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Dynamics of quantum coherence in many-body localized systems
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We demonstrate that the dynamics of quantum coherence serves as an effective probe for identifying
dephasing, which is a distinctive signature of many-body localization (MBL). Quantum coherence can be
utilized to measure both the local coherence of specific subsystems and the total coherence of the whole
system in a consistent manner. Our results reveal that the local coherence of small subsystems decays over
time following a power law in the MBL phase, while it reaches a stable value within the same time window in
the Anderson-localized (AL) phase. In contrast, the total coherence of the whole system exhibits logarithmic
growth during the MBL phase and reaches a stable value in the AL phase. Notably, this dynamic characteristic
of quantum coherence remains robust even with weak interactions and displays unbounded behavior in infinite
systems. Our results provide insights into understanding many-body dephasing phenomena in MBL systems and
reveal a feasible method for identifying and characterizing MBL phases in experiments.
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I. INTRODUCTION

The statistical mechanical description of closed quantum
systems suggests that subsystems, containing only a small
fraction of the degrees of freedom, typically thermalize by uti-
lizing the remainder of the system as a heat reservoir and lose
memory of their initial conditions [1–4]. However, Anderson
localization (AL) [5] and many-body localization (MBL) [6]
have been widely shown to violate this paradigm. In addition,
the phenomena of weak violation, including prethermaliza-
tion [7–9] and many-body scars [2,10–13], have recently
attracted much attention. AL is caused by elastic scattering
of random impurities in the absence of interactions, resulting
in localization of all single-particle states, which has been
directly observed [14–16]. With regard to the interplay be-
tween disorder and interacting particles, MBL characterizes
the phenomenon that violates thermalization, with its hall-
mark characteristics being observed in various experimental
setups [17–24]. Recent theoretical and experimental studies
have shown that even without the random component, such
as Stark MBL with a linear Zeeman field, a system can en-
ter into an MBL phase [25–33]. AL and MBL phases share
several key features distinguishing them from ergodic phases,
including the absence of the transport of particles and energy
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[5,6], the preservation of some memory of local initial con-
ditions, the failure of the eigenstate thermalization hypothesis
[34], the existence of eigenstates with area-law entanglement
[35,36], and energy level statistics following Poisson distribu-
tion [34,37–39]. A comprehensive description can be found in
the reviews in [40,41].

However, the MBL phase possesses distinctive features
that qualitatively distinguish it from the AL phase. This is
because while disorder prevents particle scattering, quantum
correlations can still be transported when the interaction is
turned on. Identifying these distinguishing features of MBL
is crucial, and various tools of quantum information theory
have proven effective for observing this nontriviality. The
dynamics of large-block entanglement after a global quench
has been discussed [42–48], and the consistent result is that
in the AL phase, entanglement entropies for bipartitions tend
to reach a plateau, whereas in the MBL phase they exhibit
slow logarithmic, but unbounded, growth [42,43,45], which
was directly observed experimentally using quantum state
tomography [22]. In small subsystems, the joint state of two
subsystems generally becomes a mixed state rather than a
pure state, making its entanglement impossible to measure
by von Neumann entropy. The dynamics of two-site entangle-
ment, quantified by concurrence, shows a contrasting behavior
compared to bipartite entanglement across the whole system:
in the MBL phase it decays over time, following a power
law, while in the AL phase it tends towards a plateau [49].
Then, quantum mutual information based on von Neumann
entropy also exhibits unbounded spreading within the MBL
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phase [50]. In addition, spin-noise spectroscopy has also been
proved to be effective for distinguishing MBL from AL [51].
Essentially, the interaction induces dephasing [45] within the
MBL phase by reducing the off-diagonal elements in the re-
duced density matrices for small subsystems, thus conferring
nontrivial dynamical behaviors on measures such as entangle-
ment entropy, concurrence, and quantum mutual information.
Therefore, it is important to find an appropriate probe that bet-
ter reflects the many-body dephasing properties under existing
experimental conditions, and we demonstrate that quantum
coherence serves as such a probe.

In closed quantum systems, quantum coherence arises
from the superposition principle and is responsible for quan-
tum fluctuations and correlations. It is primarily characterized
by the off-diagonal terms of the density operator, which makes
it a natural probe to explore many-body dephasing phenom-
ena. Recently, a rigorous framework for quantum coherence
as a resource was established [52], with measures such as
the relative entropy of the coherence and the l1 norm of the
coherence being recognized as legitimate quantifiers. Further,
quantum coherence has been incorporated into the general
framework of quantum resource theories [53–55]. Quantum
coherence has been proven to be an effective tool for ad-
dressing various quantum many-body problems, including
investigating different types of quantum phase transitions
[56,57] and studying the localization transition between the
ergodic phases and MBL phases [58–60]. We employ the
dynamics of quantum coherence to examine the distinction
between the MBL phase and the AL phase. In multiparticle
systems, the total coherence has contributions from both local
coherence arising within each defined subsystem and intrinsic
coherence emerging from intersubsystem correlations [61].
Another advantageous feature of quantum coherence is that
it does not require system partitioning, and measures such
as the relative entropy of the coherence and the l1 norm
of the coherence can directly quantify the total coherence
of the whole system while also serving as valid indicators
when we focus on the local coherence of subsystems specif-
ically. Unlike entanglement, for which distinct measures are
needed for bipartite entanglement versus two-site entangle-
ment, quantum coherence allows us to consistently measure
both local coherence within individual subsystems and
the total coherence of the whole system in a unified manner,
thereby facilitating exploration of the relationship between the
local and global aspects of coherent behavior. Furthermore,
it was shown experimentally that quantum coherence can
be measured directly with interference fringes [62], which
is easier under existing experimental conditions compared to
quantum state tomography.

In this paper, we investigate the dynamics of quantum
coherence in the interacting fermion model. We begin by
initializing the system in a Néel state and adopt the l1 norm of
coherence as a measure of quantum coherence. We explore the
dynamical behavior of quantum coherence in both the nearest
two-site subsystem and the whole system, demonstrating its
ability to distinguish among the MBL phase, noninteracting
AL phase, and nonlocal ergodic phase. Subsequently, we
present the distribution of quantum coherence within both
the whole system and various dimensional subsystems. Fur-
thermore, by considering weak interactions and varying chain

lengths, we establish that quantum coherence undergoes un-
bounded slow changes within the MBL phase. Finally, we
supplement our findings from alternative perspectives by pre-
senting results for two other initial states and the relative
entropy of coherence.

II. MODEL

We employ an interacting-fermion chain with disordered
potential, described by the Hamiltonian

H = J
N∑

l=1

(c†
l cl+1 + c†

l+1cl ) + �

N∑

l=1

nlnl+1 +
N∑

l=1

hlnl , (1)

where c(†)
l annihilates (creates) a fermion on site l and nl =

c†
l cl represents the local number operator. The single-particle

basis states can be constructed from the vacuum |0〉, and the
excited state is |1〉 = c†|0〉. Here, J and � denote the hopping
strength and interacting strength, respectively, and the local
disordered potentials hl are taken from a uniform random
distribution in [−δh, δh]. As the disorder strength increases,
there are two distinct types of transitions from the ergodic
phase to the localized phase. First, in the noninteracting case
with � = 0, the AL transition occurs at δhc = 2 [63]. Second,
in the interacting case with � �= 0, the MBL transition is
observed where its phase transition point depends on J and
� values chosen. For instance, the choice J = 1/2, � = 1 is
believed to have a transition at δhc = 3.5 ± 1 [34,64,65]. For
our model, we infer that the phase transition occurs at δhc =
5.8 ± 0.06 by utilizing level statistics (see the Appendix).

In order to detect signatures of quantum coherence in
the AL phase and MBL phase, we perform a global quench
from an initial state far from equilibrium, then follow the
time evolution governed by the Hamiltonian (1). In gen-
eral, we choose the initial state to be the Néel state |ψ (t =
0)〉 = |1010 · · · 1010〉, and the energy of this configuration is
equivalent to an infinite-temperature thermal state since its
expected value of the Hamiltonian is zero [22]. To further
demonstrate the effectiveness of quantum coherence, two ad-
ditional initial states are considered: (1) another incoherent
initial state, |ψ (t = 0)〉 = |11 · · · 1100 · · · 00〉, with all excita-
tions confined to the left half chain and corresponding energy
equivalent to an infinite-temperature thermal state [22], and
(2) a maximally coherent state (introduced in the next
section).

We study the above-mentioned model (1) using the QUTIP

packages [66,67]. In the numerical calculations, the hopping
strength J = 1 is fixed, and 1000 disorder realizations are
used to perform the disorder averaging (except for the satu-
ration values in the inset of Fig. 6 below). Unless otherwise
indicated, we present the basic results with the settings that
the system has N = 12 sites initialized at the Néel state and
interaction strength � = 1 for MBL phase.

III. MEASURES OF QUANTUM COHERENCE

Based on the measurement scheme proposed in Ref. [52],
the concept of quantum coherence is based on a given ba-
sis under which all diagonal density matrices form a set of
incoherent states. Incoherent operations are required to map
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(a)

(b)

FIG. 1. Quantum coherence in an interacting-fermion chain with
disordered potential. (a) The total coherence C is contributed by
local coherence CL on subsystems and intrinsic coherence CI . Here,
the system is divided into several n = 2 subsystems uniformly; in
fact, the system can be divided arbitrarily. (b) Taking the subsystem
dimension n = 2 as an example, the selection method of all the
nearest-neighbor n-site subsystems in the system.

this set onto itself. Generally, for a d-dimensional Hilbert
space with a particular basis, {|i〉}i=1,...,d , a d-dimensional
maximally coherent state can be specified as

|�d〉 = 1√
d

d∑

i

|i〉, (2)

which allows the definition of a coherence unit to normalize
all measures. Note that the maximally coherent states are
not unique, and the complete set of these states is given in
Ref. [68].

The central requirement of the coherence measure is that
the coherence should not increase under incoherent opera-
tions. The l1 norm of the coherence expressed as the sum of
off-diagonal elements has been proven to be a valid measure
of coherence for a given basis,

Cl1 (ρ) =
∑

i, j
i �= j

|ρi, j |. (3)

Another universally valid measure is the relative entropy of
the coherence,

Crel.ent(ρ) = S(ρdiag) − S(ρ), (4)

where S represents the von Neumann entropy and ρdiag is
obtained from ρ by removing all its off-diagonal entries.

The notions of local coherence and intrinsic coherence
were introduced in Ref. [61]. We can now study the properties
of the total coherence of the system and the local coherence
of a specific subsystem in many-body dynamics. Figure 1(a)
illustrates that the total coherence of the whole system has
contributions from the local coherence in subsystems and the
intrinsic coherence between subsystems using a specific ex-
ample. Since the measure of coherence depends on the basis,
we choose the tensor-product basis, formed by the vacuum
state |0〉 and the excited state |1〉 of the fermion, as the

preferred basis throughout the paper. Then, we calculate the
total coherence of the whole system and the local coherence
of any dimensional subsystems uniformly using the coherence
measures in Eqs. (3) and (4), where the local coherence of
the subsystem uses the corresponding reduced density matrix.
For the local coherence of the n-site subsystem (2 � n < N),
we averaged all the nearest-neighbor n-site subsystems [see
Fig. 1(b)]. The n-site local coherence can be expressed as

C(ρn) = 1

N + 1 − n

N+1−n∑

i=1

C(ρ[i,i+1,...,i+n−1]), (5)

where ρ[i,i+1,...,i+n−1] is the reduced density matrix describ-
ing the subsystem formed by the nearest-neighbor [i, i +
1, . . . , i + n − 1] sites and C(•) is the unified representation
of Cl1 (•) and Crel.ent(•). Then the total coherence of the whole
system has the unified expression C(ρN ) = C(ρn=N ).

In many cases, the single-site density matrix is nontriv-
ial for coherence, and the single-site local coherence can be
expressed as

C(ρn=1) = 1

N

N∑

i=1

C(ρ[i] ). (6)

For the relative entropy of the coherence, the disorder-
averaged coherence is 〈Crel.ent(ρn)〉, with 〈•〉 indicating the
disorder average. However, we usually normalize the l1 norm
of the coherence with the maximally coherent state (2); then
the disorder-averaged normalized coherence is given by

〈CN
l1 (ρn)〉 = 1

2n − 1
〈Cl1 (ρn)〉 (1 � n � N ). (7)

IV. QUANTUM COHERENCE IN DISORDERED
FERMION CHAIN

In this section, we consider the initial state to be the Néel
state, and the one-site reduced density operators are diagonal
during the evolution. Quantum coherence remains zero. Thus,
we focus on the nontrivial cases with n � 2. The coherence
measure adopts the l1 norm of the coherence by disorder-
averaged normalization in Eq. (7).

A. Coherence as a probe to detect the uniqueness of MBL

We consider a system with N = 12 sites and study the
evolution of local coherence for n = 2 subsystems and the
total coherence for the whole system under different disor-
der strengths in the AL model (� = 0) and the MBL model
(� = 1). Figures 2(a) and 2(b) show the dynamics of local
coherence for n = 2 subsystems in the AL model and MBL
model, respectively. The results show that for a short time t �
1, the local coherence behaves exactly the same in both cases,
experiencing a rapid increase to a maximum value and then
decreasing. As the disorder strength increases, the maximum
of the local coherence decreases, indicating that this response
is independent of the interaction. Then, in the AL phase, the
local coherence reaches a stable value and remains frozen. The
stability values increase as the disorder strength increases, but
for larger disorder strengths δh = 6, 8, 10, the stability values
are very close to each other and difficult to distinguish. At
the same time in the MBL phase, local coherence exhibits a
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FIG. 2. Time evolution of coherence in the AL model (� = 0)
and MBL model (� = 1). The system has N = 12 sites initialized
at the Néel state, and values of δh are chosen accordingly. (a) and
(b) show the local coherence for n = 2 subsystems, and (c) and
(d) show the total quantum coherence. The color coding and markers
are the same in all four panels.

power-law decay. As the disorder strength increases, the decay
process becomes slower and more persistent.

Figures 2(c) and 2(d) show the results of the total coher-
ence of the whole system in the AL model and MBL model,
respectively. Similarly, within a short time period t � 1, the
total coherence behaves identically in both cases, independent
of interactions. In the AL phase, the total coherence reaches
a stable value. The differences lie in two aspects: (1) as the
disorder strength increases, the saturation value of the total
coherence decreases in the AL phase; (2) in the MBL phase,
the total coherence exhibits logarithmic growth, and as the dis-
order strength increases, the growth becomes slower and lasts
longer. In the MBL phase, the power-law decay of the local
coherence and the logarithmic growth of the total coherence
are consistent with the entanglement results, which exhibit a
decay of the concurrence [49] and a logarithmic growth of
the half-chain entanglement [42,43]. This is because during
the dynamical evolution, interaction-induced energy differ-
ences enter off-diagonal terms of the reduced density matrix
for small subsystems, leading to their reduction [45]. The
dephasing gives rise to nontrivial entanglement dynamics,
where quantum coherence defined by summing off-diagonal
elements can most directly reflect the characteristics of this
many-body dephasing process and serve as an effective indi-
cator for detecting MBL features.

We provide a qualitative explanation for the behavior of the
local coherence in small subsystems and the total coherence in
the whole system. The total coherence encompasses not only
local coherence within small subsystems but also the intrinsic
coherence arising from coherence between distinct subsys-
tems. In the AL phase, as the disorder strength increases, more
coherence is stored in the small subsystems, leading to an
increase in the local coherence within them. Then the intrinsic

FIG. 3. Time evolution of coherence in the absence of disorder
(solid line) and strong disorder (line with markers). The system has
N = 12 sites initialized at the Néel state, and interaction strength
� = 1. (a) and (b) show the time evolutions of the two-site local
coherence and the total quantum coherence at the different disorder
strengths δh indicated and have the same color coding and markers.
(c)–(e) show a comparison between two-site local coherence and the
total coherence with disorder strengths δh = 6, δh = 8, and δh = 10,
respectively; the color coding and markers are the same.

coherence decreases significantly, leading to a decrease in
the total coherence. In the MBL phase, dephasing caused
by interactions allows correlations to propagate continuously,
resulting in slow decay of the local coherence stored in small
subsystems. Then the intrinsic coherence between the subsys-
tems increases, which leads to a slow logarithmic increase in
the total coherence of the whole system.

Next, we explore the evolution of coherence in the pres-
ence of strong disorder and in the absence of disorder, with
the interaction strength � = 1. Figures 3(a) and 3(b) show
the two-site local coherence and the total coherence of the
whole system, respectively, with time extended up to t =
1000. When the disorder strength is δh = 0, the system en-
ters the ergodic phase; in the presence of strong disorder
δh = 6, 8, 10, the system enters the MBL phase. Combining
the two cases, we find that in the ergodic phase, the time
evolution of the coherence can be roughly divided into two
stages: first, a period of rapid increase is driven by the hopping
term, leading to a maximum in a short time frame. Second, the
local coherence undergoes a sharp drop to reach its minimum
and oscillates nearby, while the total coherence continues
to oscillate around its maximum. For finite-size systems in
the MBL phase, the time evolution of coherence can be ap-
proximately divided into four stages: the first stage is also
a period of rapid increase, caused by hopping terms. In the
second stage, there is a subsequent rapid decrease (both these
stages are consistent with the AL phase and independent of
interactions). In the third stage, the local coherence exhibits
a slow power-law decay, while the total coherence exhibits a
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FIG. 4. Dynamics of quantum coherence in the AL phase (� = 0) and MBL phase (� = 1) for subsystems of different dimensions n.
The system has N = 12 sites initialized at the Néel state, with strong disorder δh = 10. (a)–(c) correspond to subsystem dimensions of n = 2,
n = 6, and n = 9, respectively, where coherence remains in the AL phase and the local coherence power law decays in the MBL phase. (d)–(f)
correspond to subsystem dimensions of n = 10, n = 11, and the whole system, respectively, where coherence remains in the AL phase and
logarithmically grows in the MBL phase. (g) shows the difference between � = 1 and � = 0 for each n, and the inset shows the slope of the
data in the main plot for t > 10 for each n; where the color coding and markers are uniform across the main plot and the inset.

slow logarithmic growth. Finally, if sufficient time is given in
the fourth stage, saturation of the coherence is reached. As the
disorder strength increases, the duration of the third phase is
extended, delaying the entry into the fourth phase. Moreover,
the saturation value increases for the local coherence but de-
creases for the total coherence with increasing disorder. Thus,
in the ergodic phase, the local coherence rapidly diminishes
and spreads throughout the system, whereas either AL or
MBL preserves the local coherence.

In Figs. 3(c)–3(e), we visually compare the results of two-
site local coherence and total coherence with time for disorder
intensity δh = 6, 8, 10, respectively. The results show that the
interaction effect on the time range is the same; when the
local coherence power law decays, the total coherence also
increases logarithmically, and the time the saturation period
is entered is also consistent [Fig. 3(c)]. Note that we present
quantum coherence 〈CN

l1
(ρn)〉 normalized by the maximally

coherent state here, which is convenient for showing the trend
of local coherence and total coherence in the same figure. In
fact, the coherence of the total system 〈Cl1 (ρn=12)〉 is much
larger than local coherence 〈Cl1 (ρn=2)〉.

B. Coherence distribution for different
subsystems in the evolution

In the previous section, we examined the cases of lo-
cal coherence of the smallest nontrivial subsystems and
total coherence of the whole system. Quantum coherence
allows us to investigate local coherence for subsystems of
arbitrary dimension. Therefore, this section focuses on the
time evolution of subsystems with dimensions ranging from
n = 2 to 11, up to N = 12 for the full system, as well
as exploring the distribution of coherence in subsystems
with different dimensions. The disorder strength is δh = 10.
Figures 4(a)–4(f) show a comparison of the time evolution of

quantum coherence in the AL and MBL phases for different n.
We observe that quantum coherence reaches a constant value
in all cases within the AL phase. In contrast, in the MBL
phase, the quantum coherence decays as a power law for n
exceeding N/2 up to n = 9. However, when n = 10, 11, 12,
quantum coherence transforms into logarithmic growth. From
these observations at different values of n, it appears that as
the dimensionality of the subsystem increases within the MBL
phase, the quantum coherence undergoes a process involv-
ing a decreasing power-law-decay amplitude, followed by a
transition to a logarithmic growth and, finally, an increasing
logarithmic-growth amplitude. Consequently, we introduce a
difference for each n, denoted as

δ〈CN
l1 (ρn)〉 = 〈CN

l1 (ρn)〉�=1 − 〈CN
l1 (ρn)〉�=0; (8)

its variations for all values of n are depicted in Fig. 4(g).
Notably, during the AL saturation period (t > 10), it can be
observed that a linear relationship exists between the differ-
ence δ〈CN

l1
(ρn)〉 and log10 t . We define a slope representing

this linear relation, labeled by

χ (n) = dδ〈CN
l1

(ρn)〉
d (log10 t )

∣∣∣∣
t>10

. (9)

The corresponding values for each subsystem dimension n are
shown in the inset. Remarkably, for cases where n > 4, it be-
comes evident that the slope χ steadily increases with respect
to increasing values of n. This observation confirms that in the
MBL phase and for n > 4, as n increases, quantum coherence
surely undergoes a progression from power-law-decay ampli-
tude reduction to an increasing logarithmic-growth amplitude.
This transformation is a continuous behavior rather than a
transition. When the subsystem dimension increases almost
to the entire system dimension, the local coherence of the
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FIG. 5. Dynamics of coherence for different interaction strengths
� indicated. The system has N = 12 sites initialized at the Néel state,
and disorder strength δh = 10. (a) shows the subsystem dimension of
n = 2, and (b) shows the whole system, showing that even for very
small interaction terms �, the dynamics of coherence is substantially
different from that in the noninteraction model. The inset shows the
same data-subtracted � = 0 values, but with a rescaled time axis.
The color coding and markers are the same in both panels.

subsystem is close to the total coherence of the whole system
and exhibits dynamic characteristics that are consistent with
the total coherence of the whole system.

C. Unbounded change in coherence

The presence of interactions determines whether the sys-
tem exhibits AL or MBL phenomena. In this section, we focus
on comparing the AL phase and MBL phase in the weak-
interaction limit (� � 1), for which the entanglement was
previously discussed [43,49]. The evolution of local coher-
ence for the n = 2 subsystem and total coherence of the whole
system under different interaction strengths is represented in
Figs. 5(a) and 5(b), with the disorder strength δh = 10. We
observe a distinct difference between the curves in the weak-

interaction limit (� ranges from 10−2 to 10−1) and at � = 1.
For � = 1, the effects of interaction start to appear after t > 1,
causing a separation from the curve at � = 0. However, in
the case of weak interactions, there are two distinct stages
after t > 1: the first initially agrees with the � = 0 curve
and is indistinguishable from the AL phenomenon; the second
exhibits a MBL signature characterized by a power-law decay
in local coherence and logarithmic growth in the total coher-
ence. This suggests that in the weak-interaction limit, smaller
interactions lead to a later onset of the MBL effect.

By plotting the difference between 〈CN
l1

(ρn)�〉 and
〈CN

l1
(ρn)�=0〉 against the rescaled time axis �t in the in-

sets of Figs. 5(a) and 5(b), we observe that all curves for
weak-interaction limits collapse onto a single curve where the
signature of MBL starts at �t = 1. These results demonstrate
that even very small interactions can lead to MBL within the
system. Moreover, for the weak-interaction limit, the time at
which the MBL effect starts is inversely proportional to the
strength of the interaction t = 1/�.

From the above discussion, it is evident that in finite sys-
tems, quantum coherence reaches a saturation value in the
MBL phase after undergoing the period of logarithmic growth
(or power-law decay). Subsequently, we investigate the cor-
relation between the saturation values of quantum coherence
and system size. Considering that a relatively small disorder
strength and a relatively large interaction strength facilitate
more rapid saturation of coherence, we set the parameters to
be δh = 6 and � = 1. Figures 6(a) and 6(b) show the results
of local coherence for n = 2 and total coherence for the whole
system, respectively. These results indicate that the time tsat at
which the coherence saturates is consistent with the scaling
log10 tsat ∼ N . In addition, for two-site local coherence, the
saturation value decreases with increasing N . In fact, the total
coherence will increase in content with larger system sizes.
However, we use the l1 norm of the coherence normalized
by the maximally coherent state; therefore, total coherence
〈CN

l1
(ρN )〉 represents the “coherence level.” The results reveal

that as N increases, there is a decrease in the saturation value
of the coherence level. In the insets, the relationship between
the saturation value and the size of the system is shown, and in
both cases the saturation value is inversely proportional to the
system size N . Additionally, we present results for � = 0.5
and � = 2 in the insets of Figs. 6(a) and 6(b), which also
exhibit that the saturation value is inversely proportional to
N . Based on our observation that larger N requires more time
to reach the saturation state, it can be anticipated that such
a change (logarithmic growth or power-law decay) remains
unbounded in infinite systems.

V. RESULTS FOR OTHER INITIAL STATES

Above we showed the dynamical features of quantum co-
herence in the initial Néel state. It is well known that the
coherent evolution outcome is related to the choice of the
initial state. To further substantiate the efficacy of quantum
coherence in detecting MBL properties, we choose two dis-
tinct types of initial states and examine their evolution under
strong disorder, δh = 10.

First, we present the coherence results for an incoherent
initial state |ψ (t = 0)〉 = |111111000000〉 with all excitations
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FIG. 6. Dynamics of coherence for the different system dimen-
sions N indicated. The initial state is the Néel state, and disorder
strength is δh = 6. (a) shows a subsystem dimension of n = 2, and
(b) shows the whole system; interaction strength � = 1. The inset
shows the saturation values (averaged over 100 disorder realizations
for � = 0.5 and � = 2) of the coherence as a function of N for
different interaction strengths. The color coding and markers are the
same in both panels.

confined to the left half chain; then the time evolution of
two-site local coherence and the total coherence are shown in
Figs. 7(a) and 7(b). The results show that the local coherence
decays as a power law in the MBL phase when entering satu-
ration in the AL phase. However, the total coherence increases
logarithmically in the MBL phase as saturation enters in the
AL phase. Compared to the results for the Néel state, the
time for the quantum coherence to plateau in the AL phase
becomes longer due to the Lieb-Robinson bound [69].

In addition, we present the results for employing the max-
imally coherent state (2) as the initial state. In this case, the
quantum coherence value of the initial state is 1, and the
single-site reduced density matrix exhibits nontrivial quantum

FIG. 7. Dynamics of coherence for two different initial states.
The system has N = 12 sites, interaction strength � = 1, and dis-
order strength δh = 10. The incoherent initial state |ψ (t = 0)〉 =
|111111000000〉 is shown in (a) and (b), for n = 2 subsystems and
the whole system, respectively. The maximal coherent initial state is
shown in (c) and (d) for subsystem dimension n = 1 and the whole
system, respectively.

coherence. We show the results for single-site local coherence
and the total coherence in Figs. 7(c) and 7(d). Considering
the single-site coherence, after an initial decay, the quantum
coherence stabilizes at approximately 0.8 in the AL phase but
exhibits a significant power-law decay in the MBL phase. For
the total coherence, after an initial decay, the quantum coher-
ence stabilizes around 0.7 in the AL phase while it increases
logarithmically in the MBL phase.

We demonstrate the dynamical nature of quantum co-
herence from various perspectives, encompassing both inco-
herent initial states and the maximally coherent state. For
different initial states, the quantum coherence can clearly
show the essential difference in the quantum coherence in
the AL and MBL phases. These cases collectively reveal a
general property: quantum coherence enters saturation in the
AL phase, but exhibits distinct behaviors in the MBL phase.
Specifically, the local coherence of the small system decays
via a power law, but the total coherence of the whole system
increases via a logarithm.

VI. RESULTS FOR THE RELATIVE
ENTROPY OF THE COHERENCE

In this section, we present results for the relative entropy
of the coherence using the same parameter settings and initial
state as shown in Fig. 4, aiming to compare two different
methods for measuring coherence. We use the un-normalized
disorder-averaged relative entropy of coherence 〈Crel.ent (ρn)〉.
Figures 8(a)–8(f) show a comparison of the time evolution of
quantum coherence in AL and MBL for various subsystem
dimensions n. The difference from the results obtained using
the l1 norm of the coherence is that the transition from a
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FIG. 8. Relative entropy of coherence for subsystems of different dimensions n. The system has N = 12 sites initialized at the Néel state,
and disorder strength δh = 10. (a)–(f) correspond to n = 2, 6, 9, 10, 11, 12, respectively. (g) shows the “difference” between � = 1 and � = 0
for each n, and the inset shows the slopes of the data in the main plot for t > 10 for each n; the color coding and markers are the same in the
main figure and the inset.

power-law decay to a logarithmic growth occurs when the
subsystem dimension reaches n = 11 instead of n = 10. Sim-
ilarly, we define the “difference” as

δ̃〈Crel.ent (ρn)〉 = 〈Crel.ent (ρn)〉�=1 − 〈Crel.ent (ρn)〉�=0

〈Crel.ent (ρn)〉�=0|t→∞
, (10)

where values at t → ∞ are obtained by averaging results for
t > 10 in the AL phase; all results for the difference corre-
sponding to n are presented in Fig. 8(g), where it follows a
simple linear relationship with log10 t during the AL satura-
tion period (t > 10). The slope of this linear relation is defined
as

χ (n) = d δ̃〈Crel.ent (ρn)〉
d (log10 t )

∣∣∣∣
t>10

. (11)

The inset demonstrates that when n > 5, there is a steady
increase in slope with respect to n. Comparing the results for
the relative entropy of the coherence with those for the l1 norm
of the coherence, we find that the two different measures lead
to slight differences in the details; however, they do not alter
the qualitative findings. Namely, when the quantum coherence
reaches saturation during the time evolution within an AL
phase, the local coherence decreases following a power law
while the total system coherence increases logarithmically
within an MBL phase.

VII. CONCLUSIONS

In this paper, we demonstrated that the dynamics of
quantum coherence serves as an effective probe to detect
many-body dephasing. Both the local coherence of small
subsystems and the total coherence of the whole system can
effectively distinguish the MBL phase from the AL phase
but exhibit contrasting behaviors. Specifically, the quantum
coherence reaches a constant value within the AL phase in

both cases but decays as a power law for local coherence in
small systems and grows logarithmically for total coherence
within the MBL phase. This logarithmic growth (or the power-
law decay) characteristic remains robust even under weak
interactions and exhibits unboundedness in infinite systems.
Moreover, a clear differentiation between the ergodic and
MBL phases is achieved by analyzing the quantum coherence
dynamics. In particular, in the ergodic phase, the local coher-
ence rapidly decays to its minimum, while the total coherence
rapidly increases to its maximum, and the local coherence
cannot be preserved.

Quantum coherence can be used to measure both the local
coherence of specific subsystems and the total coherence of
the whole system in a consistent manner. We investigated the
results of the coherent dynamics for all nontrivial subsystems
and the total system by initializing the system to the Néel
state. In addition, we compared results obtained for different
initial states and different measures of quantum coherence to
verify the validity in detecting MBL features.

In particular, exploiting the dynamics of quantum
coherence as a probe to detect MBL offers advantages over
entanglement under current experimental conditions. First,
when a maximally coherent state is employed as an initial
state, single-site local coherence can effectively distinguish
between MBL and AL, unlike entanglement, which requires
the joint detection of at least two sites. Therefore, it is more
feasible to implement it experimentally. In addition, direct
measurement of quantum coherence via interference fringes
and comparison with l1-norm quantum coherence obtained
via quantum state tomography yielded completely consistent
results [62]. Moreover, other experimental approaches to
quantifying quantum coherence [70,71] collectively demon-
strate that achieving quantum coherence is more attainable
than quantum entanglement under existing experimental
conditions.
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FIG. 9. The average level-spacing ratio 〈r〉 as a function of dis-
order strength δh for different system sizes N in the half-filled sector.
The number of disorder realizations employed is 105, 104, 103, and
500 for N = 8, 10, 12, 14, respectively. The inset shows the data
collapse using the best estimates for the critical disorder strength
δhc = 5.8(6) and b = 0.87(8), excluding the data for δh = 1 and
N < Nmin to ensure the stability of the results.
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APPENDIX: ERGODIC-MBL TRANSITION POINT
FROM LEVEL STATISTICS

The level statistics provide a powerful and basis-
independent diagnostic to distinguish between the ergodic
and localized phases [34,37–39]. For our model with the
Hamiltonian in Eq. (1), we perform the exact diagonalization
and calculate the energy level spacing δn = |En − En−1| in
the half-filled sector, where En is the eigenenergy of the nth
eigenstate. We then examine the ratio of adjacent energy level
spacings, rn = min{δn, δn+1}/max{δn, δn+1} and average this
quantity over disorder realizations to obtain 〈r〉, as shown in
Fig. 9. According to random matrix theory, in the ergodic
phase, the level spacings follow the Gaussian orthogonal en-
semble (GOE) with an average ratio of 〈r〉GOE ≈ 0.529. In
the localized phase, they follow a Poisson distribution with
〈r〉Poisson ≈ 0.386, for N → ∞. Note that our model is inte-
grable at δh = 0, so it does not exhibit GOE level statistics
in that limit. This effect is particularly evident at our smallest
system size N = 8 and the lowest disorder strength δh = 1, as
shown in Fig. 9.

When varying the disorder strength δh, a clear crossing is
observed. To determine the critical point, we perform a scaling
collapse g[(δh − δhc)Nb], which enables the data to collapse
onto a single universal curve. The inset in Fig. 9 approxi-
mately yields a critical disorder strength of δhc = 5.8(6) and
a critical exponent of b = 0.87(8).
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