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Tripartite entanglement and tripartite steering in three-qubit pure
states induced by vacuum–one-photon superpositions
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Utilizing a tritter with variable parameter T and induced by vacuum–one-photon superpositions |0〉 + α|1〉
with α = |α|eiφ , we propose a scheme to prepare a class of three-qubit pure states. These states take the form of
|ψ〉123 = c0|000〉 + c1|100〉 + c2|010〉 + c3|001〉. The coefficients (c0, c1, c2, and c3) can be manipulated through
interaction parameters (|α|, φ, and T ). In line with Xie and Eberly’s work [Phys. Rev. Lett. 127, 040403 (2021)],
we investigate the genuine tripartite entanglement for |ψ〉123 by using the measure of concurrence fill. Drawing
on Hao et al.’s research [Phys. Rev. Lett. 128, 120402 (2022)], we examine tripartite steering for |ψ〉123 under
certain measurements based on the uncertainty relations criterion. We identify nine potential configurations
exhibiting varying steerability across different parameter spaces. It is important to highlight that, while the state
|ψ〉123 exhibits entanglement, steering remains unattainable in a substantial portion of the parameter space.

DOI: 10.1103/PhysRevA.110.022437

I. INTRODUCTION

Entanglement is a key feature of quantum mechanics and
plays an important role in many quantum information pro-
tocols [1–3], including quantum computation [4], quantum
communication [5], and quantum metrology [6]. Previously,
people paid more attention to studying bipartite entanglement
in two-party systems. To quantify the amount of entangle-
ment, they invented and developed a variety of entanglement
measures, including partial-norm [7], entanglement of for-
mation [8], von Neumann entropy [9], normalized negativity
[10], concurrence [11], and so on. With the development of
quantum technologies, more and more researchers began to
study multipartite entanglement (ME), existing in three-party
or even more-party systems. In general, ME can be divided as
partial ME and “genuine” ME (GME). If a multipartite state
can be at least biseparable, then it is a partial ME but not a
GME [12].

GME is crucial for quantum information and quantum
technologies [13]. In general, a GME measure necessitates
the following five requirements [14,15]: (R1) It must assign
the zero value to any product state or biseparate state; (R2) It
must assign a positive value to all nonbiseparate states; (R3)
It is convex; (R4) It is nonincreasing under local operations
and classical communication (LOCC); and (R5) It is invari-
ant under local unitary transformation. However, quantifying
GME is still a challenge [16] because most existing measures
do not meet the “genuine” requirements. For example, some
measures, such as Schmidt measure by Eisert and Briege
[17], or global entanglement by Meyer and Wallach [18], will
violate (R1). While other measures, like the three-tangle by
Coffman et al. [19], or a generalized form of negativity by
Jungnitsch et al. [20], will violate (R2).

*Contact author: xuxuexiang@jxnu.edu.cn

Recently, Xie and Eberly introduced a novel measure of
genuine tripartite entanglement (called “concurrence fill”),
which was defined as the square root of the area of concur-
rence triangle, multiplying a constant factor [21]. However,
through a counterexample, Ge et al. pointed out that con-
currence fill was a genuine entanglement measure, but not
an entanglement monotone [22]. Afterwards, they presented
several faithful geometric measures for GME [23].

Einstein-Podolsky-Rosen (EPR) steering [24,25], which
stipulates that one observer can manipulate another party’s
state through local measurements, is a crucial resource for
various quantum applications [26]. Typically, two methods
are employed to explore multipartite steering: the one-sided
device-independent scenario [27] and the steering correlation
between bipartitions [28,29]. Key areas of studying multi-
partite EPR steering include the monogamy [30–33] and the
shareability [34]. Monogamy suggests that two observers can-
not simultaneously steer the state of a third party, while the
shareability implies that two observers can simultaneously
steer a third observer. Over recent years, the monogamous
aspects of EPR steering have garnered significant attention
in both theoretical and experimental studies [32]. To cir-
cumvent monogamous relationships or eliminate monogamy
constraints, researchers have uncovered additional configura-
tions of multipartite EPR steering by expanding the number
of measurement settings [35]. Paul and Mukherjee recently
introduced explicit shareability relations using the violation
of linear steering inequality [36]. Additionally, Hao et al.
experimentally demonstrated various configurations of EPR
steering shareability using a three-qubit system [37].

Entanglement and steering, as resources, are pivotal in
various quantum protocols. A critical prerequisite is the dis-
tribution of these quantum resources among multiple remote
users within a network [38,39]. Numerous multiqubit states,
such as the two-qubit EPR state (|10〉 + |01〉)/

√
2 [40], three-

qubit GHZ state |GHZ〉 = (|000〉 + |111〉)/
√

2 [41], and
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FIG. 1. (a) The preparation of the VOPS |0〉 + α|1〉 ∝ |ε〉 is
achieved utilizing a QS device. This QS operation consists of two
BSs. (b) The preparation of the three-qubit state |ψ〉123 is executed
using a tritter

three-qubit W state |W 〉 = (|100〉 + |010〉 + |001〉)/
√

3 [42]
have been extensively examined by assessing their potential
entanglement and steering [43,44] for suitable applications.
In this study, we will introduce a class of three-qubit states
and analyze their tripartite entanglement and steering.

The paper is structured as follows. In Sec. II, we propose a
scheme to prepare a class of three-qubit pure states. In Sec. III,
we explore “genuine” tripartite entanglement by using the
measure of concurrence fill. Section IV delves into tripartite
steering based on the uncertainty relations criterion under
specific measurement settings. Finally, Sec. V encapsulates
the primary findings.

II. PREPARATION OF THREE-QUBIT PURE STATES

In this section, we propose a scheme to prepare a class
of three-qubit pure states. As shown in Fig. 1, we divide the
entire process into the following two stages.

A. Stage 1: Preparation of the vacuum–one-photon
superposition

As proposed by Pegg, Phillips, and Barnett [45], the
vacuum–one-photon superposition (VOPS) |0〉 + α|1〉 can be
prepared by utilizing a quantum scissor (QS) device. The con-
ceptual scheme is shown in Fig. 1(a). The input coherent state
|α〉 is mixed on a balanced BS2 with an ancillary signal, and
both outputs are measured using two single-photon detectors.
The ancillary signal is one of the two outputs of a single

photon passing another balanced BS1, while the other signal is
the output VOPS. Of course, successful operation is heralded
when a single photon is detected at one detector and none at
the other detector with perfect manner [46]. It is important
to note that this VOPS is truncated from the input coherent
state |α〉 (by setting α = |α|eiφ) and will subsequently be
normalized as |ε〉 = ω0|0〉 + ω1|1〉 with ω0 = 1/

√
1 + |α|2

and ω1 = α/
√

1 + |α|2. Very recently, Miranowicz et al. ex-
plored the nonclassicality of the VOPSs [47]. In addition, the
prepared VOPS will serve as one of the input states of stage 2.

B. Stage 2: Preparation of the three-qubit states under study

As depicted in Fig. 1(b), the kernel device is referred
to as a tritter [48,49] comprised of two consecutive BSs.
We postulate the following: (i) the initial BS is charac-
terized by B̂12(π/4) = e− π

4 (â†
1 â2−â1â†

2 ), satisfying B̂12â†
1B̂†

12 =
1√
2
â†

1 − 1√
2
â†

2 and B̂12â†
2B̂†

12 = 1√
2
â†

1 + 1√
2
â†

2, and (ii) the sub-

sequent variable BS is defined by B̂23(θ ) = e−θ (â†
2 â3−â2 â†

3 ),
satisfying B̂23â†

2B̂†
23 = √

T â†
2 − √

1 − T â†
3 and B̂23â†

3B̂†
23 =√

1 − T â†
2 + √

T â†
3, where T = cos2 θ ∈ [0, 1]. Notice that

â†
j (and â j) denotes the creation (and annihilation) operator

of the jth mode. Consequently, the tritter can be represented
by T̂123 = B̂23(θ )B̂12(π/4). Therefore, we can generate a
state yielding |ψ〉123 = T̂123|ε〉1|0〉2|0〉3 by injecting |ε〉, |0〉,
|0〉 into the corresponding input modes of the tritter. Upon
straightforward derivation, the prepared state can be explicitly
articulated as a three-qubit pure state

|ψ〉123 = c0|000〉 + c1|100〉 + c2|010〉 + c3|001〉, (1)

with c0 = ω0, c1 = ω1/
√

2, c2 = −ω1
√

T/2, and c3 =
ω1

√
(1 − T )/2. It is evident that the state |ψ〉123 corre-

lates with three interaction parameters (i.e., |α|, φ, and T ).
This state exhibits a hybrid form of both GHZ-class and
W -class states. Specifically, when α = 0, |ψ〉123 reduces
to the simplest three-qubit product state |000〉. However,
if α �= 0 and T = 0, |ψ〉123 transforms into a biseparable
state (ω0|00〉 + ω1√

2
|10〉 + ω1√

2
|01〉)13 ⊗ |0〉2. Similarly, if α �=

0 and T = 1, |ψ〉123 becomes a biseparable state (ω0|00〉 +
ω1√

2
|10〉 + ω1√

2
|01〉)12 ⊗ |0〉3.

III. TRIPARTITE ENTANGLEMENT

Concurrence is the most commonly used measure of en-
tanglement. At the beginning, this measure was mainly used
to study the entanglement for bipartite systems. In 2000, Coff-
man, Kundu, and Wootters first used the concurrence to study
the entanglement distribution for the pure three-qubit states
and showed the concurrence relation C2

AB + C2
AC � C2

A(BC)
[19]. Later, this measure was also generalized to study ME,
together with geometrical interpretation [50]. In this paper,
we shall derive the Ci( jk)-type concurrence (where i, j, and k
are distinct values of 1, 2, or 3) and investigate the “genuine”
tripartite entanglement of |ψ〉123. Herein, Ci( jk) represents the
concurrence between a single party (inclusive of qubit i) and
another party (encompassing qubits j and k).
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A. Ci( jk)-type concurrence

Utilizing the Schmidt decomposition, we can derive the
Schmidt coefficients (

√
λ1 and

√
λ2) for any bipartite pure

state [51,52]. Consequently, the Schmidt weight can be ascer-
tained through

Y = 1 −
√

2
(
λ2

1 + λ2
2

) − 1. (2)

The concurrence can be computed using

C(Y ) =
√

Y (2 − Y ). (3)

When |ψ〉123 is treated as a bipartite state, the correspond-
ing Schmidt coefficients can be deduced (refer to Appendix A)
and the Ci( jk)-type concurrence can be calculated according
to Eqs. (2) and (3). The primary findings are presented as
follows.

Case 1(23): In the bipartite scenario involving qubit 1 and
pair 23, we observe that

Y1(23) = 1 −
√

2|α|2 + 1

|α|2 + 1
, (4)

and

C1(23) = |α|2
1 + |α|2 ≡ 
. (5)

Case 2(31): In the bipartite scenario involving qubit 2 and
pair 31, we observe that

Y2(31) = 1 −
√

(1 − T )2|α|4 + 2|α|2 + 1

|α|2 + 1
, (6)

and

C2(31) = 

√

T (2 − T ). (7)

Case 3(12): In the bipartite scenario involving qubit 3 and
pair 12, we observe that

Y3(12) = 1 −
√

T 2|α|4 + 2|α|2 + 1

|α|2 + 1
, (8)

and

C3(12) = 

√

1 − T 2. (9)

Clearly, all Ci( jk)s are contingent upon |α| and T , yet re-
main unaffected by φ. Subsequently, we will delve into the
tripartite entanglement for |ψ〉123, utilizing the measure asso-
ciated with Ci( jk)-type concurrence.

B. Concurrence triangles and fill

In principle, any class of ME is linked to a geometric
object, specifically an entanglement polytope [53]. Without a
doubt, we can verify Ci( jk) � C j(ki) + Ck(i j) for |ψ〉123 as per
Qian, Alonso, and Eberly [54]. Concurrently, we can also
confirm

C2
i( jk) � C2

j(ki) + C2
k(i j) (10)

for |ψ〉123, following the method of Zhu and Fei [33].
In accordance with Xie and Eberly [21], a concurrence

triangle is constructed by defining s1 = C2
1(23), s2 = C2

2(31), and
s3 = C2

3(12) as its three sides. It is well established that the

area of a triangle with side lengths (s1, s2, s3) and perimeter
l = s1 + s2 + s3 can be computed using Heron’s formula A =
1
4 [l (l − 2s1)(l − 2s2)(l − 2s3)]1/2. For |ψ〉123, we can obtain
the triangle area

A|ψ〉123
= 
4T (1 − T )

√
1 + T (1 − T ), (11)

and the concurrence fill [21,22]

F123 = F (|ψ〉123) =
√

4√
3
A|ψ〉123

. (12)

That is, the concurrence fill is just the square root of the
triangle area by multiplying

√
4/

√
3. Obviously, A|ψ〉123 and

F123 are dependent on |α| and T , but are independent of φ.
In Fig. 2, we give a table for the possible cases of |ψ〉123,

accompanying their corresponding conditions, concurrence
triangles, areas, and fills. As highlighted by Dur et al. [12],
all three-qubit states can be categorized into three distinct
classes: product states, biseparable states, and nonbiseparable
states. For |ψ〉123, when |α| = 0, the triangle is simplified to a
single dot due to s1 = s2 = s3 = 0, resulting in an area A = 0
and F123 = 0. When |α| �= 0 and T = 0, the triangle is sim-
plified to a line due to s1 = s3 = 
2 > 0 and s2 = 0, leading
to an area A = 0 and F123 = 0. When |α| �= 0 and T = 1, the
triangle is simplified to a line due to s1 = s2 = 
2 > 0 and
s3 = 0, resulting in an area A = 0 and F123 = 0. Only when
|α| �= 0 and T �= 0 (or 1), does the triangle maintain its true
form with appropriate s1, s2, s3 > 0, accompanied by an area
A > 0 and F123 > 0.

As shown in Fig. 3, the value of |α| (or T ) defines the
shape (form) of the triangle for a fixed value of T (or |α|).
In each subfigure, one can see its respective values for three
side lengths, the area, and the concurrence fill. Figures 3(a) to
3(c) depict the triangles with the same |α| = 5.5 and different
T (0.3, 0.5, and 0.7), accompanying different F123 (0.684394,
0.752832, and 0.684394). Figures 3(d) to 3(f) depict the trian-
gles with same T = 0.5 and different |α| (1.5, 2.5, and 3.5),
accompanying different F123 (0.3851, 0.5971, and 0.6867).
In Fig. 4(a), we present the contour plot of F123 in the (|α|,
T ) space. At the same time, we plot F123 as functions of |α|
for several different T in Fig. 4(b) and F123 as functions of
T for several different |α| in Fig. 4(c). Obviously, F123 is
a symmetrical function of T = 0.5 and reaches its maximal
values at T = 0.5 for each fixed |α|. Meanwhile, F123 is a
monotonically increasing function of |α| for each fixed T .
At the limiting case of |ψ〉123 with |α| → ∞ and T = 0.5,
one can find a maximum value of F123, i.e., 0.803428. As
pointed out in Ref. [21], we also know F123(|GHZ〉) = 1 and
F123(|W 〉) = 8/9

.= 0.889. So, our considered state |ψ〉123 is
still less entangled than the GHZ state and the W state.

C. Checking GME

In the following, we shall check the five requirements for
F123(|ψ〉123) one by one.

(R1) F123 is zero when |ψ〉123 is a product state |000〉 for
|α| = 0 (see the fourth column in Fig. 2), or when |ψ〉123 is a
biseparate state for |α| �= 0, T = 0 (or T = 1) (see the second
and third column in Fig. 2).
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FIG. 2. The table of possible cases of |ψ〉123 and their corresponding conditions, concurrence triangles, areas, and fills.

(R2) F123 is positive if |ψ〉123 is a nonbiseparate state for
|α| �= 0, T �= 0 (or T �= 1) (see the first column in Fig. 2).

(R3) As pointed out by Xie and Eberly [21], concurrence
fill can be constructed as the convex roof, i.e., F123(ρ) =
min{pi,|ψi〉}

∑
i piF123(|ψi〉), over all possible decomposition

ρ = ∑
i pi|ψi〉〈ψi|. So, it is satisfying the convex relation

(a) (d)

(b) (e)

(c) (f)

FIG. 3. Top: The concurrence triangle for a three-qubit state
|ψ〉123, with its three side lengths s1 = C2

1(23), s2 = C2
2(31), and s3 =

C2
3(12). Bottom: Six triangles are depicted by taking (|α|, T ) val-

ues with (a) (5.5,0.3), (b) (5.5,0.5), (c) (5.5,0.7), (d) (1.5,0.5),
(e) (2.5,0.5), and (f) (3.5, 0.5), respectively. The corresponding areas
and concurrence fills are also provided.

with F123(
∑

i pi|ψi〉〈ψi|) �
∑

i piF123(|ψi〉〈ψi|). Obviously,
this requirement is true for |ψ〉123 by taking the equal sign.

(R4) Following the arguments in Refs. [12,22,23]
and through numerical search in all parameter space,
we find that F123(|ψ〉123) is nonincreasing under LOCC,
i.e., F123[�LOCC(|ψ〉123)] � F123(|ψ〉123). The details on the
LOCC monotonicity are provided in Appendix B.

(R5) Since Ci( jk) can be also obtained in another way

through
√

2[1 − Tr(ρ2
i ) [ρi = Tr jk (ρ123)], it is clear that

F123(|ψ〉123) is invariant under local unitary operations.
Then, we say, F123(|ψ〉123) is a proper genuine tripartite

entanglement measure.

IV. TRIPARTITE STEERING

Inspired by the work of Hao et al. [37], we shall analyze
the tripartite EPR steering in |ψ〉123 by using the uncertainty
relations [55] under specific measurement settings.

A. Theoretical proposal and relation

We assume that qubits 1, 2, and 3 are controlled by Al-
ice, Bob, and Charlie, respectively, with three measurement
settings {σx, σy, σz}. In detail, we define these observables as
A1 = σ (1)

x , A2 = σ (1)
y , A3 = σ (1)

z ; B1 = σ (2)
x , B2 = σ (2)

y , B3 =
σ (2)

z ; C1 = σ (3)
x ,C2 = σ (3)

y ,C3 = σ (3)
z , where

σ (k)
x =

(
0 1
1 0

)
, σ (k)

y =
(

0 −i
i 0

)
, σ (k)

z =
(

1 0
0 −1

)
,

(13)

denote the standard Pauli spin operators for the kth qubit.
In the subsequent sections, we define the uncertainty of an

observable X on a state ρ as the variance δ2X = 〈X 2〉 − 〈X 〉2.
Here, 〈X 〉 represents the expectation value of X , calculated as
〈X 〉 = Tr(Xρ). Furthermore, C(X,Y ) = 〈XY 〉 − 〈X 〉〈Y 〉 de-
notes the covariance between observable X and observable
Y . To ascertain the configuration of EPR steering, we may
employ the following criterion based on uncertainty relations.

(1) Alice can steer Bob if the inequality

PAB =
∑

i

δ2
(
α

(AB)
i Ai + Bi

)
� min

ρB

∑
i

δ2Bi (14)
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FIG. 4. (a) Contour plot of the concurrence fill F123(|ψ〉123) in the (|α|, T ) space; (b) F123 versus |α| with T = 0.1, 0.3, 0.5, 0.8; (c) F123

versus T with |α| = 1.5, 3, 4.5, 6.

is violated, where

α
(AB)
i =

⎧⎪⎨
⎪⎩

−C(Ai,Bi )
δ2Ai

, if δ2Ai �= 0;

− δ2Bi
2C(Ai,Bi )

, if δ2Ai = 0,C(Ai, Bi ) �= 0;

0, if δ2Ai = 0,C(Ai, Bi ) = 0.

(15)

(2) Bob can steer Alice if the inequality

PBA =
∑

i

δ2
(
β

(BA)
i Bi + Ai

)
� min

ρA

∑
i

δ2Ai (16)

is violated, where

β
(BA)
i =

⎧⎪⎨
⎪⎩

−C(Ai,Bi )
δ2Bi

, if δ2Bi �= 0;

− δ2Ai
2C(Ai,Bi )

, if δ2Bi = 0,C(Ai, Bi ) �= 0;

0, if δ2Bi = 0,C(Ai, Bi ) = 0.

(17)

(3) Alice can steer Charlie if the inequality

PAC =
∑

i

δ2
(
α

(AC)
i Ai + Ci

)
� min

ρC

∑
i

δ2Ci (18)

is violated, where

α
(AC)
i =

⎧⎪⎨
⎪⎩

−C(Ai,Ci )
δ2Ai

, if δ2Ai �= 0;

− δ2Ci
2C(Ai,Ci )

, if δ2Ai = 0,C(Ai,Ci ) �= 0;

0, if δ2Ai = 0,C(Ai,Ci ) = 0.

(4) Charlie can steer Alice if the inequality

PCA =
∑

i

δ2(γ (CA)
i Ci + Ai

)
� min

ρA

∑
i

δ2Ai (19)

is violated, where

γ
(CA)

i =

⎧⎪⎨
⎪⎩

−C(Ai,Ci )
δ2Ci

, if δ2Ci �= 0;

− δ2Ai
2C(Ai,Ci )

, if δ2Ci = 0,C(Ai,Ci ) �= 0;

0, if δ2Ci = 0,C(Ai,Ci ) = 0.

(20)

(5) Bob can steer Charlie if the inequality

PBC =
∑

i

δ2
(
β

(BC)
i Bi + Ci

)
� min

ρC

∑
i

δ2Ci (21)

is violated, where

β
(BC)
i =

⎧⎪⎨
⎪⎩

−C(Bi,Ci )
δ2Bi

, if δ2Bi �= 0;

− δ2Ci
2C(Bi,Ci )

, if δ2Bi = 0,C(Bi,Ci ) �= 0;

0, if δ2Bi = 0,C(Bi,Ci ) = 0.

(22)

(6) Charlie can steer Bob if the inequality

PCB =
∑

i

δ2
(
γ

(CB)
i Ci + Bi

)
� min

ρB

∑
i

δ2Bi (23)

is violated, where

γ
(CB)

i =

⎧⎪⎨
⎪⎩

−C(Bi,Ci )
δ2Ci

, if δ2Ci �= 0;

− δ2Bi
2C(Bi,Ci )

, if δ2Ci = 0,C(Bi,Ci ) �= 0;

0, if δ2Ci = 0,C(Bi,Ci ) = 0.

(24)

Some analytical results for calculating PAB, PBA, PAC , PCA,
PBC , and PCB are listed in Appendix C. For our used set-
ting, we can get minρA

∑
i δ

2Ai = 2, minρB

∑
i δ

2Bi = 2, and
minρC

∑
i δ

2Ci = 2. Physically, if Pi j < 2, then we say that
party-i can steer party- j. In particular, we have PAB = PBA =
PAC = PCA = PBC = PCB = 2 in the limiting case of |α| = 0,
corresponding to product state |000〉.

B. Numerical simulation and analysis

Using the above analytical expressions from Eqs. (14) to
(24), we make numerical simulation for the tripartite steering
of |ψ〉123.

In Fig. 5, we plot the feasible regions satisfying PAB < 2,
PBA < 2, PAC < 2, and PCA < 2, in (|α|, φ, T ) parameter
space by setting 0 � T � 1, 0 � |α| � 6, and 0 � φ � π .
Note that all Pi js are periodic functions of φ with period π/2.
Moreover, it is symmetric with respect to φ = π/4 in the
range φ ∈ (0, π/2). However, no matter what parameter (|α|,
φ, T ) values we choose, it is impossible to satisfy PBC < 2 and
PCB < 2. That is to say, regions with PBC < 2 and PCB < 2 are
empty, which means that there is no steering between B and C.
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FIG. 5. The feasibility regions satisfying (a) PAB < 2, (b) PBA <

2, (c) PAC < 2, (d) PCA < 2, in the parameters (|α|, φ, T ) space with
|α| ∈ [0, 6], φ ∈ [0, π ], T ∈ [0, 1].

Undoubtedly, each subfigure in Fig. 5 only shows its respec-
tive one-way steerability. The common region in Figs. 5(a)
and 5(b), satisfying PAB < 2 and PBA < 2 simultaneously, will
exhibit two-way steering between A and B. Similarly, the
common region in Figs. 5(c) and 5(d), satisfying PAC < 2
and PCA < 2 simultaneously, will exhibit two-way steering
between A and C. Moreover, the regions with no steering are
different for these subfigures.

In Fig. 6, we depict three (|α|, T ) planes by maintaining
φ = 0, 0.1π , 0.25π and illustrate nine distinct configurations
of steerability relations for |ψ〉123. Meanwhile, these configu-
rations are detailed in Table I and further elucidated in Fig. 7.
The implication of each configuration (here abbreviated as
Cf.) can be explained as follows.

Cf.“a” signifies that Alice, Bob, and Charlie are unable to
steer each other (no steering).

Cf.“b” denotes that only Alice and Bob can steer each other
(two-way steering).

Cf.“c” indicates that solely Alice can steer Bob (one-way
steering). In this configuration, Bob cannot be steered by Alice
and Charlie simultaneously (a monogamy).

Cf.“d” represents that: (1) Alice and Bob can steer each
other (two-way steering), and 2) Alice can steer Charlie (one-
way steering).

Cf.“e” signifies that: (1) Alice and Bob can steer each
other (two-way steering), and (2) Alice and Charlie can steer
each other (two-way steering). In this configuration, Bob and
Charlie can simultaneously steer Alice (a shareability)

Cf.“f” suggests that: (1) Alice can steer Bob (one-way
steering), and (2) Alice can steer Charlie (one-way steering).

(a)

(b)

(c)

FIG. 6. Three (|α|, T ) plains illustrate nine distinct configura-
tions of steerability for |ψ〉123, characterized by (a) φ = 0, (b) φ =
0.1π , (c) φ = 0.25π , respectively. The regions delineated by the
colors correspond to these varying configurations.

Cf.“g” implies that only Alice can steer Charlie (one-way
steering). In this configuration, Charlie cannot be steered by
Alice and Bob simultaneously (a monogamy).

TABLE I. Nine configurations (in Figs. 6, 7) and their respective
steerings.

Configurations PAB PBA PAC PCA PBC PCB

(a) �2 �2 �2 �2 �2 �2
(b) <2 <2 �2 �2 �2 �2
(c) <2 �2 �2 �2 �2 �2
(d) <2 <2 <2 �2 �2 �2
(e) <2 <2 <2 <2 �2 �2
(f) <2 �2 <2 �2 �2 �2
(g) �2 �2 <2 �2 �2 �2
(h) �2 �2 <2 <2 �2 �2
(i) <2 �2 <2 <2 �2 �2
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FIG. 7. The configurations of tripartite steerings, which are
shared among three observers (A, B, and C), correspond to regions
delineated from (a) to (i) in Fig. 6.

Cf.“h” indicates that only Alice and Charlie can steer each
other (two-way steering).

Cf.“i” signifies that: (1) Alice and Charlie can steer each
other (two-way steering), and 2) Alice can steer Bob (one-way
steering).

Our configurations, further illustrated in Fig. 7 and Ta-
ble I, can reflect their respective steering relations. For
example, when φ = 0.1π , |α| = 3.5, and T = 0.5, we have
PAB = 1.6719(4), PBA = 1.8397(6), PAC = 1.6719(4), PCA =
1.8397(6), PBC = 2.1978(1), and PCB = 2.1978(1). This case
corresponds to Fig. 7(e).

As examples, we depict all Pi js as functions of one pa-
rameter by fixing other two parameters of |ψ〉123 in Fig. 8.
Through solving Pi j = 2, we can obtain the intersection points
in each subfigure and divide different ranges. For each range,
we can identify its corresponding configuration. Figure 8(a)
presents all Pi js versus |α| ∈ [0, 6] for φ = 0.1π and T = 0.3,
where the ranges of |α| ∈ (0, 1.19751), (1.19751, 1.28267),
(1.28267, 1.94563), and (1.94563,∞) correspond to config-
urations of Figs. 8(a), 8(g) 8(h), and 8(i). Figure 8(b) presents
all Pi j s versus φ ∈ [0, π ] for |α| = 0.2 and T = 0.3, where
the ranges of φ ∈ (0, 0.175126), (0.175126, 0.266456),
(0.266456, 0.306136), and (0.306136, π/4) correspond to
configurations of Figs. 8(i), 8(h), 8(g), and 8(a). Here, we only
analyze the variations in the range φ ∈ [0, π/4] because all
Pi js are the periodic functions with period π/2 and symmet-
rical in each period. Figure 8(c) presents all Pi js versus T ∈
[0, 1] for φ = 0.1π and |α| = 0.2, where the ranges of T ∈
(0, 0.210711), (0.210711, 0.271447), (0.271447, 0.728553),
(0.728553, 0.789289), and (0.789289, 1) correspond to con-
figurations of Figs. 8(h), 8(g), 8(a), 8(c), and 8(b).

(a)

(b)

(c)

FIG. 8. (a) P versus |α| with fixed φ = 0.1π and T = 0.3; (b) P
versus φ with fixed |α| = 0.2 and T = 0.3; (c) P versus T with fixed
|α| = 0.2 and φ = 0.1π .

V. SUMMARY AND CONCLUSION

In this study, we introduced a scheme for preparing a
specific class of three-qubit states and conducted a theoretical
exploration of tripartite entanglement and steering. These pre-
pared states exhibit a hybrid form, combining GHZ-like and
W -like characteristics of three-qubit states. Through the con-
struction of a concurrence triangle, we demonstrated that our
three-qubit state possesses genuine tripartite entanglement.
Utilizing certain measurements and applying the uncertainty
relations criterion, we identified nine distinct configurations
of tripartite steering. Notably, most of these configurations ad-
here to shareability without being constrained by monogamy.
Throughout the paper, we provided comprehensive analytical
expressions and numerical results based on selected interac-
tion parameters. Upon thorough comparison and analysis, it
was determined that while the state exhibits entanglement,
steering was unattainable in a significant portion of the pa-
rameter space.

Our scheme has the advantages of using linear optics to
prepare three-qubit quantum states. With the help of BSs and
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photon-number-resolved detections, we think, these states can
be easily realized in experiments, especially by virtue of the
QS technique [56–58]. Currently, there are many methods
to experimentally detect quantum correlations (including en-
tanglement and steering) [59–62]. Moreover, some measure-
ments (especially on qubits) are relatively mature in the field
of quantum information science [63,64]. With current technol-
ogy, we also think that detection for our studied tripartite en-
tanglement and steering can be implemented in experiments.
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APPENDIX A: SCHMIDT COEFFICIENTS
FOR CALCULATING

Ci( jk)-type concurrence

In accordance with the bipartite cases of |ψ〉123, we present
the following Schmidt coefficients (λ1s and λ2s) through the
implementation of a Schmidt decomposition [52].

(1) Case 1(23): If |ψ〉123 is reexpressed as

|ψ〉123 = (|0〉1 |1〉1)M1

⎛
⎜⎜⎜⎝

|00〉23

|10〉23

|01〉23

|11〉23

⎞
⎟⎟⎟⎠, (A1)

with M1 = (c0 c2 c3 0
c1 0 0 0), then |ψ〉123 can be further de-

composed into the Schmidt form like Eq. (17) in Ref. [54]

with the Schmidt coefficients
√

λ
(1)
1 and

√
λ

(1)
2 , where

λ
(1)
1 = 1

2
+

√
2|α|2 + 1

2(|α|2 + 1)
,

λ
(1)
2 = 1

2
−

√
2|α|2 + 1

2(|α|2 + 1)
, (A2)

are the eigenvalues of M1M†
1 .

(2) Case 2(13): If |ψ〉123 is reexpressed as

|ψ〉123 = (|0〉2 |1〉2)M2

⎛
⎜⎜⎜⎝

|00〉13

|10〉13

|01〉13

|11〉13

⎞
⎟⎟⎟⎠, (A3)

with M2 = (c0 c1 c3 0
c2 0 0 0), then |ψ〉123 can be further de-

composed into the Schmidt form like Eq. (17) in Ref. [54]

with the Schmidt coefficients
√

λ
(2)
1 and

√
λ

(2)
2 , where

λ
(2)
1 = 1

2
+

√
(1 − T )2|α|4 + 2|α|2 + 1

2(|α|2 + 1)
,

λ
(2)
2 = 1

2
−

√
(1 − T )2|α|4 + 2|α|2 + 1

2(|α|2 + 1)
, (A4)

are the eigenvalues of M2M†
2 .

(3) Case 3(12): If |ψ〉123 is reexpressed as

|ψ〉123 = (|0〉3 |1〉3)M3

⎛
⎜⎜⎜⎝

|00〉12

|10〉12

|01〉12

|11〉12

⎞
⎟⎟⎟⎠, (A5)

with M3 = (c0 c1 c2 0
c3 0 0 0), then |ψ〉123 can be further de-

composed into the Schmidt form like Eq. (17) in Ref. [54]

with the Schmidt coefficients
√

λ
(3)
1 and

√
λ

(3)
2 , where

λ
(3)
1 = 1

2
+

√
T 2|α|4 + 2|α|2 + 1

2(|α|2 + 1)
,

λ
(3)
2 = 1

2
−

√
T 2|α|4 + 2|α|2 + 1

2(|α|2 + 1)
, (A6)

are the eigenvalues of M3M†
3 .

APPENDIX B: CHECKING LOCC MONOTONICITY
OF CONCURRENCE FILL

Following the methods in Refs. [12,22,23], we check the
LOCC monotonicity of F123(|ψ〉123).

First, we set X1 = D1V and X2 = D2V as binary-
outcome positive-operator-valued measures (POVMs) satisfy-
ing X †

1 X1 + X †
2 X2 = Î (Î is a 2 × 2 identity matrix), where

D1 =
(

sin θ1 0
0 sin θ2

)
, D2 =

(
cos θ1 0

0 cos θ2

)
, (B1)

and

V =
(

cos κ1 −eiκ2 sin κ1

sin κ1 eiκ2 cos κ1

)
, (B2)

with θi, κi ∈ [−π, π ].
Second, acting X1 and X2 on the mode-1 of |ψ〉123, we

obtain

|ψ (1)〉123 = 1√
p1

(X1 ⊗ Î ⊗ Î )|ψ〉123, (B3)

and

|ψ (2)〉123 = 1√
p2

(X2 ⊗ Î ⊗ Î )|ψ〉123, (B4)

respectively. Here p1 and p2 denote their respective success
probability, satisfying p1 + p2 = 1.

Third, we calculate F (|ψ (1)〉123) and F (|ψ (2)〉123) and
check LOCC monotonicity. Through numerical search, we
find that the following inequality:

F (|ψ〉123) −
2∑

i=1

piF (|ψ (i)〉123) � 0 (B5)

is always satisfied in all possible parameters (including |α|, φ,
T , θ1, θ2, κ1, and κ2) space. Since it is nonincreasing under
the LOCC, we say that the concurrence fill is entanglement
monotone at least for our considered state |ψ〉123 and under
our chosen POVMs.

Moreover, similar conclusions can be obtained when the
LOCC operations are employed on mode-2 and mode-3.
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APPENDIX C: ANALYTICAL EXPRESSIONS OF VARIANCES AND COVARIANCES

Within the defined space spanned by {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}, the density operator ρ123 =
|ψ〉123〈ψ | can be comprehensively expanded into a matrix representation

ρ123 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
|α|2+1

α
√

2(1−T )
2(|α|2+1)

− α
√

2T
2(|α|2+1)

0 α
√

2
2(|α|2+1)

0 0 0

α∗√2(1−T )
2(|α|2+1)

|α|2(1−T )
2(|α|2+1)

−|α|2√T (1−T )
2(|α|2+1)

0 |α|2√1−T
2(|α|2+1)

0 0 0

− α∗√2T
2(|α|2+1)

−|α|2√T (1−T )
2(|α|2+1)

|α|2T
2(|α|2+1)

0 − |α|2√T
2(|α|2+1)

0 0 0

0 0 0 0 0 0 0 0

α∗√2
2(|α|2+1)

|α|2√1−T
2(|α|2+1)

− |α|2√T
2(|α|2+1)

0 |α|2
2(|α|2+1)

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following variances and covariances can be provided
for the selected observables.

(1) Three variances for Alice are

δ2A1 = |α|4 + (1 − cos 2φ)|α|2 + 1

(|α|2 + 1)2
,

δ2A2 = |α|4 + (1 + cos 2φ)|α|2 + 1

(|α|2 + 1)2
, (C1)

δ2A3 = |α|4 + 2|α|2
(|α|2 + 1)2

,

which lead to

∑
i

δ2Ai = 3|α|4 + 4|α|2 + 2

(|α|2 + 1)2
. (C2)

(2) Three variances for Bob are

δ2B1 = |α|4 + (2 − T − T cos 2φ)|α|2 + 1

(|α|2 + 1)2
,

δ2B2 = |α|4 + (2 − T + T cos 2φ)|α|2 + 1

(|α|2 + 1)2
, (C3)

δ2B3 = (2T − T 2)|α|4 + 2T |α|2
(|α|2 + 1)2

,

which lead to

∑
i

δ2Bi = (2 + 2T − T 2)|α|4 + 4|α|2 + 2

(|α|2 + 1)2
. (C4)

(3) Three variances for Charlie are

δ2C1 = |α|4 + (1 + T − (1 − T ) cos 2φ)|α|2 + 1

(|α|2 + 1)2
,

δ2C2 = |α|4 + (1 + T + (1 − T ) cos 2φ)|α|2 + 1

(|α|2 + 1)2
, (C5)

δ2C3 = (1 − T 2)|α|4 + 2(1 − T )|α|2
(|α|2 + 1)2

,

which lead to

∑
i

δ2Ci = (3 − T 2)|α|4 + 4|α|2 + 2

(|α|2 + 1)2
. (C6)

(4) Three covariances between Alice and Bob are

C(A1, B1) = −
√

T (|α|4 − |α|2 cos 2φ)

(|α|2 + 1)2
,

C(A2, B2) = −
√

T (|α|4 + |α|2 cos 2φ)

(|α|2 + 1)2
, (C7)

C(A3, B3) = − T |α|4
(|α|2 + 1)2

.

(5) Three covariances between Alice and Charlie are

C(A1,C1) =
√

1 − T (|α|4 − |α|2 cos 2φ)

(|α|2 + 1)2
,

C(A2,C2) =
√

1 − T (|α|4 + |α|2 cos 2φ)

(|α|2 + 1)2
, (C8)

C(A3,C3) = − (1 − T )|α|4
(|α|2 + 1)2

.

(6) Three covariances between Bob and Charlie are

C(B1,C1) = −
√

T (1 − T )(|α|4 − |α|2 cos 2φ)

(|α|2 + 1)2
,

C(B2,C2) = −
√

T (1 − T )(|α|4 + |α|2 cos 2φ)

(|α|2 + 1)2
, (C9)

C(B3,C3) = −T (1 − T )|α|4
(|α|2 + 1)2

.
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