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We prove, modulo a conjecture on quantum steering ellipsoids being true, the existence of the phenomenon
of locally inaccessible hidden quantum correlations, that is, the existence of two-particle states whose hidden
quantum correlations cannot be revealed by local filters implemented exclusively on one side of the experiment
but that can still be revealed when both parties cooperate in applying judiciously chosen local filters. The
quantum correlations considered here are the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality
for Bell nonlocality and the violation of the F3 inequality for Einstein-Podolsky-Rosen steering. Specifically, we
provide a necessary criterion for guaranteeing the presence of such phenomena for arbitrary two-qubit states.
This criterion in turn relies on the conjecture that the maximal violations of CHSH inequality and F3 inequality
are both upper bounded by functions that depend on the magnitude of the quantum steering ellipsoid center. This
latter conjecture, although currently lacking an analytical proof, is supported by numerical results. We use this
necessary criterion to explicitly show examples of two-qubit states with locally inaccessible hidden quantum
correlations and furthermore two-qubit states with locally inaccessible maximal hidden quantum correlations.
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I. INTRODUCTION

The identification and characterization of quantum cor-
relations [1] such as Bell nonlocality [2,3] and Einstein-
Podolsky-Rosen (EPR) steering [4,5] are crucial endeavors
for the development of quantum technologies such as
device-independent and semi-device-independent information
protocols [6]. Quantum states that cannot directly produce
these types of correlations can still however exhibit hidden
versions of them, which can be revealed by implementing
local filtering operations [7–9]. This phenomenon of revealing
or extracting quantum correlations by means of local filtering
operations, first shown to be possible in the works of Popescu
[7] and Gisin [8], has been addressed for revealing various
quantum properties such as hidden Bell nonlocality [7,8], hid-
den EPR steering [10,11], hidden usefulness for teleportation
[9,12], and maximally extracting entanglement [13] and have
been the subject of extensive study [9,12–20]. Local filtering
operations have been successfully implemented and verified
in various experimental setups [11,21–26].

Revealing hidden quantum correlations, for instance,
hidden Bell nonlocality, refers to the situation in which ex-
perimentalists Alice and Bob share a bipartite quantum state,
which itself cannot be used to violate any Bell inequality
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but that can still be transformed (by means of local filtering
operations) into a state that can now violate a Bell inequality.
However, it happens sometimes that local filters on either
Alice’s or Bob’s side alone are enough to reveal these hidden
correlations. This observation then leads one to wonder about
the existence of states for which local filters on either Alice’s
or Bob’s side alone are never enough for the procedure to
work, but that can still be made to work when both parties
cooperate in applying local filters. We refer to the latter phe-
nomenon as locally inaccessible hidden quantum correlations
(see Fig. 1 for an schematic illustration). The main questions
explored in this paper are whether this type of correlations can
actually exist and how to detect them if that is the case.

Before delving into the ways one can propose to tackle
this problem, let us first address some physically motivated
scenarios in which these one-sided variants of the standard
locally filtered Bell test can naturally emerge. First, these
one-sided variants can be found useful when the parties do not
trust each other; then they are each required to be completely
certain that the other party did their job in regard to actually
applying a local filter. In other words, if Alice and Bob share
a state with locally inaccessible hidden correlations, a locally
filtered Bell test displaying a violation of a Bell inequality
will guarantee that local filters were indeed implemented on
both sides of the experiment (since the state does not allow a
violation if only one of the parties acted) and so Alice can be
reassured that Bob did his job in applying the required filter
and vice versa. Second, from a conceptual point of view, we
note that while (hidden) Bell nonlocality is usually regarded
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FIG. 1. (a) Standard hidden CHSH-inequality violation scenario.
Alice and Bob share an entangled bipartite quantum state ρAB which
(i) does not allow for the violation of the CHSH inequality (for arbi-
trary sets of measurements {MA

a|x} and {MB
b|y} in the CHSH scenario)

and yet (ii) there exist local filters fA and fB so that such a violation is
possible. (b) Locally inaccessible hidden CHSH-inequality violation
scenario. Two additional properties are satisfied in this scenario: (iii)
Alice alone cannot generate any violation by implementing arbitrary
local filters and similarly (iv) Bob alone cannot generate any viola-
tion via local filters.

as a “symmetric” property, in the sense that a bipartite state,
as a whole, is either (hidden) nonlocal or not, the existence of
quantum states displaying locally inaccessible hidden quan-
tum correlations suggests that quantum states can still possess
an intrinsic asymmetry with respect to their nonlocal behavior,
since these states would display a hidden nonlocal behavior
when manipulated from Alice’s point of view but not from
Bob’s. Third and finally, we can similarly explore hidden
quantum correlations being locally accessible. We can imag-
ine that local filters might actually be infeasible to implement
by one of the involved parties, say, Bob, due to experimental
limitations, for instance, and therefore it becomes desirable to
consider a scenario addressing the hidden quantum correla-
tions that are locally accessible from Alice’s point of view.

One key difficulty in approaching the above question is to
show that a state cannot display a certain type of quantum
correlation after any local filter has been applied on one side
[27]. For example, considering Bell nonlocality, this would
require methods for finding a local-hidden-variable (LHV)
model for a state, after any filtering has been performed on
one side. Finding LHV models is a notoriously difficult task,
even in the absence of filters [28–30], and the only general
techniques known do not seem to generalize readily to the case
of arbitrary local filters [27].

In order to gain insight into this problem, we first consider
more specialized scenarios. In particular, the most important
Bell inequality is arguably the Clauser-Horne-Shimony-Holt
(CHSH) inequality [31,32]. This is the most basic of all Bell
inequalities, which has been the subject of extensive study
over the years and now also plays a key role in numerous ap-
plications in the domain of device-independent (DI) quantum
information [6]. Our central point here is thus primarily to
explore locally inaccessible hidden violations of the CHSH
inequality. Explicitly, we focus on quantum states that do
not violate the CHSH inequality and explore whether they

can violate it after appropriate one-sided local filters. Such a
phenomenon is relevant, for example, to any DI protocol built
upon violations of the CHSH inequality [6].

We also apply the same reasoning to the case of EPR
steering. Showing that a state is unsteerable, i.e., that it has a
local-hidden-state (LHS) model, is again a difficult problem.
We thus focus on the simplest fixed steering inequality, the F3

inequality, where Bob measures the three Pauli operators on
his qubit system [33,34]. This inequality is again important
from the perspective of one-sided device-independent quan-
tum information and it is therefore relevant to ask whether
there are states that can have locally inaccessible hidden viola-
tions of this inequality, meaning that we concentrate on states
that do not violate the F3 inequality but that can do so after
local filtering operations.

We obtain preliminary positive results in this direction
by deriving a necessary criterion for witnessing states with
locally inaccessible hidden quantum correlations, specifically
for the violation of the CHSH inequality and the F3 inequal-
ity. This criterion relies on the validity of a conjecture on
quantum steering ellipsoids, first described in the work of
Milne et al. [35], which is supported by numerical results
[35]. We use this criterion to provide examples of two-qubit
states displaying the phenomena of B-inaccessible hidden
correlations, AB-inaccessible hidden correlations, and AB-
inaccessible maximal hidden correlations.

This paper is organized as follows. We start in Sec. II with
some preliminaries, notation, and the measures of quantum
correlations that we are interested in: the violation of the
CHSH inequality for Bell nonlocality and the violation of the
F3 inequality for EPR steering. This is followed by a succinct
description of QSEs. In Sec. III we address standard hidden
quantum correlations and formalize what we mean by locally
accessible and inaccessible hidden quantum correlations. We
then derive our main result in the form of a necessary criterion
for detecting locally inaccessible hidden quantum correlations
for arbitrary two-qubit states. In Sec. IV we use this criterion
to explicitly show examples of states with various such prop-
erties. In Sec. V we summarize as well as discuss conclusions,
open problems, and perspectives for future work.

II. PRELIMINARIES

We focus on the scenario where experimentalists Alice
and Bob share an arbitrary two-qubit state ρ ∈ D(C2 ⊗ C2),
which can be written as ρ = 1

4

∑3
i, j=0 Ri jσi ⊗ σ j , where Ri j =

Tr[(σi ⊗ σ j )ρ], with σ0 = 1 and {σi} (i = 1, 2, 3) the Pauli
matrices. It is convenient to write this real matrix as

R =
(

1 bT

a T

)
, (1)

where a = [ai], with ai = Tr[(σi ⊗ 1)ρ], and b = [bi], with
bi = Tr[(1 ⊗ σi )ρ], are the Bloch vectors of the reduced
states and Ti j = Tr[ρ(σi ⊗ σ j )], with i, j = 1, 2, 3, is the
correlation matrix. Bob’s reduced state is given by ρB =
TrA[ρ] = 1

2 (1 + b · σ ), with σ = [σi], and similarly for Al-
ice’s. We are interested in the CHSH inequality, which
accounts for Bell nonlocality, and the F3 inequality, which
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accounts for EPR steering; these two inequalities read

B(ρ, {Ai, B j}) = 1

2
(〈A1B1〉 + 〈A1B2〉

+ 〈A2B1〉 − 〈A2B2〉) � 1,

F3(ρ, {Ai}) = 1√
3

(〈A1σ1〉 + 〈A2σ2〉 + 〈A3σ3〉) � 1,

with the expectation values 〈AiB j〉 = Tr[(Ai ⊗ B j )ρ] and ob-
servables Ai = σ · αi and B j = σ · β j , with αi and β j real unit
vectors. We want to maximize these functions over all possible
measurements so as to maximally violate these inequalities.
The Horodecki criterion [32] and the Costa-Angelo criterion
[34] solve these optimization problems as

B(ρ) = max
{Ai,B j }

B(ρ, {Ai, B j}) =
√

s2
1 + s2

2, (2)

F3(ρ) = max
{Ai}

F3(ρ, {Ai}) =
√

s2
1 + s2

2 + s2
3, (3)

where {si} are the singular values in decreasing order of the
correlation matrix T (1). Let us now consider that Alice
performs a general positive operator-valued measure (POVM)
measurement with OA outcomes as E = {Ee}, e = 1, . . . , OA.
The POVM effects can be written as Ee = 1

2 (1 + γe · σ ), with
|γe| � 1 and |γe| = 1 for projective measurements. After the
implementation of a particular POVM effect, Bob’s reduced
state is “steered” to a state of the form

ρe
B = 1

2
[1 + b(γe) · σ], b(γe) = 1

2pe
(b + T T γe),

with probabilities pe = Tr[(Ee ⊗ 1)ρ] = 1
2 (1 + a · γe). The

Bloch vectors b(γe) turn out to lie on the surface of an el-
lipsoid EB, Bob’s quantum steering ellipsoid (QSE) [35–38],
which is characterized by an ellipsoid matrix QB and a center
cB, which depend on the two-qubit state and are given by [36]

cB =γ 2
a (b − T T a), γa = 1√

1 − a2
, a = |a|, (4)

QB =γ 2
a (T T − baT )

(
1 + γ 2

a aaT
)
(T − abT ), (5)

with a, b, and T as in (1). The square root of the eigenvalues of
QB corresponds to the lengths of the semiaxes of the ellipsoid,
while the eigenvectors correspond to the ellipsoid’s orien-
tation [36]. Therefore, for a given two-qubit state ρ, Bob’s
QSE is specified by the pair EB = {QB, cB}. Similarly, we can
calculate Alice’s QSE EA = {QA, cA} by switching a ↔ b and
replacing T → T T in (4) and (5) [36]. We now address, in
the spirit of Ref. [35], a conjecture that relates the QSE’s
centers and the violation of both the CHSH inequality and
the F3 inequality. More specifically, this conjecture says that
the maximal violation of the CHSH and F3 inequalities can
be upper bounded by a function of the QSE center magnitude
alone, without reference to the QSE matrix. The following is
the QSE conjecture.

Conjecture. For any two-qubit state ρ ∈ D(C2 ⊗ C2), its
maximal violations of the CHSH inequality (2) and the F3

inequality (3) are upper bounded by functions that depend on
the magnitude of the QSE’s center as B(ρ) � fCHSH(cB) and
F3(ρ) � fF3 (cB), respectively, with cB = |cB|.

The part of the conjecture concerning the CHSH inequality
was first introduced in [35], where Milne et al. arrived at

(a)

(b)

FIG. 2. Conjecture on the relationship between two measures of
quantum correlations versus the QSE’s center: (a) CHSH-inequality
violation (2) and (b) F3-inequality violation (3) for 108 randomly
generated arbitrary two-qubit states against the magnitude of their
respective QSE’s center cB (4). Similar plots can be obtained when
analyzing Alice’s QSE center cA (not shown). The horizontal orange
lines at 1 depict the classical bound for these inequalities. Vertical
black lines depict the values cCHSH = 0.5 and cF3 = 0.66, beyond
which states appear to no longer violate the respective inequalities.

this phenomenon via numerical simulations which can be
appreciated in Fig. 2 in [35], reproduced in Fig. 2(a) herein.
Milne et al. [35] additionally conjectured a potential func-
tion fCHSH(cB) = max{√2(1 − cB), 1}. This is an interesting
upper bound which tells us that quantum states with QSE
centers cB > 0.5 [ fCHSH(cB) = 1] cannot violate the CHSH
inequality. Since QSEs are contained within the Bloch ball,
this leads to the appealing geometric observation that states
with QSE centers close (cB > 0.5) to the surface cannot vi-
olate the CHSH inequality. In this work we report, also via
numerical simulations, that the violation of the F3 inequality
displays behavior similar to that of the CHSH inequality, as it
can be appreciated in Fig. 2(b). In Fig. 2 we show that the
conjecture holds true for 108 randomly generated arbitrary
two-qubit states. In particular, we highlight that there seem
to exist values cCHSH = 0.5 and cF3 = 0.66 such that states
with QSE center magnitudes greater than these values can
no longer lead to a violation of the CHSH inequality and
the F3 inequality, respectively. We then address the regions
[cCHSH, 1] and [cF3 , 1] as impossibility regions, which are
extracted from the numerical results in Fig. 2. Exploring a
potential upper bound fF3 (cB) is an interesting task which we
leave however for future research, as here we only require the
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existence of the impossibility regions. It is also worth men-
tioning that Milne et al. [35] proposed an additional conjecture
for the measure of fully entangled fraction which, although
interesting in its own right, is omitted in this work since it
does not display an impossibility region like CHSH or F3. In
the next section we exploit the existence of these impossibil-
ity regions for detecting locally inaccessible hidden quantum
correlations. We now move on to introduce this phenomenon
more formally.

III. HIDDEN QUANTUM CORRELATIONS

In this section we start by addressing the standard pro-
cedure for revealing hidden quantum correlations. We move
on to more restrictive versions, where only one-sided local
filters are allowed, to then formalize what we mean by locally
accessible and inaccessible hidden quantum correlations. We
use the previous conjecture on QSEs to derive a sufficient
criterion for detecting locally inaccessible hidden quantum
correlations, specifically, locally inaccessible hidden CHSH-
inequality violation and F3-inequality violation.

A. Standard hidden quantum correlations

As described in the preceding section, consider experimen-
talists Alice and Bob sharing an arbitrary two-qubit state ρ ∈
D(C2 ⊗ C2) but now, before implementing a standard Bell
test, they implement a local filtering procedure as follows.
Alice and Bob can each perform a local binary POVM mea-
surement given by EW = {E0

W , E1
W }, W ∈ {A, B}, where E1

W =
1 − E0

W and E0
W = f †

W fW , with fW satisfying the property
f †
W fW � 1. This last property guarantees that the procedure

can be performed as a valid measurement E1
W � 0. After the

implementation of this measurement, the postmeasured state
is the unnormalized state ( fA ⊗ fB)ρ( fA ⊗ fB)† with proba-
bility Tr[( f †

A fA ⊗ f †
B fB)ρ]. They then keep the postmeasured

state only when they obtain this desired target state, discard-
ing the system otherwise, and repeating until success. This
procedure is also known as stochastic local operations with
classical communication (SLOCC) and the operators fA and
fB are referred to as local filters or SLOCC. This local filtering
procedure then can effectively be seen as transforming the
initial state to a filtered state of the form

ρ ′ = ( fA ⊗ fB)ρ( fA ⊗ fB)†

Tr[( f †
A fA ⊗ f †

B fB)ρ]
, (6)

where fW ∈ GL(2,C), the group of invertible 2 × 2
complex matrices. This latter condition guarantees that
the transformation does not destroy quantum correlations [9],
CHSH nonlocality and F3 steering in particular [16]. Among
all possible local filtering operations, there exists a particular
one, which we address here as the Kent-Linden-Massar
(KLM) SLOCC transformation [13], the KLM SLOCC from
now on, which has the important property of transforming
the state ρ into its Bell-diagonal unique normal form
[13], which we denote by ρBD

UNF [9,16]. It has been
proven that the KLM SLOCC is the optimal local filtering
transformation that simultaneously maximizes the quantum
correlations of concurrence [9], usefulness for teleportation
[16], and violation of the CHSH inequality for Bell

nonlocality [16]. The KLM SLOCC then effectively acts
as ρ → ρBD

UNF, which in terms of the R matrix (1) reads
R → RBD

UNF = diag(1,−√
ν1/ν0,−

√
ν2/ν0,−

√
ν3/ν0),

with {νi=0,1,2,3} the eigenvalues of the operator ηRηRT

in decreasing order and η = diag(1,−1,−1,−1)
[39]. Hence, the quantum correlations of the Bell-
diagonal unique normal form, which defines the
hidden quantum correlations of the initial state ρ, are
given by

HB(ρ) := B
(
ρBD

UNF

) =
√

ν1 + ν2

ν0
, (7)

HF3(ρ) := F3
(
ρBD

UNF

) =
√

ν1 + ν2 + ν3

ν0
. (8)

As mentioned before, the KLM SLOCC is the optimal
SLOCC for maximizing the CHSH inequality and therefore
HB∗(ρ) := max{ fA, fB} B(ρ ′) = HB(ρ), with ρ ′ defined as in
(6). It is not known whether this is also the case for the F3

inequality, but we nevertheless have the inequality HF ∗
3 (ρ) :=

max{ fA, fB} F3(ρ ′) � HF3(ρ).

B. One-sided hidden quantum correlations

We are now interested in restricting the standard locally
filtered Bell-test scenario to the case when only one of the
parties is allowed or capable of implementing local filters. We
define one-sided filtered states ρ ′

FW , W ∈ {A, B}, as

ρ ′
FA = ( fA ⊗ 1)ρ( fA ⊗ 1)†

Tr[( f †
A fA ⊗ 1)ρ]

, ρ ′
FB = (1 ⊗ fB)ρ(1 ⊗ fB)†

Tr[(1 ⊗ f †
B fB)ρ]

.

These two locally filtered states can alternatively be seen
as imposing the condition fB = 1 or fA = 1 in the standard
definition (6), respectively. We can now define two measures
for locally accessible hidden CHSH-inequality violation and
two measures for locally accessible F3-inequality violation as
follows:

HBW (ρ) := max
{ fW }

B(ρ ′
FW ), W ∈ {A, B}, (9)

HF3W (ρ) := max
{ fW }

F3(ρ ′
FW ), W ∈ {A, B}. (10)

These measures define the amount of hidden correlations that
each party (either Alice or Bob) can extract by working unilat-
erally while the other party does nothing. It follows from these
definitions that we have the inequalities B(ρ) � HBW (ρ) �
HB(ρ) and similarly for the F3 inequality. It would be de-
sirable to have analytical expressions for these asymmetric
measures, as it is the case for their symmetric counterparts.
We are now interested in the scenarios where it is possible
to reveal quantum correlations when they were not initially
present. In Table I we define five fine-grained hidden quan-
tum correlation phenomena. We now describe the cases in
Table I. The first case addresses standard hidden CHSH-
inequality violation, which was first introduced by Popescu
in [7] and specialized to two-qubit states by Gisin in [8].
The second case deals with maximal hidden CHSH-inequality
violation. An example of this phenomenon was shown to
be present in a qutrit-qubit state, referred to as an erasure
state [40,41]. A case for two-qubit states was considered in
[42], as states coming from the dynamics of open quantum

022435-4



LOCALLY INACCESSIBLE HIDDEN QUANTUM … PHYSICAL REVIEW A 110, 022435 (2024)

TABLE I. Definitions and results on fine-grained hidden quantum correlations regarding the violation of the CHSH inequality for Bell
nonlocality. We can similarly define these cases for the F3-inequality violation for EPR steering.

Case Definition: ρ displays . . . B(ρ ) (2) HBA(ρ ) (9) HBB(ρ ) (9) HB(ρ ) (7) Reference

1 hidden CHSH �1 – – >1 [7,8]
2 maximal hidden CHSH �1 – – 2 [40–42]
3 B-inaccessible hidden CHSH �1 >1 �1 >1 this work (Sec. IV A)
4 AB-inaccessible hidden CHSH �1 �1 �1 >1 this work (Sec. IV B)
5 AB-inaccessible maximal hidden CHSH �1 �1 �1 2 this work (Sec. IV C)

systems. The third case specifies locally B-inaccessible hidden
CHSH-inequality violation, which encapsulates the idea of the
quantum state not allowing Bob to enhance its correlations, no
matter what local filter he is using, so that the cooperation of
Alice is indispensable. Here we also naturally define locally
A-accessible hidden CHSH-inequality violation, meaning that
Alice alone can extract some amount of correlations. The
fourth case considers the stronger notion of a state whose
hidden quantum correlations are locally inaccessible from
both sides. This encapsulates the idea of the quantum state not
allowing Alice and Bob to act individually, but forcing them
to cooperate, and hence the wording locally AB-inaccessible
hidden CHSH-inequality violation. We emphasize here that
the difference between standard hidden quantum correlations
[for which we have HB(ρ) > 1] and AB-inaccessible hidden
quantum correlations [for which we also have HB(ρ) > 1] is
that in the latter we can additionally guarantee that HBA(ρ) �
1 and HBB(ρ) � 1. Finally, the fifth case considers an ex-
treme case in which the correlations are locally inaccessible
and yet they can still be revealed to be the maximum amount
allowed by quantum theory.

These one-sided versions here introduced can be found
useful when considering semi-device-independent protocols,
as it has been the case for EPR steering [4,5]. Unlike the
standard hidden correlations, for which we have the closed
formulas in (7) and (8), there are currently no closed formulas
for the one-sided versions defined in (9) and (10). In this work
we start exploring these alternative one-sided measures. The
first step we take is to address whether there actually exist
states with the properties depicted in these three definitions.
This is because, a priori, it might well be the case that the
hidden correlations of all states are actually already always
locally accessible (by both parties) and therefore the previous
definitions are unnecessary. The main challenge in tackling
these questions is that currently there are no efficient tools for
guaranteeing that the hidden correlations of a state are locally
inaccessible or explicitly that HBA(ρ) � 1 or that HF3A(ρ) �
1. In this work we take a step in this direction by providing
a sufficient criterion for guaranteeing that a state has locally
W -inaccessible hidden quantum correlations with W ∈ {A, B}
so that when considered together it also allows us to explore
locally AB-inaccessible hidden quantum correlations.

C. Sufficient criterion for locally W -inaccessible hidden
quantum correlations W ∈ {A, B}

We now provide a sufficient criterion for guaranteeing
that a state possesses locally W -inaccessible hidden quantum

correlations. We first need the following lemma about quan-
tum steering ellipsoids [36].

Lemma. Consider a two-qubit state ρ ∈ D(C2 ⊗ C2) with
associated QSEs given by EW = {cW , QW }, W ∈ {A, B}. Con-
sider also that the state is locally filtered to a state ρ ′ with
QSEs given by E ′

W = {c′
W , Q′

W }, W ∈ {A, B}. If we consider
local filters of the form 1 ⊗ fB, then E ′

A = EA. Conversely, if
we consider local filters of the form fA ⊗ 1, then E ′

B = EB.
The proof of this lemma can be found in [36]. We now use

this lemma to establish our main result.
Result 1. Consider a two-qubit state ρ ∈ D(C2 ⊗ C2). If

Alice’s (Bob’s) QSE center magnitude satisfies cA > cCHSH

(cB > cCHSH) with cCHSH = 0.5, then, modulo the QSE con-
jecture being true, it follows that HBB(ρ) � 1 [HBA(ρ) � 1].
This means that Bob (Alice) cannot locally achieve any hidden
CHSH-inequality violation.

Proof. Consider a two-qubit state ρ ∈ D(C2 ⊗ C2) with
Alice’s QSE center satisfying cA > cCHSH = 0.5. Then, be-
cause of the QSE conjecture, the state cannot violate the
CHSH inequality. Moreover, if we consider local filters of the
form 1 ⊗ fB and the associated filtered state ρ ′

FB, the Lemma
guarantees that Alice’s QSE EA remains unchanged as E ′

A =
EA. In particular, the magnitude of the QSE’s center remains
unchanged and therefore, again by the QSE conjecture, the
filtered state ρ ′

FB cannot violate the CHSH inequality, meaning
that B(ρ ′

FB) � 1. Since this holds for any fB, it therefore
follows that HBB(ρ) = max fB B(ρ ′

FB) � 1, thus completing
the proof. The same argument holds with Bob’s QSE center
satisfying cB > cCHSH = 0.5, but now for BA(ρ). �

Taking these two criteria together allows us to look for
locally AB-inaccessible hidden CHSH-inequality violation by
calculating the QSE’s center magnitudes cA and cB. The F3

inequality also displays an impossibility region, and so we
have an analogous result.

Result 2. Consider a two-qubit state ρ ∈ D(C2 ⊗ C2). If
the QSE center’s magnitude satisfies cA > cF3 (cB > cF3 ) with
cF3 = 0.66, then, modulo the QSE conjecture being true, we
have that HF3B(ρ) � 1 [HF3A(ρ) � 1]. This means that Bob
(Alice) cannot locally access any hidden F3-inequality viola-
tion.

With these sufficient criteria in place, it becomes a straight-
forward exercise to look for both locally inaccessible hidden
CHSH-inequality and F3-inequality violation, since it is es-
sentially calculating the QSE’s centers, which are explicitly
given as per (4), and comparing these values to cCHSH = 0.5
and cF3 = 0.66, respectively. We now proceed to use these suf-
ficient criteria to explore locally W -inaccessible (W ∈ {A, B})
and locally AB-inaccessible hidden quantum correlations of
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two-qubit states, showing that these sufficient criteria are
enough detect the existence of states displaying such prop-
erties.

IV. EXAMPLES: LOCALLY INACCESSIBLE
HIDDEN CORRELATIONS

We now consider specific two-qubit states and calculate the
properties of entanglement by means of the positive partial
transpose (PPT) criterion [43], CHSH-inequality violation (2),
F3-inequality violation (3), hidden CHSH-inequality violation
(7), hidden F3-inequality violation (8), unsteerability [28,29],
and regions for which the QSEs’ centers (4) satisfy the con-
ditions cA, cB > cCHSH = 0.5 and cA, cB > cF3 = 0.66 so as
to guarantee the local W inaccessibility W ∈ {A, B} of either
CHSH nonlocality or F3 steering, respectively, as per Results
1 and 2. We address three examples: first, an asymmetric case
which displays A-accessible, B-inaccessible hidden quantum
correlations; second, a symmetric case which displays locally
AB-inaccessible hidden quantum correlations; and third, an
extreme case of states that display locally AB-inaccessible
maximal hidden quantum correlations.

A. Locally A-accessible, B-inaccessible
hidden quantum correlations

We show evidence of the existence of this phenomenon
with a particular family of states, which is usually
called partially entangled states with (asymmetric) colored
noise,

ρM(θ, p) = pφ+(θ ) + (1 − p)ρA(θ ) ⊗ 1, (11)

where φ+(θ ) = |φ+(θ )〉〈φ+(θ )|, ρA(θ ) = TrB[φ+(θ )]
(0 � θ � π/4 and 0 � p � 1), and |φ+(θ )〉 = cos θ |00〉 +
sin θ |11〉. In Fig. 3(a) we address CHSH-inequality-related
correlations and in particular distinguish regions for
cA > cCHSH = 0.5, that is, A-accessible, B-inaccessible
hidden CHSH-inequality violation. In Fig. 3(b) we address
F3-inequality-related correlations with regions for locally
A-accessible, B-inaccessible hidden F3-inequality violation
(cA > cF3 = 0.66). In both Figs. 3(a) and 3(b) the shaded
region refers to states displaying A-accessible, B-inaccessible
hidden CHSH-inequality and F3-inequality violation,
respectively. The KLM SLOCC for these states can explicitly
be written as

fA(θ, p) = sin θ

(
1

cos θ
0

0 1
sin θ

)
, fB(θ, p) =

(
1 0
0 1

)
.

We have that these states are locally A accessible as the op-
timal local filters do not require that Bob acts on his part, in
agreement with Fig. 3. In this example, it is worth pointing
out that the states below the black curve (in both plots) ad-
mit a LHS model and so, beyond hidden CHSH-inequality
violation, we more generally have instances of hidden Bell
nonlocality.
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FIG. 3. Quantum correlation measures of partially entangled
states with colored noise (11). In both plots the entanglement in blue
is calculated by means of the PPT criterion and the unsteerability
in black by means of the sufficient criterion from [44]. (a) CHSH-
inequality-related correlation measures: in red, the CHSH-inequality
violation (2); in magenta, the hidden CHSH-inequality violation
(7); and in green, the QSE center condition cA > cCHSH = 0.5. The
shaded region shows states with locally B-inaccessible (yet locally
A-accessible) hidden CHSH-inequality violation as per Result 1 (see
case 3 in Table I). (b) F3-inequality-related correlation measures:
in red, the F3-inequality violation (3); in magenta, the hidden F3-
inequality violation (8); and in green, the QSE center condition
cA > cF3 = 0.66. The shaded region depicts states with locally B-
inaccessible F3-inequality violation as per Result 2.

B. Locally AB-inaccessible hidden quantum correlations

We now modify the previous states to be partially entan-
gled states with symmetric colored noise as

ρMM(θ, p) = pφ+(θ ) + (1 − p)ρA(θ ) ⊗ ρB(θ ), (12)

with ρA(θ ) = TrB[φ+(θ )], ρB(θ ) = TrA[φ+(θ )], and 0 � p �
1. In Fig. 4(a) we address CHSH-inequality-related correla-
tions, while Fig. 4(b) deals with the F3-inequality-related cor-
relations. Unlike the previous case, we now have regions for
locally AB-inaccessible CHSH-inequality and F3-inequality
violation, as opposed to only B-inaccessible hidden quan-
tum correlations. Furthermore, in the shaded regions we have
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FIG. 4. Quantum correlation measures of partially entangled
states with symmetric colored noise (12). In both plots the entan-
glement, unsteerability, CHSH inequality, F3 inequality, and hidden
inequalities are labeled as in Fig. 3. (a) The green curve indicates the
QSE center condition cA, cB > cCHSH = 0.5. In this case, the shaded
region corresponds to states with locally AB-inaccessible hidden
CHSH-inequality violation as per Result 1. This means that neither
Alice nor Bob can extract unilaterally hidden correlations, but they
are required to cooperate (case 4 in Table I). (b) The green curve
indicates the QSE center condition cA, cB > cCHSH = 0.66 such that
the shaded region corresponds to states with locally AB-inaccessible
hidden F3-inequality violation as per Result 2.

B-inaccessible hidden CHSH-inequality and F3-inequality vi-
olation, respectively.

C. Locally AB-inaccessible maximal
hidden quantum correlations

We now address the so-called quasidistillable states [16],
which can be parametrized by 0 � p � 1 as

ρQD(p) = p|
−〉〈
−| + (1 − p)|00〉〈00|, (13)

with |
−〉 = (1/
√

2)(|01〉 − |10〉). These states belong to the
SLOCC orbit of the singlet, so in this sense they can be dis-
tilled [16]. This procedure however has a success probability
that decreases with p → 0, hence the name quasidistillable. In
Fig. 5(a) we address CHSH-inequality-related correlations; in

Locally inaccessible MH-CHSH

Maximally Hidden CHSH-nonlocal

Entangled

CHSH-nonlocal

p

0 ∼ 0.66 ∼ 0.71 1

(a)

Locally inaccessible MH-F3

Maximally hidden F3-steerable

Entangled

F3-steerable

p

0 ∼ 0.50 ∼ 0.67 1

(b)

FIG. 5. Quantum correlations of quasidistillable states (13). In
both plots the entanglement is calculated by means of the PPT
criterion. (a) CHSH-inequality-related measures: CHSH-inequality
violation (2), hidden CHSH-inequality violation (7), and locally
AB-inaccessible maximal hidden CHSH-inequality violation (shaded
region) as per Result 1. (b) F3-inequality-related measures: F3-
inequality violation (3), hidden F3-inequality violation (8), and
locally AB-inaccessible maximal hidden F3-inequality violation
(shaded region) as per Result 2.

particular, in the shaded region (0 < p < 0.66) they evidence
locally AB-inaccessible maximal hidden CHSH-inequality
violation. In Fig. 5(b) we address F3-inequality-related cor-
relations with the shaded region (0 < p < 0.50) evidencing
locally AB-inaccessible maximal hidden F3-inequality viola-
tion. We emphasize that the states in the shaded region go
from having weak entanglement, CHSH inequality, and F3-
inequality violation to being the singlet state and therefore
having the maximum amount of these correlations that is
allowed by quantum theory. Overall, these simple families of
states show that this phenomenon is not hard to find, and so
we believe it is in fact a ubiquitous aspect of the correlations
allowed by quantum theory.

V. CONCLUSION

In this work we proved, modulo a conjecture on quantum
steering ellipsoids being true, the existence of the phe-
nomenon of locally inaccessible hidden quantum correlations,
in particular, locally inaccessible hidden CHSH-inequality
violation for Bell nonlocality and F3-inequality violation for
EPR steering. The case of simultaneous A-inaccessible and B-
inaccessible hidden quantum correlations can alternatively be
regarded as a type of “super” hidden nonlocality, in the sense
that it is a type of nonlocality that is actually more hidden
than its standard counterpart, since it explicitly requires the
active intervention of both parties, as opposed to potentially
only one of them. Moreover, we reported on a stronger ver-
sion of this phenomenon in the form of locally inaccessible
maximal hidden quantum correlations, meaning that the local
filters reveal the maximal amount of correlations allowed by
quantum theory. The relatively simple families of states that
display these phenomena we provided here were not difficult
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to find, and so this leads us to believe that this is in actuality a
generic feature of the type of correlations allowed by quantum
theory.

We believe that the results found in this work intro-
duce several questions for future research. First, although the
conjectures regarding the QSEs in question are supported
by numerical results, they lack analytical proof. It would
therefore be desirable to have analytical proofs for these
conjectures in order to completely guarantee the existence
of this phenomenon. Second, it would also be interesting to
derive closed formulas for these locally accessible hidden
quantum correlations measures, as it has been done for their
standard hidden counterparts. Third, the idea of quantum cor-
relations being revealed by filters on only one side of the
experiment can naturally be extended to other setups such
as higher dimensions and multipartite scenarios as well as to
other measures of correlations such as entanglement, quantum
obesity, and quantum discord. We remark, however, that the
cases for entanglement and quantum obesity, for instance, do
not display a hidden phenomenon but a rather an extractable
counterpart [13], in the sense that local filters cannot take
separable states into entangled states, but they can nonethe-
less take entangled states into states with a larger amount
of entanglement. It would nonetheless be desirable to have
closed formulas for these cases as well. Fourth, in addition
to the hidden CHSH-inequality (F3-inequality) violation, one
can define stronger versions of these phenomena in the form

of hidden Bell nonlocality (EPR steering) by guaranteeing
that the prefiltered state allows LHV and LHS models. This
can be explored, for instance, for two-qubit states, by means
of the sufficient unsteerability criterion derived in [44] and,
for general states, by means of the numerical codes from
[28–30]. Fifth and finally, from a practical point of view, the
results found in this work could also find application in semi-
device-independent information-processing protocols, as it
has already proven to be the case for EPR steering.
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