |{) can be divided into
a pair |¢) and |£), and as exemplified in Sec. V, probabilistic
amplification is also possible in some cases.

The methods presented in this paper require the target state
to be known beforehand. We plan to generalize the procedures
by developing a classification of the achievable states through
decomposition of the initial characteristic function. Further
research is also needed in order to understand the accessi-
bility structure of metrologically important states of angular
momentum, e.g., squeezed or Dicke states.
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APPENDIX A: MAJORANA STARS AND POLYNOMIAL
SU(2) REPRESENTATION

In this Appendix we aim to present the concept of Majo-
rana stars and their connection to homogeneous polynomials.
The goal is to provide an intuitive introduction to these mathe-
matical entities, emphasizing their relevance in understanding
spin-j states and their relationship to the action of SU(2)
unitaries. In addition to the explicit description through the
amplitudes ,,, there exist other approaches; Majorana stars
[28] and homogeneous polynomials [16] are examples. The
former are collections of points (also called constellations)
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FIG. 4. For a pure spin state |¢) with definite total angular mo-
mentum j, the Majorana stars are a collection of 2 points on an unit
sphere fully defining the state in question. The points correspond to
directions 7 along which the state has zero overlap with a coherent
state, (—7|y) = 0.

on a sphere, which can be regarded as roots of the associated
polynomials.

Indeed, this is the traditional way to define the star repre-
sentation [29]. It can be defined also through the use of spin
coherent states (Definition 3). Such states are defined up to a
phase only, but this does not pose an issue here; the Majorana
stars are related to the probabilities |(7i|y/)|>.

This definition is sufficient to provide an informal defini-
tion of the collection of Majorana stars: Intuitively, for a state
of the form shown in Eq. (23), the the constellation is formed
by the directions 7 for which the probability of finding an
antipodal coherent state |—#) is zero:

(~iily) =0.

The antipodal points are used in the definition exactly so that
the coherent state |7i) has the Majorana constellation consist-
ing only of the vector 7 itself: (—ii|ii) = 0. To formalize this
intuition (and take multiplicities into account), the polynomial
parametrization of coherent states [Eq. (26)] can be used.
Conveniently, if a coherent ket |#i) is described by a pair of
complex numbers (z1, z2), the antipodal ket |—7) corresponds
to (—z3, z}) and subsequently

(AL)

. i
J

(—iily) = | Y

m=—j

27 . )
(. / )(—z;>f+m(z7>f—m|j, m)
] —m

J
x| D vl m)

m=—j

J .
2 L
=> ( ! )(—1>f+"“z§+'"z{‘"’wm. (A2)
m=—j J—m
The Majorana stars are exactly the directions 7 correspond-
ing to the projective roots of this polynomial (taken with
multiplicities) (see Fig. 4).

Definition 5. The Majorana constellation of a state |{) =
fn=7 j Y| j, m) with definite spin j is a collection of of 2

sphere points {i}>/ such that Eq. (A2) holds. Each i in
the collection corresponds to a point on the complex sphere
(z\", 2"y through Eq. (27); the multiplicity of 7i is equal to the
root multiplicity of this tuple in Eq. (A2).

For instance, the constellation of a coherent state |7i) is 2]
copies of 7i. The star representation of any pure state is unique,
provided it is fully contained within a single irreducible rep-
resentation j.

The Majorana representation provides an interpretation of
the polynomial form [Eq. (28)]; the key insight is that they
demonstrate the action of SU(2) unitaries via polynomial
parametrization. The stars rotate rigidly in accordance with
the SU(2) rotations. To show what is meant by that, pick a
state |y) with the constellation {ﬁ(i)}?i 1> and an SU(2) ele-
ment which corresponds (in representation) to U acting on [v/)
and O € O(3) being the related rotation on three-dimensional
real space. Then the state U|y) has the constellation of
oy

As previously mentioned, a polynomial representation of
U can be expressed in closed form as a hypergeometric
function. Taking terms independent of a in the sum within
Eq. (34), one can obtain

vmfm’ (u* )jfmujjtm’

o
(j;in’)
min{j—zm,j+m’} ]—m ]+m - a
X — .
a a+m—m uu*

a=max{0,m —m}
(A3)

The inside sum can be identified to be the hypergeometric
2F1(n, I; k; x) for proper choice of the arguments: If one of n
or [ is negative, it is polynomial in x proportional to the above
form (see [30], Sec. 15.4) and consequently

G _(J
Um’,m - (

.. , , v
X 2 F m—],—]—m;m—m—l—l;—u (A4)

Um—m’ (Lt* )j—muj+m’

u*

for m > m'. For m <m', a pole in ,F, appears; it is
regularized by the binomial prefactor ( m’fﬁ) written as

L(j+m+ D[Cm—m' + 10 4+m + 1)) and

()
2j

(_1)m'fmuj+m(v>k)mlfm(u*)jfm/

form < m'.
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APPENDIX B: STRICT TREATMENT
OF THE CHARACTERISTIC FUNCTION
IN THE POLYNOMIAL FORM

Let us define the maximal occupied total spin
J, = max{j | tr(IT;pI1;) > 0}, (B1)

where I1; is the projector onto total spin-j subspace: IT; =
Y Zm_f. |j,m,a){j,m,a|. The first of the mentioned
problems is that multiple polynomials correspond to the same
characteristic function; however, this problem admits a simple
solution. Note that for any xy (u, u*, v, v*), the expression
Xy + (uu* +vv* — 1)f(u, u*, v, v*) evaluates to the same
value as xy on all group elements (u, v) for an arbitrary
polynomial f as uu® + vv* = 1 holds. This is exactly the con-
straint of SU(2) elements. To take care of the ambiguity, we
use the properties of Grobner bases with respect to polynomial
division [31] in order to define the canonical version ¥ of a
polynomial .

Definition 6. The canonical polynomial of a multivariate
polynomial x (u, v, u*, v*) is uniquely defined by

¥, v, u*,v") = x — (uu* +vv* — 1)f, (B2)

where the polynomial f is chosen such that the result of poly-
nomial division of ¥ by (uu* + vv* — 1) has a zero quotient.

With that in mind, let us consider the linear operator 7 first
mentioned in Definition 4, taking as an input a polynomial in
u, v, u*, and v*, e.g.,

> apea'wvv™. (B3)

a+btctd<Jy
a,b,c,d>0

Xy (U, u*, v, 0%) =

The output of 7 is the list of coefficients of the canonical
polynomial %, up to the total spin of J,, [see Eq. (B1)],

7 xyl = (Xabed)atbteta<iy» (B4)

such that

Y Rebeau'wvv. (BS)

a+b+c+d<Jy
a,b,c,d>0

Ko (u, u*, v, v%) =

The coefficient list w[x] is unique, and two polynomi-
als can be compared without ambiguity for equality of the
characteristic functions. Thus, the condition of unitary SU(2)
interconvertibility (Proposition 2 applied to this case) of [i)
and |¢) takes the form

Xyl = mlxel (B6)

In order to apply the formalism presented in Sec. II, the
dimension of the Hilbert space has to be constrained. Starting
from the equality of the characteristic functions

Xy (&) = pxe(@x4(8) + (1 — pP)xs(g) (B7)

for a probabilistic transformation |¢¥) > |¢) required in
Corollary 1, it is clear that the product state |§) ® |¢) and the
state |o') cannot have support on an irreducible representation
where |) has vanishing support; this is only possible with su-
perposition, but the two states are effectively mixed together.

Hence, it is possible to apply Proposition 3 and Corollary
1 to the group SU(2) with all states having finite support and

being contained in the Hilbert space

H=&—0,1, ,wspan({|], Hf,lz,j) (B8)

as the only one-dimensional irreducible representation of
SU(2) is trivial and contained in H.

Proposition 16. The maximal occupied angular momentum
representation J; of the state |§) appearing in Proposition 3
can be constrained:

T <Jy—Jy. (BY)
Similarly, keeping with the nomenclature of Corollary 1, if
0 < p < 1, then

v —Jgs
- (B10)

Je
Jo

<
<

Proof. The characteristic function of a state |p) =

,,,,,

(B11)

and all x,. are positive semidefinite as functions over SU(2).
Recall that x¢ x4 = xge¢ and |¢) ® |&) has the maxunal an-
gular momentum component of ]¢®g =Jy+J:.

This must not be larger than le, because the characteristic
functions on different irreducible representations are linearly
independent. As the part of y4g¢ corresponding to the irre-
ducible representation j = (J; +Jp) is nonzero and positive
semidefinite, we get

Te < Ty —Jy. (B12)

The same holds for the characteristic function y,, resulting in

T, <y (B13)
This also implies that the maximum irreducible representa-
tion in the support of a state cannot increase in probabilistic
transformations [) — |¢). [ |

APPENDIX C: PROOF OF Proposition 11

By application of Proposition 3, the existence of an SU(2)-
covariant channel realizing the transformation is equivalent to
the existence of a particular state |§) such that the characteris-
tic functions factorize: xy = x& x4. The product corresponds
to the characteristic function of the tensor state, xe¢gg, and
hence the SU(2)-covariant transformation is possible if and
only if a state & exists such that

Xv(8) = Xzop(8)V g € SUQ). (ChH

This is possible if and only if the canonical polynomials
describing the characteristic functions have the same coeffi-
cients.

2Here |¢) ® |£) is a product state and the Clebsch-Gordan coeffi-
cients of the form C J/]l fn’f " share the same sign and thus cannot
cancel out.
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APPENDIX D: PROOF OF PROPOSITION 14

The output state £(p, {F) 4}) is linear in the matrices Fj 4,
which must be positive semidefinite and rank (£} o) < 1 forall
o and J € {0, %, 1, ...} by construction. Thus, the maximum
fidelity attained over SU(2)-covariant channels can be found
as a solution to the optimization problem (not semidefinite due

to the rank constraints).
lt X +x"
max —tr ,
X.AFa} 2

s.t <G X )>0
T\XT & Rl T

E({F)«}) =0,
F]’a = OV.], o,

rank(Fy,) < 1VJ, «, D1

where & ({F; ,}) = 01is the linear normalization constraint [see
Proposition 5 and [7] for details, they are analogs of Egs. (19)
and (20) expressed for the matrices F; instead of vectors f
appearing in the original problem formulation]. To make this
an explicitly semidefinite optimization problem, it has to be
shown that (i) there are only finitely many relevant Kraus
operators (corresponding to the matrices Fj,) and (ii) the
optimization can be performed without the rank constraint.
The first problem can be solved by observing that for a
given input p and a target state o with finite support [J,, J, <
oo as defined in Eq. (B1)], the value of J (the representa-
tion index of Kraus operator) can be bounded. Terms with
|J —j'| > J, or |J —Kk'| > J, vanish [see Eq. (18)] and only
terms with |/ — j/| <J, and |J — k’| < J, have to be con-
sidered. The further constraints stem from the state o; only
nonzero terms must fulfill j < J, or k' < J,. Combining both

J

| 2(c+ Du + 4cn§ + 4irsn,
— 1 2V2v[(c — Dn, +irs]
4r? ¢
2(c — 12

yu=b —

Evidently, the polynomial parametrization found in Eq. (35)
is better suited for symbolic calculations.

APPENDIX F: INTERFEROMETRIC
EXPERIMENT CALCULATIONS

The interferometer action is described by the following
mode transformation:
Iy

b\ _ [(cosf —sinf\ (a;
(bz) B (sin@ cos 6 ) <a2>' (FI)

The set of matrices Iy forms a one-dimensional Abelian group
Ipl, = Iy, it is the U(1) subgroup of the set SU(2) of all
unitary and unit determinant matrices of size 2. The unitary

4i2v%s (r¢’ + in,s')
4(c,u + n?)
232v[—(c — Dn, + irs]

inequalities, we get

J<T, 4+, (D2)

Hence, the Kraus decomposition of £(p) contains only finitely
many terms and the search space for the matrices Fj , is finite
dimensional.

In the original form of Eq. (D1), only rank-1 matrices are
taken into account. The more general case (of unrestricted
rank optimization) contains this set, but may in principle be
too general; the maximization result could be just an upper
bound. However, the unconstrained optimization is equivalent
to the restricted case. Any positive-semidefinite matrix F; can
be decomposed into rank-1 matrices Fj , by

Fy = ZF,,O,.
o

Here F;, are essentially rescaled projectors onto the one-
dimensional eigenspaces of Fj. This translates directly to the
description of the channel £ via the Kraus operators by linear-

1ty:

(D3)

E(p, {Fra}) = E(p, {FS}).

The normalization conditions [Eq. (20)] hold automatically.

(D4)

APPENDIX E: EXPONENTIAL PARAMETRIZATION
EXAMPLES

With unitary representation in spin ;j defined as U =
expli(n Y + nyJ}(,’ ) 4+ n,J9)] and

— 2 2 2 o : 2 2
ri= nx+ny+nz, V1= Ry A iny, /L.—nx+ny,

. , r , . r
c:=cC0oSr, S§:=S8Inr, C :=CO0S E , § :=sIn 5 s

(EL)

the following matrix corresponds to the j = 1 representation:

2(c — H(*)?
27204 [—(c — Dn, +irs] |. (E2)
2(c+ D + 4cn§ — dirsn,

(

action Uy on quantum states of light

W)= D Yunlm, n) (F2)
m,neN
is defined by the unitary representation Up:

l¥) > explf(alar — alax)] |y). (F3)

Uy

Note that Iy is still a subgroup of SU(2), and the result of
Proposition 8 still holds here; the relevant representations
here are supported on fixed total photon-number subspaces
spanned by ({|n, 0), ..., |1,n — 1), |0, n)}), with the effective
J index equal to j := 2. In this case, the parameters can be
inferred from the form of SU(2) characterization compared to

S}
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Eq. (F1): With z := exp(if),

cosf sin 6

1 1
P TN et (F4)
2 2i

The characteristic function of this subgroup can be thought of
as the expectation value of the unitary,

Xy (0) = (U|Up V), (F5)

and under certain regularity conditions can be expanded (by
noticing that the terms in Uy are formed by positive- and
negative-integer powers of z) as

xp = G, (F6)

keZ

with z := exp(if). An arbitrary function f with similar de-
composition f:=3)", CiZ* is a characteristic function of
some state [Y) (f = xy) if and only if all Cx > 0 and
> tez Cx = 1. This is evident by considering the fact that
the irreducible representations of U(1) are one dimensional.
Therefore, each one corresponds to a vector |k;«)) indexed
by k € Z and multiplicity index «. In such case, for the state

W) = Yrallks ), (F7)
k.o

(n, 0|U9|m’ 0> = 8m,nun’

the characteristic function has the form x, =
Y ez (X, [Yiw|?)z¢ and the coefficients are explicitly
non-negative.

For the input consisting of coherent state |y) in the
mode a; and vacuum |0) in the mode a,, the state is
V) =D eN exp—|y|2j—%|n, 0). As is evident from the
form of SU(2) parametrizétion (Proposition 8) together with
Eq. (F4) (see also the Supplemental Material), the elemen-
tary matrix element building the characteristic function is
(n', 0|Ug|n, 0) = 8, ,u", and subsequently

ly I (z+z71\"
Xw:ZeXP—WlZT —

neN

—1
=exp—|y|2exp[W(”ZZ )] (F8)

This expression can be identified as the (rescaled) generat-
ing function of the modified Bessel function I (1) (see [30],
Sec. 9.6) and expanded to

Cy

Xy = y_exp(—ly Dy )7, (F9)
keZ

The calculation of the characteristic function of |¢) =
|y)|T), defined as in Eqs. (62) and (63), follows a similar
pattern. Then the relevant matrix elements are

n

(n—2,2Uslm—2,2) = am,,,u"“[—(zn — Sl + (2 - 1)(n — 3 + |u|4],

(I’l, O|U9|m - 2a 2> = Sm,n )

]
(=2, 2{Us|m, 0) =8y wvzun_z.

With Eq. (F4) and the expanded form of the state |¢),
l¢) = eXp(—Iylz)[(IO, 0) +yI[1,0))cost
costin,0) sint|n—2, 2))
+ o - , (F11)
; ( Vn! a2/ (n—2)! ]

the characteristic function can be found similarly to the case
of [) = [y)10),

4
Xo =Xy X Y _ A (F12)
k=t

where (see [26] for the calculation performed in Wolfram
Mathematica)

Azy = 5y |*sin’ (1),
Agy =3y sin®(7),

Asy =1 {=2(ly |*=2)sin®(0)+[y” +(¥*)’]V/1 — cos(41)},

(n—1)n

(v*)ZMVZfZ

(F10)

[
Ay = — {ly[Psin’ (1),

Ag=1—-2(A; + Ay + A3 + Ag). (F13)
By Eq. (F12), the coefficients Py in xy = > .z P2 are a
convolution of Cy (of the characteristic function ) and Ay.

Let us now determine reachability of |¢) = |y (1 — ¢))|t)
from |) = |y)|0). By Corollary 1 (with an auxiliary singlet
state |§) such that x; = 1) applied to the decompositions of
Xv» X¢» and x, into the Laurent series

Xy = Z Gk,

keZ

Xp = ZPka,
keZ

Xo =y 2, (F14)
keZ

with the restriction that the characteristic functions actually
describe quantum states, all Cy, P, Qr = 0, we conclude that
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the maximum probability of interconversion is such that for
some k', Civ = pPy and Qp = 0 meaning that

p = inf =+,

(F15)

For C; corresponding to the coherent input |y )|0) and P
describing the coefficients of the characteristic function of
|y (1 — ¢g))|T), the support of both series is the entire Z, and
the question whether p defined in Eq. (F15) is nonzero is
determined by the asymptotic properties of C; and Px.

For |k| — oo, the modified Bessel function ; has the ap-
proximation (see [30], Sec. 9.6)

L) ~ (g)'k‘ﬁ.

Upon insertion of the asymptotic form into Cy and Py, compar-
ison of the dominant terms proves that extraction with positive
nonzero p is possible for arbitrary ¢ > 0.

The variance of 6N defined in Eq. (67) for the state
ly)|T) can be calculated by substituting » and b" in Eq. (67)
with Eq. (F1) and explicit determination of the resulting
polynomial in a;, a,, aT, and a; In the calculation, stan-
dard commutation relation rules are used (aia; = a}ai +8ij),
together with the definitional property of coherent states
(a1ly) = yly)) and explicit matrix calculations involving a,,
a; and |7). The result is

(F16)

sin?(20) sin(27)
V2

- 2|y|2<sin2(29)cos(21) +

A*(SN) = — [y* + (™)

cos(40) 1>
S

+ 2 sin?(1)[cos?(20) cos(27) + 1], (F17)

and the expectation value has a simple form

(6N) = cos(20)[1 — |y|2 — cos(21)]. (F18)

For any given y and t, the maximal accuracy of phase deter-
mination, as measured by

JAZ(GN)

Ab =
| 2 (8N)

) (F19)

is achieved for 6 = %. With this assumption,

\/3|y|2+1 —+/2Re(y?)sin(27)—(2|y|? + 1) cos(27)
A= 20|y 2 + cos(27) — 1]

)

(F20)

with T = 0, this reduces to the case of |) = |y)|0): AO =
(2ly)~'. Since the only dependence of y phase is through
Re(y?), which has to be as large as possible for the smallest
A6, let us assume that y > 0 and then

1 \/[2 sin?(7)]y =2 — V/2sin(21) — 2 cos(27) + 3
- E 1 + [cos(2T) — 1]y 2

’

(F21)
which asymptotically for y — oo is minimal for 6 =

arctan v/5 — 2+/6 and

1
AO ~ —+/3 — /6.

> (F22)
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