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Quantum multirow iteration algorithm for linear systems with nonsquare coefficient matrices
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In the field of quantum linear system algorithms, quantum computing has realized exponential computational
advantages over classical computing. However, the focus has been on square coefficient matrices, with few
quantum algorithms addressing nonsquare matrices. Towards this kind of problems defined by Ax = b where
A ∈ Rm×n, we propose a quantum algorithm inspired by the classical multirow iteration method and provide
an explicit quantum circuit based on the quantum comparator and quantum random access memory. The time
complexity of our quantum multirow iteration algorithm is O(K log2 m), with K representing the number of
iteration steps, which demonstrates an exponential speedup compared to the classical version.. Based on the
convergence of the classical multirow iteration algorithm, we prove that our quantum algorithm converges faster
than the quantum one-row iteration algorithm presented by Shao and Xiang [C. Shao and H. Xiang, Phys. Rev. A
101, 022322 (2020)]. Moreover, our algorithm places less demand on the coefficient matrix, making it suitable
for solving inconsistent systems and quadratic optimization problems.
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I. INTRODUCTION

Quantum linear system algorithms (QLSAs) are widely
used solvers in quantum computation, which play essential
roles in solving problems in finance [1,2], bio-computing [3],
fluid dynamics [4], machine learning [5], etc. Since Harrow,
Hassidim, and Lloyd’s pioneering presentation of the first
quantum linear system solver [6], the QLSA has been proved
to have an exponential acceleration over the classical one
on the dependence of the problem size. In addition to the
exponential acceleration achieved from the presentation of
quantum states, much effort has been devoted to improving
the dependence on the condition number, sparsity, and ac-
curacy [7–12]. The quantum algorithm with O[κ log2(1/ε)]
complexity for solving linear systems in [12] is asymptotically
optimal, where κ is the condition number and ε is the error
tolerance.

The above results mainly focus on linear equations with
square coefficient matrix, i.e., the number of constraints
(rows) and variables (columns) are equal, thus there exists
one unique solution. However, when the coefficient matrices
are not square, the unique solutions may not exist. We refer
to this kind of linear system as an extended linear system
(ELS) in this paper. ELS problems are commonly seen in
areas such as image processing [13], machine learning [14],
and computed tomography [15]. Under these circumstances,
almost all existed methods could not work. First, the QL-
SAs mentioned above, e.g., solving the inverse matrices, are
unsuitable because solving the Moore-Penrose pseudoinverse
differs from solving an inverse matrix. Secondly, in fact, in
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classical computation theory, there are some standard methods
for solving ELS problems, such as the QR decomposition (or-
thogonal matrix and upper triangular matrix decomposition)
[16], the single value decomposition (SVD) [17], and iteration
methods [18]. The time complexity of the QR decomposition
and the SVD is O(mn2), where m represents the number of
rows of the coefficient matrix and n means the number of
columns. The time complexity for the iteration methods is
O(Kn), where K is the number of iteration steps that rely on
the specific iteration methods, which explicitly or implicitly
depend on m. As the dimension of the coefficient matrix
increases, it becomes more complex and more costly to solve
ELS problems.

So the natural question is whether quantum computation
accelerates the process of solving these ELS problems. Two
avenues may be feasible. First, we may consider transforming
the nonsquare matrix into a square one and applying the
QLSA to solve it. But we need to add more restrictions to
the linear systems to achieve this. For example, we can intro-

duce a square symmetric matrix A′ = (
0 A

AT 0
) when solving

equations Ax = b with A ∈ Rm×n. However, A′ is not full
rank. Therefore, it is not invertible, which leads to a failure
to solve it through solving the inverse of A′. Then, we con-
sider constructing a square and invertible matrix from A. One
choice is (AT A)−1 and the solution will be x = (AT A)−1AT b,
but it needs A to be column full rank. While this idea has
been employed in [19], that study focuses on designing a
quantum-classical hybrid algorithm instead of a pure quantum
one. Therefore, transforming the nonsquare matrix to a square
one may not be an effective way to solve ELS problems.

The second avenue is to consider the quantum iteration
method. Some QLSAs have the potential to solve the ELS
problems through this idea [20,21]. The quantum one-row
iteration method [21], the quantum version of the Kaczmarz
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(one-row) iteration method [22], is a viable technique to di-
rectly solve ELS, though that study focuses on the problem
with the coefficient matrix being square. The running time of
that algorithm is O[κ2

s (A)log2
n
ε
], where κs(A) = ‖A‖F

‖A−1‖ , ‖A‖F

is the Frobenius norm of the matrix A, ‖A−1‖ is the norm
of A−1, n is the size of the problem, and ε is the error tol-
erance. The algorithm exhibits an exponential speedup over
the randomized Kaczmarz algorithm (classical one-row itera-
tion algorithm). Yet, the convergence rate remains similar to
the classical one-row randomized Kaczmarz algorithm. For-
tunately, we found that the classical multirow iterations in
[23,24] demonstrated quicker convergence rates for solving
linear systems with both square and nonsquare coefficient
matrices. Naturally, we consider whether the quantum version
of the multirow methods leads to a higher convergence rate
while keeping the exponential speedup.

In this paper, we propose an approach that solves linear
equations with a coefficient matrix of size m × n, m � n,
using the idea of linear combinations of unitaries [7]. We de-
sign a quantum multirow iteration algorithm with an explicit
quantum circuit. The quantum circuit builds on the quantum
comparator and quantum random access memory (QRAM),
and can complete multirow iteration with different iteration
weights. The gates used for one iteration step scale logarith-
mically on the problem size. Our quantum multirow iteration
algorithm converges faster than the quantum one-row iteration
algorithm [21] and keeps the same exponential speedup. This
acceleration will yield considerable advantages in large-scale
problems. In addition, since the convergence rate improve-

ment is controlled by α2
A

q , where αA is the relaxation parameter
and q is the number of rows chosen, increasing αA to a critical
point and increasing q will not only significantly improve
the convergence rate but also achieve a better convergence
horizon. Moreover, regardless of the existence of the solution
of the system, the solver will return an exact solution in
consistent systems (systems with a unique solution) or the
least-square solution in inconsistent systems (systems without
a unique solution). The solver can also be used as a stochastic
gradient descent iterator for some specific loss functions.

The outline of the paper is as follows. Section II gives
some preliminaries including the classical multirow iteration
method, the quantum one-row iteration, and block encoding.
In Sec. III, we present our quantum multirow algorithm. We
first show the key points of the algorithm. Then, we define
the date structure for efficient state preparation and finally the
sketch of the algorithm. Analysis for the resource is provided
in Sec. IV. Numerical experiment is shown in Sec. V. A brief
illustration of the application is presented in Sec. VI.

II. PRELIMINARIES

In this section, we will present some existing significant
results including the classical multirow iteration method [24]
and the quantum one-row iteration approach [21]. Next we
will briefly introduce block encoding, which is a technique of
embedding a nonunitary matrix into a large unitary one. The
explicit quantum circuit for block encoding will be postponed
to the next section.

A. Classical iteration method

In classical computation theory, the randomized one-row
iteration method is usually used to solve linear systems, es-
pecially when the coefficient matrix is nonsquare [22]. Given
A ∈ Rm×n and b ∈ Rm, the purpose of iteration methods is to
find x ∈ Rn which satisfies the linear system of equations

Ax = b. (1)

Otherwise, we define the least-square solution

x∗ := arg min
x∈Rn

1
2‖b − Ax‖2, (2)

where ‖ · ‖ denotes the two-norm.
The randomized Kaczmarz iteration method [15,22] gives

the following iteration scheme:

xk+1 = xk + bik − Aik xk

‖Aik ‖2
AT

ik (3)

where bik is the ikth element of the vector b and Aik is the
ikth row of the matrix A. This method is an alternating pro-
jection method. That is, xk+1 is the orthogonal projection of
xk onto the hyperplane Aik x = bik , via which it continuously
approximates the exact solution by alternating projections.
The randomized one-row iteration has been proven to have
exponential convergence rates [18] and is generalized to solve
inconsistent systems [25]. Many studies have attempted to
enhance the rate of convergence for this approach [23,26–28],
including the randomized multirow iteration method [24].

The classical multirow iteration method [24] gives the fol-
lowing iteration strategy.

Lemma 1 (see [24]). Given a linear system of equations,
Ax = b, where A ∈ Rm×n, m � n, and b ∈ Rm. Then, there
exists a multirow iteration protocol

xk+1 = xk + 1

q

∑
i∈τk

ωi
bi − Aixk

‖Ai‖2
AT

i (4)

where τk is a random set of q row indices sampled with
replacement and ωi represents the weight corresponding to the
ith row.

Let x∗ be the exact solution or least-square solution of
Ax = b and let ek = xk − x∗ be the iteration error of step
k. We introduce the following definition to help show the
convergence rate.

Definition 2. Let diag(d1, d2, . . . , dm) denote the diagonal
matrix with d1, d2, . . . , dm on the diagonal. Define the nor-
malization matrix

D := diag(‖A1‖, ‖A2‖, . . . , ‖Am‖) (5)

such that the matrix D−1A has rows with unit norm, the prob-
ability matrix

P := diag(p1, p2, . . . , pm) (6)

where pi denotes the probability of choosing the ith row, and
the weight matrix

W := diag(ω1, ω2, . . . , ωm). (7)

Thus, the convergence rate of Eq. (4) can be given as
follows.

022438-2



QUANTUM MULTIROW ITERATION ALGORITHM FOR … PHYSICAL REVIEW A 110, 022438 (2024)

Lemma 3 (Theorem 1 [24]). Given the iteration strategy
defined in Lemma 1 and supposing the matrices P and W
in Definition 2 are chosen such that PW D−2 = αA

‖A‖2
F

I , the
convergence rate satisfies

E[‖ek+1‖2]� σmax

((
I − αA

AT A

‖A‖2
F

)2

− α2
A

q

(
AT A

‖A‖2
F

)2
)

‖ek‖2

+ αA

q

‖rk‖2
W

‖A‖2
F

(8)

where σmax is the maximum singular value, ‖A‖2
F = ∑

i, j A2
i j ,

αA > 0 is the relaxation parameter, ‖ · ‖2
W = 〈·,W 〉, and rk :=

b − Axk is the residual of the kth iteration.
If the condition PW D−2 = αA

‖A‖2
F

I is satisfied and q goes to
infinity, the error will converge to zero. If the above condition
is not satisfied, the iteration result will approach a weighted
least-square solution instead of the least-square solution itself
[24].

B. Quantum one-row iteration method

The quantum version of the one-row iteration method is
given in [21]. Set xk = ‖xk‖|xk〉 and Aik = ‖Aik ‖|Aik 〉; then,
Eq. (3) can be rewritten as

|xk+1〉 = ‖xk‖(I − |Aik 〉〈Aik |)|xk〉 + bik

‖Aik ‖
|Aik 〉, (9)

up to a global phase.
Intuitively, one can define the following unitary as the

iteration operator (assuming ‖Aik ‖ = 1), which is the basic
idea of [21]:

Uk =
[

I − |Aik 〉〈Aik | |Aik 〉〈Aik |
|Aik 〉〈Aik | I − |Aik 〉〈Aik |

]

= (
I2 ⊗ Vik

)
(I2 ⊗ (I − |0〉〈0|) + X ⊗ |0〉〈0|)(I2 ⊗ V †

ik

)
(10)

where Vik represents the state preparation process Vik |0〉 =
|Aik 〉, which can be achieved by the access to QRAM or by
a state preparation operator. Applying the operator Uk on the
state ‖xk‖

c |0〉|xk〉 + bik
c |1〉|Aik 〉, where c is a normalization fac-

tor, can complete an iteration step. Similarly, one may employ
a comparable approach in formulating the iteration operators
for the multirow iteration method. However, the multirow iter-
ation operator constructed this way is not unitary. The tricky
part lies in how to tackle this problem. In the forthcoming
sections, we will demonstrate how to realize the nonunitary
operator in the multirow case.

C. Block encoding

To perform the nonunitary operator, we will use the
technique of block encoding, which embeds the nonunitary
operator into a large unitary one. The idea of block encoding
[29,30] is widely used in the quantum algorithms associated
with matrix multiplication [31] and Hamiltonian simulation
[29].

Definition 4 (block encoding [31]). Assume A is an
s-qubit operator; α, ε ∈ R+; and a ∈ N. Then the

(s + a)-qubit unitary operator U is an (α; a; ε) block encoding
of A, if

‖A − α(〈0|⊗a ⊗ I )U (|0〉⊗a ⊗ I )‖ � ε, (11)

where the norm is the two-norm. The parameters α and a are,
respectively, the subnormalization factor of the matrix and
the number of ancilla qubits used. Since ‖U‖ = 1, therefore
‖A‖ � α.

Every unitary operator is already a (1; 0; ε) block encoding,
and a nonunitary operator A can be embedded in a (‖A‖;a;ε)
block encoding. Given a block encoding U , one can prepare
the state A|ψ〉

‖A|ψ〉‖ from an initial state |0〉|ψ〉, that is, U |0〉|ψ〉 =
|0〉 A|ψ〉

‖A|ψ〉‖ . This concept enhances the applicability of quantum
linear algebra, thus making it more widely applicable. In this
paper, based on the existence of the unitary operator U , we
further present a specific construction of U by decomposing it
into the quantum elementary gates.

III. QUANTUM MULTIROW ITERATION ALGORITHM

In this section, we show several problems needed to be
conquered before designing the explicit quantum circuit for
the quantum multirow iteration algorithm and provide a sketch
of our algorithm. This section is organized as follows. In
Sec. III A, we show the main difficulties and the methods to
solve them. In Sec. III B, we define the data structure which is
used as an efficient state preparation process in the algorithm.
The sketch of the algorithm is given in Sec. III C.

A. Key points of the algorithm implementation

In this part, we will clarify the key points of the algorithm
implementation, which conquer the main barrier of designing
the algorithm. The barrier is the nonunitarity of the matrix
corresponding to the idea of the quantum one-row iteration
and we should design a proper method to implement the
nonunitary operator.

1. Nonunitarity of the matrix

Suppose the coefficient matrix is A ∈ Rm×n. Based on
Eq. (4), setting xk = ‖xk‖|xk〉 and Ai = ‖Ai‖|Ai〉, we can de-
rive the following formula:

|xk+1〉 =‖xk‖
⎛
⎝I − 1

q

∑
i∈τk

ωi|Ai〉〈Ai|
⎞
⎠|xk〉

+ 1

q

∑
i∈τk

ωibi

‖Ai‖ |Ai〉,
(12)

up to a global phase, where Ai is the vector of the ith row.
This is one iteration step from k to k + 1. The analog of the
iteration operator shown in Eq. (10) in the quantum multirow
iterations is given as follows:

Tk =
[

I − 1
q

∑
i∈τk

ωi|Ai〉〈Ai| 1
q

∑
i∈τk

ωi|Ai〉〈Ai|
1
q

∑
i∈τk

ωi|Ai〉〈Ai| I − 1
q

∑
i∈τk

ωi|Ai〉〈Ai|

]
.

(13)
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Unfortunately, unlike the matrix given in Eq. (10), Tk is not
unitary. We show this nonunitarity through calculating the
upper left corner of TkT †

k , in which we assume that all the
elements are real numbers for simplicity:⎛

⎝I − 1

q

∑
i∈τk

ωi|Ai〉〈Ai|
⎞
⎠

2

+
⎛
⎝1

q

∑
i∈τk

ωi|Ai〉〈Ai|
⎞
⎠

2

= I − 2

q

∑
i∈τk

ωi|Ai〉〈Ai| + 2

⎛
⎝1

q

∑
i∈τk

ωi|Ai〉〈Ai|
⎞
⎠

2

	= I. (14)

The rest of TkT †
k can be similarly computed. It is indicated

that Tk is not a unitary operator. There are two reasons for
this nonunitarity. First, the row vectors of matrix A are not
orthogonal to each other; second, the iteration weight of each
iteration row is not necessarily 1.

2. Overcoming the nonunitarity

Causes for the nonunitarity are already given, i.e.,
nonorthogonality of rows and nonunity of weight, and next
we will overcome them.

a. Orthogonality. We introduce ancillary qubits to generate
orthogonality. The state |xk〉 is replaced by

∑
i∈τk

sk,i|i〉|xk〉,
where sk,i represents the amplitude labeled by i. This term
is the result of the previous (k − 1)th iteration step after
exchanging the index set from τk−1 to τk . To be consistent
with Eq. (12), we use ωk,i as a modified weight term, which
represents ωi

q . We use s′
k+1,i to represent the weight of the

iteration result before changing the index set from τk to τk+1.
Then we derive the iteration step with ancillary qubits below:∑

i∈τk

s′
k+1,i|i〉|xk+1〉 = ‖xk‖(I − 	τk )

∑
i∈τk

sk,i|i〉|xk〉

+
∑
i∈τk

ωk,ibi

‖Ai‖ sk,i|i〉|Ai〉, (15)

where 	τk = ∑
i∈τk

ωk,i(|i〉〈i| ⊗ |Ai〉〈Ai|). A simple prepro-
cessing procedure can obtain this rescaled weight ωk,i, as
all the weights are artificially chosen. The orthogonality of
|i〉 makes the nonorthogonality of rows of A orthogonal. To
cancel the effect of the norm ‖Ai‖, we need to perform a
preprocessing procedure to update bi as bi

‖Ai‖ to achieve the
same effect.

b. Weight. The usage of the index register |i〉 reduces the
difficulty of directly attaching the iteration weight to |Ai〉〈Ai|.
We may achieve

∑
i∈τk

ωk,i|i〉〈i| instead. We apply the follow-
ing operator:(ωk,i

2
| j〉〈 j|+ωk,i

2
| j + m〉〈 j + m|

)
⊗ (|i〉〈i|),

j = i, i ∈ τk . (16)

If
∑

i∈τk
ωk,i = 1, a state preparation process and its inverse

are enough. However, in the general case
∑

i∈τk
ωk,i 	= 1. Ap-

plying a simple state preparation process will result in some
redundant parts. To eliminate the influence of the redundant

parts, we apply the following operator:

(rk,i| j〉〈 j| − rk,i| j + m〉〈 j + m|) ⊗ (|i〉〈i|), j = i, i /∈ τk

(17)

where m is the number of rows of the matrix A and rk,i

represents the amplitude of the redundant states. Applying the
above operators on the state

∑
i

∑
i | j〉|i〉 has the same effect

as applying
∑

i∈τk
ωk,i|i〉〈i| on the state

∑
i |i〉.

Introducing orthogonality and using the block encoding
to apply the weight, we can therefore apply the following
iteration matrix Uk:

Uk =
[

I − 	τk 	τk

	τk I − 	τk

]
(18)

where 	τk = ∑
i∈τk

ωk,i(|i〉〈i| ⊗ |Ai〉〈Ai|). It should be noted
that we also use “Uk” denoting the multirow iteration operator.

3. Equivalent implementation

The problem remaining is how to efficiently implement
Eqs. (16) and (17) by quantum circuits. Our idea is to consider
the application of the weight factor and the process of select-
ing the desired index |i〉 separately. Specifically, we rewrite
the procedure into the block encoding form:

〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉 (19)

where G is a state preparation operator,

G|0〉 =
∑
j∈τk ,
j∈[m]

√
ωk, j

2
| j〉 +

∑
( j−m)∈τk ,
j∈[2m]/[m]

√−ωk, j−m

2
| j〉

+
∑
j /∈τk ,
j∈[m]

√
rk, j | j〉 +

∑
( j−m)/∈τk ,
j∈[2m]/[m]

√−rk, j−m| j〉, (20)

with [m] = {0, 1, 2, . . . , m − 1}, and Ũk is a linear combina-
tion of unitary

Ũk =
m−1∑
j=0

| j〉〈 j| ⊗ C( j, j)
1 +

2m−1∑
j=m

j−m∈τk

| j〉〈 j| ⊗ C( j−m, j−m)
−1

+
2m−1∑
j=m

j−m/∈τk

| j〉〈 j| ⊗ C( j−m, j−m)
1 (21)

where C( j, j)
h , h ∈ {1,−1}, is defined as

(
m−1∑
l=0

|(2 j − l ) mod m〉〈l|
)⎛
⎝∑

l 	= j

|l〉〈l| + h| j〉〈 j|
⎞
⎠. (22)

It is obvious that C( j, j)
h is unitary when h = 1 or −1. 1

2 (C(i,i)
1 −

C(i,i)
−1 ) represents a matrix with the ith diagonal element

being 1, which is |i〉〈i|, and 1
2 (C(i,i)

1 − C(i,i)
1 ) is a matrix

with all elements being zero. The main point of our idea
is to apply an operator equivalent to the following linear
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combination: ∑
i∈τk

ωk,i|i〉〈i| =
∑
i∈τk

(
ωk,i

2
C(i,i)

1 − ωk,i

2
C(i,i)

−1

)
+

∑
i/∈τk

(
rk,i

2
C(i,i)

1 − rk,i

2
C(i,i)

1

)
. (23)

To give an explicit circuit for this block encoding, we should consider how to implement the linear combination of unitary
Ũk , since G is a state preparation operator. We can use the idea of equivalent implementation to achieve this, which is inspired
by [32].

The application of Ũk on the basis state is given as

Ũk| j〉|l〉 =

⎧⎪⎪⎨
⎪⎪⎩

| j〉|(2 j − l ) mod m〉, 0 � j � m − 1

| j〉|(2 j − l ) mod m〉, m � j � 2m − 1

−| j〉|(2 j − l ) mod m〉, m � j � 2m − 1, l = ( j mod m), j − m ∈ τk

. (24)

This can be equivalently implemented by a process Ueq,
which contains a quantum comparator [33,34], a quantum
modular adder [33,34], and a NOT gate controlled by the
comparison results. The comparator selects the states which
meet the condition and the modular adder is used to pre-
pare |(2 j − l ) mod m〉. Introducing an ancilla state, which
is initialized in |−〉 = |0〉−|1〉√

2
, the NOT gate will be applied

to this state when the condition m � j � 2m − 1, l = ( j
mod m), j − m ∈ τk is satisfied. The action of the NOT gate
is equivalent to multiplying −1. More details are given in
Appendix A.

B. Data structure

We can correspondingly define an iteration matrix Uk

from the iteration process as given in Eq. (15). This op-
erator can complete the kth iteration through operating on
βk|0〉∑i∈τk

sk,i|i〉|xk〉 + |1〉∑i∈τk
γk,isk,i|i〉|Ai〉, where βk and

γk,i are factors associated with ‖xk‖ and bi. Similar to Eq. (10),
we rewrite the matrix as

Uk = I2 ⊗
⎛
⎝I − Ṽ

∑
i∈τk

ωk,i|i〉|0〉〈0|〈i|Ṽ †

⎞
⎠

+ X ⊗
⎛
⎝Ṽ

∑
i∈τk

ωk,i|i〉|0〉〈0|〈i|Ṽ †

⎞
⎠ (25)

where the implementation of
∑

i∈τk
ωk,i|i〉〈i| is achieved by

〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉 and Ṽ
∑

i |i〉|0〉 = ∑
i |i〉|Ai〉.

In addition to the implementation of Ũk , the efficiency
of the algorithm relies on the state preparation processes G
and Ṽ . To efficiently prepare the row vectors and the weight
vectors, we introduce a data structure as QRAM, which is
different from the one in [35].

This data structure can be visited by an algorithm that
outputs the quantum state |Ai〉, Ai ∈ Rn corresponding to the
ith row Ai of the matrix A, and the quantum state |ω〉,ω ∈
R2m corresponding to the weight vector with the redundant
part. Specifically, we denote the procedures as unitary op-
erators V and G, where V |i〉|0〉 = |i〉|Ai〉 and G|0〉 = |ω〉.
And we denote the multirow readout process as Ṽ

∑
i |i〉|0〉 =∑

i |i〉|Ai〉.

We introduce two kinds of binary trees for the data struc-
ture: one is the address tree, and the other is the memory
tree. The address tree possesses m leaves, and each leaf stores
the address (see Fig. 1). Accessing the address tree can be
analogized to a routing process. The corresponding memory
tree will be activated once the addressing qubits have been
set. There are two types of memory trees: one with n leaves
called the data tree, which stores the row vector, and the
other with 2m leaves called the weight tree, which stores the
weight vector. m data trees accompanied with one address
tree accomplish the process Ṽ

∑
i |i〉|0〉 = ∑

i |i〉|Ai〉 and the
weight tree achieves G|0〉 = |ω〉. The leaves of the data trees
and weight tree hold the individual amplitudes of the vector,
and each internal node holds the square root of the sum of
the squares of the norm for the value in children nodes (see
Fig. 2 as an example). For a single reading procedure, when
the binary tree gets an address as input, which can be a su-
perposition state, the data structure finds the path toward the
data trees based on the address. The data structure accesses
the address in time O(log2 m), and each data tree prepares
the states in time O(log2 n) for the row vector or O(log2 m)
for the weight vector. The writing process can be completed
for the same cost of time. We summarize this data structure
in the following definition.

Definition 5. Suppose A ∈ Rm×n is a matrix and ω ∈ R2m

is a vector. There exists a data structure with the following
properties.

address

data

|0⟩ |1⟩

|0⟩ |1⟩ |0⟩ |1⟩

|0⟩ |1⟩ |0⟩ |1⟩

......

FIG. 1. Schematic diagram of data structure. The root gets an
address as an input and finds the routes to the corresponding leaves
based on each qubit of the address. Each leaf points to a data tree,
which stores the row vector of the matrix A.
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FIG. 2. An example of the data tree with n = 4. The leaves hold
the individual amplitudes of the elements of the vector, and each
internal node holds the square root of the sum of the squares of the
norm for the value in children nodes.

(1) It can be visited by a quantum algorithm that can per-
form the mapping V : |i〉|0〉 → |i〉|Ai〉 for i ∈ {1, 2, . . . , m} in
time poly[log2(m + n)].

(2) It can be visited by another quantum algorithm that can
perform the mapping G : |0〉 → |ω〉 in time poly(log2 m).

C. Sketch of the algorithm

From the above subsections, we already have the way to
construct the iteration matrix and the efficient way to prepare
the states. It is enough to design the quantum multirow itera-
tion algorithm.

The explicit sketch of the implementation of the multirow
iteration algorithm is stated as follows. We will explain the
algorithm step by step.

We prepare the initial state in step 1. In step 2, we define
the parameters βk , γk,i, and vk . γk,i helps to apply bi, vk

is the normalized factor of each iteration, and βk is intro-
duced for the purpose of normalization. We can first prepare
βk|0〉∑i∈τk

|i〉|0〉 + |1〉∑i∈τk
γk,i|i〉|0〉 through some rotation

gates, then use the controlled operation to apply |X k〉 and |Ai〉.
In step 3, we can obtain the following state after applying

the SWAP gate:

ALGORITHM I. Quantum multirow iteration algorithm.

Input: Randomly choose a unit vector x1. Set k = 1, v1 = 1, and
the maximum number of iteration steps is K .
Output: |0〉⊗(K−1)|0〉⊗ log2�q mod m
|xK 〉 + |Gb〉, where |Gb〉 is the
garbage state.
Procedure:

1. Randomly choose q elements from set {0, 1, . . . , m − 1} as an
index set τ1. The weights s1,i, i ∈ τ1 are set uniformly. Prepare
the state

|X 1〉 = ‖x1‖
v1

∑
i∈τ1

s1,i|i〉|x1〉. (26)

2. Define βk = vk√
v2

k +∑
i∈τk

‖bi‖2
and γk,i = bi√

v2
k +∑

i∈τk
‖bi‖2

, i ∈ τk . Set

vk+1 = vk
βk

. Then, through some rotation gates and controlled
operation, obtain the state

|Y k〉 = βk |0〉|X k〉 + |1〉|0〉⊗(k−1) ⊗
∑
i∈τk

γk,isk,i|i〉|Ai〉. (27)

3. Apply (I⊗(k−1)
2 ⊗ Uk )SWAP1,k to |Y k〉, then we can obtain

|Zk+1〉 = ‖xk+1‖
vk+1

|0〉⊗k ⊗
∑
i∈τk

s′
k+1,i|i〉|xk+1〉 + |Gb〉. (28)

4. Randomly choose q elements from set {0, 1, . . . , m − 1} as an
index set τk+1 with k = 1, 2, 3, . . . , K − 1. Implement the
exchange operator P to swap the ancillas from

∑
i∈τk

|i〉 to∑
i∈τk+1

|i〉, then obtain the following state:

|X k+1〉 = ‖xk+1‖
vk+1

|0〉⊗k ⊗
∑

i∈τk+1

sk+1,i|i〉|xk+1〉 + |Gb〉. (29)

5. Set k = k + 1; if the maximum number of iterations is not
satisfied, turn to 2; else, turn to 6.

6. Perform an adding procedure Uadd, then we obtain the output
state.

SWAP1,k

⎛
⎝βk|0〉|X k〉 + |1〉|0〉⊗(k−1) ⊗

∑
i∈τk

γk,isk,i|i〉|Ai〉
⎞
⎠ = |0〉⊗(k−1)

⎛
⎝‖xk‖βk|0〉

∑
i∈τk

sk,i|i〉|xk〉 + |1〉
∑
i∈τk

γk,isk,i|i〉|Ai〉
⎞
⎠.

(30)

Then, applying the operator Uk yields

(
I⊗(k−1)
2 ⊗ Uk

)⎛⎝‖xk‖βk|0〉
∑
i∈τk

sk,i|i〉|xk〉 + |1〉
∑
i∈τk

γk,isk,i|i〉|Ai〉
⎞
⎠

= |0〉⊗k

⎛
⎝‖xk‖βk

(
I − 	τk

)∑
i∈τk

sk,i|i〉|xk〉 +
∑
i∈τk

γk,isk,i|i〉|Ai〉
⎞
⎠ + |Gb〉

= βk

vk
|0〉⊗k

⎛
⎝‖xk‖(I − 	τk

)∑
i∈τk

sk,i|i〉|xk〉 +
∑
i∈τk

ωk,ibisk,i|i〉|Ai〉
⎞
⎠ + |Gb〉

= |Zk+1〉. (31)
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The first term of the third line is quite similar to the result
given in Eq. (15) with a slight difference in the normalization
factor. Then, in step 4, we can move the index register to a
new subspace with an exchange operator P:

P
∑
i∈τk

s′
k+1,i|i〉|xk+1〉 =

∑
i∈τk+1

sk+1,i|i〉|xk+1〉. (32)

The above process completes the iteration of a step. Finally,
once a predetermined number of iterations or other termina-
tion criteria have been met, a quantum-adding procedure is
carried out to derive the ultimate outcome:

Uadd

∑
i∈τk

sk,i|i〉|xk〉 = |0〉|xk〉. (33)

Such an operator can be applied; for example, we can apply
a set of Hadamard gates to accomplish this with the help
of oblivious amplitude amplification [36] or design an exact
operator to achieve this.

Theorem 6. Assume the memory access operator G and V
as defined in Definition 5. In Algorithm 1, for any K � 1, the
time complexity to prepare |X K 〉 is

O(K log2 m). (34)

IV. ANALYSIS FOR THE RESOURCE REQUIREMENT

In the preceding section, we give the sketch of the algo-
rithm and the main techniques we use to design the explicit
circuit. In this section, we analyze the resource requirement of
the algorithm. We suppose the summation of the weights sat-
isfies

∑
i∈τk

ωk,i = tk and the matrix A is given as A ∈ Rm×n.
The outline of this section is as follows. In Sec. IV A, we
analyze the resources needed for the kth iteration step. Then,
we analyze the iteration steps needed in Sec. IV B, which are
almost the same as in the classic scenario.

A. Analysis for the kth iteration step

The techniques which have been shown before can fulfill
the box in the following equation:

Uk = I2 ⊗

⎛
⎜⎝I − Ṽ

∑
i∈τk

ωk,i|i〉|0〉〈0|〈i|Ṽ †

⎞
⎟⎠

+ X ⊗

⎛
⎜⎝ Ṽ

∑
i∈τk

ωk,i|i〉|0〉〈0|〈i|Ṽ †

⎞
⎟⎠. (35)

To implement the operator Uk , we should implement a con-
trolled version of Ũk and controlled memory access operators
G and Ṽ . The circuit for Uk is shown in Fig. 3. The circuit
before the dotted box in Fig. 3 applies the operator in the box
of Eq. (35) on the states marked by |010〉, |011〉, and |001〉.
Then, applying the circuit in the dotted box, we realize the
operator Uk . More details are given in Appendix A.

Remark 7. This circuit may trigger confusion for some
readers because it does not look as symmetrical as some of
the common quantum circuits. However, because the quantum
comparators have a symmetric structure, it is quite possible

|reg〉anc

|0〉1 • • H

|0〉2 H • • • • • • •

|1〉3 H • • • • • H

|reg〉a G G

Ũk Ũk

G† G†

|reg〉c

|ind〉
Ṽ Ṽ Ṽ † Ṽ †

|work〉

FIG. 3. Quantum circuit implementation of the operator Uk .

that we can design a symmetrical structure and set the mid-
dle part as a multiqubit controlled NOT (CNOT) gate, which
completes I2 ⊗ (I − ∑

i∈τk
|i〉〈i|) + X ⊗ ∑

i∈τk
|i〉〈i|. But, this

involves the specific design of multiple quantum comparators
combined, therefore we leave this to future work.

The complexity to apply the classical multirow iteration
algorithm for one step is O(m) [24]. For the quantum multirow
iteration algorithm, as shown in Algorithm 1, the complexity
to complete one iteration step is O(log2 m). This exhibits an
exponential speedup. For a more formal version, the com-
plexity of the quantum multirow iteration algorithm for one
iteration step is given by the following theorem.

Theorem 8. Given a system of linear equations, we have
Ax = b, A ∈ Rm×n, and the operators G and Ṽ . For any kth
step, the quantum multirow iteration algorithm can output the

state |xk+1〉 with high probability using O(
√

V 2
k+1

tk
) queries to G

and O(
√

V 2
k+1 ) queries to Ṽ , O(

√
V 2

k+1

tk
log2 m) extra elementary

gates, and O(log2 m) ancillary qubits.
The proof of the theorem is given in Appendix B.

B. Analysis for the number of iteration steps

Section II A provides the condition, PW D−2 = αA

‖A‖2
F

I , to
choose the proper selection probability, which affects the
address tree, and the iteration weights. Here we analyze the
difference in the convergence rate between the classical set-
ting and the quantum setting.

Without loss of generality, we assume that the norm of
each row of the matrix A satisfies ‖Ai‖ = 1. This gives the
condition PW = αA

m I . In the quantum setting, we have the con-
dition

∑
i∈τk

ωk,i � 1, because of the need for normalization.
As shown in Sec. III A 2, ωk,i is a modified term, which is
determined by ωi and q. Therefore, in the quantum setting,
the choice of weights should satisfy

∑
i∈τk

ωi � q. If any row
is selected with equal probability and each selected row has
the same iteration weight ωi � 1, then we have the condi-
tion PW � 1

m I . It should be noted that ωi � 1 is a condition
derived from

∑
i∈τk

ωi � q, since τk has q elements (may
have duplicate elements). Therefore, the parameter αA should
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satisfy αA � 1. This is the difference between the classical set-
ting and the quantum setting. We can obtain the convergence
rate in the quantum setting based on this.

Lemma 9 (convergence rate in the quantum setting).
Given the quantum multirow iteration algorithm and
supposing the matrices P and W in Definition 2 are chosen
such that PW D−2 = αA

‖A‖2
F

I , the convergence rate of the
algorithm satisfies

E[‖ek+1‖2] � σmax

((
I−αA

AT A

‖A‖2
F

)2

−α2
A

q

(
AT A

‖A‖2
F

)2
)

‖ek‖2

+ αA

q

‖rk‖2
W

‖A‖2
F

(36)

where ek = xk − x∗ is the iteration error between xk and
the solution or least-square solution x∗ of step k, σmax

is the maximum singular value, ‖A‖2
F = ∑

i, j A2
i j , 0 < αA � 1

is the relaxation parameter, ‖ · ‖2
W = 〈·,W 〉, and rk := b −

Axk is the residual of the kth iteration.
The proof of the convergence rate is given in Appendix C.

The expression for the convergence rate is a little bit complex
and therefore it is hard to tell how much the quantum mul-
tirow iteration algorithm outperforms the quantum one-row
iteration algorithm. We will show this in the next section by
numerical test. Also, the influence of the difference of the
parameter αA will also be shown numerically.

V. NUMERICAL RESULTS

In this section, we conduct some numerical tests to show
the advantage of the quantum multirow iteration over the
quantum one-row iteration. Moreover, we show the effect
of the parameter αA to illustrate the difference between the
quantum algorithm and the classic one.

For each numerical test, we run 100 independent trials and
evaluate the average squared error norms ‖ek‖2 across the
trials, where ek = xk − x∗. We get the iteration result xk by
multiplying the value vk+1 with the state vector |xk〉, which
is obtained through the state-vector compiler in QISKIT. The
matrix A is a 100 × 4 Gaussian matrix with each row nor-
malized. The least-squares solution x∗ is a four-dimensional
Gaussian vector and satisfies ‖x∗‖ = 1. We randomly choose
a residual r∗ and normalize it so that ‖r∗‖ = 1. b is computed
as r∗ + Ax∗.

In Fig. 4, we compare the quantum one-row iteration with
the quantum multirow iteration, which uses uniform weights
for simplicity. The figure shows that the quantum multirow
iteration possesses a better convergence rate and a smaller
convergence radius. Moreover, the quantum multirow itera-
tion can reach a better convergence rate as more rows are
selected.

In Fig. 5, we compare the effect of different choices of αA.
The classic algorithm achieves the results with αA > 1. When
αA reaches a critical point, the algorithm can have a slightly
better convergence rate. The larger choice of αA has a worse
convergence radius. It is shown in [24] that the optimal choice
of αA is not large. Therefore, the drawback that the quantum
multirow iteration cannot choose a large αA is not severe.

FIG. 4. Comparison of the quantum one-row iteration and the
quantum multirow iteration with different choices of the number of
iteration rows. q is the number of rows selected in each iteration.
ek = xk − x∗ is the error between the iteration result and the solution
or least-square solution. Smaller ‖ek‖ indicates a smaller conver-
gence radius.

VI. MORE APPLICATIONS

Our method not only serves as a solver for overdetermined
equations but also functions as a solver for linear systems and
stochastic gradient descent.

If Ax = b, A ∈ Rn×n, our methods can serve as a linear sys-
tem solver. There is no need to assume that the equations are
consistent, which implies that at least one solution to the given
equation exists because the randomized Kaczmarz iteration
method has the potential to solve the inconsistent problem.

Using the algorithm defined in the previous section, we
give the following theorem.

FIG. 5. Comparison of the effect of different choices of αA. The
classic algorithm achieves the results with αA > 1. We choose uni-
form weights, and the number of iteration rows satisfies q = 10.
ek = xk − x∗ is the error between the iteration result and the solution
or least-square solution.
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Corollary 10. Given a system of linear equations, Ax =
b, A ∈ Rn×n. Suppose the iteration error ‖ek‖ � ε is satisfied
after K iteration steps. The quantum algorithm defined in
Algorithm 1 can prepare the state that encodes the solution
or least-square solution of such equations within the error
‖eK‖ with high probability. The query complexity is O(K )
and the gate complexity is O(K log2 n). The iteration step K
has a maximum value Kmax = κ2

s log2( 1
ε

) when q = 1, where
κs = ‖A‖F ‖A−1‖ and ‖A‖F is the Frobenius norm.

The term κs = ‖A‖F ‖A−1‖, where ‖A‖F is the Frobenius
norm of the matrix A and ε is the tolerance error. kmax only
occurs when only one selected iteration row (q = 1) exists.

The randomized Kaczmarz iteration can be viewed as a
subcase of stochastic gradient descent for the following loss
function [37]:

F (x) =
n∑

i=1

fi(x) =
n∑

i=1

1

2
(aix − bi )

2 (37)

which covers the case when the gradient is an affine
function for quadratic optimization problems of the form
minx∈Rn xT Ax + bT x + c for A ∈ Rn×n, b ∈ Rn, c ∈ R [20].
Therefore, the randomized Kaczmarz iteration method is a
reweighted version of the stochastic gradient descent:

xk+1 = xk − aixk − bi

‖ai‖2
aT

i

= xk −
�

fi(x)

‖ai‖2
. (38)

The multirow iteration method can be seen as the mini-batch
stochastic gradient descent [24]:

xk+1 = xk − 1

q

∑
i∈τk

ωi
aixk − bi

‖ai‖2
aT

i

= xk − 1

q

∑
i∈τk

ωi

‖ai‖2

�
fi(x). (39)

Thus, we summarize this idea as the following theorem.
Corollary 11. Given a loss function as defined in (37),

the quantum algorithm described in Algorithm 1 can prepare
a quantum state that encodes the result of K iterations of
stochastic gradient descent of the loss function with query
complexity O(K ) and gate complexity O(K log2 n).

VII. SUMMARY

In this paper, we present a quantum algorithm for a linear
system with nonsquare coefficient matrix. We show that the
quantum version of multirow iterations possesses exponential
speedups in problem size n and a faster convergence rate in
the constraints m while keeping the logarithmic dependence
on the error tolerance. There are still many open questions.
For example, combining the row and column iteration shows
a faster convergence rate. Still, the pure quantum version of
this method does not exist because this poses new challenges
for both state generation and circuit implementation. Is there
a proper quantum data structure for this method? Moreover,
for many iteration methods with different strategies, such as
iteration with a small block, can we construct pure quantum
version algorithms for these methods? Moreover, is there a
fast and general quantum algorithm for all kinds of linear
systems? What is the lower bound on the complexity of such
an approach?
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APPENDIX A: DETAILS OF THE APPLICATION OF Uk

As shown in Sec. III A 3, applying the iteration matrix Uk

requires one to apply the block encoding given in Eq. (19).
Such block encoding achieves the linear combination of uni-
tary∑

i∈τk

(ωk,i

2
C(i,i)

1 − ωk,i

2
C(i,i)

−1

)
+

∑
i/∈τk

( rk,i

2
C(i,i)

1 − rk,i

2
C(i,i)

1

)
.

(A1)
We introduce an ancilla register to help apply the coefficients.
Then, the combination can be treated as

Ũk =
m−1∑
j=0

| j〉〈 j| ⊗ C( j, j)
1 +

2m−1∑
j=m

j−m∈τk

| j〉〈 j| ⊗ C( j−m, j−m)
−1

+
2m−1∑
j=m

j−m/∈τk

| j〉〈 j| ⊗ C( j−m, j−m)
1 (A2)

with the coefficients applying on different indices j. We can
apply the operator Ũk equivalently by an operator Ueq, as they
achieve the same result on the basis state:

Ũk| j〉|l〉 =
⎧⎨
⎩

| j〉|(2 j − l ) mod m〉, 0 � j � m − 1
| j〉|(2 j − l ) mod m〉, m � j � 2m − 1
−| j〉|(2 j − l ) mod m〉, m � j � 2m − 1, l = ( j mod m), j − m ∈ τk

. (A3)
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We define the following function:

f ( j, l ) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 � j � m − 1
0, m � j � 2m − 1
1, m � j � 2m − 1,

l = ( j mod m), ( j mod m) ∈ τk

. (A4)

This function is associated with the flip on the corresponding
state. To compute such classical function with a quantum cir-
cuit, we use the quantum comparator [33,34]. The comparator
compares the natural numbers a and b in two registers and
outputs the result c in the third register, if a � b, c = 0; oth-
erwise, c = 1. The specific circuit of Uf is given as follows.

(1) For ( j mod m) ∈ τk , prepare the initial state

| j〉a1
|l〉a2

|0〉b1
|0〉b2

|0〉b3
|0〉c1

|0〉c2
|0〉c3

|−〉c4

→| j〉a1
|l〉a2

|m − 1〉b1
|( j − 1) mod m〉b2

| j mod m〉b3

|0〉c1
|0〉c2

|0〉c3
|−〉c4

.

For ( j mod m) /∈ τk , prepare the initial state

| j〉a1
|l〉a2

|0〉b1
|0〉b2

|0〉b3
|0〉c1

|0〉c2
|0〉c3

|−〉c4

→| j〉a1
|l〉a2

|2m − 1〉b1
|( j − 1) mod m〉b2

| j mod m〉b3

|0〉c1
|0〉c2

|0〉c3
|−〉c4

.

(2) Perform the quantum comparator on registers
{a1, b1, c1}, {a2, b2, c2}, and {a3, b3, c3} respectively.

(3) Perform the TOFFOLI gate on the registers on
{c1, c2, c4}, {c1, c3, c4}, and {c2, c3, c4}.

(4) Reverse the computation on registers
{c3, c2, c1, b3, b2, b1}.

The states of registers c1, c2, and c3 are set as |1〉, when
a1 > b1, a2 > b2, and a2 � b3 are satisfied respectively. The
mapping on registers a1, a2, and c4 is

Uf | j〉|l〉|−〉 = (−1) f ( j,l )| j〉|l〉|−〉. (A5)

Using a quantum modular adder, we can implement

Uadder| j〉|l〉 = | j〉|(2 j − l ) mod m〉. (A6)

Therefore, the equivalent process Ueq can be implemented by
Uf and Uadder. Then, the box in Eq. (35) is completed by

(I ⊗ Ṽ )(G ⊗ I )Ũk (G† ⊗ I )(I ⊗ Ṽ †) (A7)

where we omit the subscript of I . If we attempt to treat
the operators G and Ṽ as state preparation operators instead
of memory access operators, we should have the following
observation.

Observation 12. In practice, the memory access operator
V can be replaced by the state preparation operator. However,
besides satisfying the assumption V |i〉|0〉 = |i〉|Ai〉, the matrix
associated with the state preparation operator should possess
symmetry.

The proof is given in Appendix D.
However, this is not enough for the implementation of the

operator Uk . We need to implement a controlled version of
Ũk and the memory access operators G and Ṽ . Therefore,
we introduce two extra qubits, and then we can prepare the
following state:

|00〉anc|ind〉|work〉
− |01〉ancṼ

(〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉)Ṽ †|ind〉|work〉
+ |10〉ancṼ

(〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉)Ṽ †|ind〉|work〉
− |11〉ancṼ

(〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉)Ṽ †|ind〉|work〉.
(A8)

Introducing one more ancillary qubit and applying some
Hadamard gates and CNOT gates, we can obtain the required
states after applying the operator Uk . The circuit for the
above state is shown in Fig. 3. This equals to a (1, 3, ε)
block encoding of the operator Uk . The circuit before the
dotted box in Fig. 3 prepares the state in (A8). To sim-
plify the notation, we use |target〉 to represent the state
Ṽ (〈0|GŨkG†|0〉)Ṽ †|ind〉|work〉 and omit the registers a and
c. Then, the circuit in the dotted box fulfills the following
mapping:

|anc〉|0〉(|00〉|ind〉|work〉 − |01〉|target〉 + |10〉|target〉 − |11〉|target〉)

→(I2 ⊗ {I − Ṽ [〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉]Ṽ †} + X ⊗ Ṽ [〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉]Ṽ †)

|anc〉|000〉|ind〉|work〉 + |Gb〉. (A9)

Therefore, we fulfill the construction of the block encoding of
operator Uk .

It should also be noted that the weights satisfy
∑

i∈τk
ωk,i =

1. We suppose the operator G completes G|0〉 = ∑
i∈τk

ωk,i|i〉,
then apply the operators G and Ṽ , a multiqubit con-
trolled NOT gate, which completes I2 ⊗ (I − ∑

i∈τk
|i〉〈i|) +

X ⊗ ∑
i∈τk

|i〉〈i| and G† and Ṽ †. This can achieve the same
result.

APPENDIX B: DETAILS OF THE WHOLE PROCESS

1. Implementation of the whole process

Figure 6 shows the circuit of an iteration step. It requires
a storage process s and a reading process r. That is because
at the end of any iteration step k, we obtain the state |X k+1〉.
However, at the beginning of any step k, we are required to
prepare βk|0〉∑i∈τk

|i〉|0〉 + |1〉∑i∈τk
γk,i|i〉|0〉 and apply |X k〉

and |Ai〉. Therefore, we should store the result from the last

022438-10
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FIG. 6. Implementation of an iteration step with the help of
QRAM, where s represents the process for storage and r for the
reading process. The operators R1 and R2 are the rotation operators.

iteration step. This can be avoided if we apply the rotation at
the beginning of the whole process.

a. Preparing at each step

To generate the state |Y k〉, we can first prepare
βk|0〉∑i∈τk

sk,i|i〉|0〉 + |1〉∑i∈τk
γk,isk,i|i〉|0〉 using a set of ro-

tation operators. Then, perform a controlled operator to obtain
|X k〉 and |i〉|Ai〉 on the index and work register with the help
of QRAM (see Fig. 6). At the end of each iteration, we need
to store the current result, reset the working register, and then
repeat the above process. This would require extra access to
the QRAM compared to the other idea, as we need to store the
result after each iteration.

b. Preparing before the iteration

The other idea is to prepare θ1|0 · · · 0〉∑i∈τ1
|i〉|x1〉 +

θ2|0 · · · 01〉∑i∈τ1
|i〉|Ai〉 + θ3|0 · · · 010〉∑i∈τ2

|i〉|Ai〉 + · · ·
before starting the iteration procedure. The required rotation
gates for θ , which depends on the choice of weights, and each
set τk that depends on the choice of rows, can be obtained
through a preprocessing procedure. This will require that the
memory access procedure become multiqubit controlled and
the iteration operator become one-qubit controlled.

2. Resource analysis for the whole process

In the algorithm given in Algorithm 1, the number of quan-
tum gates used consists of four components: the rotation gates
for βk and γk,i, gates for the iteration matrix Uk , gates for the
operator P, and gates for Uadd.

For each step, the rotation requires O(log2 m) elemen-
tary gates. The application of the quantum comparators
and the quantum modular adder needs O(log2 m) ele-
mentary gates and O(log2 m) ancilla qubits. The operator
〈0|(G ⊗ I )Ũk (G† ⊗ I )|0〉 can be applied with a probability of∑

i∈τk
ωk,i = tk , then we can apply amplitude amplification

O( 1√
tk

) times to achieve a high probability. Therefore, the it-

eration matrix Uk needs O( 1√
tk

) queries to G and O(1) queries

to Ṽ , O( 1√
tk

log2 m) elementary gates, and O(log2 m) ancilla
qubits to complete. Through appropriate selection of weights∑

i∈τk
ωk,i = tk , 1√

tk
is a constant and can be neglected. We

omit the resource for the operator P, since it depends on

specific situations, but in most cases, several SWAP gates and
controlled NOT gates are enough.

We also omit the resource for the operator Uadd, since it also
depends on specific situations. If we use log2 m Hadamard
gates to apply Uadd, then we will be required to apply ampli-

tude amplification O(
√

m/
∑

i∈τK
sK,i ) times, where K is the

number of the total iteration steps, to achieve the result with a
high probability. But, if we can design an exact operator that
achieves the same effect, then the resource required will be
quite different.

For an iteration process with K iteration steps, we can
obtain the final result with a probability of 1

V 2
K

. In order to
obtain the result with a high probability, we need to perform
amplitude amplification O(

√
V 2

K ) times. It should be noted

that VK =
√

1 + ∑K
k=1

∑
i∈τk

bi is not large, because the pa-
rameter bi here is rescaled as mentioned in Sec. III A 2 and the
number of iteration steps is limited. In summary, K iteration

steps require O(K
√

V 2
K

tK
) queries to G and O(K

√
V 2

K ) queries

to Ṽ , O(K
√

V 2
K

tK
log2 m) elementary gates, and O(log2 m + K )

ancilla qubits (each iteration requires one extra ancilla qubit).
Combining with the complexity shown in Definition 5, the
complexity of the quantum multirow iteration algorithm is

O(K
√

V 2
K

tK
log2 m).

APPENDIX C: PROOF OF THE CONVERGENCE RATE

The analysis for the convergence rate in the quantum set-
ting is quite similar to the one in the classical setting [24].
To analyze the convergence rate, we begin with the error
update at each iteration. The error is defined as ek = xk − x∗,
where x∗ is the solution or least-square solution. We suppose
the residual is r∗ and Ax∗ + r∗ = b. Then, using Aiek − r∗

i =
Aixk − bi, we arrive at the error update:

ek+1 = ek −
∑
i∈τk

ωk,i
Aiek − r∗

i

‖Ai‖2
AT

i (C1)

where we suppose ‖Ai‖ = 1. We do not omit it for the com-
pleteness of the proof.

Define the weighted sampling matrix:

Mk :=
∑
i∈τk

ωk,i
IT
i Ii

‖Ai‖2
. (C2)

Then, the error update can be rewritten as

ek+1 = (I − AT MkA)ek + AT Mkr∗. (C3)

To evaluate the error update, we give the following lemma.
Lemma 13 (see [24]). Given D, P, and W as defined in

Definition 2, then we have

E[Mk] = PDW −2 (C4)

and

E
[
MT

k AAT Mk
] = 1

q
PW 2D−2

+
(

1 − 1

q

)
PW D−2AAT PW D−2. (C5)
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The proof for this lemma is given in Appendix E. Since Mk

is a sample average, as the number of samples goes to infinity,
we should have

Mk → PW D−2. (C6)

Therefore, as the number of samples goes to infinity, the error
update approaches the deterministic update:

ek+1 = (I − AT PW D−2A)ek + AT PW D−2r∗. (C7)

Since we want the error to converge to zero, we should require
that this limiting error update has the zero vector, which is

AT PW D−2r∗ = 0 (C8)

for any least-squares residual r∗. This holds when the follow-
ing equation is satisfied:

PW D−2 = αAI (C9)

for 0 < αA � 1 (αA > 0 is the same as the classical setting
and αA � 1 is unique in the quantum setting). The squared
error norm is

‖ek+1‖2 = ‖(I − AT MkA)ek + AT Mkr∗‖2

= ‖(I − AT MkA)ek‖2 + 2〈(I − AT MkA)ek, AT Mkr∗〉
+ ‖AT Mkr∗‖2. (C10)

Taking expectations, we can get

E[‖ek+1‖2] =E[‖(I − AT MkA)ek‖2] + E[‖AT Mkr∗‖2]

+ 2E[〈(I − AT MkA)ek, AT Mkr∗〉]. (C11)

Using Lemma 13, we can simplify the first term:

E[‖(I − AT MkA)ek‖2] =E[〈ek, (I − AT MkA)T (I − AT MkA)ek〉]
= 〈

ek,
(
I − 2ATE[Mk]A + ATE

[
MT

k AAT Mk
]
A
)
ek
〉

=
〈
ek,

[
I − 2αA

AT A

‖A‖2
F

+ αA

q

AT WA

‖A‖2
F

+ α2
A

(
1 − 1

q

)(
AT A

‖A‖2
F

)2
]

ek

〉

=
〈
ek,

[(
I − αA

AT A

‖A‖2
F

)2

+ AT

‖A‖2
F

(
αA

q
W − α2

A

q

AAT

‖A‖2
F

)
A

‖A‖F

]
ek

〉
. (C12)

For the second term, we can get

E[‖AT Mkr∗‖2] = 〈
r∗,E

[
MT

k AAT Mk
]
r∗〉 = αA

q

‖r∗‖2
W

‖A‖2
F

.

(C13)
Similarly, for the third term, we can get

2E[〈AT MkAek, AT Mkr∗〉] = 2αA

q‖A‖2
F

〈Aek,W r∗〉. (C14)

Combining three terms together, we have

E[‖ek+1‖2] =
〈
ek,

(
I − αA

AT A

‖A‖2
F

)2

ek

〉

+
〈
ek,

AT

‖A‖2
F

(
αA

q
W − α2

A

q

AAT

‖A‖2
F

)
A

‖A‖F
ek

〉

− 2αA

q‖A‖2
F

〈Aek,W r∗〉 + αA

q

‖r∗‖2
W

‖A‖2
F

=
〈

ek,

[(
I − αA

AT A

‖A‖2
F

)2

− α2
A

q

(
AT A

‖A‖2
F

)2
]

ek

〉

+ αA

q

‖r∗‖2
W

‖A‖2
F

� σmax

[(
I − αA

AT A

‖A‖2
F

)2

− α2
A

q

(
AT A

‖A‖2
F

)2
]
‖ek‖2

+ αA

q

‖r∗‖2
W

‖A‖2
F

. (C15)

This completes the proof.

APPENDIX D: PROOF OF OBSERVATION 12

Without loss of generality, we assume that there exists a
state preparation operator |V 〉 satisfying

V |0〉 = |a〉 (D1)

where |a〉 = a1|0〉 + a2|1〉; without loss of generality, we as-
sume that a1 and a2 are real. We anticipate utilizing this state
preparation operator to achieve

U = (I2 ⊗ V )(I2 ⊗ (I − |0〉〈0|) + X ⊗ |0〉〈0|)(I2 ⊗ V †)

=
[

I − |a〉〈a| |a〉〈a|
|a〉〈a| I − |a〉〈a|

]
. (D2)

We could represent [I2 ⊗ (I − |0〉〈0|) + X ⊗ |0〉〈0|] in a ma-
trix format easily:

(I2 ⊗ (I − |0〉〈0|) + X ⊗ |0〉〈0|) =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦. (D3)
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|0〉

|0〉 V V †

FIG. 7. Implementation of the operator U .

Then, we can obtain the circuit (Fig. 7) to perform the operator
U . We choose the operator V as

V1 =
[

a1 a2

−a2 a1

]
(D4)

and

V2 =
[

a1 a2

a2 −a1

]
. (D5)

Both V1 and V2 are unitary operators and satisfy V |0〉 = |a〉.
By a simple calculation, we obtain

(I2 ⊗ V1)(I2 ⊗ (I − |0〉〈0|) + X ⊗ |0〉〈0|)(I2 ⊗ V †
1 )

=

⎡
⎢⎢⎣

−a2
2 a1a2 a2

1 a1a2

−a1a2 a2
1 −a1a2 −a2

2
a2

1 a1a2 −a2
2 a1a2

−a1a2 −a2
2 −a1a2 a2

1

⎤
⎥⎥⎦ (D6)

and

(I2 ⊗ V2)(I2 ⊗ (I − |0〉〈0|) + X ⊗ |0〉〈0|)(I2 ⊗ V †
2 )

=

⎡
⎢⎢⎣

a2
2 −a1a2 a2

1 a1a2

−a1a2 a2
1 a1a2 a2

2
a2

1 a1a2 a2
2 −a1a2

a1a2 a2
2 −a1a2 a2

1

⎤
⎥⎥⎦. (D7)

Given an input state |0〉|x〉, |x〉 = |0〉 (without loss of gen-
erality). Applying the operator U on the input state, we will
obtain

U |0〉|x〉 = |0〉|x〉 − |0〉〈a|x〉|a〉
= |0〉(1 − a2

1

)|0〉 − |0〉a1a2|1〉
= |0〉a2

2|0〉 − |0〉a1a2|1〉. (D8)

This result can only be obtained if we choose V = V2. And the
matrix in (18) equals the matrix corresponding to the choice
of V2.

Extending this statement to the more general case, the
definition of U demonstrates the symmetry of U . Therefore, in
the real number case, the operator U should satisfy U T = U ,
which indicates that V = V †. This assertion extends to the
imaginary number case as V = (V †)∗.

When applying V |0〉〈0|V †, a similar situation arises. After
implementing (|0〉〈0|)V on an arbitrary state |ψ〉, the resulting
state is |φ〉 = (|0〉〈0|)V |ψ〉. This causes the operator V † to
act on the state as V †|φ〉 instead of 〈φ|V †. Therefore, it is
necessary for the operator V to be symmetric.

APPENDIX E: PROOF OF LEMMA 13

The expectation of Mk is as follows:

E[Mk] =E

⎡
⎣∑

i∈τk

ωk,i
I

‖Ai‖2

⎤
⎦ = E

⎡
⎣∑

i∈τk

ωi

q

I

‖Ai‖2

⎤
⎦

=E

[
ωi

I

‖Ai‖2

]
=

m−1∑
i=0

piωi
I

‖Ai‖2

= PW D−2. (E1)

Similarly, we can compute

E
[
MT

k AAT Mk
]

= E

[(∑
i∈τk

ωk,i
IT
i Ai

‖Ai‖2

)(∑
j∈τk

ωk, j

IT
j A j

‖Aj‖2

)]

= 1

q
E

[(
ωi

IT
i Ai

‖Ai‖2

)(
ωi

AT
i Ii

‖Ai‖2

)]

+
(

1 − 1

q

)
E

[
ωi

IT
i Ai

‖Ai‖2

]
E

[
ω j

AT
j I j

‖Aj‖2

]

= 1

q
E

[
ω2

i

IT
i Ii

‖Ai‖2

]
+

(
1 − 1

q

)
PW D−2AAT PW D−2

= 1

q
PW 2D−2 +

(
1 − 1

q

)
PW D−2AAT PW D−2. (E2)
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