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Nonstabilizerness of permutationally invariant systems
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Typical measures of nonstabilizerness of a system of N qubits require computing 4N expectation values, one
for each Pauli string in the Pauli group, over a state of dimension 2N . For permutationally invariant systems, this
exponential overhead can be reduced to just O(N3) expectation values on a state with a dimension O(N ). We
exploit this simplification to study the nonstabilizerness phase transitions of systems with hundreds of qubits.
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I. INTRODUCTION

Entanglement, by itself, is not sufficient to achieve
quantum advantage. States with low entanglement can be rep-
resented with polynomial effort using tensor networks [1–3],
but there also exist highly entangled states that can be ef-
ficiently manipulated using classical computers [4,5]. On a
quantum computer, any N-qubit evolution can be arbitrarily
approximated using a combination of four types of unitary
operators, the two-qubit controlled-NOT (CNOT) gate and the
one-qubit Hadamard H , π/2 phase shift S, and π/4 phase
shift T gates [6]. The subset {H, S, CNOT} is nonuniversal and
generates the Clifford group CN . States that can be built by
only applying gates in CN on the computational basis states
are known as stabilizers and they admit an efficient classical
representation regardless of their entanglement [4,7,8].

Adding the T gate to the ones in CN allows for universal
quantum computation. States that are built using unitaries
from the Clifford + T group have an extra resource known
as nonstabilizerness, or, colloquially, quantum magic [9–14],
which renders them classically intractable when their en-
tanglement is beyond the capabilities of tensor networks.
This nontrivial interplay between entanglement and quantum
magic is believed to be the key to unlock quantum advantage.
For this reason, quantifying the amount of nonstabilizerness
has become a central pursuit, not only in quantum information
theory, but also in related areas such as condensed-matter and
statistical physics [15].

While there exist many universally accepted entanglement
measures [6,16], measures of nonstabilizerness are still under
scrutiny. In general, the nonstabilizerness of a state can be
measured as its distance from the set of stabilizers [11,17–
26], but quantities based on this definition are often difficult to
compute. More appealing options are based on the analysis of
the properties of the expectation values of all Pauli strings over
the quantum state, the so-called Pauli spectrum. In fact, the
Pauli spectrum of stabilizer states has precise properties [8]
and any deviation is a symptom of nonstabilizerness [27].

*Contact author: gianluca.passarelli@unina.it

Among these measures, we cite the stabilizer nullity [28],
the average entanglement-spectrum flatness over Clifford or-
bits [29,30], and the stabilizer k-Rényi entropies (SREs) [31].

Evaluating the above quantities, however, is extremely
challenging, and the investigation of their properties so far
has been limited to systems of N ∼ 10 qubits [31,32] even
in the case of integrable systems [33,34], with only few ex-
ceptions [35–38]. In fact, the dimension of the Hilbert space
of a system of N spins grows exponentially as D = 2N , and
the number of Pauli strings P̂ = σ̂

α1
1 ⊗ · · · ⊗ σ̂

αN
N , with α j ∈

{0, x, y, z} in the Pauli group PN , grows as D2 = 4N . This
exponential complexity in both the state dimension and the
number of expectation values makes it impossible to compute
the nonstabilizerness of large systems. This is especially rel-
evant since many-body systems have been shown to host a
plethora of exotic entanglement-related phenomena [39–42]
and recent works started investigating these types of phenom-
ena also in magic [31,32,37,43,44]. It is therefore essential
to find systems where the nonstabilizerness can be computed
efficiently for large N . An important step forward in this
direction has been achieved when the quantum state can be
efficiently represented by tensor networks [35–38]. It would
also be desirable to find nontrivial many-body systems that
admit an exact solution. In this work we focus on systems that
are symmetric under the permutation group [45,46]. In this
case one can exploit the symmetry to reduce the interesting
portion of the Hilbert space to a more manageable subspace,
allowing the study of much larger systems than normally ac-
cessible. For permutationally invariant systems, it is possible
to compute the nonstabilizerness measures based on the Pauli
spectrum with only a polynomial effort rather than an expo-
nential one [47,48]. This allows studying the nonstabilizerness
phase diagram for this broad class of systems for large N .

This paper is organized as follows. In Sec. II we review
the definition of nonstabilizerness and some of its measures.
In Sec. III we show that permutational invariance allows us
to simplify the evaluation of these quantities and explicitly
construct the representation of the symmetric Pauli group. In
Sec. IV we apply our technique to the study of the Lipkin-
Meshkov-Glick model [49] and, in Sec. V, of the p-spin
model. In Sec. VI we apply mean-field theory to the two
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models studied. In Sec. VII we summarize and draw our
conclusion.

II. NONSTABILIZERNESS MEASURES

The stabilizer Rényi entropies are extensively studied as
probes of quantum magic. Entropies with Rényi index k < 2
are nonmonotone under measurements in the computational
basis followed by conditioned Clifford operations [50], which
is why we will focus on the 2-Rényi entropy, the simplest one
without this issue [51], and refer to it as SRE. For pure states,
the SRE is defined as

M2(|ψ〉) = − ln

⎛
⎝ ∑

P̂∈PN

(〈ψ |P̂|ψ〉2
/D)

2

⎞
⎠ − ln D. (1)

We recall that Clifford operators map each string of Pauli
operators to a single string of Pauli operators. Given a pure-
state density matrix ρ̂ = |ψ〉 〈ψ |, the state |ψ〉 is a stabilizer
if and only if ρ̂ has 2N nonzero components over the strings
of the Pauli group while the rest are zero [8]. Therefore,
the SRE measures the entropy of the probability distribution
�P = Tr(P̂ρ̂ )2/D, shifted by that of a stabilizer state. As
shown in Ref. [52], it is a good nonstabilizerness measure
and satisfies the bound 0 � M2 < N ln 2, with M2 = 0 if and
only if |ψ〉 is a stabilizer.

The stabilizer nullity

ν(|ψ〉) = N − log2(|Stab |ψ〉 |) (2)

is another measure of nonstabilizerness that has the impor-
tant property of being a provable nonstabilizerness monotone
after measurements of Pauli operators [28]. Here Stab |ψ〉
denotes the subset of Pauli strings P̂ such that P̂ |ψ〉 = |ψ〉.
Stabilizer states are such that |Stab |ψ〉 | = 2N ; hence their
nullity is zero by definition. States with finite nonstabilizer-
ness have |Stab |ψ〉 | = 2M for some M < N and a nonzero
nullity. States that are stabilized only by the identity have
maximum nullity ν = N . The stabilizer nullity is related to
the stabilizer k-Rényi entropies Mk by the limit

ν = lim
k→∞

(k − 1)Mk (3)

and can also be computed from the Pauli spectrum [see
Eq. (16)]. The number of 1’s in the Pauli spectrum is equal
to |Stab |ψ〉 | [28].

The average entanglement-spectrum flatness along orbits
of the Clifford group CN [30] is another recently proposed
measure of nonstabilizerness. Compared to more intricate
measures based on minimization of cost functions involving
all stabilizer states, where symmetries are also equally ben-
eficial [21], the entanglement-spectrum flatness shares with
the SRE the fact that it is more easily computable, though,
in general, with exponential effort. Moreover, it establishes a
direct connection between entanglement response and nonsta-
bilizerness.

Given the pure-state density matrix ρ̂ = |ψ〉 〈ψ |, we can
consider a bipartition A + B of the N-qubit system made up
of two subsets with NA and NB qubits, respectively, with
NA + NB = N . The reduced density matrix of subsystem A
reads ρ̂A = TrB(ρ̂ ), where TrB is the partial trace over B.

The entanglement-spectrum flatness is defined as FA(|ψ〉) =
TrA(ρ̂3

A) − Tr2
A(ρ̂2

A).
Nonstabilizerness is related to the average spectrum

flatness along the Clifford orbit 	̂ |ψ〉 (for all 	̂ ∈ CN ),
denoted by 〈FA(	̂ |ψ〉)〉CN

. It has been noted that states
with finite nonstabilizerness have a nonflat average entan-
glement spectrum and vice versa. In Ref. [30] it was an-
alytically proven that 〈FA(	 |ψ〉)〉CN

= c(D, DA)Mlin(|ψ〉),
where Mlin = 1 − D‖�(|ψ〉)‖2

2 is the linear entropy, �(|ψ〉)
is the vector of probabilities of the Pauli strings, ‖ · ‖2 is the
Euclidean norm, and c(D, DA) is a coefficient that depends
on the size of the partitions. The linear entropy is related to
the 2-Rényi entropy by the relation M2 = − ln(1 − Mlin );
hence the average entanglement-spectrum flatness is directly
related to the SRE, though it might be exponentially difficult
to resolve due to the scaling of c(D, DA) with N .

Therefore, the average entanglement-spectrum flatness can
be computed as

〈FA〉 = c(D, DA)Mlin ≡
(
D2 − D2

A

)(
D2

A − 1
)

(D2 − 1)(DA + 2)D2
A

Mlin, (4)

where D = 2N and DA is the size of the partition A. For a
balanced bipartition, DA = √

D and c(D, DA) ∼ D−1 for large
N , which means detecting the average entanglement-spectrum
flatness is exponentially hard in N .

In the next section we will show how permutational
invariance allows the efficient computation of these nonsta-
bilizerness measures.

III. PERMUTATIONAL INVARIANCE
AND NONSTABILIZERNESS

A system is permutationally invariant when it is made up
of N identical qubits and its Hamiltonian is only expressed
in terms of collective spin operators Ŝ(N )

α = ∑N
j=1 σ̂ α

j /2. Its
Hamiltonian remains the same after any relabeling of the
particle indices. In this setting, the only states that matter
are those that respect the permutation symmetry of the model
and are built as a symmetric superposition of states with n
excitations, with n = 0, 1, . . . , N . These states form a basis of
the (N + 1)-dimensional symmetric subspace and are known
as Dicke states [46]. They read

|N, n〉 =
(

N

n

)−1/2

Ŝ[|0〉⊗(N−n) |1〉⊗n], (5)

where Ŝ is the symmetrizer operator. Many important states in
quantum information can be expressed in the Dicke basis. For
example, the Greenberger-Horne-Zeilinger (GHZ) state can
be written as |GHZ〉 = (|N, 0〉 + |N, N〉)/

√
2 ≡ (|00 . . . 0〉 +

|11 . . . 1〉)/
√

2, whereas the state |N, 1〉, with one excitation,
corresponds to the |W 〉 = (|00 . . . 01〉 + |00 . . . 10〉 + · · · +
|10 . . . 00〉)/

√
N state. Moreover, permutationally invariant

systems have applications in quantum metrology and quantum
error correction [53–56].

Because of permutation symmetry, the expectation value of
a Pauli string on a symmetric state cannot depend on the order
of the Pauli operators appearing in the string but only on the
number of X , Y , Z , and I gates in the string [57]. Let us call
these numbers Nx, Ny, Nz, and N0 and group them together in
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the quadruple N = {Nx, Ny, Nz, N0}. Of course, one must have
Nx + Ny + Nz + N0 = N . Any summation over the elements
of the Pauli group can then be split as follows for any function
f (P̂): ∑

P̂∈PN

f (P̂) =
∑

N

g(N) f (P̂(N)). (6)

Here the operator P̂(N) is the permutationally symmetric rep-
resentative and g(N) is its degeneracy. The number of distinct
representatives is given by [58]

D =
(

N + 3

3

)
= (N + 1)(N + 2)(N + 3)

6
, (7)

while their degeneracy is given by the multinomial coefficient

g(N) =
(

N

Nx, Ny, Nz, N0

)
= N!

Nx!Ny!Nz!N0!
. (8)

It is possible to explicitly construct the matrix representa-
tion of the symmetric representative given a quadruple N, in
the Dicke basis. We start by recalling the following property
of Pauli matrices, which is a trivial consequence of Euler’s
formula:

σ̂
α j

j = (−i) exp
[
i(π/2)σ̂ α j

j

]
. (9)

Given a (nonsymmetric) Pauli string P̂(α1, . . . , αN ) =⊗N
j=1 σ̂

α j

j , we can rewrite it in the following alternative way,
exploiting Eq. (9) and the fact that Pauli matrices acting on
different particles commute with each other:

P̂(α1, . . . , αN ) = (−i)N−N0 exp

⎛
⎝i

π

2

∑
j:α j=x

σ̂ x
j

⎞
⎠

× exp

⎛
⎝i

π

2

∑
j:α j=y

σ̂
y
j

⎞
⎠ exp

⎛
⎝i

π

2

∑
j:α j=z

σ̂ z
j

⎞
⎠.

(10)

We recognize, in the exponents, the components of the total
spin operators built considering the particles on which the
Pauli string acts with X , Y , or Z , respectively. The fundamen-
tal insight is that, for a permutationally invariant system, the
specific lattice indices must not matter but only the number of
times each gate appears in the Pauli string. This means that
we can consider the total spin components of fully symmetric
subsystems of Nx, Ny, and Nz particles and write the symmetric
representative P̂(N) as

P̂(N) = (−i)N−N0 eiπ Ŝ(Nx )
x eiπ Ŝ

(Ny )
y eiπ Ŝ(Nz )

z . (11)

In order to apply Eq. (11) to a Dicke state, first we have to
decompose the state to highlight its symmetric components.
To do so, we can iteratively exploit the decomposition [59]

|N, m〉 =
min(Nx,n)∑

nx=0

√
pn,nx |Nx, nx〉 ⊗ |N − Nx, n − nx〉 , (12)

with pn,nx = (Nx

nx

)(N−Nx

n−nx

)
/
(N

n

)
, which after three applications

leads to the representation

|N, m〉 =
Nx∑

nx=0

Ny∑
ny=0

Nz∑
nz=0

√√√√(Nx

nx

)(Ny

ny

)(Nz

nz

)( N0

n−nx−ny−nz

)
(N

n

)
× |Nx, nx〉 ⊗ |Ny, ny〉 ⊗ |Nz, nz〉
⊗ |N0, n − nx − ny − nz〉 
(n − nx − ny − nz ),

(13)

where 
(x) is the Heaviside step function [
(x < 0) =
0,
(x � 0) = 1]. At this point, we can use the following
identities of the (Nα + 1)-dimensional irreducible representa-
tions of the rotation matrices [60] (α ∈ {x, y, z}), which allow
us to expand the three exponentials in Eq. (11) in the bases of
their respective spaces:

eiπ Ŝ(Nx )
x = (i)Nx

Nx∑
n′′

x =0

|Nx, n′′
x 〉 〈Nx, Nx − n′′

x | , (14a)

eiπ Ŝ
(Ny )
y =

Ny∑
n′′

y =0

(−1)n′′
y |Ny, n′′

y 〉 〈Ny, Ny − n′′
y | , (14b)

eiπ Ŝ(Nz )
z = (i)Nz

Nz∑
n′′

z =0

(−1)n′′
z |Nz, n′′

z 〉 〈Nz, n′′
z | . (14c)

Putting everything together, we finally arrive at the matrix
representation of P̂(N):

〈N, m|P̂(N)|N, n〉

= (−i)Ny
∑

nx,ny,nz

(−1)ny+nz

(Nx

nx

)(Ny

ny

)(Nz

nz

)( N0

n−nx−ny−nz

)
√(N

n

)(N
m

)
× δm,n+(Nx−2nx )+(Ny−2ny )
(n − nx − ny − nz ). (15)

Each of the D = O(N3) symmetric Pauli strings is a sparse
matrix with at most O(N2) nonzero matrix elements. Accord-
ing to Eq. (15), O(N2) operations are required to build each
matrix element, since one of the three sums is canceled by
the Kronecker δ. Therefore, with O(N7) easily parallelizable
operations, it is possible to compute the full representation
of the Pauli group in the Dicke basis and store it in files for
later access. At that point, the representation can be reused:
In order to read it from memory, only O(N5) operations are
required since one no longer has to compute the double sum
in Eq. (15). Thus, if |ψ〉 is a permutationally invariant state,
instead of computing the 4N elements of the Pauli spectrum,
which is the set

Spec |ψ〉 = {| 〈ψ |P̂|ψ〉 |}P̂∈PN
(16)

of 4N real numbers ri ∈ [0, 1] given by the expectations of
the Pauli strings on |ψ〉, one can just store the D expecta-
tion values of the symmetric representatives P̂(N) and their
degeneracy g(N) for any quadruple N. Then the SRE can be
computed using Eqs. (1) and (6).

Permutational invariance simplifies the calculation of other
measures of nonstabilizerness, such as the entanglement-
spectrum flatness [30] and the stabilizer nullity [28]. The
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former is directly related to Mlin and can be computed effi-
ciently using the symmetric representation of the Pauli group,
Eq. (15). Instead, the stabilizer nullity can be computed as

ν(|ψ〉) = N − log2

⎛
⎝|〈ψ |P̂(N)|ψ〉|=1∑

N

g(N)

⎞
⎠, (17)

where the sum is restricted to those N such that
| 〈ψ |P̂(N)|ψ〉 | = 1, with poly(N ) operations.

This exponential simplification, arising from permutation-
ally invariant state tomography [47,48], is what allows us to
exactly study the nonstabilizerness of systems of hundreds of
qubits.

IV. LIPKIN-MESHKOV-GLICK MODEL

Equipped with these tools, we study the nonstabilizer-
ness in the spectrum of the Lipkin-Meshkov-Glick (LMG)
model [49]. First, we focus on the ground state. We consider
the Hamiltonian (in units of the exchange coupling J)

Ĥ/J = −(1 − ξ )Ŝ(N )
z − (4ξ/N )

(
Ŝ(N )

x

)2
, (18)

where ξ ∈ [0, 1]. The dimensionless transverse field, con-
trolling the properties of the model, is γ (ξ ) ≡ (1 − ξ )/4ξ ∈
[0,∞]. This model features a second-order quantum phase
transition at the critical value ξc = 1/5 (γc = 1): For γ < γc

the ground state (GS) is ferromagnetic (aligned along x), while
for γ > γc the state is paramagnetic. The order parameter
describing this symmetry-breaking transition is the magneti-
zation in the x direction mx. The half-system entanglement
entropy of the ground state SN/2 displays a ln N divergence at
the critical point of the mean-field (MF) transition, approaches
the value SN/2 = ln 2 in the zero-field limit, where the ground
state is a GHZ state in the x direction, and becomes zero in
the opposite limit, where the GS is the product state polarized
along z [59].

While the ground-state properties of the SRE can be in-
ferred by mean-field theory (see Sec. VI), states at finite
energy density go beyond this description. The LMG Hamil-
tonian is made up of two terms: The first one has a U(1)
symmetry structure, whereas the second one has an SO(2)
symmetry. Together, they form a Hamiltonian with a U(2)
algebraic structure. When ξ > ξc this model is known to have
an excited-state quantum phase transition (ESQPT) at finite
energy density [61]: For any value of ξc � ξ � 1 there exists
a finite energy EESQPT(ξ ) around which the density of states is
strongly peaked, i.e., the excited energy levels cluster around
the separatrix line EESQPT(ξ ). In the following we will shift the
Hamiltonian (18) by its ground-state energy Ĥ (ξ ) → Ĥ (ξ ) −
EGS(ξ ). Then the analytical expression of EESQPT(ξ ) can be
derived in the large-N limit with a semiclassical analysis
and reads EESQPT(ξ )/N = (1 − 5ξ )2/16ξ for ξ � ξc. Some
physical quantities, such as the longitudinal and transverse
magnetization and the participation ratio in the x or z Dicke
bases [61], are singular at the ESQPT and can thus be used
as order parameters of the transition. Interestingly, the study
of the ESQPT yields a detailed fingerprint of the properties of
the full many-body spectrum that goes beyond the mean-field
description of the transition itself.

FIG. 1. (a) Stabilizer Rényi entropy M2 of the ground state of
the LMG model as a function of the transverse field strength γ for
several sizes (log-linear scale). (b) Scaling with N of the SRE for the
values of the transverse field marked in Fig. 1(a) (log-log scale).

We will explore the properties of the nonstabilizerness
of the whole energy spectrum at finite energy density in a
numerically exact fashion. We will show that its study reveals
a very rich phenomenology, not grasped by the analysis of
entanglement.

A. Ground state

In Fig. 1(a) we report M2( |GS(γ )〉 ) as a function of
the transverse field strength for system sizes ranging from
N = 10 to N = 100 with increments of five qubits between
subsequent curves. We see that the ground-state SRE is zero
both for γ = 0 and for large γ since both the GHZ state and
the fully polarized state along the z axis are stabilizer states,
while it develops a peak for 0 < γ < 1 that grows with N .
The analysis of the SRE in the thermodynamic limit tells us
that the peak position tends to γ ∗ = 1/

√
2 and thus it does

not approach the MF critical point, as opposed to the peak of
entanglement [59,62–64].

We can clearly distinguish two different scalings of the
SRE with N , depending on the strength of the transverse
field. For γ < γc, M2 is extensive and the stabilizer density
m2 = M2/N is constant. Adopting the same terminology used
to describe entanglement phases, we identify this as a volume-
law phase of magic. This result is surprising because it tells us
that the ground state of the LMG model in the ferromagnetic
phase cannot be prepared efficiently using Clifford gates, de-
spite the fact that the large-N limit of this model is exactly
reproduced by mean-field theory. Instead, when γ > γc we
observe that the SRE becomes independent of N , signaling
the onset of what can be called an area-law phase of magic.
Here the density of magic m2 goes to zero with N , suggesting
that large-N ground states of the LMG model in this phase
are essentially stabilizer states [65]. However, we find that
the stabilizer nullity is ν = 0 only for γ = 0 (and eventually
γ = ∞) and ν = N for all other values of the transverse field.

As shown in Fig. 1(b) for systems up to N = 160 spins, the
SRE follows a power-law scaling of the form M2 ∼ Nβ with
β � 0. The scaling exponent vanishes in the area-law phase
(see the red line with diamonds) and is close to one in the
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TABLE I. Exponents of the scaling law M2 ∼ Nβ and corre-
sponding standard deviations for the LMG model.

γ β σβ

0.33 0.973 0.002
0.65 0.988 0.001
1.00 0.401 0.006
1.66 0.054 0.003

volume-law phase (see the blue line with circles and orange
line with triangles; see also Table I). At the transition (green
line with squares), the scaling with N only looks subextensive
due to finite-size effects, but mean-field theory tells us that
the SRE is extensive (see Sec. VI). Near the critical point, due
to finite-size effects, we also observe a superextensive region
with an exponent β > 1, inconsistent with the mean-field pre-
dictions. The bound M2 < N ln 2 is always satisfied [52].

The average flatness follows the behavior of Mlin. For ease
of visualization, we plot directly Mlin in Fig. 2 for the GS of
the LMG model. We can see that the flatness correctly detects
the volume-law phase of magic, where Mlin is close to one,
while it becomes small in the area-law region or when γ =
0 and the ground state is a stabilizer. As shown in the inset,
however, 〈FA〉 is more difficult to obtain for large N : Already
for these sizes, it can go down below machine precision.

B. Excited states

We show the spectrum of the Hamiltonian (18) in Fig. 3(a)
for N = 256. The separatrix line is marked with white dots
and is clearly distinguishable by the peak in density of eigen-
states. It has been shown that states exactly at the critical line
are strongly localized around the ground state of the U(1)
part of the Hamiltonian [61], i.e., the state with all spins
pointing up. This is a stabilizer state with zero magic. Close
to the critical line states are generally entangled and have
finite magic. Therefore, it is reasonable to expect that both the
entanglement entropy and the SRE would sharply decrease in
correspondence with the ESQPT, and indeed this is what we
observe in Figs. 3(b) and 3(c), where we show the entangle-

FIG. 2. Average entanglement-spectrum flatness of the ground
state of the LMG model as a function of the transverse field strength.

FIG. 3. (a) Spectrum of the Hamiltonian (18) for N = 256.
(b) Entanglement entropy and density of magic for ξ = 0.6. (c) Same
as (b) for ξ = 0.8.

ment entropy and the density of magic m2 = M2/N for all the
eigenstates along the cuts ξ = 0.6 and 0.8, respectively. Both
these quantities sharply decrease when the cut intercepts the
separatrix line, signaling the transition. Nevertheless, compar-
ing the entanglement entropy and the SRE, we see that the
latter has a richer structure, with cusps, local minima, and
local maxima as a function of the energy density.

We focus on ξ = 0.6; any ξ > ξc shows the same features.
In Fig. 4(a) we show the SRE along this cut for different sizes.
There are regions where M2 is extensive and other regions
where it is not. We recall that in permutationally symmetric
systems the maximum amount of bipartite entanglement en-
tropy is Smax = log D = log(N + 1), whereas the maximum
amount of magic is not restricted by symmetry: The max-
imum SRE is associated with a flat Pauli spectrum (except
for the projection on the identity operator), which is allowed
by permutation symmetry. In Fig. 4(b) we plot the scaling of
M2 with N for several energy densities, marked in Fig. 4(a)
using the same symbols. We see indeed regions where the
exponent of the scaling law M2 ∼ Nα is close to α ∼ 1 and
other regions where α becomes close to zero. This happens,
in particular, around the critical energy density, where, ad-
ditionally, the SRE has a cusp. In the thermodynamic limit,

FIG. 4. (a) SRE as a function of the energy density, along the cut
ξ = 0.6, for several system sizes. (b) Scaling of M2 with N for the
energy densities marked in (a) with the same symbols and colors.
(c) Numerical derivative of the SRE around the critical density for
the same sizes as in (a).
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FIG. 5. Pauli spectrum of different eigenstates of the LMG
model at finite energy densities (N = 256).

its first derivative has a finite jump at EESQPT as displayed in
Fig. 4(c), where we plot the numerical derivative of the density
of magic around the critical energy density and observe the
development of a jump at the transition for large N .

In order to better understand the differences between ex-
cited states with low or high magic, it is interesting to analyze
the Pauli spectrum [Eq. (16)] for different energy densities.
For permutationally invariant systems, we only have to com-
pute D distinct expectation values with their degeneracies
g(N). In Fig. 5 we show the Pauli spectra of several eigenstates
for N = 256 (D = 2 862 209). In order to improve visualiza-
tion, we sort the expectation values in decreasing order and
only report one expectation value per symmetric represen-
tative without keeping track of its degeneracy. We observe
that eigenstates in the volume-law phase of magic have a
featureless Pauli spectrum. This has to be compared with the
steplike spectra of states with minimal magic, which more
closely resemble the spectrum of stabilizer states, which have
nonzero expectation values (±1) over exactly 2N Pauli strings
by definition. Notice, however, that in all cases the Pauli spec-
trum is significantly nonzero only for very few Pauli strings
(compared to D), which means one could easily combine
the exponential reduction provided by permutation symmetry
with the sampling techniques discussed in Refs. [36,50,66,67]
for an even more efficient estimation of the nonstabilizerness.

V. FERROMAGNETIC p-SPIN MODEL

The LMG model can be generalized to systems with
infinite-range p-body interactions with p > 2, giving rise to
the ferromagnetic p-spin model [68,69]. Its Hamiltonian reads

Ĥ/J = −γ Ŝ(N )
z − 1

2

(
2

N

)p−1(
Ŝ(N )

x

)p
, (19)

from which one can reobtain the LMG model by setting
p = 2. As opposed to the LMG, the p-spin model with p > 2
undergoes a first-order quantum phase transition in its ground
state as a function of the transverse field γ , separating the
paramagnetic from the ferromagnetic phase. The value of the
critical field depends on p and has been derived using mean-
field theory for all values of p [70]. The bipartite entanglement
entropy obeys an area law everywhere and is discontinuous at
the transition [71].

FIG. 6. (a) Stabilizer Rényi entropy M2 of the ground state of
the p-spin model (p = 3) as a function of the transverse field strength
γ for several sizes (log-linear scale). (b) Scaling with N of the SRE
for the values of the transverse field marked in (a) (log-log scale).

We show the SRE of the ground state of the p-spin model
with p = 3 in Fig. 6(a) as a function of γ . First, we see that,
in the ferromagnetic phase, M2 grows with γ and N , until the
critical point of the MF transition is reached. At that point, the
SRE is discontinuous and suddenly jumps to a value close to
zero. In the ferromagnetic phase, the SRE grows with N , scal-
ing as M2 ∼ Nβ with β ≈ 1, i.e., it is extensive. By contrast,
in the paramagnetic region, the SRE decreases with N : The
scaling exponent β becomes negative, as shown in Fig. 6(b),
for systems up to N = 160 spins, and in Table II. The negative
exponent tells us that the next-order term in powers of 1/N
around the mean-field nonstabilizerness density decreases as
1/N2, as opposed to the LMG model, where the next-order
term scales as 1/N (discussed later). The stabilizer nullity is
ν = 0 only for γ = 0 (and eventually γ = ∞) and ν = N for
all other values of the transverse field.

The average flatness follows M2, as we show in Fig. 7.
Here we see that the average flatness becomes discontinuous
at the transition for large N and that the issue of detecting
an exponentially small quantity highlighted in the previous
section still remains.

Finally, in Fig. 8 we show the Pauli spectra of the GS of the
LMG and of the p-spin model for the values of the transverse
field marked in Figs. 1 and 6, for N = 80 (D = 91 881). In
order to improve visualization, we sort the expectation values
in decreasing order and only report one expectation value per
symmetric representative without keeping track of its degen-
eracy. When γ > γc, we see that the ground state becomes
close to a stabilizer state (which would be represented by a

TABLE II. Exponents of the scaling law M2 ∼ Nβ and corre-
sponding standard deviations for the p-spin model.

γ β σβ

0.33 0.943 0.003
0.65 0.906 0.008
1.00 −1.138 0.008
1.66 −1.028 0.001

022436-6



NONSTABILIZERNESS OF PERMUTATIONALLY … PHYSICAL REVIEW A 110, 022436 (2024)

FIG. 7. Average entanglement-spectrum flatness of the ground
state of the p-spin model (p = 3) as a function of the transverse field
strength.

1-0 step function). Instead, when γ � γc, we see that the Pauli
distribution develops a tail, which is significantly nonzero
only for very few Pauli strings (compared to D).

VI. MEAN-FIELD STABILIZER RéNYI ENTROPY

For permutationally invariant systems, mean-field theory
is exact in the thermodynamic limit. This allows deriving the
analytical expression of the stabilizer Rényi entropy M2 of
the ground states of the models considered for large N [65].
We report the general scheme in this section.

The system’s Hamiltonian is only expressed in terms
of collective magnetization operators Ĥ = Ĥ ({Ŝα}). We can
express the Hamiltonian in terms of the magnetization com-
ponents m̂α = Ŝα/S with S = N/2 and define the Hamiltonian
density ĥ = Ĥ/N . Then we note that [m̂α, m̂β ] ∼ O(1/N );
therefore, in the thermodynamic limit, the magnetization
components behave like classical variables. In this limit, cor-
relations between spins are negligible and the system’s ground
state is a tensor product of single-particle states aligned along
the same angles (θ, φ), a so-called spin-coherent state:

|θ, φ〉 =
N⊗

k=1

(
cos

θ

2
|0〉k + sin

θ

2
eiφ |1〉k

)
. (20)

The expectation of ĥ over the spin-coherent state gives the
variational semiclassical energy h(θ, φ), whose minimum cor-

FIG. 8. Pauli spectrum for N = 80 (D = 91 881) for (a) the
LMG model and (b) the p-spin model (p = 3). Symbols refer to the
values of γ marked in Figs. 1 and 6.

FIG. 9. Comparison between the nonstabilizerness density m2

evaluated with mean-field theory and with finite-size numerical sim-
ulations for the (a) LMG model and (b) p-spin model.

responds to the ground-state energy in the thermodynamic
limit and whose optimal angles (θ∗, φ∗) allow writing the
ground state as is Eq. (20). Then, since the ground state is
a product state, we have that M2 = Nm2, with

m2 = − ln

(
1 + sin4 θ∗(cos4 φ∗ + sin4 φ∗) + cos4 θ∗

2

)
.

(21)

For the LMG model [Eq. (18)] we observe that the Hamil-
tonian does not depend on Ŝy and thus we get φ∗ = 0 and write
the semiclassical energy as

h(θ ) = −γ

2
cos θ − 1

4
sin2 θ. (22)

When γ < γc = 1, this function is minimized by θ∗ = 0;
instead, when γ > γc, the minimum is θ∗ = arccos γ . The
order parameter mx = sin θ∗ is continuous at the transition.
The mean-field SRE of Eq. (21), for γ < γc, reads

m2 = − ln(1 + γ 4 − γ 2) (23)

and agrees with our numerical results [see Fig. 9(a)]. Its max-
imum value is found for γ ∗ = 1/

√
2.

For the p-spin model with p = 3 [Eq. (19)] the semiclassi-
cal energy reads

h(θ ) = −γ

2
cos θ − 1

4
sin3 θ (24)

and can be minimized as before. Following Ref. [70], it can be
shown that the order parameter is discontinuous at the transi-

tion and that the critical point is γc = (
√

3/2)
3 ≈ 0.6495. The

MF results agree with our large-N simulations [see Fig. 9(b)].
It is also interesting to study the next-order corrections to

the mean-field density of magic for the two analyzed models.
In general,

m2(γ ) = m(MF)
2 (γ ) + ε(γ , N ). (25)

We numerically compute the difference ε and plot it in
Figs. 10(a) and 10(b) as a function of the transverse field
for several system sizes. We can see that in the ferromag-
netic region γ < γc the curves generally do decrease with N ,
with some oscillations. In the paramagnetic region γ > γc,
we see that the plotted quantity decreases with N without
oscillations. Moreover, we can clearly see that the scaling
with N is different in the two cases [the curves are more
spread out in Fig. 10(b) than in Fig. 10(a)]. By focusing on
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FIG. 10. Next-to-leading order of the density of nonstabilizer-
ness with respect to the mean-field solution as a function of (a) and
(b) γ and (c) and (d) N for the two models analyzed.

some values of γ , we indeed observe different scalings with
the system size. We plot ε as a function of N in Figs. 10(c)
and 10(d). In the paramagnetic region, e.g., γ = 1.66, we find
εLMG ≈ 1/10N and εp-spin ≈ 0.9/N2. While we do not have
an analytical explanation of these scalings, they allow us to
understand the two very different scalings of the SRE with N
in the paramagnetic phase of the two models analyzed (Figs. 1
and 6).

VII. CONCLUSION

To summarize, exploiting the representation of the Pauli
group in the Dicke basis, we studied the stabilizer Rényi

entropy and other nonstabilizerness measures of permutation-
ally symmetric systems, finding evidence of quantum magic
phase transitions not detected in the entanglement that are
related to their symmetry-breaking transitions. Above the
critical point, quantum magic becomes zero in the thermody-
namic limit. Below the critical point, the LMG and the p-spin
models have a volume-law phase of magic. This result shows
that it is possible to have a finite nonstabilizerness density,
despite the existence of a semiclassical limit. Possible future
directions include the study of the nonstabilizerness of per-
mutationally invariant finite-temperature states, its dynamics
after a quantum quench or annealing [34,36], and the relation
between nonstabilizerness and chaos [72–74] in infinite-range
models.
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